JP4655738B2 - Charged particle amount evaluation apparatus and charged particle amount evaluation method - Google Patents

Charged particle amount evaluation apparatus and charged particle amount evaluation method Download PDF

Info

Publication number
JP4655738B2
JP4655738B2 JP2005125597A JP2005125597A JP4655738B2 JP 4655738 B2 JP4655738 B2 JP 4655738B2 JP 2005125597 A JP2005125597 A JP 2005125597A JP 2005125597 A JP2005125597 A JP 2005125597A JP 4655738 B2 JP4655738 B2 JP 4655738B2
Authority
JP
Japan
Prior art keywords
voltage
particle size
charged particles
electrode
concentric cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005125597A
Other languages
Japanese (ja)
Other versions
JP2006300837A (en
Inventor
正人 山名
義雄 光武
純一 渡邉
幸康 浅野
弘典 片山
勝弘 平田
重行 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005125597A priority Critical patent/JP4655738B2/en
Publication of JP2006300837A publication Critical patent/JP2006300837A/en
Application granted granted Critical
Publication of JP4655738B2 publication Critical patent/JP4655738B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、大気中に浮遊する微粒子の粒径や粒子数などを評価する帯電粒子量評価装置および帯電粒子量評価方法に関するものである。   The present invention relates to a charged particle amount evaluation apparatus and a charged particle amount evaluation method for evaluating the particle size, the number of particles, and the like of fine particles floating in the atmosphere.

この種の帯電粒子量評価装置としては、帯電した微粒子の電場中における移動速度(電気移動度)の違いを利用して、微粒子の粒径を測定する微分型電気移動度測定器(DMA:Differential Mobility Analyzer)が従来より提供されている(例えば特許文献1参照)。   This kind of charged particle quantity evaluation apparatus is a differential type electric mobility measuring device (DMA: Differential) that measures the particle size of fine particles by utilizing the difference in the moving speed (electric mobility) of charged fine particles in an electric field. Mobility Analyzer) has been conventionally provided (see, for example, Patent Document 1).

しかしながら、DMAを用いた帯電粒子量評価装置は大型のため、ゲルディエンコンデンサと呼ばれる二重同心円筒を用いた帯電粒子量評価装置が従来より提供されている(例えば非特許文献1参照)。図7はゲルディエンコンデンサを用いた帯電粒子量評価装置1の概略構成図であり、この帯電粒子量評価装置1は、同心円筒状電極2と、吸気ファン3と、電流計4と、電圧源5とを主要な構成として備えている。   However, since the charged particle amount evaluation apparatus using DMA is large, a charged particle amount evaluation apparatus using a double concentric cylinder called a Gel Dien capacitor has been conventionally provided (for example, see Non-Patent Document 1). FIG. 7 is a schematic configuration diagram of a charged particle amount evaluation apparatus 1 using a gel diene capacitor. The charged particle amount evaluation apparatus 1 includes a concentric cylindrical electrode 2, an intake fan 3, an ammeter 4, a voltage source. 5 as a main configuration.

同心円筒状電極2は、互いに半径の異なる円筒状の内側導体2aおよび外側導体2bを同心に配して構成される。二重同心円筒の内、外側導体2bには電圧源5により直流電圧が印加され、内側導体2aは接地されている。なお電圧源5は図示しない電圧制御部によって電源電圧を変化させることができる。   The concentric cylindrical electrode 2 is configured by concentrically arranging cylindrical inner conductors 2a and outer conductors 2b having different radii. In the double concentric cylinder, a DC voltage is applied to the outer conductor 2b by the voltage source 5, and the inner conductor 2a is grounded. The voltage source 5 can change the power supply voltage by a voltage control unit (not shown).

吸気ファン3は、内側導体2aと外側導体2bとの間の空間を通して空気を吸引することによって、内側導体2aと外側導体2bの間の空間に矢印Aの方向に空気を流し、この空間に空気の流れる方向と速度が均一な層流を生成する。   The intake fan 3 sucks air through the space between the inner conductor 2a and the outer conductor 2b, thereby causing air to flow in the direction of the arrow A through the space between the inner conductor 2a and the outer conductor 2b. A laminar flow with uniform flow direction and velocity is generated.

電流計4は内側導体2aと外側導体2bとの間に流れる電流を測定するものであり、その電流値から帯電粒子の個数を算出することができる。   The ammeter 4 measures the current flowing between the inner conductor 2a and the outer conductor 2b, and the number of charged particles can be calculated from the current value.

本装置では吸気ファン3により空気を吸引している状態で、内側導体2aを接地するとともに、電圧源5により外側導体2bに電圧Vを印加して、内外の導体間に電位差を与えると、両導体間に吸引された空気中の帯電粒子が、両導体間に発生する電界によって内側導体2aに引き寄せられる。そして、帯電粒子が内側導体2aに流れ込むと、両導体間に電流が発生するので、電流計4の測定値をもとに帯電粒子の粒子数を測定することができる。なお、電圧源5による印加電圧Vの極性と、電流計4の測定値の極性とを考慮すれば正負何れの極性の帯電粒子でも測定することができる。   In this apparatus, when air is sucked by the intake fan 3, the inner conductor 2a is grounded, and a voltage V is applied to the outer conductor 2b by the voltage source 5 to give a potential difference between the inner and outer conductors. Charged particles in the air sucked between the conductors are attracted to the inner conductor 2a by an electric field generated between the two conductors. When the charged particles flow into the inner conductor 2a, a current is generated between the two conductors, so that the number of charged particles can be measured based on the measured value of the ammeter 4. In addition, if the polarity of the voltage V applied by the voltage source 5 and the polarity of the measured value of the ammeter 4 are taken into account, charged particles having either positive or negative polarity can be measured.

ここで、帯電粒子の粒径はその移動度に依存し、その移動度は二重円筒(内側導体2aおよび外側導体2b)の寸法と空気の流量とを一定にすると、電圧源5の印加電圧Vによって定まる。したがって電圧源5の印加電圧を変化させ、その時の電流値を電流計4で測定することによって、所定の粒径の帯電粒子の数を求めることができる。但し、ゲルディエンコンデンサと呼ばれる二重同心円筒を用いた図7の測定装置では、電圧源5の印加電圧により定めた移動度(粒径)以下の帯電粒子を全て取り込み、その全数を評価している。
特開平10−288600号公報 北川信一郎編著、「大気電気学」、東海大学出版会、1996年6月10日、47−49頁
Here, the particle size of the charged particles depends on the mobility, and the mobility is determined by making the size of the double cylinder (inner conductor 2a and outer conductor 2b) and the air flow rate constant, the applied voltage of the voltage source 5. Determined by V. Therefore, by changing the applied voltage of the voltage source 5 and measuring the current value with the ammeter 4, the number of charged particles having a predetermined particle diameter can be obtained. However, in the measuring apparatus of FIG. 7 using a double concentric cylinder called a gel diene capacitor, all charged particles having a mobility (particle diameter) or less determined by the applied voltage of the voltage source 5 are taken in and all the particles are evaluated. Yes.
Japanese Patent Laid-Open No. 10-288600 Edited by Shinichiro Kitagawa, “Atmospheric Electricals”, Tokai University Press, June 10, 1996, pp. 47-49

上記構成の帯電粒子量評価装置では、移動度の変化をもとに帯電粒子の粒子数を所定の粒径範囲で測定することによって粒子数の分布を求めているが、測定したい粒径の帯電粒子よりも粒径の小さい帯電粒子の数を積算して計測するため、図3(a)に示すように粒径の測定範囲内で粒子数の分布が複数の極大点P1,P2を有する場合、粒径の大きな極大点P2付近で帯電粒子の粒子数を測定しようとすると、粒径の小さい極大点P1付近の帯電粒子を積算して求めてしまうため、S/N比が低下してしまい、計測精度が低下したり、再現性が悪くなるという問題があった。   In the charged particle amount evaluation apparatus having the above configuration, the distribution of the number of particles is obtained by measuring the number of charged particles in a predetermined particle size range based on the change in mobility. Since the number of charged particles having a particle size smaller than that of the particles is integrated and measured, the distribution of the number of particles has a plurality of maximum points P1 and P2 within the particle size measurement range as shown in FIG. If the number of charged particles is measured in the vicinity of the maximum point P2 having a large particle diameter, the charged particles near the maximum point P1 having a small particle diameter are obtained by integration, resulting in a decrease in the S / N ratio. There are problems that the measurement accuracy is lowered and the reproducibility is deteriorated.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、帯電粒子源から複数の粒径ピークを有する帯電粒子が放出される場合でも帯電粒子量を高い再現性で高精度に評価できる帯電粒子量評価装置および帯電粒子量評価方法を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to provide a highly reproducible amount of charged particles even when charged particles having a plurality of particle size peaks are released from a charged particle source. An object of the present invention is to provide a charged particle amount evaluation apparatus and a charged particle amount evaluation method that can be evaluated with high accuracy.

上記目的を達成するために、請求項1の発明は、互いに半径が異なる円筒状の第1内側導体および第1外側導体を同心に配置して構成された第1の同心円筒状電極と、第1内側導体と第1外側導体との間の環状空間に軸方向に沿って気流を発生させる気流発生手段と、第1内側導体および第1外側導体にそれぞれ設けられ両導体間に直流電圧を印加するための第1の電圧印加端子と、第1内側導体および第1外側導体にそれぞれ設けられ両導体間に流れる電流を測定するための電流測定端子と、前記第1の同心円筒状電極の外部空間であって前記気流の上流側に配置され、当該フィルタ電極により粒径が所定の閾値以下の帯電粒子を前記環状空間に流入させないような電界を発生させるための電圧が印加される第2の電圧印加端子が設けられたフィルタ電極を備えるとともに、前記第1及び第2の電圧印加端子にそれぞれ直流電圧を印加する第1及び第2の電圧源による印加電圧をそれぞれ調整する電圧制御手段と、前記電流測定端子に接続された電流測定手段の測定値を取得する電流値取得手段と、電圧制御手段により第1の電圧源による印加電圧を所定の電圧範囲で掃引させた場合に前記電流値取得手段の取得した電流値が極大となるときの粒径の内で2番目に大きい粒径を上記閾値として取得する除去粒径取得手段と、除去粒径取得手段の取得した閾値をもとに、粒径が閾値以下の帯電粒子を前記環状空間に流入させないような電界を発生させるための電圧値を算出する除去電圧算出手段とを備え、電圧制御手段は、第2の電圧源による印加電圧を除去電圧算出手段の算出した電圧値に制御することを特徴とする。 In order to achieve the above object, the invention of claim 1 includes a first concentric cylindrical electrode formed by concentrically arranging cylindrical first inner conductors and first outer conductors having different radii, An airflow generating means for generating an airflow along an axial direction in an annular space between one inner conductor and a first outer conductor, and a direct current voltage applied to both the first inner conductor and the first outer conductor. A first voltage applying terminal for measuring the current, a current measuring terminal for measuring the current flowing between the first inner conductor and the first outer conductor, and the outside of the first concentric cylindrical electrode A second space is applied to the upstream side of the air flow, and a voltage is applied by the filter electrode to generate an electric field that prevents charged particles having a particle size equal to or smaller than a predetermined threshold from flowing into the annular space. Voltage application terminal is provided Rutotomoni a filter electrode, a voltage control means for adjusting the first and second voltage applied by the voltage source respectively for applying a respective DC voltage to said first and second voltage applying terminal, connected to the current measuring terminal Current value acquisition means for acquiring the measured value of the current measurement means, and the current value acquired by the current value acquisition means when the voltage control means sweeps the voltage applied by the first voltage source in a predetermined voltage range. Based on the threshold value acquired by the removed particle size acquisition means and the removal particle size acquisition means for acquiring the second largest particle size among the particle sizes when A removal voltage calculation means for calculating a voltage value for generating an electric field that does not allow charged particles to flow into the annular space, and the voltage control means calculates the voltage applied by the second voltage source by the removal voltage calculation means. Shi And controlling the voltage value.

この発明によれば、第2の電圧印加端子を介してフィルタ電極に電圧を印加して、第1の同心円筒状電極の外部空間であって気流の上流側に、粒径が所定の閾値以下の帯電粒子を同心円筒状電極の環状空間に流入させないような電界を発生させているので、閾値よりも大きい粒径の帯電粒子数を測定する際に、閾値以下の帯電粒子の数を積算して求めることがなく計測精度が高く且つ再現性の良い帯電粒子量評価装置を実現できるという効果がある。しかも、除去粒径取得手段が、電圧制御手段により第1の電圧源による印加電圧を所定の電圧範囲で自動的に掃引させ、この間に電流値取得手段の取得した電流値が極大となるときの粒径の内で2番目に大きい粒径を上記閾値として取得し、この閾値をもとに除去電圧算出手段がフィルタ電極に印加する電圧値を算出しているので、除去すべき帯電粒子の粒径が不明な場合でも、除去対象の帯電粒子の粒径を自動的に設定でき、高い測定精度で帯電粒子量を評価できるという効果がある。例えば粒子数の極大値が5つ存在する場合に粒径の小さい方から4番目の極大値に対応した粒径の粒子数を測定したいのであれば、小さい方から4番目の極大値に対応した粒径が粒径の計測範囲の最大値となるように印加電圧を設定すれば、小さい方から3番目の極大値に対応する粒径が閾値に設定されるから、印加電圧の設定によって任意の極大値を閾値に設定でき、所望の粒径の粒子数を測定することが可能になる。 According to the present invention, a voltage is applied to the filter electrode via the second voltage application terminal, and the particle size is equal to or smaller than a predetermined threshold in the external space of the first concentric cylindrical electrode and upstream of the airflow. Since the electric field that prevents the charged particles from flowing into the annular space of the concentric cylindrical electrode is generated, when measuring the number of charged particles having a particle size larger than the threshold, the number of charged particles below the threshold is integrated. Therefore, there is an effect that it is possible to realize a charged particle amount evaluation apparatus with high measurement accuracy and good reproducibility. In addition, the removal particle size acquisition means automatically sweeps the voltage applied by the first voltage source within a predetermined voltage range by the voltage control means, and the current value acquired by the current value acquisition means during this time is maximized. The second largest particle size of the particle sizes is acquired as the threshold value, and the voltage value applied to the filter electrode by the removal voltage calculation means is calculated based on this threshold value. Even when the diameter is unknown, the particle size of the charged particles to be removed can be automatically set, and the charged particle amount can be evaluated with high measurement accuracy. For example, if there are five maximum values of the number of particles, and you want to measure the number of particles with the particle size corresponding to the fourth maximum value from the smaller particle size, the fourth maximum value from the smaller one If the applied voltage is set so that the particle size becomes the maximum value in the particle size measurement range, the particle size corresponding to the third maximum value from the smallest value is set as the threshold value. The maximum value can be set as a threshold, and the number of particles having a desired particle diameter can be measured.

請求項2の発明は、請求項1の発明において、フィルタ電極は、互いに半径が異なる円筒状の第2内側導体および第2外側導体を同心に配置して構成された第2の同心円筒状電極からなることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the filter electrode is a second concentric cylindrical electrode configured by concentrically arranging cylindrical second inner conductors and second outer conductors having different radii. It is characterized by comprising.

この発明によれば、フィルタ電極を同心円筒状電極で構成することで、除去すべき帯電粒子は内側導体又は外側導体に引き寄せられて、電流として除去されるから、測定対象以外の帯電粒子を空間に残さずに除去することで測定精度を向上させることができ、帯電粒子の空間分布を正確に検出できる。しかもフィルタ電極の形状を第1の同心円筒状電極と同様の形状とすることで、第2の同心円筒状電極を通った気流が第1の同心円筒状電極に流入する際に乱れが発生するのを防止でき、帯電粒子の粒子数の粒径分布への影響を少なくした状態で第1の同心円筒状電極に流入させることによって、測定精度を向上させることができる。   According to the present invention, by configuring the filter electrode with a concentric cylindrical electrode, the charged particles to be removed are attracted to the inner conductor or the outer conductor and removed as an electric current. It is possible to improve the measurement accuracy by removing it without leaving it, and it is possible to accurately detect the spatial distribution of charged particles. In addition, by making the shape of the filter electrode the same as that of the first concentric cylindrical electrode, turbulence occurs when the airflow passing through the second concentric cylindrical electrode flows into the first concentric cylindrical electrode. Measurement accuracy can be improved by allowing the charged particles to flow into the first concentric cylindrical electrode in a state where the influence of the number of charged particles on the particle size distribution is reduced.

請求項3の発明は、請求項2の発明において、第1内側導体と第2内側導体、および、第1外側導体と第2外側導体はそれぞれ半径が略同一に形成されており、第1および第2の同心円筒状電極は、それぞれの内側導体と外側導体とを重ね合わせた状態で、第1の同心円筒状電極の上流側の端部において絶縁部材を介して互いに連結されたことを特徴とする。   According to a third aspect of the present invention, in the second aspect of the invention, the first inner conductor and the second inner conductor, and the first outer conductor and the second outer conductor are formed to have substantially the same radius. The second concentric cylindrical electrodes are connected to each other via an insulating member at the upstream end of the first concentric cylindrical electrode in a state where the respective inner conductors and outer conductors are overlapped. And

この発明によれば、第1内側導体と第2内側導体、および、第1外側導体と第2外側導体はそれぞれ半径が略同一に形成され、且つ、第1及び第2の同心円筒状電極は、それぞれの内側導体と外側導体とを重ね合わせた状態で、絶縁部材を介して連結しているので、連結部分において不連続な点が無く、気流が第2の同心円筒状電極を通って第1の同心円筒状電極に流入する際に気流に乱れが発生するのをさらに防止できるという効果がある。   According to the present invention, the first inner conductor and the second inner conductor, and the first outer conductor and the second outer conductor are formed with substantially the same radius, and the first and second concentric cylindrical electrodes are Since the inner conductor and the outer conductor are overlapped and connected via the insulating member, there is no discontinuous point in the connecting portion, and the air flow passes through the second concentric cylindrical electrode. There is an effect that it is possible to further prevent the airflow from being disturbed when flowing into the concentric cylindrical electrode.

請求項の発明は、互いに半径が異なる円筒状の第1内側導体および第1外側導体を同心に配して形成される同心円筒状電極の両導体間に直流電圧を印加し、両導体間の環状空間に軸方向に沿って流れる気流を生成するとともに、気流によって両導体間の環状空間に帯電粒子を流し、両導体間に流れる電流の電流値から帯電粒子量を評価する帯電粒子量評価方法であって、両導体間に流れる帯電粒子の粒子数の粒径分布を測定し、粒子数が極大となる粒径の内、2番目に大きい粒径を除去すべき粒径の閾値として取得し、同心円筒状電極の外部空間であって気流の上流側に配置されたフィルタ電極に上記閾値をもとに設定した印加電圧を印加して、粒径が上記閾値以下の帯電粒子を両導体間の環状空間に流入させないような電界を発生させた状態で、両導体間に流れる帯電粒子の粒子数の粒径分布を再度測定することを特徴とする。 In the invention of claim 4 , a DC voltage is applied between the two conductors of the concentric cylindrical electrode formed by concentrically arranging the cylindrical first inner conductor and the first outer conductor having different radii. A charged particle amount evaluation that generates an airflow that flows along the axial direction in the annular space of the battery and causes charged particles to flow in the annular space between the two conductors by the airflow, and evaluates the amount of charged particles from the current value of the current flowing between the two conductors. This method measures the particle size distribution of the number of charged particles flowing between the two conductors, and obtains the second largest particle size as the threshold value for removing the particle size from the maximum particle number. Then, an applied voltage set based on the threshold is applied to a filter electrode disposed outside the concentric cylindrical electrode and upstream of the air flow, and charged particles having a particle size equal to or smaller than the threshold are applied to both conductors. An electric field that does not flow into the annular space is generated In condition, and measuring the particle size distribution of number of particles of charged particles flowing between the two conductors again.

この発明によれば、両導体間に流れる帯電粒子の粒子数の粒径分布を測定し、粒子数が極大となる粒径の内、2番目に大きい粒径を除去すべき粒径の閾値として取得しているので、除去すべき帯電粒子の粒径が不明な場合でも、除去対象の帯電粒子の粒径を自動的に取得することができ、且つ、同心円筒状電極の外部空間であって気流の上流側に配置されたフィルタ電極に上記閾値をもとに設定した印加電圧を印加して、粒径が上記閾値以下の帯電粒子を両導体間の環状空間に流入させないような電界を発生させた状態で、両導体間に流れる帯電粒子の粒子数の粒径分布を再度測定しているので、閾値よりも大きい粒径の帯電粒子数を測定する際に、閾値以下の帯電粒子の数を積算して求めることがなく計測精度が高く且つ再現性の良い帯電粒子量評価方法を提供できるという効果がある。   According to this invention, the particle size distribution of the number of charged particles flowing between the two conductors is measured, and the second largest particle size among the particle sizes at which the number of particles becomes a maximum is to be removed. Since the particle size of the charged particles to be removed is unknown, the particle size of the charged particles to be removed can be automatically acquired, and the outer space of the concentric cylindrical electrode An applied voltage set based on the above threshold is applied to the filter electrode placed on the upstream side of the airflow to generate an electric field that prevents charged particles with a particle size below the above threshold from flowing into the annular space between the two conductors. In this state, since the particle size distribution of the number of charged particles flowing between the two conductors is measured again, when measuring the number of charged particles having a particle size larger than the threshold, the number of charged particles below the threshold Charging with high measurement accuracy and good reproducibility. There is an effect that it provides a molecular weight evaluation method.

請求項1の発明によれば、第2電圧印加手段がフィルタ電極に電圧を印加して、第1の同心円筒状電極の外部空間であって気流の上流側に、粒径が所定の閾値以下の帯電粒子を同心円筒状電極の環状空間に流入させないような電界を発生させているので、閾値よりも大きい粒径の帯電粒子数を測定する際に、閾値以下の帯電粒子の数を積算して求めることがなく計測精度が高く且つ再現性の良い帯電粒子量評価装置を実現できるという効果がある。   According to the first aspect of the present invention, the second voltage applying means applies a voltage to the filter electrode, and the particle size is equal to or smaller than a predetermined threshold in the external space of the first concentric cylindrical electrode and upstream of the airflow. Since the electric field that prevents the charged particles from flowing into the annular space of the concentric cylindrical electrode is generated, when measuring the number of charged particles having a particle size larger than the threshold, the number of charged particles below the threshold is integrated. Therefore, there is an effect that it is possible to realize a charged particle amount evaluation apparatus with high measurement accuracy and good reproducibility.

請求項の発明によれば、極大となる粒径の内、2番目に大きい粒径を除去すべき粒径の閾値として取得しているので、除去すべき帯電粒子の粒径が不明な場合でも、除去対象の帯電粒子の粒径を自動的に取得することができ、且つ、同心円筒状電極の外部空間であって気流の上流側に配置されたフィルタ電極に上記閾値をもとに設定した印加電圧を印加して、粒径が上記閾値以下の帯電粒子を両導体間の環状空間に流入させないような電界を発生させた状態で、両導体間に流れる帯電粒子の粒子数の粒径分布を再度測定しているので、閾値よりも大きい粒径の帯電粒子数を測定する際に、閾値以下の帯電粒子の数を積算して求めることがなく計測精度が高く且つ再現性の良い帯電粒子量評価方法を提供できるという効果がある。 According to the invention of claim 4 , since the second largest particle size among the maximum particle size is acquired as the threshold value of the particle size to be removed, the particle size of the charged particles to be removed is unknown However, the particle size of the charged particles to be removed can be automatically acquired, and the filter electrode disposed outside the concentric cylindrical electrode and upstream of the airflow is set based on the above threshold value. When the applied voltage is applied and an electric field is generated so that charged particles having a particle size equal to or smaller than the threshold value do not flow into the annular space between the two conductors, the particle size of the number of charged particles flowing between the two conductors Since the distribution is measured again, charging with high measurement accuracy and good reproducibility without measuring the number of charged particles below the threshold when integrating the number of charged particles with a particle size larger than the threshold There is an effect that a particle amount evaluation method can be provided.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施形態1)
本発明に係る帯電粒子量評価方法を用いた帯電粒子量評価装置の実施形態1を図1〜図4に基づいて説明する。
(Embodiment 1)
Embodiment 1 of a charged particle amount evaluation apparatus using a charged particle amount evaluation method according to the present invention will be described with reference to FIGS.

本実施形態の帯電粒子量評価装置1は、第1の同心円筒状電極(以下同心円筒状電極と略称す)2と、気流発生手段たる吸気ファン3と、電流計4と、第1の電圧源(以下電圧源と略称す)5と、フィルタ電極6と、第2の電圧源(以下電圧源と略称す)7と、絶縁部材8と、コントローラ10とを主要な構成として備えている。   The charged particle amount evaluation apparatus 1 according to the present embodiment includes a first concentric cylindrical electrode (hereinafter abbreviated as a concentric cylindrical electrode) 2, an intake fan 3 serving as an air flow generating means, an ammeter 4, and a first voltage. A power source (hereinafter abbreviated as a voltage source) 5, a filter electrode 6, a second voltage source (hereinafter abbreviated as a voltage source) 7, an insulating member 8, and a controller 10 are provided as main components.

同心円筒状電極2は、互いに半径の異なる円筒状の第1内側導体2a(以下内側導体と略称す)および第1外側導体(以下外側導体と略称す)2bを同心に配して構成される。内側導体2aおよび外側導体2bは帯電粒子を引き寄せやすく、且つ、両導体間に流れる電流を測定しやすいように導電率の高い材料で形成するのが好ましく、例えば真鍮の表面にクロムめっきを施して形成される。   The concentric cylindrical electrode 2 is configured by concentrically arranging cylindrical first inner conductors 2a (hereinafter abbreviated as inner conductors) and first outer conductors (hereinafter abbreviated as outer conductors) 2b having different radii. . The inner conductor 2a and the outer conductor 2b are preferably formed of a material having high conductivity so that the charged particles can be easily attracted and the current flowing between the two conductors can be easily measured. It is formed.

内側導体2aは中空ではなく、接地端子21と電流測定端子22とを備え、接地端子21に接続された接地線25を介してグランドに接地される。この内側導体2aの保持は、帯電して電流が流れることによって誤差が生じるのを防止するために、高い絶縁性を有する保持部材(図示せず)を介して外側導体2b内に保持されており、保持部材の材料としては、例えば高絶縁性の三フッ化塩化エチレン樹脂を用いるのが好ましい。   The inner conductor 2 a is not hollow but includes a ground terminal 21 and a current measurement terminal 22, and is grounded to the ground via a ground line 25 connected to the ground terminal 21. The inner conductor 2a is held in the outer conductor 2b via a holding member (not shown) having a high insulating property in order to prevent an error from being caused by charging and current flowing. As a material for the holding member, it is preferable to use, for example, a highly insulating ethylene trifluoride chloride resin.

外側導体2bは中空円筒状であって、電圧端子23と電流測定端子24とを備え、電圧端子23を介して電圧源5の直流電圧が印加される。また内側導体2aの電流測定端子22と外側導体2bの電流測定端子24との間に電流計4が接続されている。ここに、内側導体2aの接地端子21と外側導体2bの電圧端子23とで第1の電圧印加端子が構成される。   The outer conductor 2 b has a hollow cylindrical shape and includes a voltage terminal 23 and a current measurement terminal 24, and a DC voltage of the voltage source 5 is applied through the voltage terminal 23. An ammeter 4 is connected between the current measurement terminal 22 of the inner conductor 2a and the current measurement terminal 24 of the outer conductor 2b. Here, the ground terminal 21 of the inner conductor 2a and the voltage terminal 23 of the outer conductor 2b constitute a first voltage application terminal.

ここで、帯電粒子の粒径および移動度と外側導体2bに印加した印加電圧と同心円筒状導体2の外形寸法の関係を図7に基づいて説明する。   Here, the relationship between the particle diameter and mobility of the charged particles, the applied voltage applied to the outer conductor 2b, and the outer dimensions of the concentric cylindrical conductor 2 will be described with reference to FIG.

空気中の帯電粒子が等しい移動度を持っていると仮定し、同心円筒状導体2の吸気側において外側導体2bの縁の点Pから流入したイオンが、導体2a,2b間の電界を受けて点Sで捕捉されたものとすると、同心円筒状導体2の筒内に流入してくる帯電粒子は全て内側導体2aに捕捉されることになる。なお帯電粒子が捕捉される点Sの位置は外側導体2bへの印加電圧や気流の流量を調整することで変化する。   Assuming that charged particles in the air have equal mobility, ions flowing from the point P at the edge of the outer conductor 2b on the intake side of the concentric cylindrical conductor 2 receive an electric field between the conductors 2a and 2b. Assuming that the particles are captured at the point S, all the charged particles flowing into the cylinder of the concentric cylindrical conductor 2 are captured by the inner conductor 2a. The position of the point S where the charged particles are captured changes by adjusting the voltage applied to the outer conductor 2b and the flow rate of the airflow.

ところで、実際の空気中には様々な移動度を持った帯電粒子が存在しており、ある印加電圧および流量の条件下で点Pから流入し、内側導体2aにおいて出口側の縁の点Tで捕捉される帯電粒子の移動度を臨界移動度と呼ぶ。この臨界移動度は、内側導体2aで捕捉可能な帯電粒子と、内側導体2aで捕捉できない帯電粒子の境界を示し、臨界移動度よりも移動度の大きな帯電粒子は内側導体2aで全て捕捉されるが、臨界移動度よりも移動度の小さい帯電粒子は一部が捕捉されずに、同心円筒状導体2の出口から外部へ流出することになる。   By the way, charged particles having various mobilities exist in the actual air, and flow from the point P under a certain applied voltage and flow rate, and at the edge T on the outlet side of the inner conductor 2a. The mobility of charged particles to be trapped is called critical mobility. This critical mobility indicates a boundary between charged particles that can be captured by the inner conductor 2a and charged particles that cannot be captured by the inner conductor 2a, and all charged particles having a mobility higher than the critical mobility are captured by the inner conductor 2a. However, a part of the charged particles whose mobility is lower than the critical mobility is not captured and flows out from the outlet of the concentric cylindrical conductor 2 to the outside.

例えば図7中の点Rから流入した帯電粒子が点Tで捕捉されたものとすると、移動度が同じ帯電粒子で、点Rを通る同心円C1と外側導体2bとの間の領域から流入する帯電粒子は同心円筒状導体2の出口から流出することになり、同心円C1と内側導体2aの間の領域(図中の斜線部)から流入した帯電粒子のみが内側導体2aで捕捉されることになる。   For example, if the charged particles flowing from the point R in FIG. 7 are captured at the point T, the charged particles having the same mobility and charged from the region between the concentric circle C1 passing through the point R and the outer conductor 2b. The particles flow out from the outlet of the concentric cylindrical conductor 2, and only the charged particles flowing in from the region between the concentric circle C1 and the inner conductor 2a (hatched portion in the figure) are captured by the inner conductor 2a. .

ここで、帯電粒子の臨界移動度kcは、外側導体2bへの印加電圧がV、気流の流量がφの時に以下の式(1)を用いて表される。   Here, the critical mobility kc of the charged particles is expressed by the following equation (1) when the voltage applied to the outer conductor 2b is V and the flow rate of the airflow is φ.

kc=φ×ln(r0/r1)/(2π×L×V) …(1)
但し、r0は外側導体2bの半径、r1は内側導体2aの半径、Lは同心円筒状導体2の軸方向の全長である。また移動度kcと帯電粒子の粒径Dpとの関係は以下の式(2)で表される。
kc = φ × ln (r0 / r1) / (2π × L × V) (1)
Here, r0 is the radius of the outer conductor 2b, r1 is the radius of the inner conductor 2a, and L is the total axial length of the concentric cylindrical conductor 2. The relationship between the mobility kc and the particle size Dp of the charged particles is expressed by the following formula (2).

kc=np×e×Cc/(3π×μ×Dp) …(2)
但し、npは帯電粒子の荷電数、eは電気素量、Ccはカニンガム補正係数、μは空気の粘性係数である。また、カニンガム補正係数Ccは粒径Dpの関数であり、臨界移動度kcと粒径Dp及び印加電圧Vは上記の式(1)と式(2)を連立して求めることができる。なお、粒径Dpと印加電圧Vとの関係を求める際には、カニンガム補正係数Ccが粒径Dpにより変化するため、式(1)と式(2)を連立して臨界移動度kcを消去した式から数値的に算出する。
kc = np × e × Cc / (3π × μ × Dp) (2)
Where np is the number of charged particles, e is the elementary charge, Cc is the Cunningham correction coefficient, and μ is the viscosity coefficient of air. Further, the Cunningham correction coefficient Cc is a function of the particle diameter Dp, and the critical mobility kc, the particle diameter Dp, and the applied voltage V can be obtained by simultaneous equations (1) and (2). When determining the relationship between the particle size Dp and the applied voltage V, the Cunningham correction coefficient Cc changes depending on the particle size Dp, and therefore, the critical mobility kc is eliminated by simultaneous equations (1) and (2). Calculate numerically from the formula.

また同心円筒状導体2の大きさ(全長Lおよび半径r0,r1)も式(1)と式(2)とで決まり、測定したい粒径により同心円筒状導体2の大きさが決定される。本実施形態の評価装置1では図3(a)に示すように粒径の測定範囲が0.6〜28nmであり、粒径のピークが10nmから20nmの間、例えば14nmにあるものとする。なお図3(a)(b)の横軸は粒径を、縦軸は単位体積当たりの粒子数を示している。ここで、帯電粒子の荷電数npを1と仮定すると、式(2)より電気移動度は5.49〜0.000274cm/V・sとなる。また流量φを50L/min、印加電圧Vを0〜60Vとすると、式(1)より同心円筒状導体2の全長Lは52cm、内側導体2aの半径r1は4.5cm、外側導体2bの半径r0は4.8cmとなる。なお導体2bの厚みは2mmとする。 The size of the concentric cylindrical conductor 2 (full length L and radii r0, r1) is also determined by the equations (1) and (2), and the size of the concentric cylindrical conductor 2 is determined by the particle size to be measured. In the evaluation apparatus 1 of the present embodiment, as shown in FIG. 3A, the particle size measurement range is 0.6 to 28 nm, and the particle size peak is between 10 nm and 20 nm, for example, 14 nm. 3A and 3B, the horizontal axis indicates the particle size, and the vertical axis indicates the number of particles per unit volume. Here, assuming that the number np of charged particles is 1, the electric mobility is 5.49 to 0.000274 cm 2 / V · s from the equation (2). Further, when the flow rate φ is 50 L / min and the applied voltage V is 0 to 60 V, the total length L of the concentric cylindrical conductor 2 is 52 cm, the radius r1 of the inner conductor 2 a is 4.5 cm, and the radius of the outer conductor 2 b from Equation (1). r0 is 4.8 cm. The conductor 2b has a thickness of 2 mm.

またフィルタ電極6の大きさは除去したい帯電粒子の粒径範囲によって決定されるのでるが、吸気ファン3によって生成された気流をなるべく乱さないようにするために、同心円筒状導体2の内側導体2aおよび外側導体2bの半径と、フィルタ電極6の内側導体6aおよび外側導体6bの半径とをそれぞれ略同じ値とし、同心円筒状導体2とフィルタ電極6との連結部位に凹凸ができないように連結するのが好ましい。ここで、除去したい粒径の範囲を2nm以下に設定する場合、粒径が2nmの帯電粒子の移動度は、上述の式(2)より0.514cm/V・sとなる。但し、流量φは同心円筒状導体2と同じく50L/minであり、フィルタ電極6の長さは8.0cmとした。また、内側導体6aおよび外側導体6bの半径は、同心円筒状導体2の内側導体2aおよび外側導体2bの半径と略同じ値に設定され、内側導体6aの半径が4.5cm、外側導体6bの半径が4.8cm、厚さが2mmであるので、上述の式(1)より印加電圧は2.08Vとなる。 Further, the size of the filter electrode 6 is determined by the particle size range of the charged particles to be removed, but in order to prevent the airflow generated by the intake fan 3 from being disturbed as much as possible, the inner conductor of the concentric cylindrical conductor 2 is used. 2a and the outer conductor 2b, and the radius of the inner conductor 6a and the outer conductor 6b of the filter electrode 6 are set to be substantially the same value, so that the connecting portion between the concentric cylindrical conductor 2 and the filter electrode 6 is not uneven. It is preferable to do this. Here, when the range of the particle size to be removed is set to 2 nm or less, the mobility of the charged particle having a particle size of 2 nm is 0.514 cm 2 / V · s from the above equation (2). However, the flow rate φ was 50 L / min, similar to the concentric cylindrical conductor 2, and the length of the filter electrode 6 was 8.0 cm. The radii of the inner conductor 6a and the outer conductor 6b are set to substantially the same values as the radii of the inner conductor 2a and the outer conductor 2b of the concentric cylindrical conductor 2, and the radius of the inner conductor 6a is 4.5 cm. Since the radius is 4.8 cm and the thickness is 2 mm, the applied voltage is 2.08 V from the above equation (1).

一方、吸気ファン3は、同心円筒状電極2に対して気流の出口側(図1中の右側)に配置され、内側導体2aと外側導体2bの間の環状空間2cの空気を吸引することによって、この環状空間2c内に軸方向に沿って流れる気流を生成している。吸気ファン3の回転数は一定に保たれ、気流の流量を一定にしている。ここで、両導体2a,2b間の空間(環状空間2c)内に層流を生成するために、吸気ファン3の備える回転羽根(図示せず)の径が外側導体2bの径よりも大きく形成されており、回転羽根の回転面が同心円筒状電極2の中心軸方向と略直交し、且つ、回転羽根の回転軸と同心円筒状電極2の中心軸とが同一直線上に存在するように吸気ファン3が配置され、同心円筒状電極2と吸気ファン3との間に気流の流れを乱す凹凸が出来ないように接続されている。なお両導体2a,2bの間の空間に層流を生成するのは、同心円筒状電極2の入口側(図1中の左側)から両導体2a,2bの間の空間に流入した帯電粒子を同心円筒状電極2の軸方向と平行に進ませることによって、帯電粒子を一定速度で移動する状態にして電界を作用させるためである。   On the other hand, the intake fan 3 is disposed on the airflow outlet side (right side in FIG. 1) with respect to the concentric cylindrical electrode 2 and sucks air in the annular space 2c between the inner conductor 2a and the outer conductor 2b. The airflow that flows along the axial direction is generated in the annular space 2c. The rotational speed of the intake fan 3 is kept constant, and the flow rate of the airflow is kept constant. Here, in order to generate a laminar flow in the space (annular space 2c) between the two conductors 2a and 2b, the diameter of the rotary blade (not shown) provided in the intake fan 3 is formed larger than the diameter of the outer conductor 2b. The rotation surface of the rotating blade is substantially perpendicular to the central axis direction of the concentric cylindrical electrode 2, and the rotation axis of the rotating blade and the central axis of the concentric cylindrical electrode 2 exist on the same straight line. An intake fan 3 is arranged and connected between the concentric cylindrical electrode 2 and the intake fan 3 so that there is no unevenness that disturbs the flow of airflow. The laminar flow is generated in the space between the two conductors 2a and 2b because the charged particles flowing into the space between the two conductors 2a and 2b from the inlet side (left side in FIG. 1) of the concentric cylindrical electrode 2 are generated. This is because the electric field is applied by moving the charged particles at a constant speed by advancing parallel to the axial direction of the concentric cylindrical electrode 2.

電流計4は、内側導体2aの電流測定端子22と外側導体2bの電流測定端子24との間に接続されるデジタル式の電流計であり、電流の測定値は後述の電流値取得部12によって自動的に取得される。なお内側導体2aと外側導体2bとの間に流れる電流から帯電粒子の粒子数を求めることができ、両導体2a,2b間に流れる電流をiとすると、帯電粒子の荷電数npを1と仮定しているので、帯電粒子の個数nは以下の式(3)で表される。なお、荷電数npが1でないときには、式(3)の電気素量eに荷電数npを乗じることにより算出できる。 The ammeter 4 is a digital ammeter connected between the current measurement terminal 22 of the inner conductor 2a and the current measurement terminal 24 of the outer conductor 2b. The measured value of the current is measured by a current value acquisition unit 12 described later. Obtained automatically. The number of charged particles can be obtained from the current flowing between the inner conductor 2a and the outer conductor 2b. If the current flowing between the two conductors 2a and 2b is i S , the charged number np of the charged particles is 1. Since it is assumed, the number n S of charged particles is expressed by the following equation (3). When the charge number np is not 1, it can be calculated by multiplying the electric quantity e in the equation (3) by the charge number np.

=i/(e×φ) …(3)
但し、eは電気素量、φは気流の流量である。
n S = i S / (e × φ) (3)
Here, e is the elementary electric charge, and φ is the airflow rate.

また電圧源5は、電圧端子23を介して外側導体2bに直流電圧を印加する可変電源であり、自動制御で測定が行えるように後述の電圧制御部11によって印加電圧が自動的に制御される。なお、電圧源5による印加電圧の極性は正又は負に切り替えることが可能であり、電圧源5による印加電圧が正の電圧であれば正の帯電粒子を計測でき、印加電圧が負の電圧であれば負の帯電粒子を計測することができる。   The voltage source 5 is a variable power source that applies a DC voltage to the outer conductor 2b via the voltage terminal 23, and the applied voltage is automatically controlled by a voltage control unit 11 described later so that measurement can be performed by automatic control. . The polarity of the voltage applied by the voltage source 5 can be switched between positive and negative. If the voltage applied by the voltage source 5 is positive, positive charged particles can be measured, and the applied voltage is negative. If so, negatively charged particles can be measured.

フィルタ電極6は、同心円筒状電極2の外部空間において、同心円筒状電極2内部の環状空間2cに流れる気流の上流側に配置され、粒径が所定の閾値以下の帯電粒子を環状空間2cに流入させないような電界を発生させている。このフィルタ電極6は、同心円筒状電極2と同様の構成を有し、互いに半径の異なる円筒状の第2内側導体(以下内側導体と略称す)6aおよび第2外側導体(以下外側導体と略称す)6bを同心に配した同心円筒状電極で構成される。内側導体6aおよび外側導体6bは所望の粒径範囲の帯電粒子を引き寄せ、電流として除去しやすいように、導電率の高い材料で形成するのが好ましく、例えば真鍮の表面にクロムめっきを施して形成される。   The filter electrode 6 is arranged on the upstream side of the airflow flowing in the annular space 2c inside the concentric cylindrical electrode 2 in the outer space of the concentric cylindrical electrode 2, and charged particles having a particle size equal to or smaller than a predetermined threshold value in the annular space 2c. An electric field that does not flow is generated. The filter electrode 6 has the same configuration as the concentric cylindrical electrode 2 and has a cylindrical second inner conductor (hereinafter abbreviated as inner conductor) 6a and a second outer conductor (hereinafter abbreviated as outer conductor) having different radii. It is composed of concentric cylindrical electrodes with 6b concentrically arranged. The inner conductor 6a and the outer conductor 6b are preferably formed of a material having high conductivity so that charged particles having a desired particle diameter range can be attracted and easily removed as an electric current. For example, the inner conductor 6a and the outer conductor 6b are formed by applying chromium plating to the brass surface. Is done.

内側導体6aは接地端子61を備え、接地端子61に接続された接地線63を介してグランドに接地される。この内側導体6aは、帯電して電流が流れることによって誤差が生じるのを防止するために、高い絶縁性を有する保持部材(図示せず)を介して外側導体6b内に保持されており、保持部材の材料としては、例えば高絶縁性の三フッ化塩化エチレン樹脂を用いるのが好ましい。また外側導体6bは電圧端子62を備え、電圧端子62を介して電圧源7の直流電圧が印加される。ここに、内側導体6aの接地端子61と外側導体6bの電圧端子62とで第2の電圧印加端子が構成される。   The inner conductor 6 a includes a ground terminal 61, and is grounded via a ground wire 63 connected to the ground terminal 61. The inner conductor 6a is held in the outer conductor 6b via a holding member (not shown) having high insulating properties in order to prevent an error from occurring due to charging and current flowing. As a material for the member, it is preferable to use, for example, a highly insulating ethylene trifluoride chloride resin. The outer conductor 6 b includes a voltage terminal 62, and a DC voltage from the voltage source 7 is applied through the voltage terminal 62. Here, the ground terminal 61 of the inner conductor 6a and the voltage terminal 62 of the outer conductor 6b constitute a second voltage application terminal.

このフィルタ電極6は、二重円筒状の絶縁部材8を介して同心円筒状電極2に連結されているが、絶縁部材8によって気流を乱さないようにするため、凹凸ができないように同心円筒状電極2と略平行に保持されていれば、フィルタ電極6はどのような形態で保持されていても良い。なおフィルタ電極6を保持する保持部材は、帯電して電流が流れることで誤差が発生するのを防止するために、この保持部材を接地しておくことが好ましい。   The filter electrode 6 is connected to the concentric cylindrical electrode 2 via a double cylindrical insulating member 8. However, in order not to disturb the air flow by the insulating member 8, the filter electrode 6 is concentric cylindrical so as not to be uneven. The filter electrode 6 may be held in any form as long as it is held substantially parallel to the electrode 2. The holding member for holding the filter electrode 6 is preferably grounded in order to prevent an error from being generated due to charging and current flow.

電圧源7は、電圧端子62を介して外側導体6bに直流電圧を印加する可変電源であり、自動制御で測定が行えるように後述の電圧制御部11によって印加電圧が自動的に制御される。なお、正負何れの極性の帯電粒子でも除去できるように、電圧源7による印加電圧の極性は正又は負に切り替えることが可能である。   The voltage source 7 is a variable power source that applies a DC voltage to the outer conductor 6b via the voltage terminal 62, and the applied voltage is automatically controlled by a voltage control unit 11 described later so that measurement can be performed by automatic control. Note that the polarity of the voltage applied by the voltage source 7 can be switched between positive and negative so that charged particles having either positive or negative polarity can be removed.

絶縁部材8は、同心円筒状電極2とフィルタ電極6との間を連結する部材であり、帯電粒子を含む気流が連結部位を通過する際に乱されずに層流となるよう、同心円筒状電極2の入口側の端部で、内側導体2a,6a間、および、外側導体2b,6b間を凹凸無く平行に接続するものである。なお絶縁部材8が帯電すると、帯電粒子を引き寄せてしまい、電流が流れて誤差が発生するため、絶縁性能の高い材料で形成するのが好ましく、例えばエンジニアリングプラスチックの一種であるポリアセタール樹脂で形成されている。   The insulating member 8 is a member that connects between the concentric cylindrical electrode 2 and the filter electrode 6, and is concentric cylindrical so that the airflow including the charged particles becomes a laminar flow without being disturbed when passing through the connecting portion. At the end of the electrode 2 on the entrance side, the inner conductors 2a and 6a and the outer conductors 2b and 6b are connected in parallel without unevenness. When the insulating member 8 is charged, charged particles are attracted and an error occurs due to the flow of current. Therefore, it is preferable to form the insulating member 8 with a material having high insulating performance. For example, the insulating member 8 is formed of a polyacetal resin which is a kind of engineering plastic. Yes.

次にコントローラ10の構成について説明する。コントローラ10は電圧制御部11と電流値取得部12と演算処理部13とを主要な構成として備える。   Next, the configuration of the controller 10 will be described. The controller 10 includes a voltage control unit 11, a current value acquisition unit 12, and an arithmetic processing unit 13 as main components.

電圧制御部11は、後述の粒径算出部15から入力された印加電圧の電圧値および極性に基づいて電圧源5の印加電圧を自動的に制御する。また電圧制御部11は、後述の除去電圧算出部17から入力された印加電圧の電圧値および極性に基づいて電圧源7の印加電圧を自動的に制御しており、電圧源7の印加電圧を設定すると同時に、粒径分布を再度測定させるための粒径分布取得信号を粒径算出部15に対して出力する機能も備えている。   The voltage controller 11 automatically controls the applied voltage of the voltage source 5 based on the voltage value and polarity of the applied voltage input from the particle size calculator 15 described later. In addition, the voltage control unit 11 automatically controls the applied voltage of the voltage source 7 based on the voltage value and polarity of the applied voltage input from the removal voltage calculating unit 17 described later. Simultaneously with the setting, a function of outputting a particle size distribution acquisition signal for measuring the particle size distribution again to the particle size calculation unit 15 is also provided.

電流値取得部12は、電流計4から電流の測定値を自動的に取得し、取得した電流値を粒径算出部15に出力する。   The current value acquisition unit 12 automatically acquires a current measurement value from the ammeter 4 and outputs the acquired current value to the particle size calculation unit 15.

演算処理部13は入力部14と粒径算出部15と除去粒径算出部16と除去電圧算出部17とを備え、電圧制御部11を用いて電圧源5,7の印加電圧を設定したり、電流値取得部12から得られた電流値をもとに帯電粒子の粒径分布を求める機能を有している。尚、演算処理部13は例えばマイクロコンピュータを用いて構成され、粒径算出部15、除去粒径算出部16及び除去電圧算出部17はマイクロコンピュータの演算機能によって実現される。   The arithmetic processing unit 13 includes an input unit 14, a particle size calculation unit 15, a removal particle size calculation unit 16, and a removal voltage calculation unit 17. The voltage control unit 11 is used to set an applied voltage of the voltage sources 5 and 7. The particle size distribution of the charged particles is obtained based on the current value obtained from the current value acquisition unit 12. The arithmetic processing unit 13 is configured by using, for example, a microcomputer, and the particle size calculation unit 15, the removal particle size calculation unit 16, and the removal voltage calculation unit 17 are realized by a calculation function of the microcomputer.

入力部14は、測定しようとする帯電粒子の測定範囲、極性及び粒径のスイープ幅などの測定条件をユーザが入力するためのものであり、入力された測定条件は粒径算出部15に出力される。   The input unit 14 is for the user to input measurement conditions such as the measurement range, polarity, and sweep width of the particle size of the charged particles to be measured. The input measurement conditions are output to the particle size calculation unit 15. Is done.

粒径算出部15は、入力部14から入力された測定条件に従い、測定対象の帯電粒子の粒径と移動度の関係から、外側導体2bに印加する電圧を算出して算出結果を電圧制御部11に出力するとともに、電流値取得部12から取得した電流値をもとに、電圧源5の印加電圧により設定される粒径以下の帯電粒子の個数を算出する。粒径算出部15では、電圧制御部11を用いて電圧源5の印加電圧をスイープさせることで、測定対象の粒径を所定のスイープ幅ずつ変化させており、測定対象の粒径をスイープ幅だけ変化させる毎に粒子数を測定することによって、帯電粒子の粒子数の粒径分布を求めることができる。さらに、粒径算出部15は計測したい帯電粒子の極性を電圧制御部11に出力するとともに、除去したい帯電粒子の極性を電圧制御部11に出力する。また粒径算出部15は、電圧制御部11から粒径分布取得信号を取得すると、一度設定した粒径の測定範囲で再度粒径分布を計測し、計測した粒径分布を電子データとして記憶部(図示せず)に記憶させるとともに、図示しない出力装置(プリンタやモニタ装置など)に粒径分布を出力する。   The particle size calculation unit 15 calculates the voltage to be applied to the outer conductor 2b from the relationship between the particle size of the charged particle to be measured and the mobility in accordance with the measurement conditions input from the input unit 14, and calculates the calculation result as a voltage control unit. 11, and based on the current value acquired from the current value acquisition unit 12, the number of charged particles having a particle size equal to or smaller than the particle size set by the applied voltage of the voltage source 5 is calculated. In the particle size calculation unit 15, the voltage applied by the voltage source 5 is swept using the voltage control unit 11 to change the particle size of the measurement target by a predetermined sweep width, and the particle size of the measurement target is changed to the sweep width. By measuring the number of particles every time it is changed, the particle size distribution of the number of charged particles can be obtained. Further, the particle size calculator 15 outputs the polarity of the charged particles to be measured to the voltage controller 11 and outputs the polarity of the charged particles to be removed to the voltage controller 11. In addition, when the particle size calculation unit 15 acquires the particle size distribution acquisition signal from the voltage control unit 11, the particle size distribution is measured again within the measurement range of the particle size once set, and the measured particle size distribution is stored as electronic data. (Not shown) and the particle size distribution is output to an output device (printer, monitor device, etc.) not shown.

除去粒径算出部16は、粒径算出部15から得られた帯電粒子の粒径分布をもとに、粒子数が極大となる時の粒径の内、2番目に大きい粒径を除去対象の帯電粒子の最大粒径(閾値)として求め、この粒径を除去電圧算出部17に出力する。また粒径算出部15から入力された測定対象の帯電粒子の極性を、除去対象の帯電粒子の極性として除去電圧算出部17に出力する。   Based on the particle size distribution of the charged particles obtained from the particle size calculation unit 15, the removal particle size calculation unit 16 removes the second largest particle size from among the particle sizes when the number of particles becomes maximum. Is obtained as the maximum particle size (threshold value) of the charged particles, and this particle size is output to the removal voltage calculation unit 17. The polarity of the charged particles to be measured input from the particle size calculator 15 is output to the removal voltage calculator 17 as the polarity of the charged particles to be removed.

除去電圧算出部17は、除去粒径算出部16から入力された除去対象の帯電粒子の最大粒径(閾値)をもとに、フィルタ電極6の外側導体6bに印加する電圧を算出し、印加電圧の算出値と極性を電圧制御部11に出力する。   The removal voltage calculation unit 17 calculates the voltage to be applied to the outer conductor 6b of the filter electrode 6 based on the maximum particle size (threshold value) of the charged particles to be removed input from the removal particle size calculation unit 16, and applies the applied voltage. The calculated voltage value and polarity are output to the voltage control unit 11.

次に本実施形態の帯電粒子量評価装置1の動作を図2のフロー図に従って説明する。   Next, the operation of the charged particle amount evaluation apparatus 1 of the present embodiment will be described with reference to the flowchart of FIG.

先ず吸気ファン3の電源を投入して、回転羽根を回転させ、同心円筒状電極2およびフィルタ電極6の内側導体2a,6aと外側導体2b,6bとの間の空間に軸方向に沿って流れる流量が50L/minの層流を発生させる。   First, the power of the intake fan 3 is turned on, the rotating blades are rotated, and flow along the axial direction into the space between the inner conductors 2a, 6a and the outer conductors 2b, 6b of the concentric cylindrical electrode 2 and the filter electrode 6. A laminar flow with a flow rate of 50 L / min is generated.

次に電圧源5,7およびコントローラ10の電源を投入する。但し電源投入時には電圧源5,7の電圧はゼロに設定されている。尚、吸気ファン3の電源と連動して、電圧源5,7およびコントローラ10の電源を投入させても良い。   Next, the power sources of the voltage sources 5 and 7 and the controller 10 are turned on. However, when the power is turned on, the voltages of the voltage sources 5 and 7 are set to zero. The voltage sources 5 and 7 and the controller 10 may be turned on in conjunction with the power supply of the intake fan 3.

コントローラ10が動作を開始すると、測定担当者が入力部14を用いて帯電粒子の粒径の測定範囲および極性と、粒径のスイープ幅などの測定条件を入力する(ステップS1)。以下では粒径の測定範囲が0.6〜28nm、極性が負に設定され、スイープ幅が0.6〜2nmの粒径範囲では0.2nm、2〜28nmの粒径範囲では2nmに設定された場合について説明する。なお、電流計において電流の向きを考慮すれば、印加する電圧の極性の入力を不要にすることもできる。   When the controller 10 starts operation, the person in charge of measurement uses the input unit 14 to input measurement conditions such as the measurement range and polarity of the particle size of the charged particles and the sweep width of the particle size (step S1). In the following, the particle size measurement range is set to 0.6 to 28 nm, the polarity is set to negative, the sweep width is set to 0.2 nm for the particle size range of 0.6 to 2 nm, and 2 nm for the particle size range of 2 to 28 nm. The case will be described. If the direction of the current is taken into account in the ammeter, the input of the polarity of the voltage to be applied can be made unnecessary.

粒径算出部15は、入力部14から入力された測定条件をもとに、上述の粒径、移動度及び印加電圧の関係式(1)(2)を連立して解くことによって、測定対象の粒径範囲に対応する印加電圧の変動範囲と、粒径のスイープ幅に対応した印加電圧のスイープ幅を算出しており、粒径を最小値から最大値まで所定のスイープ幅で変化させる際に各々の粒径に対応した印加電圧を求めている(ステップS2)。   Based on the measurement conditions input from the input unit 14, the particle size calculation unit 15 solves the above relational expressions (1) and (2) of the particle size, mobility, and applied voltage, thereby measuring objects. When the fluctuation range of the applied voltage corresponding to the particle size range and the sweep width of the applied voltage corresponding to the particle size sweep width are calculated, and the particle size is changed from the minimum value to the maximum value with a predetermined sweep width The applied voltage corresponding to each particle size is obtained (step S2).

次に粒径算出部15は粒径の最小値に対応した印加電圧の電圧値及び極性を電圧制御部11に出力する(ステップS3)。今回の測定条件では粒径の最小値は0.6nmである。   Next, the particle size calculator 15 outputs the voltage value and polarity of the applied voltage corresponding to the minimum value of the particle size to the voltage controller 11 (step S3). Under the current measurement conditions, the minimum value of the particle size is 0.6 nm.

このとき、電圧制御部11が電圧源5の印加電圧を設定して、粒径の最小値に対応した印加電圧が外側導体2bに印加される(ステップS4)。外側導体2bに印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、負の帯電粒子を測定したい場合は外側導体2bに印加する電圧の極性を負極性とする。これによって、内側導体2aから外側導体2bに電界が発生し、この電界により負の帯電粒子はグランドに接地された内側導体2aに引き寄せられる。そして、電圧源5の印加電圧で設定された粒径以下の帯電粒子は内側導体2aに取り込まれて、内側導体2aと外側導体2bとの間に電流が流れる(ステップS5)。なお図1中の矢印aはフィルタ電極6によって除去される帯電粒子の流れる経路を示し、矢印bは同心円筒状電極2に流入する帯電粒子が流れる経路を示している。   At this time, the voltage control unit 11 sets the applied voltage of the voltage source 5, and the applied voltage corresponding to the minimum value of the particle size is applied to the outer conductor 2b (step S4). The polarity of the voltage applied to the outer conductor 2b is the same as the polarity of the charged particles to be measured. When negatively charged particles are to be measured, the polarity of the voltage applied to the outer conductor 2b is negative. As a result, an electric field is generated from the inner conductor 2a to the outer conductor 2b, and negatively charged particles are attracted to the inner conductor 2a grounded to the ground by the electric field. Then, charged particles having a particle size equal to or smaller than the particle size set by the voltage applied by the voltage source 5 are taken into the inner conductor 2a, and a current flows between the inner conductor 2a and the outer conductor 2b (step S5). 1 indicates a path through which charged particles removed by the filter electrode 6 flow, and an arrow b indicates a path through which charged particles flowing into the concentric cylindrical electrode 2 flow.

内側導体2aに取り込まれた帯電粒子によって電流が流れると、その電流値は電流計4によって測定され、その測定値は電流値取得部12によって自動的に取得される(ステップS6)。   When a current flows due to the charged particles taken into the inner conductor 2a, the current value is measured by the ammeter 4, and the measured value is automatically acquired by the current value acquisition unit 12 (step S6).

電流値取得部12は取得した電流値を粒径算出部15に出力し、粒径算出部15において、上述の式(3)を用いて最小粒径以下の帯電粒子の数を算出し、測定対象の帯電粒子の粒径および個数を図示しない記憶部に記憶させる(ステップS7)。   The current value acquisition unit 12 outputs the acquired current value to the particle size calculation unit 15, and the particle size calculation unit 15 calculates the number of charged particles having a particle size equal to or smaller than the minimum particle size using the above-described equation (3). The particle size and the number of target charged particles are stored in a storage unit (not shown) (step S7).

測定対象の帯電粒子の粒径と個数とを記憶させると、粒径算出部15では全ての測定範囲について測定を終了したか否かを判断し(ステップS8)、測定が終わっていなければ、粒径を所定のスイープ幅だけ増加させた場合の印加電圧の電圧値及び極性を電圧制御部11に出力した後(ステップS9)、上述のステップS4〜S7の処理を繰り返す。尚、0.6〜2nmの粒径範囲ではスイープ幅を0.2nmとしているので、最小粒径の次は粒径が0.8nmの時の印加電圧の電圧値を出力する。   When the particle size and number of charged particles to be measured are stored, the particle size calculation unit 15 determines whether or not the measurement has been completed for all measurement ranges (step S8). After the voltage value and polarity of the applied voltage when the diameter is increased by a predetermined sweep width are output to the voltage control unit 11 (step S9), the processes of steps S4 to S7 described above are repeated. Since the sweep width is 0.2 nm in the particle diameter range of 0.6 to 2 nm, the voltage value of the applied voltage when the particle diameter is 0.8 nm is output next to the minimum particle diameter.

以上のようにして粒径を0.6nmから28nmまで所定のスイープ幅ずつスイープさせる毎に、各々の粒径の設定値で上記の処理S4〜S7を繰り返すことによって粒子数を算出して、粒径分布(粒径に対する個数の分布)を求めており、ステップS8において全ての測定範囲で測定を終了したと判断されると、粒径算出部15は粒径分布の算出結果を除去粒径算出部16に出力する(ステップS10)。   Each time the particle size is swept from 0.6 nm to 28 nm by a predetermined sweep width as described above, the number of particles is calculated by repeating the above steps S4 to S7 with each particle size setting value. When the diameter distribution (number distribution with respect to the particle diameter) is obtained and it is determined in step S8 that the measurement has been completed in the entire measurement range, the particle diameter calculation unit 15 calculates the particle diameter distribution calculation result to calculate the removal particle diameter. It outputs to the part 16 (step S10).

除去粒径算出部16は粒径算出部15から入力された粒径分布をもとに粒径ピークを探索する。ここで、図3(a)に示す粒径分布の例では粒径が1.4nmと14nmの時に粒子数が極大になっており、粒子数が極大になる時の粒径の内、2番目に大きい粒径(この場合は1.4nm)を除去対象の帯電粒子の最大径(閾値)に設定し、除去電圧算出部17に出力する(ステップS11)。   The removal particle size calculation unit 16 searches for a particle size peak based on the particle size distribution input from the particle size calculation unit 15. Here, in the example of the particle size distribution shown in FIG. 3A, the number of particles is maximized when the particle size is 1.4 nm and 14 nm, and the second of the particle sizes when the number of particles is maximized. Is set to the maximum diameter (threshold value) of the charged particles to be removed, and is output to the removal voltage calculation unit 17 (step S11).

ここに、除去電圧算出部17では上述の式(1)、式(2)を連立して解くことによって、除去したい帯電粒子の粒径(閾値)に対応する印加電圧を算出することができ、算出結果を印加電圧の設定値として電圧制御部11に出力する(ステップS12)。   Here, the removal voltage calculation unit 17 can calculate the applied voltage corresponding to the particle size (threshold value) of the charged particles to be removed by simultaneously solving the above formulas (1) and (2). The calculation result is output to the voltage controller 11 as a set value of the applied voltage (step S12).

電圧制御部11では、除去電圧算出部17から入力された印加電圧の設定値および極性に基づいて電圧源7の印加電圧を設定すると同時に、粒径算出部15に粒径分布取得信号を出力する(ステップS13)。このとき、電圧源7によりフィルタ電極6の外側導体6bに所定電圧の直流電圧が印加される。外側導体6bに印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、負の帯電粒子を除去したい場合は外側導体6bに印加する電圧の極性を負極性とする。これによって、内側導体6aから外側導体6bに電界が発生し、この電界により負の帯電粒子はグランドに接地された内側導体6aに引き寄せられる。そして、粒径が電圧源7の印加電圧で設定された閾値以下となる帯電粒子は内側導体6aに取り込まれ、電流として除去されるので、粒径が閾値以下の帯電粒子はフィルタ電極6によって除去されることになる。   The voltage control unit 11 sets the applied voltage of the voltage source 7 based on the set value and polarity of the applied voltage input from the removal voltage calculating unit 17 and simultaneously outputs a particle size distribution acquisition signal to the particle size calculating unit 15. (Step S13). At this time, a DC voltage of a predetermined voltage is applied from the voltage source 7 to the outer conductor 6 b of the filter electrode 6. The polarity of the voltage applied to the outer conductor 6b is the same as the polarity of the charged particles to be measured. When negatively charged particles are to be removed, the polarity of the voltage applied to the outer conductor 6b is set to be negative. As a result, an electric field is generated from the inner conductor 6a to the outer conductor 6b, and negatively charged particles are attracted to the inner conductor 6a grounded to the ground by this electric field. Then, the charged particles whose particle size is equal to or smaller than the threshold set by the voltage applied by the voltage source 7 are taken into the inner conductor 6a and removed as an electric current. Therefore, the charged particles whose particle size is equal to or smaller than the threshold are removed by the filter electrode 6. Will be.

このようにフィルタ電極6によって小粒径の帯電粒子を除去した状態で、電圧制御部11から粒径算出部15に粒径分布取得信号が出力されると、粒径算出部15では、上述したステップS3〜S10の処理を実行することによって粒径分布を再度測定しており、粒径が閾値以下の帯電粒子を除外した粒径分布を得ることができ、小粒径の帯電粒子の影響を除外した粒径分布の測定結果を記憶部に記憶させるとともに、出力装置に測定結果を出力する(ステップS14)。図3(b)はフィルタ電極6に所定の電圧を印加して、粒径が1.4nm以下の帯電粒子を除去した場合の粒径分布の測定結果を示しており、1.4nmのピークが無くなっていることが判る。   When the particle size distribution acquisition signal is output from the voltage control unit 11 to the particle size calculation unit 15 with the charged particles having a small particle size removed by the filter electrode 6 in this manner, the particle size calculation unit 15 The particle size distribution is measured again by executing the processes of steps S3 to S10, and a particle size distribution excluding charged particles having a particle size equal to or smaller than a threshold value can be obtained. The measurement result of the excluded particle size distribution is stored in the storage unit, and the measurement result is output to the output device (step S14). FIG. 3B shows the measurement result of the particle size distribution when a predetermined voltage is applied to the filter electrode 6 to remove charged particles having a particle size of 1.4 nm or less. You can see that it is gone.

以上説明したように本実施形態の帯電粒子量評価装置1では、同心円筒状電極2の外部空間において気流の上流側にフィルタ電極6を配置してあり、除去すべき粒径に対応した電圧値および極性の印加電圧を外側導体6bに印加することによって、所定の粒径以下の帯電粒子を内側導体6aに引き寄せ、内側導体6aに取り込むことで電流として除去することができる。したがって、粒径が1nm程度の負イオンのような粒径の小さい帯電粒子が存在するために、空気中に含まれる帯電粒子の粒径分布が粒径ピークを複数有している場合にも、電気移動度の差によって所定の粒径以下の帯電粒子をフィルタ電極6で除去することができるから、大粒径の帯電粒子を測定する際のS/N比を向上させることができ、計測の再現性および信頼性を向上させることが可能になる。   As described above, in the charged particle amount evaluation apparatus 1 according to the present embodiment, the filter electrode 6 is disposed on the upstream side of the air flow in the external space of the concentric cylindrical electrode 2, and the voltage value corresponding to the particle size to be removed. By applying a voltage having a polarity and being applied to the outer conductor 6b, charged particles having a predetermined particle size or less can be attracted to the inner conductor 6a and taken into the inner conductor 6a to be removed as a current. Therefore, since there are charged particles with a small particle size such as negative ions having a particle size of about 1 nm, even when the particle size distribution of the charged particles contained in the air has a plurality of particle size peaks, Since charged particles having a predetermined particle size or less can be removed by the filter electrode 6 due to the difference in electric mobility, the S / N ratio when measuring charged particles having a large particle size can be improved. It becomes possible to improve reproducibility and reliability.

なお本実施形態ではフィルタ電極6の外側導体6bに電圧を印加していない状態で、同心円筒状電極2の外側導体2bに印加する電圧をスイープさせて粒子数の粒径分布を求めるとともに、粒径分布に現れる極大点(粒径ピーク)を探索して、不要な極大点(粒径ピーク)に対応する粒径を求めることで、除去すべき帯電粒子の最大粒径(粒径の閾値)を決定しているが、予め除去したい帯電粒子の粒径が得られている場合には測定担当者が入力部14を用いて除去対象の粒径に対応した電圧源7の印加電圧を直接入力しても良い。   In this embodiment, the voltage applied to the outer conductor 2b of the concentric cylindrical electrode 2 is swept in a state where no voltage is applied to the outer conductor 6b of the filter electrode 6, and the particle size distribution of the number of particles is obtained. The maximum particle size (particle size threshold) of the charged particles to be removed by searching for the maximum point (particle size peak) appearing in the diameter distribution and determining the particle size corresponding to the unnecessary maximum point (particle size peak) However, if the particle size of the charged particles to be removed is obtained in advance, the person in charge of measurement directly inputs the applied voltage of the voltage source 7 corresponding to the particle size to be removed using the input unit 14. You may do it.

またフィルタ電極6を内側導体6aと外側導体6bとの同心円筒状電極で構成しているので、除去すべき帯電粒子は内側導体6a又は外側導体6bに引き寄せられ、電流として除去されるから、測定対象以外の帯電粒子を空間に残さずに除去することで測定精度を向上させることができ、帯電粒子の空間分布を正確に検出できる。   Further, since the filter electrode 6 is constituted by a concentric cylindrical electrode of the inner conductor 6a and the outer conductor 6b, the charged particles to be removed are attracted to the inner conductor 6a or the outer conductor 6b and removed as an electric current. By removing charged particles other than the target without leaving them in the space, the measurement accuracy can be improved, and the spatial distribution of the charged particles can be accurately detected.

そのうえフィルタ電極6の内側導体6aおよび外側導体6bの半径は、同心円筒状電極2の内側導体2aおよび外側導体2bの半径とそれぞれ略同一の半径に設定されているので、同心円筒状電極2とフィルタ電極6との連結部分に凹凸ができることはなく、また同心円筒状電極2およびフィルタ電極6はそれぞれの内側導体2a,6aと外側導体2b,6bとを重ね合わせた状態で絶縁部材8を介して連結されているので、連結部分において不連続な点が発生することはない。したがって、フィルタ電極6を通過して同心円筒状電極2に気体が流入する際に気流が乱されることがないから、小粒径の帯電粒子を除去しつつ、帯電粒子の粒径分布を正確に測定することができる。   In addition, the radius of the inner conductor 6a and the outer conductor 6b of the filter electrode 6 is set to be substantially the same as the radius of the inner conductor 2a and the outer conductor 2b of the concentric cylindrical electrode 2, so that the concentric cylindrical electrode 2 There is no unevenness in the connecting portion with the filter electrode 6, and the concentric cylindrical electrode 2 and the filter electrode 6 are interposed via the insulating member 8 in a state where the inner conductors 2 a and 6 a and the outer conductors 2 b and 6 b are overlapped. Therefore, discontinuous points do not occur in the connected portion. Therefore, since the airflow is not disturbed when the gas flows into the concentric cylindrical electrode 2 through the filter electrode 6, the charged particle size distribution can be accurately determined while removing the charged particles having a small particle size. Can be measured.

なお、フィルタ電極6のサイズは除去したい帯電粒子の粒径によって決定されるため、フィルタ電極6の内側導体6aおよび外側導体6bの半径が、同心円筒状電極2の内側導体2aおよび外側導体2bの半径と異なる値に設定される場合もあるが、その場合でも同心円筒状電極で構成することで除去すべき帯電粒子を空間に残さずに除去できる。例えば図4に示すようにフィルタ電極6の内側導体6aの半径が同心円筒状電極2の内側導体2aの半径よりも小さい半径となる場合もあるが、フィルタ電極6の外側導体6bの半径を同心円筒状電極2の外側導体2bの半径と略同一の半径として、フィルタ電極6の形状を同心円筒状電極2と略同様の形状に形成することで、乱流の発生を低減することができる。   Since the size of the filter electrode 6 is determined by the particle diameter of the charged particles to be removed, the radius of the inner conductor 6a and the outer conductor 6b of the filter electrode 6 is set so that the inner conductor 2a and the outer conductor 2b of the concentric cylindrical electrode 2 In some cases, the value may be set to a value different from the radius. However, even in such a case, the charged particles to be removed can be removed without leaving in the space by using concentric cylindrical electrodes. For example, as shown in FIG. 4, the radius of the inner conductor 6a of the filter electrode 6 may be smaller than the radius of the inner conductor 2a of the concentric cylindrical electrode 2, but the radius of the outer conductor 6b of the filter electrode 6 is concentric. The generation of turbulence can be reduced by forming the filter electrode 6 in a shape substantially the same as that of the concentric cylindrical electrode 2 so that the radius is substantially the same as the radius of the outer conductor 2 b of the cylindrical electrode 2.

また本実施形態では、入力部14を用いて測定したい帯電粒子の粒径範囲および極性とスイープ幅とを設定すると、コントローラ10が電圧源5の印加電圧を自動的に変化させて帯電粒子数の粒径分布を測定し、粒子数が極大となる粒径が複数ある場合は2番目に大きい粒径を除去すべき帯電粒子の最大粒径(閾値)に設定し、粒径が閾値以下の帯電粒子を除去しているので、除去すべき帯電粒子の粒径範囲が不明な場合でも、除去すべき帯電粒子の最大粒径を自動的に設定することが可能なので、フィルタ電極6に印加する電圧を測定担当者が自分で設定する手間を省くことが出来る。ここで、図3(a)には極大値が2つだけの例を示しているが、粒子数の極大値が5つ存在する場合に粒径の小さい方から4番目の極大値に対応した粒径の粒子数を測定したいのであれば、小さい方から4番目の極大値に対応した粒径が粒径の計測範囲の最大値となるように電圧源5の印加電圧を設定すれば、小さい方から3番目の極大値に対応する粒径が閾値に設定されるから、電圧源5による印加電圧の設定によって任意の極大値を閾値に設定でき、所望の粒径の粒子数を測定することが可能になる。   In this embodiment, when the particle size range, polarity, and sweep width of the charged particles to be measured are set using the input unit 14, the controller 10 automatically changes the applied voltage of the voltage source 5 to determine the number of charged particles. When the particle size distribution is measured, and there are multiple particle sizes that have the maximum number of particles, the second largest particle size is set to the maximum particle size (threshold value) of the charged particles to be removed. Since the particles are removed, even when the particle size range of the charged particles to be removed is unknown, the maximum particle size of the charged particles to be removed can be automatically set, so the voltage applied to the filter electrode 6 It is possible to save the trouble of setting the measurement person by himself. Here, FIG. 3 (a) shows an example with only two maximum values, but when there are five maximum values of the number of particles, it corresponds to the fourth maximum value from the smallest particle size. If it is desired to measure the number of particles having a particle size, the applied voltage of the voltage source 5 is small so that the particle size corresponding to the fourth maximum value from the smallest is the maximum value in the particle size measurement range. Since the particle size corresponding to the third maximum value from the side is set as the threshold value, any maximum value can be set as the threshold value by setting the voltage applied by the voltage source 5, and the number of particles having a desired particle size can be measured. Is possible.

なお本実施形態においてフィルタ電極6の内側導体6aと外側導体6bとの間に流れる電流を測定する電流計(図示せず)を設けても良く、同心円筒状電極2で測定される粒径の帯電粒子とは異なる粒径の帯電粒子を同時に測定することができる。   In this embodiment, an ammeter (not shown) for measuring the current flowing between the inner conductor 6a and the outer conductor 6b of the filter electrode 6 may be provided, and the particle size measured by the concentric cylindrical electrode 2 may be provided. Charged particles having a particle size different from that of the charged particles can be measured simultaneously.

また本実施形態では同心円筒状電極2およびフィルタ電極6の内側導体2a,6aを接地するとともに、外側導体2b,6bに電圧源5,7の直流電圧を印加しているが、同心円筒状電極2の内側導体2aに電圧を印加して、外側導体2bを接地しても、上述と同様に帯電粒子の測定が行える。またフィルタ電極6の内側導体6aに電圧を印加して、外側導体6bを接地しても、上述と同様に所定の粒径以下の帯電粒子を除去することが出来る。   In this embodiment, the concentric cylindrical electrode 2 and the inner conductors 2a and 6a of the filter electrode 6 are grounded, and the DC voltage of the voltage sources 5 and 7 is applied to the outer conductors 2b and 6b. Even when a voltage is applied to the second inner conductor 2a and the outer conductor 2b is grounded, charged particles can be measured in the same manner as described above. Further, even when a voltage is applied to the inner conductor 6a of the filter electrode 6 and the outer conductor 6b is grounded, charged particles having a predetermined particle diameter or less can be removed as described above.

また同心円筒状電極2の内側導体2aは電流測定端子24を、外側導体2bは電圧端子23及び電流測定端子24を、フィルタ電極6の外側導体6bは電圧端子62をそれぞれ備えているので、手動で測定する場合には電流計4や電圧源5,7を帯電粒子量評価装置1自体に一体化しなくても良く、別構成の電流計4や電圧源5,6を同心円筒状電極2およびフィルタ電極6の端子に接続して、測定を行うことが可能である。   Further, the inner conductor 2a of the concentric cylindrical electrode 2 is provided with a current measuring terminal 24, the outer conductor 2b is provided with a voltage terminal 23 and a current measuring terminal 24, and the outer conductor 6b of the filter electrode 6 is provided with a voltage terminal 62. , The ammeter 4 and the voltage sources 5 and 7 do not have to be integrated into the charged particle amount evaluation apparatus 1 itself, and the ammeter 4 and the voltage sources 5 and 6 having different configurations are connected to the concentric cylindrical electrode 2 and It is possible to perform measurement by connecting to the terminal of the filter electrode 6.

(実施形態2)
本発明に係る帯電粒子量評価方法を用いた帯電粒子量評価装置の実施形態2を図5に基づいて説明する。上述の実施形態1では同心円筒状電極2と同様の形状を有するフィルタ電極6を用いているが、本実施形態では平板状のフィルタ電極6’を用いている。尚、フィルタ電極6’以外の構成は実施形態1と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
(Embodiment 2)
Embodiment 2 of the charged particle amount evaluation apparatus using the charged particle amount evaluation method according to the present invention will be described with reference to FIG. In the first embodiment described above, the filter electrode 6 having the same shape as the concentric cylindrical electrode 2 is used, but in this embodiment, a flat plate-like filter electrode 6 ′ is used. Since the configuration other than the filter electrode 6 'is the same as that of the first embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.

フィルタ電極6’は平板状であって、同心円筒状電極2の外部空間において、同心円筒状電極2の内部を流れる気流の上流側に配置されている。またフィルタ電極6’には電圧源7によって除去したい帯電粒子と同一極性の電圧が印加され、除去したい帯電粒子に斥力を与えて、同心円筒状電極2の内部に流入させないような電界を発生させており、所定の粒径以下の帯電粒子は電界による斥力を受けて吹き飛ばされ、所定の粒径よりも大きな帯電粒子のみ同心円筒状電極2の内部に流入することができる。図中の矢印aは所定の粒径以下の帯電粒子が流れる経路、矢印bは所定の粒径よりも大きな帯電粒子が流れる経路をそれぞれ示している。ここで、フィルタ電極6’は、除去したい粒径の帯電粒子に斥力を与えて吹き飛ばすことができるように、帯電しやすい良導体で形成するのが好ましく、またフィルタ電極6’の支持部材は帯電する可能性があるため、感電などの事故を防止するために絶縁体で支持部材を形成することが好ましい。   The filter electrode 6 ′ has a flat plate shape and is disposed in the outer space of the concentric cylindrical electrode 2 on the upstream side of the airflow flowing through the concentric cylindrical electrode 2. A voltage having the same polarity as the charged particles to be removed is applied to the filter electrode 6 ′ by the voltage source 7, and a repulsive force is applied to the charged particles to be removed to generate an electric field that does not flow into the concentric cylindrical electrode 2. The charged particles having a predetermined particle diameter or less are blown off by receiving a repulsive force due to the electric field, and only charged particles larger than the predetermined particle diameter can flow into the concentric cylindrical electrode 2. In the figure, an arrow a indicates a path through which charged particles having a predetermined particle diameter or less flow, and an arrow b indicates a path through which charged particles larger than the predetermined particle diameter flow. Here, the filter electrode 6 ′ is preferably formed of a good conductor that is easily charged so that a repulsive force can be applied to the charged particles having a particle diameter to be removed, and the support member of the filter electrode 6 ′ is charged. Since there is a possibility, it is preferable to form the support member with an insulator in order to prevent accidents such as electric shock.

本実施形態の帯電粒子量評価装置1の動作を以下に説明する。先ず吸気ファン3の電源を投入して、回転羽根を回転させ、同心円筒状電極2の内側導体2aと外側導体2bとの間の空間に軸方向に沿って流れる流量が50L/minの層流を発生させる。   The operation of the charged particle amount evaluation apparatus 1 of this embodiment will be described below. First, the power of the intake fan 3 is turned on, the rotating blades are rotated, and a laminar flow with a flow rate of 50 L / min flowing along the axial direction in the space between the inner conductor 2a and the outer conductor 2b of the concentric cylindrical electrode 2 is obtained. Is generated.

次に電圧源5,7およびコントローラ10の電源を投入する。但し電源投入時には電圧源5,7の電圧はゼロに設定されている。尚、吸気ファン3の電源と連動して、電圧源5,7およびコントローラ10の電源を投入しても良い。   Next, the power sources of the voltage sources 5 and 7 and the controller 10 are turned on. However, when the power is turned on, the voltages of the voltage sources 5 and 7 are set to zero. The voltage sources 5 and 7 and the controller 10 may be turned on in conjunction with the power supply of the intake fan 3.

コントローラ10が動作を開始すると、測定担当者が入力部14を用いて測定対象の帯電粒子の粒径範囲および極性や、粒径のスイープ幅などの測定条件を入力する。粒径算出部15は、入力部14から入力された測定条件をもとに、上述の粒径、移動度及び印加電圧の関係式(1)(2)を連立して解くことによって、測定対象の粒径範囲に対応する印加電圧の変動範囲と、粒径のスイープ幅に対応した印加電圧のスイープ幅を算出しており、粒径を最小値から最大値まで所定のスイープ幅で変化させる際に各々の粒径に対応した印加電圧を求める。   When the controller 10 starts operating, the person in charge of measurement uses the input unit 14 to input measurement conditions such as the particle size range and polarity of the charged particles to be measured and the sweep width of the particle size. Based on the measurement conditions input from the input unit 14, the particle size calculation unit 15 solves the above relational expressions (1) and (2) of the particle size, mobility, and applied voltage, thereby measuring objects. When the fluctuation range of the applied voltage corresponding to the particle size range and the sweep width of the applied voltage corresponding to the particle size sweep width are calculated, and the particle size is changed from the minimum value to the maximum value with a predetermined sweep width The applied voltage corresponding to each particle size is obtained.

そして、粒径算出部15が印加電圧の電圧値及び極性を電圧制御部11に出力し、電圧制御部11が電圧源5の印加電圧を設定して、印加電圧を所定の電圧範囲内でスイープさせる毎に、粒径算出部15が電流値取得部12の取得した電流値に基づいて粒子数を算出することで、粒子数の粒径分布を求めており、粒径分布の算出結果を除去粒径算出部16に出力する。   Then, the particle size calculator 15 outputs the voltage value and polarity of the applied voltage to the voltage controller 11, and the voltage controller 11 sets the applied voltage of the voltage source 5 and sweeps the applied voltage within a predetermined voltage range. Each time the particle size calculation unit 15 calculates the number of particles based on the current value acquired by the current value acquisition unit 12, the particle size distribution of the number of particles is obtained, and the calculation result of the particle size distribution is removed. Output to the particle size calculator 16.

除去粒径算出部16では粒径算出部15から入力された粒径分布をもとに粒子数が極大となる時の粒径を探索し、粒子数が極大となるときの粒径の内、2番目に大きい粒径を除去対象の帯電粒子の最大粒径(閾値)に設定し、除去電圧算出部17に出力する。   The removal particle size calculation unit 16 searches for the particle size when the number of particles becomes maximum based on the particle size distribution input from the particle size calculation unit 15, and among the particle sizes when the number of particles becomes maximum, The second largest particle size is set as the maximum particle size (threshold value) of the charged particles to be removed and output to the removal voltage calculation unit 17.

除去電圧算出部17では上述の式(1)、式(2)を連立して解くことによって、除去したい帯電粒子の粒径に対応する印加電圧を算出し、電圧制御部11に出力する。   The removal voltage calculation unit 17 calculates the applied voltage corresponding to the particle size of the charged particles desired to be removed by simultaneously solving the above equations (1) and (2) and outputs the calculated voltage to the voltage control unit 11.

電圧制御部11では、除去電圧算出部17から入力された印加電圧の設定値および極性に基づいて電圧源7の印加電圧を設定すると同時に、粒径算出部15に粒径分布取得信号を出力する。このとき、電圧源7によりフィルタ電極6’に所定電圧の直流電圧が印加される。フィルタ電極6’に印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、これによって除去したい帯電粒子に斥力を与え、同心円筒状電極2の外側に吹き飛ばしている。   The voltage control unit 11 sets the applied voltage of the voltage source 7 based on the set value and polarity of the applied voltage input from the removal voltage calculating unit 17 and simultaneously outputs a particle size distribution acquisition signal to the particle size calculating unit 15. . At this time, a predetermined DC voltage is applied to the filter electrode 6 ′ by the voltage source 7. The polarity of the voltage applied to the filter electrode 6 ′ is the same as the polarity of the charged particles to be measured. This applies a repulsive force to the charged particles to be removed, and blows them outside the concentric cylindrical electrode 2.

このようにフィルタ電極6’によって小粒径の帯電粒子を除去した状態で、電圧制御部11から粒径算出部15に粒径分布取得信号が出力されると、粒径算出部15では、上述と同様の処理を行って再度粒径分布を測定しており、粒径が閾値以下の帯電粒子を除外した粒径分布を得ることができる。   When the particle size distribution acquisition signal is output from the voltage control unit 11 to the particle size calculation unit 15 in a state where charged particles having a small particle size are removed by the filter electrode 6 ′ in this way, the particle size calculation unit 15 The particle size distribution is measured again by performing the same process as above, and a particle size distribution excluding charged particles having a particle size equal to or smaller than a threshold value can be obtained.

以上説明したように本実施形態では簡単な形状(平板状)のフィルタ電極6’を、同心円筒状電極2の外部空間であって、同心円筒状電極2の内部を流れる気流の上流側に配置しており、フィルタ電極6’に除去したい帯電粒子と同極性の電圧を印加することで、除去したい帯電粒子に斥力を作用させて、同心円筒状電極2の外側に吹き飛ばしているので、所定の粒径以下の帯電粒子を除去することができる。したがって、粒径が1nm程度の負イオンのような粒径の小さい帯電粒子が存在するために、空気中に含まれる帯電粒子の粒径分布が粒径ピークを複数有している場合にも、電気移動度の差によって所定の粒径以下の帯電粒子をフィルタ電極6’で除去することができるから、大粒径の帯電粒子を測定する際のS/N比を向上させることができ、計測の再現性および信頼性を向上させることが可能になる。   As described above, in this embodiment, the filter electrode 6 ′ having a simple shape (flat plate shape) is disposed in the outer space of the concentric cylindrical electrode 2 and upstream of the airflow flowing inside the concentric cylindrical electrode 2. In addition, by applying a voltage having the same polarity as that of the charged particles to be removed to the filter electrode 6 ′, a repulsive force is applied to the charged particles to be removed and blown off to the outside of the concentric cylindrical electrode 2. Charged particles having a particle size or less can be removed. Therefore, since there are charged particles with a small particle size such as negative ions having a particle size of about 1 nm, even when the particle size distribution of the charged particles contained in the air has a plurality of particle size peaks, Since charged particles having a predetermined particle size or less can be removed by the filter electrode 6 ′ due to the difference in electric mobility, the S / N ratio when measuring charged particles having a large particle size can be improved. It becomes possible to improve reproducibility and reliability.

なお本実施形態ではフィルタ電極6’を平板状に形成しているが、フィルタ電極6’の形状および寸法は同心円筒状電極2に流入する気流を乱さないのであれば、どのような形状および寸法に形成しても良い。例えばフィルタ電極6’を、同心円筒状電極2の外側導体2bと同一半径の半円筒形に形成しても良く、気流の流れを乱さずに同心円筒状電極2の内部に帯電粒子源から帯電粒子を含む気流を流入させることが出来る。   In the present embodiment, the filter electrode 6 ′ is formed in a flat plate shape, but the shape and size of the filter electrode 6 ′ may be any shape and size as long as the airflow flowing into the concentric cylindrical electrode 2 is not disturbed. You may form in. For example, the filter electrode 6 ′ may be formed in a semi-cylindrical shape having the same radius as the outer conductor 2 b of the concentric cylindrical electrode 2, and charged from the charged particle source inside the concentric cylindrical electrode 2 without disturbing the flow of airflow. An air stream containing particles can be introduced.

また本実施形態では除去したい帯電粒子の極性と同極性の印加電圧をフィルタ電極6’に印加しているが、除去したい帯電粒子の極性と逆極性の印加電圧をフィルタ電極6’に印加しても良く、除去したい帯電粒子をフィルタ電極6’側に引き寄せて、フィルタ電極6’に取り込むことで電流として除去することができる
(実施形態3)
本発明に係る帯電粒子量評価方法を用いた帯電粒子量評価装置の実施形態3を図6に基づいて説明する。上述の実施形態1では同心円筒状電極2と同様の形状を有するフィルタ電極6を用いているが、本実施形態では略管状であって、同心円筒状電極2に近い側ほど断面積が小さくなるような先細りの形状に形成されたフィルタ電極6”を用いている。尚、フィルタ電極6”以外の構成は実施形態2と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
In this embodiment, an applied voltage having the same polarity as that of the charged particles to be removed is applied to the filter electrode 6 '. However, an applied voltage having a polarity opposite to that of the charged particles to be removed is applied to the filter electrode 6'. The charged particles to be removed can be attracted to the filter electrode 6 ′ side and taken into the filter electrode 6 ′ to be removed as a current (Embodiment 3).
Embodiment 3 of the charged particle amount evaluation apparatus using the charged particle amount evaluation method according to the present invention will be described with reference to FIG. In the first embodiment, the filter electrode 6 having the same shape as that of the concentric cylindrical electrode 2 is used. However, in this embodiment, the filter electrode 6 is substantially tubular, and the cross-sectional area becomes smaller as the side is closer to the concentric cylindrical electrode 2. The filter electrode 6 ″ formed in such a tapered shape is used. Since the configuration other than the filter electrode 6 ″ is the same as that of the second embodiment, common constituent elements are denoted by the same reference numerals. The description is omitted.

フィルタ電極6”は、同心円筒状電極2に近い側ほど断面積が小さくなるような先細りの形状に形成されたテーパ部65と、テーパ部65の小径側の端部から延長形成された直管部64とで構成され、同心円筒状電極2の外部空間であって、同心円筒状電極2の内部を流れる気流の上流側に配置されている。   The filter electrode 6 ″ includes a tapered portion 65 formed in a tapered shape such that the cross-sectional area becomes smaller toward the side closer to the concentric cylindrical electrode 2, and a straight pipe extended from the end portion on the small diameter side of the tapered portion 65. And is disposed outside the concentric cylindrical electrode 2 on the upstream side of the airflow flowing through the concentric cylindrical electrode 2.

フィルタ電極6”には電圧源7によって除去したい帯電粒子と同一極性の電圧が印加され、帯電粒子に斥力を与えて、除去したい粒径の帯電粒子を直管部64内に流入させないような電界を発生させており、所定の粒径以下の帯電粒子は電界による斥力を受けて吹き飛ばされ、所定の粒径よりも大きな帯電粒子のみテーパ部65を通して直管部64内に流入することができる。図中の矢印aは所定の粒径以下の帯電粒子が流れる経路、矢印bは所定の粒径よりも大きな帯電粒子が流れる経路をそれぞれ示している。ここで、フィルタ電極6”は、除去したい粒径の帯電粒子に斥力を与えて吹き飛ばすことができるように、帯電しやすい良導体で形成するのが好ましく、またフィルタ電極6”の支持部材は帯電する可能性があるため、感電などの事故を防止するために絶縁体で形成するのが好ましい。   A voltage having the same polarity as that of the charged particles to be removed is applied to the filter electrode 6 ″ by the voltage source 7, and an electric field is applied so that the charged particles having a particle diameter to be removed do not flow into the straight pipe portion 64 by applying repulsive force to the charged particles. The charged particles having a predetermined particle size or less are blown off by receiving a repulsive force due to the electric field, and only charged particles larger than the predetermined particle size can flow into the straight pipe portion 64 through the taper portion 65. In the figure, an arrow a indicates a path through which charged particles having a predetermined particle diameter or less flow, and an arrow b indicates a path through which charged particles larger than the predetermined particle diameter flow. Here, the filter electrode 6 ″ is to be removed. It is preferable to form a good conductor that is easily charged so that repulsive force can be applied to the charged particles having a particle size, and the support member of the filter electrode 6 ″ may be charged. Preferably formed of an insulating material in order to prevent accidents.

本実施形態の動作は実施形態2で説明した帯電粒子量評価装置1と同様であるのでその説明は省略する。   Since the operation of this embodiment is the same as that of the charged particle amount evaluation apparatus 1 described in the second embodiment, the description thereof is omitted.

本実施形態ではフィルタ電極6”にテーパ部65を設けることによって、同心円筒状電極2に近い側ほど断面積が小さくなるような先細りの管状電極に形成しており、テーパ部65によって、粒径が閾値以下の帯電粒子を除いた気流の通り道を確保しており、帯電粒子の空間分布への影響を少なくできる。また直管部64の半径は、同心円筒状電極2の外側導体2bの半径と略同一の半径に形成されており、直管部64と外側導体2bとの連結部分は凹凸ができないように絶縁部材などを介して連結するのが好ましく、連結部分の凹凸を無くすことで気流に乱れが発生するのを抑制できる。なお直管部64と外側導体2bとを連結できない場合には、直管部64の半径を同心円筒状電極2の外側導体2bの半径と略同じか、それよりも若干大きめの寸法に形成すれば良く、フィルタ電極6”と同心円筒状電極2との境目で気流が乱れるのを抑制できる。   In the present embodiment, a tapered electrode 65 is provided on the filter electrode 6 ″, thereby forming a tapered tubular electrode having a smaller cross-sectional area toward the side closer to the concentric cylindrical electrode 2. The passage of the airflow excluding the charged particles with a threshold value of less than the threshold value is secured, and the influence on the spatial distribution of the charged particles can be reduced, and the radius of the straight pipe portion 64 is the radius of the outer conductor 2b of the concentric cylindrical electrode 2. The connecting portion between the straight pipe portion 64 and the outer conductor 2b is preferably connected via an insulating member or the like so as not to be uneven. If the straight pipe portion 64 and the outer conductor 2b cannot be connected, the radius of the straight pipe portion 64 is substantially the same as the radius of the outer conductor 2b of the concentric cylindrical electrode 2, or Slightly larger than that By forming the dimensions of order may be suppressed airflow being disturbed at the boundary of the filter electrodes 6 'and the concentric cylindrical electrodes 2.

なお、本発明の精神と範囲に反することなしに、広範に異なる実施形態を構成することができることは明白なので、この発明は、特定の実施形態に制約されるものではない。   It should be noted that a wide variety of different embodiments can be configured without departing from the spirit and scope of the present invention, and the present invention is not limited to a specific embodiment.

実施形態1の帯電粒子量評価装置の概略構成図である。1 is a schematic configuration diagram of a charged particle amount evaluation apparatus according to Embodiment 1. FIG. 同上の動作を説明するフローチャートである。It is a flowchart explaining operation | movement same as the above. (a)(b)は同上を用いて測定された粒径分布図である。(A) and (b) are particle size distribution diagrams measured using the same as above. 同上の他の構成の概略構成図である。It is a schematic block diagram of the other structure same as the above. 実施形態2の帯電粒子量評価装置の概略構成図である。6 is a schematic configuration diagram of a charged particle amount evaluation apparatus according to Embodiment 2. FIG. 実施形態3の帯電粒子量評価装置の概略構成図である。It is a schematic block diagram of the charged particle amount evaluation apparatus of Embodiment 3. 従来の帯電粒子量評価装置の概略構成図である。It is a schematic block diagram of the conventional charged particle amount evaluation apparatus.

符号の説明Explanation of symbols

1 帯電粒子量評価装置
2 同心円筒状電極
2a,6a 内側導体
2b,6b 外側導体
2c 環状空間
3 吸気ファン
4 電流計
5 電圧源
6 フィルタ電極
7 電圧源
10 コントローラ
DESCRIPTION OF SYMBOLS 1 Charged particle amount evaluation apparatus 2 Concentric cylindrical electrode 2a, 6a Inner conductor 2b, 6b Outer conductor
2c Annular space 3 Intake fan 4 Ammeter 5 Voltage source 6 Filter electrode 7 Voltage source 10 Controller

Claims (4)

互いに半径が異なる円筒状の第1内側導体および第1外側導体を同心に配置して構成された第1の同心円筒状電極と、第1内側導体と第1外側導体との間の環状空間に軸方向に沿って気流を発生させる気流発生手段と、第1内側導体および第1外側導体にそれぞれ設けられ両導体間に直流電圧を印加するための第1の電圧印加端子と、第1内側導体および第1外側導体にそれぞれ設けられ両導体間に流れる電流を測定するための電流測定端子と、前記第1の同心円筒状電極の外部空間であって前記気流の上流側に配置され、当該フィルタ電極により粒径が所定の閾値以下の帯電粒子を前記環状空間に流入させないような電界を発生させるための電圧が印加される第2の電圧印加端子が設けられたフィルタ電極を備えるとともに、
前記第1及び第2の電圧印加端子にそれぞれ直流電圧を印加する第1及び第2の電圧源による印加電圧をそれぞれ調整する電圧制御手段と、前記電流測定端子に接続された電流測定手段の測定値を取得する電流値取得手段と、電圧制御手段により第1の電圧源による印加電圧を所定の電圧範囲で掃引させた場合に前記電流値取得手段の取得した電流値が極大となるときの粒径の内で2番目に大きい粒径を上記閾値として取得する除去粒径取得手段と、除去粒径取得手段の取得した閾値をもとに、粒径が閾値以下の帯電粒子を前記環状空間に流入させないような電界を発生させるための電圧値を算出する除去電圧算出手段とを備え、電圧制御手段は、第2の電圧源による印加電圧を除去電圧算出手段の算出した電圧値に制御することを特徴とする帯電粒子量評価装置。
A first concentric cylindrical electrode configured by concentrically arranging a cylindrical first inner conductor and a first outer conductor having different radii, and an annular space between the first inner conductor and the first outer conductor. An airflow generating means for generating an airflow along the axial direction, a first voltage application terminal for applying a DC voltage between the first inner conductor and the first outer conductor, and a first inner conductor; A current measuring terminal provided on each of the first outer conductors and for measuring a current flowing between the two conductors; and an external space of the first concentric cylindrical electrode, disposed upstream of the airflow, A filter electrode provided with a second voltage application terminal to which a voltage is applied to generate an electric field that prevents charged particles having a particle size of a predetermined threshold value or less from flowing into the annular space by the electrode ;
Voltage control means for adjusting the applied voltages by the first and second voltage sources, respectively, for applying a DC voltage to the first and second voltage application terminals, respectively, and measurement of the current measurement means connected to the current measurement terminal A current value acquisition unit for acquiring a value, and a particle when the current value acquired by the current value acquisition unit becomes a maximum when the voltage control unit sweeps the voltage applied by the first voltage source in a predetermined voltage range. A removed particle size acquisition unit that acquires the second largest particle size of the diameters as the threshold value, and charged particles having a particle size equal to or less than the threshold value in the annular space based on the threshold value acquired by the removal particle size acquisition unit. A removal voltage calculation means for calculating a voltage value for generating an electric field that does not flow in, and the voltage control means controls the voltage applied by the second voltage source to the voltage value calculated by the removal voltage calculation means. Features Charged particle amount evaluation device.
前記フィルタ電極は、互いに半径が異なる円筒状の第2内側導体および第2外側導体を同心に配置して構成された第2の同心円筒状電極からなることを特徴とする請求項1記載の帯電粒子量評価装置。   2. The charging according to claim 1, wherein the filter electrode includes a second concentric cylindrical electrode configured by concentrically arranging a cylindrical second inner conductor and a second outer conductor having different radii. Particle amount evaluation device. 前記第1内側導体と前記第2内側導体、および、前記第1外側導体と前記第2外側導体はそれぞれ半径が略同一に形成されており、第1および第2の同心円筒状電極は、それぞれの内側導体と外側導体とを重ね合わせた状態で、第1の同心円筒状電極の上流側の端部において絶縁部材を介して互いに連結されたことを特徴とする請求項2記載の帯電粒子量評価装置。   The first inner conductor and the second inner conductor, and the first outer conductor and the second outer conductor have substantially the same radius, and the first and second concentric cylindrical electrodes are respectively 3. The charged particle amount according to claim 2, wherein the inner conductor and the outer conductor are connected to each other through an insulating member at an upstream end of the first concentric cylindrical electrode. Evaluation device. 互いに半径が異なる円筒状の第1内側導体および第1外側導体を同心に配して形成される同心円筒状電極の両導体間に直流電圧を印加し、前記両導体間の環状空間に軸方向に沿って流れる気流を生成するとともに、前記気流によって両導体間の環状空間に帯電粒子を流し、両導体間に流れる電流の電流値から帯電粒子量を評価する帯電粒子量評価方法であって、A DC voltage is applied between both conductors of a concentric cylindrical electrode formed by concentrically arranging a cylindrical first inner conductor and a first outer conductor having different radii, and an axial direction is formed in an annular space between the two conductors. A charged particle amount evaluation method for generating an airflow flowing along the airflow, causing charged particles to flow through the annular space between the two conductors by the airflow, and evaluating the amount of charged particles from the current value of the current flowing between the two conductors,
両導体間に流れる帯電粒子の粒子数の粒径分布を測定し、粒子数が極大となる粒径の内、2番目に大きい粒径を除去すべき粒径の閾値として取得し、同心円筒状電極の外部空間であって前記気流の上流側に配置されたフィルタ電極に上記閾値をもとに設定した印加電圧を印加して、粒径が上記閾値以下の帯電粒子を両導体間の環状空間に流入させないような電界を発生させた状態で、両導体間に流れる帯電粒子の粒子数の粒径分布を再度測定することを特徴とする帯電粒子量評価方法。  The particle size distribution of the number of charged particles flowing between the two conductors is measured, and the second largest particle size is obtained as the threshold value of the particle size to be removed, and the concentric cylindrical shape is obtained. An applied voltage set based on the threshold value is applied to a filter electrode arranged on the upstream side of the air flow, which is an external space of the electrode, and charged particles having a particle size equal to or smaller than the threshold value are annular spaces between the two conductors. A charged particle amount evaluation method comprising measuring again the particle size distribution of the number of charged particles flowing between the two conductors in a state where an electric field that does not flow into the conductor is generated.
JP2005125597A 2005-04-22 2005-04-22 Charged particle amount evaluation apparatus and charged particle amount evaluation method Expired - Fee Related JP4655738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125597A JP4655738B2 (en) 2005-04-22 2005-04-22 Charged particle amount evaluation apparatus and charged particle amount evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125597A JP4655738B2 (en) 2005-04-22 2005-04-22 Charged particle amount evaluation apparatus and charged particle amount evaluation method

Publications (2)

Publication Number Publication Date
JP2006300837A JP2006300837A (en) 2006-11-02
JP4655738B2 true JP4655738B2 (en) 2011-03-23

Family

ID=37469289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125597A Expired - Fee Related JP4655738B2 (en) 2005-04-22 2005-04-22 Charged particle amount evaluation apparatus and charged particle amount evaluation method

Country Status (1)

Country Link
JP (1) JP4655738B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975100B2 (en) * 2012-06-06 2016-08-23 株式会社島津製作所 Fine particle classification measurement device, sample preparation device with uniform particle concentration distribution, and nanoparticle film formation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087308A (en) * 2002-08-27 2004-03-18 Midori Anzen Co Ltd Negative ion generating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2261792C2 (en) * 1972-12-16 1974-10-03 Berckheim, Constantin Graf Von, 6940 Weinheim Device for measuring air pollution
JP3403845B2 (en) * 1995-02-23 2003-05-06 株式会社アルバック Ultra high vacuum measurement method
JPH08261911A (en) * 1995-03-27 1996-10-11 Nippon Kagaku Kogyo Kk Particle size distribution measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087308A (en) * 2002-08-27 2004-03-18 Midori Anzen Co Ltd Negative ion generating device

Also Published As

Publication number Publication date
JP2006300837A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US5214386A (en) Apparatus and method for measuring particles in polydispersed systems and particle concentrations of monodispersed aerosols
Järvinen et al. Calibration of the new electrical low pressure impactor (ELPI+)
Rosser et al. Vienna-type DMA of high resolution and high flow rate
JP6327728B2 (en) Particle charging apparatus and particle classification apparatus using the apparatus
Kangasluoma et al. Characterization of a Herrmann-type high-resolution differential mobility analyzer
Qi et al. Miniature dual-corona ionizer for bipolar charging of aerosol
Kaminski et al. Mathematical description of experimentally determined charge distributions of a unipolar diffusion charger
JP4655738B2 (en) Charged particle amount evaluation apparatus and charged particle amount evaluation method
JP4905040B2 (en) Particle classifier
JP2008096169A (en) Particle classifier
JP2008102038A (en) Charged particle amount evaluation system
Conesa et al. The current–voltage characteristics of corona discharge in wire to cylinder in parallel electrode arrangement
Liu et al. Electrical aerosol analyzer: history, principle, and data reduction
JP2008096170A (en) Charging device and particle classifier
Yu et al. Design and evaluation of a unipolar aerosol particle charger with built-in electrostatic precipitator
JP6926544B2 (en) Cleaning air creation device and measurement system
Mei et al. A cost-effective differential mobility analyzer (cDMA) for multiple DMA column applications
JP2008096322A (en) Particle classifier
JP2008102037A (en) Charged particle amount evaluation system
Intra et al. Aerosol size distribution measurement using multi-channel electrical mobility sensor
JPH08261911A (en) Particle size distribution measuring device
Intra et al. Use of electrostatic precipitation for excess ion trapping in an electrical aerosol detector
Intra et al. Experimental characterization of a short electrical mobility spectrometer for aerosol size classification
JPH0668398U (en) Discharge monitoring device in static eliminator
Béquin et al. Corona discharge velocimeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees