JP2007121133A - Method and apparatus for measuring concentration of insulating matter particles in aqueous solution - Google Patents

Method and apparatus for measuring concentration of insulating matter particles in aqueous solution Download PDF

Info

Publication number
JP2007121133A
JP2007121133A JP2005314370A JP2005314370A JP2007121133A JP 2007121133 A JP2007121133 A JP 2007121133A JP 2005314370 A JP2005314370 A JP 2005314370A JP 2005314370 A JP2005314370 A JP 2005314370A JP 2007121133 A JP2007121133 A JP 2007121133A
Authority
JP
Japan
Prior art keywords
concentration
aqueous solution
electrodes
output
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005314370A
Other languages
Japanese (ja)
Inventor
Ichiro Ogami
一朗 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSHI KOGYO KK
Original Assignee
DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSHI KOGYO KK filed Critical DENSHI KOGYO KK
Priority to JP2005314370A priority Critical patent/JP2007121133A/en
Publication of JP2007121133A publication Critical patent/JP2007121133A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the concentration of insulating matter particles such as sand, plastic particles, air bubbles, etc. floating in an aqueous solution. <P>SOLUTION: A pair of electrodes A and B are provided in the aqueous solution W being a measuring target in order to measure the concentration of the volume ratio of the insulating matter particles (d) floating in the aqueous solution W. When the electric resistance value between the electrodes A and B as no insulating matter particles (d) remain afloat in the aqueous solution W and the concentration D of the insulating matter particles (d) is 0 is set to R<SB>0</SB>, the concentration D when the electric resistance value across the electrodes A and B is set to infinity is set to 1 and the electric resistance value across the electrodes A and B in a state that the insulating matter particles (d) floats in the aqueous solution W is set to R, the concentration D in the state that insulating matter particles (d) float in the aqueous solution W is calculated as D=1-R<SB>0</SB>/R. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水溶液中に浮遊する例えば砂,プラスチック,気泡などの絶縁物粒子濃度を測定する方法及び装置に関する。   The present invention relates to a method and apparatus for measuring the concentration of insulator particles such as sand, plastic, and bubbles floating in an aqueous solution.

従来の各種濃度計は、光を利用した光学濃度計や超音波を利用した超音波濃度計が一般的に用いられている。光を利用した濃度計(濁度計)としては、光束をセル内の試料液に照射し、液中に浮遊する粒子(鉄)により透過した光と散乱した光とに別れ、この透過光と散乱光を検出して散乱光/透過光の比率を演算して、鉄濃度(濁度)として表示メータに表示させるものがある。(例えば、特許文献1参照)。
特開平9−292329号公報
As for various conventional densitometers, an optical densitometer using light and an ultrasonic densitometer using ultrasonic waves are generally used. As a concentration meter (turbidimeter) using light, the sample liquid in the cell is irradiated with light, and it is divided into light transmitted by particles (iron) suspended in the liquid and scattered light. Some have detected scattered light, calculated the ratio of scattered light / transmitted light, and displayed it on a display meter as iron concentration (turbidity). (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 9-292329

しかしながら、これらの光学濃度計や超音波濃度計は、水中に浮遊する粒子の粒径が異なると、濃度が同じでも出力値が異なる欠点があった。この理由は、これらの光学,超音波濃度計は粒子からの反射を利用するため、平面的な情報しか得られないことによるためである。正しい濃度を測定するためには、水中に浮遊する粒子の立体的な情報を考慮することが必要である。
本発明は、水溶液中の絶縁物粒子の濃度を測定する場合に、絶縁物粒子の粒径が異なっていても正確な体積比によるセンサ出力が得られる水溶液中の絶縁物粒子の濃度を測定する方法及び装置を提供するものである。
However, these optical densitometers and ultrasonic densitometers have the disadvantage that output values differ even when the concentration is the same if the particle size of particles floating in water is different. The reason for this is that these optical and ultrasonic densitometers use reflection from particles and thus can only obtain planar information. In order to measure the correct concentration, it is necessary to consider the three-dimensional information of particles floating in water.
In the present invention, when measuring the concentration of insulator particles in an aqueous solution, the concentration of the insulator particles in an aqueous solution that can provide a sensor output with an accurate volume ratio even if the particle size of the insulator particles is different is measured. Methods and apparatus are provided.

本発明による水溶液中の絶縁物粒子の濃度を測定する方法は、水溶液中に浮遊する絶縁物粒子の体積比の濃度を測定するために測定対象の水溶液中に一対の電極を設け、前記水溶液中に前記絶縁物粒子が浮遊していない濃度Dが0の状態の前記電極間の電気抵抗値をR0 とし、前記電極間の電気抵抗値を無限大に設定したときの前記濃度Dを1とし、前記水溶液中に前記絶縁物粒子が浮遊している状態の前記電極間の電気抵抗値をRとし、前記水溶液中の前記絶縁物粒子が浮遊している状態の濃度Dを
D=1−R0 /R
として求めるように構成されたものである。
In the method for measuring the concentration of insulator particles in an aqueous solution according to the present invention, a pair of electrodes is provided in the aqueous solution to be measured in order to measure the volume ratio concentration of the insulator particles floating in the aqueous solution. In addition, the electric resistance value between the electrodes when the concentration D where the insulator particles are not suspended is 0 is R 0, and the concentration D is 1 when the electric resistance value between the electrodes is set to infinity. , R is an electrical resistance value between the electrodes in a state where the insulator particles are floating in the aqueous solution, and a concentration D in a state where the insulator particles are floating in the aqueous solution is D = 1−R. 0 / R
It is comprised so that it may obtain | require as.

本発明による水溶液中の絶縁物粒子の濃度を測定する装置は、濃度測定対象の水溶液中に設けられ、一方が接地された一対の電極を有する前記水溶液中の絶縁物粒子の体積比の濃度を検出する粒子濃度検出部と、正弦波発振器と、一端に該正弦波発振器の出力が接続され、他端に前記濃度検出部の他方の電極が接続され、かつその出力と前記他端との間に接続された帰還抵抗を有する前記電極間の電気抵抗値を検出する電気抵抗検出増幅器と、該電極間電気抵抗検出増幅器の出力を絶対値に変換する絶対値増幅器と、該絶対値増幅器の出力に接続され、前記電極間の濃度Dが0における抵抗値を基準抵抗値R0 として出力が0となるように調整する定数加算器と、該定数加算器の出力に接続され、前記電極間の抵抗値が無限大であるとき、濃度Dが1になるように調整する利得調整器と、該利得調整器の出力に接続され、前記濃度検出部の被測定水溶液中の濃度測定における濃度Dを出力する出力増幅器とを備え、
前記濃度検出部の被測定水溶液中の濃度0及び濃度1に前記定数加算器及び利得調整器をそれぞれ調整した後、前記被測定水溶液中の濃度Dを
D=1−R0 /R
として求めるように構成されたものである。
An apparatus for measuring the concentration of insulator particles in an aqueous solution according to the present invention is provided in an aqueous solution whose concentration is to be measured, and has a volume ratio concentration of the insulator particles in the aqueous solution having a pair of electrodes grounded on one side. The particle concentration detection unit to detect, a sine wave oscillator, the output of the sine wave oscillator is connected to one end, the other electrode of the concentration detection unit is connected to the other end, and between the output and the other end An electric resistance detection amplifier for detecting an electric resistance value between the electrodes having a feedback resistor connected to the output, an absolute value amplifier for converting an output of the interelectrode electric resistance detection amplifier into an absolute value, and an output of the absolute value amplifier A constant adder that adjusts the resistance value at a density D between the electrodes of 0 as a reference resistance value R 0 so that the output becomes 0, and is connected to the output of the constant adder, When the resistance value is infinite, A gain adjuster D is adjusted to 1, is connected to the output of the gain adjuster, and an output amplifier for outputting a density D in the concentration measurement in a measurement solution of the concentration detection unit,
After adjusting the constant adder and the gain adjuster to the concentration 0 and the concentration 1 in the aqueous solution to be measured of the concentration detector, respectively, the concentration D in the aqueous solution to be measured is set to D = 1−R 0 / R
It is comprised so that it may obtain | require as.

本発明は、前述したように水溶液中に設けられた電極間に浮遊する粒子の体積比による濃度を、電気抵抗として検出し、この電気抵抗の逆数を求めることにより極めて容易に測定することができるものである。   In the present invention, as described above, the concentration by the volume ratio of particles floating between electrodes provided in an aqueous solution is detected as an electric resistance, and can be measured very easily by obtaining the reciprocal of the electric resistance. Is.

本発明の水溶液中の絶縁物粒子の濃度を測定する方法及び装置は、水溶液の中に一対の電極を配置し、その間の電気抵抗を検出して利用するものである。電極間を流れる電流は、図1に示すように電極Aから電極Bに対して、球状のような立体的な広がりをもって流れるため、絶縁物粒子の粒径が異なっていても体積比によるセンサ出力が得られるものである。なお、本発明による絶縁物粒子の濃度測定に際しては、水溶液中に浮遊する絶縁物粒子の粒子径の大小に拘らず一様に分布している状態で測定することを要する。   The method and apparatus for measuring the concentration of insulator particles in an aqueous solution according to the present invention uses a pair of electrodes disposed in an aqueous solution and detects the electrical resistance between them. As shown in FIG. 1, the current flowing between the electrodes flows from electrode A to electrode B with a three-dimensional spread like a sphere, so even if the particle size of the insulator particles is different, the sensor output based on the volume ratio Is obtained. In the measurement of the concentration of the insulating particles according to the present invention, it is necessary to measure the concentration in a uniformly distributed state regardless of the particle size of the insulating particles floating in the aqueous solution.

図2は、本発明の水溶液W中の絶縁物粒子dの濃度を測定する方法及び装置の一実施例を示すブロック回路図である。図2において、1は測定対象の粒子浮遊水溶液W中に設置される粒子濃度検出部であり、絶縁枠1aの上下に電極Aと電極Bとが設けられ、一方の電極Bは接地されている。なお、電極AとBは絶縁枠1aの左右に設けてもよい。2は正弦波発振器であり、例えば発振周波数8kHz,出力電圧は100mV程度の出力特性を有する。3は電極間抵抗検出増幅器であり、例えば演算増幅器で構成されており、帰還抵抗Tを含む。4は絶対値増幅器であり、交流信号を負の直流信号に変換する。   FIG. 2 is a block circuit diagram showing an embodiment of a method and apparatus for measuring the concentration of the insulator particles d in the aqueous solution W of the present invention. In FIG. 2, reference numeral 1 denotes a particle concentration detection unit installed in the particle suspension aqueous solution W to be measured. Electrodes A and B are provided above and below the insulating frame 1a, and one electrode B is grounded. . The electrodes A and B may be provided on the left and right sides of the insulating frame 1a. Reference numeral 2 denotes a sine wave oscillator having, for example, output characteristics of an oscillation frequency of 8 kHz and an output voltage of about 100 mV. Reference numeral 3 denotes an interelectrode resistance detection amplifier, which is composed of, for example, an operational amplifier and includes a feedback resistor T. An absolute value amplifier 4 converts an AC signal into a negative DC signal.

5は定数加算器であり、直流電圧Zを加減算する。具体的には後述する測定前の調整において、入力側に設けられた可変抵抗VRZの抵抗値を増減して定数加算器5の出力を0とする。6は利得調整器であり、帰還信号Kの増減により調整する。具体的には後述する測定前の調整において、帰還回路の可変抵抗VRKの抵抗値を増減して、利得調整器6の出力を所要の電圧に調整する。7は出力増幅器であり、定数加算器5と利得調整器6の調整の結果として絶縁物粒子dの濃度Dが出力される。   Reference numeral 5 denotes a constant adder that adds or subtracts the DC voltage Z. Specifically, in the adjustment before measurement described later, the resistance value of the variable resistor VRZ provided on the input side is increased or decreased to set the output of the constant adder 5 to zero. A gain adjuster 6 is adjusted by increasing or decreasing the feedback signal K. Specifically, in the adjustment before measurement, which will be described later, the resistance value of the variable resistor VRK of the feedback circuit is increased or decreased to adjust the output of the gain adjuster 6 to a required voltage. An output amplifier 7 outputs the concentration D of the insulator particles d as a result of adjustment by the constant adder 5 and the gain adjuster 6.

次に各ブロック回路の動作を定量的に説明する。図2の正弦波発振器2の出力は、

Figure 2007121133
である。なお、各式中の“C”は、正弦波発振器2の出力電圧の実効値を示すものである。
粒子濃度検出部1と電極間抵抗検出増幅器3及び帰還抵抗Tで構成した回路出力は、
v{1+(T/R)} ……(式2)
となり、絶対増幅器4の極性反転により、
−C{1+(T/R)} ……(式3)
となる。
定数加算器5及び利得調整器6を通して出力増幅器7からの出力される濃度Dは、
D=KZ−KC{1+(T/R)} ……(式4)
である。 Next, the operation of each block circuit will be described quantitatively. The output of the sine wave oscillator 2 in FIG.
Figure 2007121133
It is. Note that “C” in each equation indicates the effective value of the output voltage of the sine wave oscillator 2.
The circuit output composed of the particle concentration detector 1, the interelectrode resistance detection amplifier 3, and the feedback resistor T is
v {1+ (T / R)} (Formula 2)
By the polarity inversion of the absolute amplifier 4,
-C {1+ (T / R)} (Formula 3)
It becomes.
The density D output from the output amplifier 7 through the constant adder 5 and the gain adjuster 6 is
D = KZ−KC {1+ (T / R)} (Formula 4)
It is.

濃度Dの定義を粒子浮遊水溶液の中の絶縁物粒子dの集合体としての体積比とし、濃度D=0のときの電極A−B間の電気抵抗をR0 、D=1のときは電極A−B間が総て絶縁物粒子で埋め尽くされて、電気抵抗は無限大(∞)となる。絶縁物粒子dを図3に示すように立体的に又は平面的に集約し、Dを絶縁物粒子dの集合体、Wを水溶液とし、D+W=1とする。電気抵抗Rは、水溶液Wの増減によって変化する。即ち、
R=R0 ×(1/W)=R0 ×{1/(1−D)}
となる。変形して、
(1−D)R=R0
−D=(R0 −R)/R
となる。従って、
D=1−(R0 /R) ……(式5)
で表現される。このように濃度Dの値は、0〜1となる。
式4と式5とを比較すれば、Z及びKの調整により、式4を式5に一致させることが理解できる。
The definition of the concentration D is defined as a volume ratio as an aggregate of the insulating particles d in the aqueous particle suspension, and the electrical resistance between the electrodes AB when the concentration D = 0 is R 0 , and when D = 1, the electrode The space between A and B is completely filled with insulating particles, and the electric resistance becomes infinite (∞). As shown in FIG. 3, the insulating particles d are aggregated three-dimensionally or planarly, D is an aggregate of the insulating particles d, W is an aqueous solution, and D + W = 1. The electric resistance R changes with the increase / decrease of the aqueous solution W. That is,
R = R 0 × (1 / W) = R 0 × {1 / (1-D)}
It becomes. Deformed,
(1-D) R = R 0
−D = (R 0 −R) / R
It becomes. Therefore,
D = 1− (R 0 / R) (Formula 5)
It is expressed by Thus, the value of the density D is 0-1.
Comparing Equation 4 and Equation 5, it can be understood that the adjustment of Z and K makes Equation 4 coincide with Equation 5.

Zの調整 R=R0 のとき、D=0とすれば、式4より
0=KZ−KC{1+(T/R0 )} 従って、
Z=C{1+(T/R0 )}となり、これを式4に代入して
D=KCT/R0 −KCT/R ……(式6)
R=R0 の状態は、浮遊する絶縁物粒子dが無い水溶液である。
Adjustment of Z When R = R 0 and D = 0,
0 = KZ−KC {1+ (T / R 0 )}
Z = C {1+ (T / R 0 )}.
D = KCT / R 0 −KCT / R (Formula 6)
The state of R = R 0 is an aqueous solution without the floating insulating particles d.

Kの調整 R=∞のとき、D=1とすれば、式6より
1=KCT/R0 従って、
K=R0 /CTとなり、これを式6に代入して
D=1−(R0 /R) ……(式7)
R=∞ は電極間に水溶液が無い状態である。
Adjustment of K When R = ∞, if D = 1,
1 = KCT / R 0 Therefore
K = R 0 / CT, which is substituted into Equation 6
D = 1− (R 0 / R) (Formula 7)
R = ∞ is a state where there is no aqueous solution between the electrodes.

濃度測定の手順としては、先ず、最初に濃度対象の絶縁物粒子dが浮遊する水溶液Wから、絶縁物粒子dを除去した水溶液Wの電極A・B間の抵抗値R0 を測定すると共に、定数加算器5の直流電圧Zを調整して定数加算器5の出力を0にし、濃度Dが0の場合の出力増幅器7の出力を0とする。
次に、水溶液Wの電極A・B間を開放し、水溶液Wの無い状態、即ち抵抗値Rを無限大(∞)にし、利得調整器6の帰還信号Kを調整して、利得調整器6の出力を測定し易い電圧にして、これを濃度Dが1の場合の出力増幅器7の出力電圧とする。
粒子濃度検出部1の電極A・B間の電気抵抗値Rと濃度Dとの関係は、式7によるものであるから、図4に示す電極間電気抵抗−濃度の関係図に示されるように、濃度D=1−R0 /Rによる特性図として表される。ただし、図4の場合はR0 =23Ωである。
As a procedure for measuring the concentration, first, the resistance value R 0 between the electrodes A and B of the aqueous solution W from which the insulator particles d are removed is measured from the aqueous solution W in which the insulator particles d to be concentrated are suspended. The DC voltage Z of the constant adder 5 is adjusted to set the output of the constant adder 5 to 0, and the output of the output amplifier 7 when the density D is 0 is set to 0.
Next, the electrodes A and B of the aqueous solution W are opened, the state without the aqueous solution W, that is, the resistance value R is set to infinity (∞), the feedback signal K of the gain adjuster 6 is adjusted, and the gain adjuster 6 The output of the output amplifier 7 is a voltage that can be easily measured, and this is the output voltage of the output amplifier 7 when the concentration D is 1.
Since the relationship between the electrical resistance value R and the concentration D between the electrodes A and B of the particle concentration detection unit 1 is based on Equation 7, as shown in the interelectrode electrical resistance-concentration diagram shown in FIG. , And is represented as a characteristic diagram by density D = 1−R 0 / R. However, in the case of FIG. 4, R 0 = 23Ω.

前述の直流電圧Z及びKを調整した後、水溶液Wを測定対象の絶縁物粒子dが浮遊する水溶液Wとして電極A−B間の抵抗値Rの状態と、浮遊している絶縁物粒子dが無い水溶液Wの電極A−B間の抵抗値R0 の状態とが比較されて、出力増幅器7の出力に測定結果が出力される。例えば、前述の水溶液Wが無い状態の出力増幅器7の出力電圧を1Vに調節してある場合において、測定出力電圧が0.32Vである場合は、当該水溶液の濃度は32%(体積比)として把握される。 After adjusting the DC voltages Z and K described above, the state of the resistance value R between the electrodes A and B and the floating insulating particles d are changed so that the aqueous solution W is the aqueous solution W in which the insulating particles d to be measured are floating. The state of the resistance value R 0 between the electrodes A and B of the nonaqueous solution W is compared, and the measurement result is output to the output of the output amplifier 7. For example, when the output voltage of the output amplifier 7 without the aqueous solution W is adjusted to 1 V and the measured output voltage is 0.32 V, the concentration of the aqueous solution is 32% (volume ratio). Be grasped.

前述の説明は、定数加算器5におけるZの調整、及び利得調整器6におけるKの調整は、それぞれ手動によるものであるが、自動調整を行うようにしてもよい。特に水溶液の性質が変化するような測定環境における継続的な濃度測定において必要である。
Zの自動調整は、絶縁物粒子dが浮遊していない濃度D=0の専用検出部を設置し、指定した時刻又は時間間隔毎に切り替え調整し、その値をディジタルホールドする。絶縁物粒子dが浮遊している水溶液Wの性質が変化するような場合は、専用検出部の水溶液を測定対象の水溶液Wに対応するよう常に交換させる。
Kの自動調整は、濃度D=1のときの電極A又はBの切り離しての利得調整を、指定した時刻又は時間間隔毎に行い、その値をディジタルホールドする。このZとKの自動調整後に、絶縁物粒子dが浮遊する水溶液Wの電極A−B間の抵抗値Rを検出することにより、出力増幅器7の出力に濃度データが検出される。
In the above description, the adjustment of Z in the constant adder 5 and the adjustment of K in the gain adjuster 6 are each performed manually, but automatic adjustment may be performed. This is particularly necessary for continuous concentration measurement in a measurement environment where the properties of the aqueous solution change.
In the automatic adjustment of Z, a dedicated detection unit having a concentration D = 0 in which the insulator particles d are not suspended is installed, switched and adjusted at a designated time or time interval, and the value is digitally held. When the property of the aqueous solution W in which the insulator particles d are floating changes, the aqueous solution of the dedicated detection unit is always exchanged so as to correspond to the aqueous solution W to be measured.
In the automatic adjustment of K, the gain adjustment by separating the electrode A or B when the density D = 1 is performed every designated time or time interval, and the value is digitally held. After the automatic adjustment of Z and K, concentration data is detected at the output of the output amplifier 7 by detecting the resistance value R between the electrodes A and B of the aqueous solution W in which the insulator particles d float.

なお、水の電気伝導率は、水の種類や性質等によって異なる。例えば、海水は10Ω・cm〜100Ω・cm、冷却水は1kΩ・cm前後、水道水は10kΩ・cm前後、雨水は10kΩ・cm〜100kΩ・cmなどであり、測定対象の水溶液(水)の種類等を考慮する必要がある。また、前述の回路説明では、正弦波発振器2の発振周波数を8kHzとして説明したが、1kHz〜60kHz程度の周波数のものを使用し得る。   The electrical conductivity of water varies depending on the type and properties of water. For example, seawater is 10 Ω · cm to 100 Ω · cm, cooling water is around 1 kΩ · cm, tap water is around 10 kΩ · cm, rainwater is 10 kΩ · cm to 100 kΩ · cm, and so on. Etc. need to be considered. In the above description of the circuit, the oscillating frequency of the sine wave oscillator 2 has been described as 8 kHz, but a frequency of about 1 kHz to 60 kHz can be used.

本発明による水溶液中の絶縁物粒子の濃度を測定する方法及び装置は、絶縁物粒子が浮遊する水溶液の体積比による濃度測定を必要とする各種水溶液の濃度測定に適用できる。   The method and apparatus for measuring the concentration of insulating particles in an aqueous solution according to the present invention can be applied to the concentration measurement of various aqueous solutions that require concentration measurement based on the volume ratio of the aqueous solution in which the insulating particles float.

本発明の水溶液中の絶縁物粒子の濃度を測定する方法及び装置の測定原理を説明する模式図である。It is a schematic diagram explaining the measurement principle of the method and apparatus which measure the density | concentration of the insulator particle | grains in the aqueous solution of this invention. 本発明の水溶液中の絶縁物粒子の濃度を測定する方法及び装置の一実施例のブロック回路図である。It is a block circuit diagram of one Example of the method and apparatus for measuring the density | concentration of the insulator particle | grains in the aqueous solution of this invention. 本発明の水溶液中の絶縁物粒子の濃度を測定する方法及び装置における粒子濃度を集約状態にして示した模式図である。It is the schematic diagram which made the particle | grain density | concentration in the aggregation state in the method and apparatus which measure the density | concentration of the insulator particle | grains in the aqueous solution of this invention. 本発明の水溶液中の絶縁物粒子の濃度を測定する方法及び装置における電極間電気抵抗と濃度との関係を示す特性図の一例である。It is an example of the characteristic view which shows the relationship between the electrical resistance between electrodes in a method and apparatus for measuring the density | concentration of the insulator particle | grains in the aqueous solution of this invention, and a density | concentration.

符号の説明Explanation of symbols

1 粒子濃度検出部
1a 絶縁枠
2 正弦波発振器
3 電極間抵抗検出増幅器
4 絶対値増幅器
5 定数加算器
6 利得調整器
7 出力増幅器
DESCRIPTION OF SYMBOLS 1 Particle concentration detection part 1a Insulation frame 2 Sine wave oscillator 3 Interelectrode resistance detection amplifier 4 Absolute value amplifier 5 Constant adder 6 Gain regulator 7 Output amplifier

Claims (2)

水溶液中に浮遊する絶縁物粒子の体積比の濃度を測定するために測定対象の水溶液中に一対の電極を設け、
前記水溶液中に前記絶縁物粒子が浮遊していない濃度Dが0の状態の前記電極間の電気抵抗値をR0 とし、
前記電極間の電気抵抗値を無限大に設定したときの前記濃度Dを1とし、
前記水溶液中に前記絶縁物粒子が浮遊している状態の前記電極間の電気抵抗値をRとし、
前記水溶液中の前記絶縁物粒子が浮遊している状態の濃度Dを
D=1−R0 /R
として求めるように構成された水溶液中の絶縁物粒子の濃度を測定する方法。
In order to measure the concentration of the volume ratio of the insulator particles floating in the aqueous solution, a pair of electrodes is provided in the aqueous solution to be measured,
The electrical resistance value between the electrodes in a state where the concentration D where the insulator particles are not suspended in the aqueous solution is 0 is R 0 ,
The concentration D when the electrical resistance value between the electrodes is set to infinity is 1,
R is an electrical resistance value between the electrodes in a state where the insulator particles are suspended in the aqueous solution,
The concentration D of the state in which the insulator particles in the aqueous solution are floating is D = 1−R 0 / R
A method of measuring the concentration of insulator particles in an aqueous solution configured to be obtained as:
濃度測定対象の水溶液中に設けられ、一方が接地された一対の電極を有する前記水溶液中の絶縁物粒子の体積比の濃度を検出する粒子濃度検出部と、
正弦波発振器と、
一端に該正弦波発振器の出力が接続され、他端に前記濃度検出部の他方の電極が接続され、かつその出力と前記他端との間に接続された帰還抵抗を有する前記電極間の電気抵抗値を検出する電気抵抗検出増幅器と、
該電極間電気抵抗検出増幅器の出力を絶対値に変換する絶対値増幅器と、
該絶対値増幅器の出力に接続され、前記電極間の濃度Dが0における抵抗値を基準抵抗値R0 として出力が0となるように調整し得る定数加算器と、
該定数加算器の出力に接続され、前記電極間の抵抗値が無限大であるとき、濃度Dが1になるように調整し得る利得調整器と、
該利得調整器の出力に接続され、前記濃度検出部の被測定水溶液中の濃度測定における濃度Dを出力する出力増幅器とを備え、
前記濃度検出部の被測定水溶液中の濃度0及び濃度1に前記定数加算器及び利得調整器をそれぞれ調整した後、前記被測定水溶液中の濃度Dを
D=1−R0 /R
として求めるように構成された水溶液中の絶縁物粒子の濃度を測定する装置。
A particle concentration detection unit for detecting the concentration of the volume ratio of the insulating particles in the aqueous solution, which is provided in the aqueous solution to be measured for concentration and has a pair of electrodes grounded on one side;
A sine wave oscillator,
The output between the sine wave oscillator is connected to one end, the other electrode of the concentration detection unit is connected to the other end, and the electric current between the electrodes having a feedback resistor connected between the output and the other end An electrical resistance detection amplifier for detecting a resistance value;
An absolute value amplifier that converts the output of the interelectrode electrical resistance detection amplifier into an absolute value;
A constant adder connected to the output of the absolute value amplifier and capable of adjusting the output to be 0 with a resistance value when the concentration D between the electrodes is 0 as a reference resistance value R 0 ;
A gain adjuster connected to the output of the constant adder and capable of adjusting the concentration D to be 1 when the resistance value between the electrodes is infinite;
An output amplifier connected to the output of the gain adjuster and outputting a concentration D in the concentration measurement in the aqueous solution to be measured of the concentration detector;
After adjusting the constant adder and the gain adjuster to the concentration 0 and the concentration 1 in the aqueous solution to be measured of the concentration detector, respectively, the concentration D in the aqueous solution to be measured is set to D = 1−R 0 / R
An apparatus for measuring the concentration of insulator particles in an aqueous solution configured to be obtained as:
JP2005314370A 2005-10-28 2005-10-28 Method and apparatus for measuring concentration of insulating matter particles in aqueous solution Pending JP2007121133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314370A JP2007121133A (en) 2005-10-28 2005-10-28 Method and apparatus for measuring concentration of insulating matter particles in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314370A JP2007121133A (en) 2005-10-28 2005-10-28 Method and apparatus for measuring concentration of insulating matter particles in aqueous solution

Publications (1)

Publication Number Publication Date
JP2007121133A true JP2007121133A (en) 2007-05-17

Family

ID=38145137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314370A Pending JP2007121133A (en) 2005-10-28 2005-10-28 Method and apparatus for measuring concentration of insulating matter particles in aqueous solution

Country Status (1)

Country Link
JP (1) JP2007121133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025027A (en) * 2007-07-17 2009-02-05 Univ Nihon Method and system for analyzing suspended substance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543849B2 (en) * 1971-11-02 1980-11-08
JPH07190928A (en) * 1993-12-27 1995-07-28 Meidensha Corp Concentration measuring apparatus for suspension
JPH08297108A (en) * 1995-04-27 1996-11-12 Sumitomo Chem Co Ltd Measuring method for slurry concentration
JP2001525071A (en) * 1998-02-19 2001-12-04 住友金属工業株式会社 Apparatus and method for detecting physical variables
JP2002005742A (en) * 2000-06-19 2002-01-09 Yokogawa Electric Corp Analog-digital converter and fourier transform type spectrometer using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543849B2 (en) * 1971-11-02 1980-11-08
JPH07190928A (en) * 1993-12-27 1995-07-28 Meidensha Corp Concentration measuring apparatus for suspension
JPH08297108A (en) * 1995-04-27 1996-11-12 Sumitomo Chem Co Ltd Measuring method for slurry concentration
JP2001525071A (en) * 1998-02-19 2001-12-04 住友金属工業株式会社 Apparatus and method for detecting physical variables
JP2002005742A (en) * 2000-06-19 2002-01-09 Yokogawa Electric Corp Analog-digital converter and fourier transform type spectrometer using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025027A (en) * 2007-07-17 2009-02-05 Univ Nihon Method and system for analyzing suspended substance

Similar Documents

Publication Publication Date Title
US9658089B2 (en) Electromagnetic flowmeter with voltage-amplitude conductivity-sensing function for a liquid in a tube
EP2405263B1 (en) Analysis of a dielectric medium
Fox et al. The effect of ultrasonic waves on the conductivity of salt solutions
US9683878B2 (en) Electromagnetic flowmeter
US20140116117A1 (en) Impedance method and arrangement for determining the composition of a multi-phase mixture
Sophocleous Electrical resistivity sensing methods and implications
RU2017109736A (en) METHODS AND ANALYTES DETECTION SYSTEMS
Vacík et al. Improvement of the performance of a high-frequency contactless conductivity detector for isotachophoresis
WO2014170626A1 (en) A method of electrically measuring the electrical properties of individual particles flowing in a liquid
JP2007121133A (en) Method and apparatus for measuring concentration of insulating matter particles in aqueous solution
JP6481443B2 (en) Electromagnetic flow meter
ATE512354T1 (en) DEVICE FOR DETECTING A PREFINED FILL LEVEL OF A MEDIUM IN A CONTAINER
JP2010101705A (en) Instrument for measuring physical properties of particles
CN104067113B (en) The conductivity type contact test system of low conductivity
JP6050619B2 (en) Particle property measuring device
CN110914677B (en) System and method for monitoring at least one characteristic of a multiphase fluid
CN105371906B (en) Electromagnetic flowmeter with frequency conversion type liquid conductivity measuring function
US4020677A (en) Apparatus for determining salinity of fluids
US20230280244A1 (en) Apparatus and method for processing and analysing a measurement fluid for measurement in a measuring device
JP4826780B2 (en) Method and apparatus for measuring nanoparticles
Dukhin et al. Modified log-normal particle size distribution in acoustic spectroscopy
TWI509226B (en) Electromagnetic Flowmeter with Frequency Conductivity-Sensing Function
TWI495852B (en) Electromagnetic Flowmeter with Voltage-Amplitude Conductivity-Sensing Function
JP4655738B2 (en) Charged particle amount evaluation apparatus and charged particle amount evaluation method
Yılmaz et al. Effects of asymmetric nanopore geometries on nanoparticle sensing using track-etched nanopore membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A02 Decision of refusal

Effective date: 20100915

Free format text: JAPANESE INTERMEDIATE CODE: A02