JP2010101705A - Instrument for measuring physical properties of particles - Google Patents

Instrument for measuring physical properties of particles Download PDF

Info

Publication number
JP2010101705A
JP2010101705A JP2008272284A JP2008272284A JP2010101705A JP 2010101705 A JP2010101705 A JP 2010101705A JP 2008272284 A JP2008272284 A JP 2008272284A JP 2008272284 A JP2008272284 A JP 2008272284A JP 2010101705 A JP2010101705 A JP 2010101705A
Authority
JP
Japan
Prior art keywords
electrode sensor
measurement cell
hole
liquid sample
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008272284A
Other languages
Japanese (ja)
Inventor
Tetsuji Yamaguchi
哲司 山口
Makoto Nagura
誠 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2008272284A priority Critical patent/JP2010101705A/en
Publication of JP2010101705A publication Critical patent/JP2010101705A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument for measuring physical properties of particles, equipped with an electrode sensor where air bubbles do not remain in a through-hole functioning as a liquid sump part, at the measurement of zeta potential. <P>SOLUTION: The instrument for measuring physical properties of particles is equipped with the electrode sensor, having a body to which not only the through-hole in a lateral direction, but also the air-venting passage passing through the through-hole to extend in a longitudinal direction are formed and a pair of the mutually facing electrodes that are embedded in the body and exposed from the inner wall surface of the through-hole. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ゼータ電位を始めとする粒子の物性値を測定するための粒子物性測定装置に関するものである。   The present invention relates to a particle property measuring apparatus for measuring particle property values including a zeta potential.

高分子やその集合体であるコロイド粒子は、水溶液中で、解離基やイオンの吸着により帯電している。この帯電により形成される電位をゼータ(ζ)電位といい、当該ゼータ電位は、粒子に電界をかけてその移動速度(電気泳動速度)を測定することにより算出される。   Colloidal particles, which are macromolecules and aggregates thereof, are charged by adsorption of dissociating groups and ions in an aqueous solution. The electric potential formed by this charging is called a zeta (ζ) electric potential, and the zeta electric potential is calculated by applying an electric field to particles and measuring the moving speed (electrophoretic speed).

そして、電気泳動速度測定装置を用いてゼータ電位を測定するには、粒子が分散している液体試料が収容された測定セルに電極を挿入し、当該電極に直流電圧を印加して、液体試料中の粒子に電界をかけながらレーザ光を照射して、所定角度で散乱される散乱光を受光し、散乱光とレーザ光の一部を分岐させた参照光との振動数の差(干渉現象)を測定することにより、液体試料中の粒子の移動速度を算出する。そして、得られた移動速度に所定の演算処理を行うことによりゼータ電位が算出される。   In order to measure the zeta potential using an electrophoretic velocity measuring device, an electrode is inserted into a measurement cell containing a liquid sample in which particles are dispersed, a DC voltage is applied to the electrode, and the liquid sample is measured. The laser beam is irradiated while applying an electric field to the particles inside, the scattered light scattered at a predetermined angle is received, and the difference in frequency between the scattered light and the reference light branched from a part of the laser light (interference phenomenon) ) Is measured, the moving speed of the particles in the liquid sample is calculated. Then, the zeta potential is calculated by performing predetermined arithmetic processing on the obtained moving speed.

従来、電極としては、図9に示すように、液溜まり部(測定部)として機能する貫通孔71が設けられていて、貫通孔71の内壁面より一対の電極9が露出している電極センサ6´が用いられているが(特許文献1)、このような電極センサ6´は、液体試料の流れを確保するために、その本体7が測定セル2より小型であって、液体試料が収容された測定セル2に挿入されると、測定セル2の内側周面と本体7の側周面との間隙を通って液体試料が貫通孔71に流入するものである。しかし、この場合は液体試料の流れを制御することが難しいため、往々にして貫通孔71内に気泡が残留し、粒子の移動や光の散乱に不都合が生じる。このため、電極センサ6´を測定セル2に挿入する際には、貫通孔71に気泡が残らないように、電極センサ6´を斜めにして差し込む等の工夫がなされている。
特開2004−317123
Conventionally, as an electrode, as shown in FIG. 9, an electrode sensor is provided with a through hole 71 that functions as a liquid reservoir (measuring unit), and a pair of electrodes 9 are exposed from the inner wall surface of the through hole 71. 6 'is used (Patent Document 1). In order to ensure the flow of the liquid sample, such an electrode sensor 6' has a body 7 smaller than the measurement cell 2 and accommodates the liquid sample. When inserted into the measured cell 2, the liquid sample flows into the through-hole 71 through the gap between the inner peripheral surface of the measurement cell 2 and the side peripheral surface of the main body 7. However, in this case, since it is difficult to control the flow of the liquid sample, air bubbles often remain in the through-hole 71, resulting in inconvenience in particle movement and light scattering. For this reason, when the electrode sensor 6 ′ is inserted into the measurement cell 2, the electrode sensor 6 ′ is inserted obliquely so that no bubbles remain in the through hole 71.
JP 2004-317123 A

そこで本発明は、ゼータ電位測定時に液溜まり部として機能する貫通穴内に気泡が残留しない電極センサを備えた粒子物性測定装置を提供すべく図ったものである。   Therefore, the present invention is intended to provide a particle physical property measuring apparatus including an electrode sensor in which bubbles do not remain in a through hole that functions as a liquid reservoir when measuring a zeta potential.

すなわち本発明に係る粒子物性測定装置は、液体試料中に分散している粒子の物性値を測定するものであって、横方向の貫通孔が形成してあるとともに前記貫通孔を通って縦方向に延伸した空気抜き路が形成してある本体と、前記本体に埋設されて前記貫通孔の内壁面より露出している互いに対向した一対の電極と、を有している電極センサを備えていることを特徴とする。   That is, the particle physical property measuring apparatus according to the present invention measures a physical property value of particles dispersed in a liquid sample, and has a horizontal through-hole formed therein and the vertical direction through the through-hole. And an electrode sensor having a pair of opposed electrodes that are embedded in the main body and exposed from the inner wall surface of the through hole. It is characterized by.

このようなものであれば、液溜まり部として機能する前記貫通孔を通って、縦方向に延伸した空気抜き路が形成されている電極センサを備えているので、前記本体の大きさと測定セルの大きさとが適合し、前記本体と測定セルとが嵌合するものである場合、液体試料が収容された測定セルに電極センサを挿入すると、まず、液体試料が前記貫通孔下側の空気抜き路に流入し、当該空気抜き路に流入した液体試料が前記貫通孔に流れ込む。次いで、流入した液体試料に押し出されて前記貫通孔から流出した空気は、前記貫通孔上側の空気抜き路に流れ込み測定セル外に排出される。このため、本発明によれば、空気抜き路により測定セル内の液体試料と空気の流れを制御することができるので、前記貫通孔内に気泡が残留しにくくなる。従って、ゼータ電位測定時に前記貫通孔内の液体試料中の粒子の移動や光の散乱が気泡により阻害されずに、ゼータ電位の測定精度を高く保つことができる。   If it is such, since it has an electrode sensor in which an air vent extending in the vertical direction is formed through the through hole functioning as a liquid reservoir, the size of the main body and the size of the measurement cell are provided. When the electrode sensor is inserted into the measurement cell containing the liquid sample, the liquid sample first flows into the air vent path below the through hole. Then, the liquid sample that has flowed into the air vent passage flows into the through hole. Next, the air pushed out by the inflowing liquid sample and flowing out from the through hole flows into the air vent path above the through hole and is discharged out of the measurement cell. For this reason, according to the present invention, it is possible to control the flow of the liquid sample and the air in the measurement cell by the air vent passage, so that it is difficult for bubbles to remain in the through hole. Therefore, when measuring the zeta potential, the movement of particles in the liquid sample in the through hole and light scattering are not hindered by the bubbles, and the measurement accuracy of the zeta potential can be kept high.

また、従来、ナノ粒子の物性は、アスペクト比(縦横比)や凝集度等の形状物性値は走査型電子顕微鏡(SEM)観察により、粒子径は動的光散乱法により、分散度はゼータ電位を測定することにより、それぞれ別個の分析装置を用いて測定されている。このため、一台で種々の物性値を効率的に測定することが可能な粒子物性測定装置が望まれている。   Conventionally, the physical properties of nanoparticles have been measured by scanning electron microscope (SEM) for shape property values such as aspect ratio (aspect ratio) and agglomeration degree, the particle diameter is determined by dynamic light scattering, and the dispersity is zeta potential. Are measured using separate analyzers. For this reason, a particle physical property measuring apparatus capable of efficiently measuring various physical property values with one unit is desired.

しかしながら、アスペクト比や凝集度等の形状物性値、粒子径及び分子量を精度よく測定するには、散乱光を多角度から検出することが必要であるが、ゼータ電位を測定する際には測定セル内に電極を挿入することが必要であり、このため、電極が妨げとなり一方向の散乱光しか検出することができない。また、ゼータ電位以外の物性値の測定を行った後で測定セル内に電極を挿入すると、液体試料が攪拌され粒子の状態を乱してしまうことがある。更に、ゼータ電位の測定を行い、その後ゼータ電位以外の物性値の測定を行うと、電圧印加によって粒子が変形したものを測定してしまうこともある。   However, it is necessary to detect scattered light from multiple angles in order to accurately measure shape physical properties such as aspect ratio and degree of aggregation, particle diameter, and molecular weight. It is necessary to insert an electrode into the inside. For this reason, the electrode is obstructed and only scattered light in one direction can be detected. In addition, if an electrode is inserted into a measurement cell after measuring a physical property value other than the zeta potential, the liquid sample may be agitated to disturb the particle state. Furthermore, when a zeta potential is measured and then a physical property value other than the zeta potential is measured, a particle deformed by voltage application may be measured.

このため、本発明に係る粒子物性測定装置は、電極センサを測定セルに挿入したままで、粒子の状態を乱さずにゼータ電位と他の種々の物性値を効率的かつ高精度に測定することが可能であるように、前記電極センサの本体が、円柱状であり、かつ、前記電極センサと嵌合可能な測定セルであって、前記電極センサが当該測定セル内に挿入されると、所定位置において掛止して、前記電極センサの底面と当該測定セルの内底面との間に間隙が形成される測定セルを備えていることが好ましい。   For this reason, the particle physical property measuring apparatus according to the present invention measures the zeta potential and other various physical property values efficiently and with high accuracy without disturbing the state of the particles while the electrode sensor is inserted into the measurement cell. So that the body of the electrode sensor has a cylindrical shape and is a measurement cell that can be fitted to the electrode sensor, and when the electrode sensor is inserted into the measurement cell, It is preferable to include a measurement cell that is hooked at a position and that forms a gap between the bottom surface of the electrode sensor and the inner bottom surface of the measurement cell.

このようなものであれば、電極センサに形成された貫通孔内の液体試料に電圧を印加することによってゼータ電位を測定し、前記測定セルの内底面と前記電極センサの底面との間に形成された間隙内の液体試料に多角度から光を照射し、その散乱光を検出することによってアスペクト比や凝集度等の形状物性値、粒子径及び分子量を測定することができるので、電極センサを測定セルに挿入したままで、ゼータ電位と他の種々の物性値とを効率的かつ高精度に測定することが可能となる。   If this is the case, the zeta potential is measured by applying a voltage to the liquid sample in the through-hole formed in the electrode sensor, and formed between the inner bottom surface of the measurement cell and the bottom surface of the electrode sensor. By irradiating the liquid sample in the formed gap from multiple angles and detecting the scattered light, shape property values such as aspect ratio and cohesion, particle diameter and molecular weight can be measured. It is possible to measure the zeta potential and other various physical property values efficiently and with high accuracy while being inserted into the measurement cell.

前記電極センサが前記測定セル内の所定位置において掛止して前記測定セルの内底面と前記電極センサの底面との間に間隙が形成されるためには、例えば、前記電極センサとして、前記本体の上端に設けられ、前記本体より横方向に突出した蓋部を備えているものが用いられる。   In order for the electrode sensor to be hooked at a predetermined position in the measurement cell to form a gap between the inner bottom surface of the measurement cell and the bottom surface of the electrode sensor, for example, as the electrode sensor, the main body What is provided with the cover part which was provided in the upper end of this and protruded in the horizontal direction from the said main body is used.

前記電極センサの底面等に気泡が付着すると、アスペクト比や凝集度等の形状物性値、粒子径及び分子量の測定が妨げられることがある。この場合、前記測定セルが、互いに別体をなす筒部と底部とからなるものであれば、前記電極センサが挿入された前記測定セルを前記底部が上になるように上下を逆にしてから前記底部を取り外して気泡を除くことができるので好ましい。   If bubbles adhere to the bottom surface of the electrode sensor, measurement of shape property values such as aspect ratio and aggregation degree, particle diameter, and molecular weight may be hindered. In this case, if the measurement cell is composed of a cylindrical part and a bottom part that are separate from each other, the measurement cell in which the electrode sensor is inserted is turned upside down so that the bottom part is up. It is preferable because the bottom can be removed to remove bubbles.

このように本発明によれば、液溜まり部として機能する貫通孔内に空気を残留させることなく液体試料を充満させることができる。また、測定セルの内底面と電極センサの底面との間に間隙を形成することにより、測定セル内に電極センサを挿入したままで、ゼータ電位と、アスペクト比や凝集度等の形状物性値、粒子径及び分子量とを測定することができるので、粒子の状態を乱すことなく、種々の物性値を効率的かつ高精度に測定することが可能となる。   Thus, according to the present invention, it is possible to fill the liquid sample without leaving air in the through hole functioning as the liquid reservoir. In addition, by forming a gap between the inner bottom surface of the measurement cell and the bottom surface of the electrode sensor, the zeta potential, the shape property value such as the aspect ratio and the degree of aggregation, etc., with the electrode sensor inserted in the measurement cell, Since the particle diameter and molecular weight can be measured, various physical property values can be measured efficiently and with high accuracy without disturbing the state of the particles.

以下に、本発明の一実施形態を、図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1は、本実施形態に係る粒子物性測定装置1の構成の概要を示すものである。本実施形態に係る粒子物性測定装置1は、形状物性値測定機構、粒径測定機構、分子量測定機構、及び、ゼータ電位測定機構を備えているものであって、図1に示すように、透明な石英ガラス等からなり、粒子群を水等の分散媒に分散させてなる液体試料を収容する測定セル2と、測定セル2内に挿入された電極センサ6と(図1中には表示しない。)、前記液体試料にレーザ光Lを照射するレーザ3と、前記レーザ光Lを照射された液体試料中の粒子群から発した散乱光Sを受光し、その光子数に応じたパルス信号又は光強度のゆらぎに応じた電気信号を出力する光電子倍増管からなる受光部41、42と、レーザ3から発射されるレーザ光Lの一部を分岐するハーフミラー51、ミラー52、53、及び、ミラー53からの参照光Rと散乱光Sとを混合するハーフミラー54からなる参照光学系5と、を備えている。   FIG. 1 shows an outline of the configuration of a particle property measuring apparatus 1 according to this embodiment. The particle property measuring apparatus 1 according to this embodiment includes a shape property value measuring mechanism, a particle size measuring mechanism, a molecular weight measuring mechanism, and a zeta potential measuring mechanism, and is transparent as shown in FIG. A measurement cell 2 containing a liquid sample made of quartz glass or the like and having a particle group dispersed in a dispersion medium such as water, and an electrode sensor 6 inserted into the measurement cell 2 (not shown in FIG. 1) .), A laser 3 for irradiating the liquid sample with laser light L, and scattered light S emitted from a group of particles in the liquid sample irradiated with the laser light L, and a pulse signal corresponding to the number of photons or Light receiving units 41 and 42 that are photomultiplier tubes that output an electrical signal corresponding to fluctuations in light intensity, a half mirror 51 that branches a part of the laser light L emitted from the laser 3, mirrors 52 and 53, and Reference light R and scattering from mirror 53 A reference optical system 5 consisting of a half mirror 54 for mixing the light S, and a.

以下に各測定機構の構成について説明する。
アスペクト比や凝集度等を測定する形状物性値測定機構は、図2に示すように、レーザ3と、偏光子11、14と、1/4波長板12、13と、受光部41と、から構成される。偏光子11はレーザ3から射出されたレーザ光Lの偏光方向を固定するために使用されるが、1/4波長板12、13は光軸を中心に回転可能であり、1/4波長板12で直線偏光を楕円偏光に変換し、1/4波長板13と、偏光子14で楕円偏光を直線偏光に戻す。
The configuration of each measurement mechanism will be described below.
As shown in FIG. 2, the shape property value measuring mechanism for measuring the aspect ratio, the degree of aggregation, and the like includes a laser 3, polarizers 11 and 14, quarter-wave plates 12 and 13, and a light receiving unit 41. Composed. The polarizer 11 is used to fix the polarization direction of the laser light L emitted from the laser 3, but the quarter wavelength plates 12 and 13 are rotatable around the optical axis, and the quarter wavelength plate. The linearly polarized light is converted into elliptically polarized light at 12, and the elliptically polarized light is converted back to linearly polarized light by the quarter wavelength plate 13 and the polarizer 14.

形状物性値を測定するには、米国特許第6721051号に記載の方法を用い、まず、測定セル2中の液体試料のレーザ光Lの透過率を測定する。次いで、1/4波長板12、13及び偏光子14を光軸を中心に回転させながらレーザ光Lを発射して、複数態様の偏光パターンにおいて、受光部41の位置(角度)を変化させながら、所定散乱角度での散乱光Sの強度を測定する。そして、得られた透過率と散乱光強度比とに所定の演算処理を行うことにより、アスペクト比及び/又は凝集度を算出する。   In order to measure the physical property value of the shape, first, the transmittance of the laser beam L of the liquid sample in the measurement cell 2 is measured using the method described in US Pat. No. 6,721,051. Next, the laser light L is emitted while rotating the quarter-wave plates 12 and 13 and the polarizer 14 around the optical axis, and the position (angle) of the light receiving unit 41 is changed in a plurality of modes of polarization patterns. Then, the intensity of the scattered light S at a predetermined scattering angle is measured. Then, predetermined aspect processing is performed on the obtained transmittance and scattered light intensity ratio to calculate the aspect ratio and / or the degree of aggregation.

粒径測定機構は、図3に示すように、レーザ3と、受光部41と、コリレータ15と、から構成される。粒径(粒径分布)を測定するには、動的光散乱法を用い、レーザ光Lを測定セル2中の液体試料に照射して、液体試料中の粒子群から発した散乱光Sを受光部41で受光し、その光子数に応じたパルス信号を受光部41から受信したコリレータ15で、そのパルス数の時系列データから自己相関データを生成し、当該自己相関データに基づいて所定の演算処理を行うことにより前記粒子群の粒径分布を算出する。なお、本実施形態では光子数に応じたパルス信号より演算する方法について詳述したが、光強度のゆらぎに応じた電気信号より演算することも可能である。   As shown in FIG. 3, the particle size measuring mechanism includes a laser 3, a light receiving unit 41, and a correlator 15. In order to measure the particle size (particle size distribution), the dynamic light scattering method is used, and the liquid sample in the measurement cell 2 is irradiated with the laser light L, and the scattered light S emitted from the particle group in the liquid sample is used. The correlator 15 that receives light from the light receiving unit 41 and receives a pulse signal corresponding to the number of photons from the light receiving unit 41 generates autocorrelation data from the time-series data of the number of pulses, and generates a predetermined value based on the autocorrelation data. The particle size distribution of the particle group is calculated by performing arithmetic processing. In the present embodiment, the method of calculating from the pulse signal corresponding to the number of photons has been described in detail, but it is also possible to calculate from the electric signal corresponding to the fluctuation of the light intensity.

図3に示す実施形態では、受光部41はレーザ光Lと直交する光路の散乱光Sを受光しているが、粒径(粒径分布)を測定する際の受光部41の好適な位置(角度)は、液体試料の濃度によって変わり、形状物性値を測定する際に測定された液体試料のレーザ光透過率に従い、透過率が高い(液体試料の濃度が低い)ときはレーザ光Lと直交する光路(散乱角度90°)の散乱光Sを受光し、透過率が低い(液体試料の濃度が高い)ときはレーザ光Lと合致する光路(散乱角度180°)の散乱光Sを受光するように、受光部41の位置(角度)が調節される。   In the embodiment shown in FIG. 3, the light receiving unit 41 receives the scattered light S in the optical path orthogonal to the laser light L, but a suitable position of the light receiving unit 41 when measuring the particle size (particle size distribution) ( The angle varies depending on the concentration of the liquid sample, and is orthogonal to the laser beam L when the transmittance is high (the concentration of the liquid sample is low) according to the laser beam transmittance of the liquid sample measured when measuring the shape property value. The scattered light S of the optical path (scattering angle 90 °) is received, and when the transmittance is low (the concentration of the liquid sample is high), the scattered light S of the optical path matching the laser light L (scattering angle 180 °) is received. As described above, the position (angle) of the light receiving unit 41 is adjusted.

分子量測定機構は、図4に示すように、レーザ3と、受光部41と、から構成される。分子量を測定するには、静的光散乱法を用い、濃度を変えた複数種類の液体試料を用い、受光部41の位置(角度)を変化させながら、測定セル2中の液体試料にレーザ光Lを照射して、当該液体試料中の粒子群から発した散乱光Sの光強度の角度分布を計測する。そして、液体試料の濃度と散乱角度変化による散乱光量変化から、Zimmプロットを行い、粒子の分子量を算出する。   As shown in FIG. 4, the molecular weight measurement mechanism includes a laser 3 and a light receiving unit 41. In order to measure the molecular weight, laser light is applied to the liquid sample in the measuring cell 2 while changing the position (angle) of the light receiving unit 41 using a plurality of types of liquid samples with different concentrations using the static light scattering method. L is irradiated, and the angular distribution of the light intensity of the scattered light S emitted from the particle group in the liquid sample is measured. Then, from the change in the amount of scattered light due to the concentration of the liquid sample and the change in the scattering angle, a Zimm plot is performed to calculate the molecular weight of the particles.

ゼータ電位測定機構は、図5に示すように、レーザ3と、白金等からなる一対の電極9を備えた電極センサ6と、参照光学系5と、受光部42と、から構成される。ゼータ電位を測定するには、電気泳動法を用い、測定セル2に挿入した電極センサ6に直流又は交流電圧を印加して、液体試料中の粒子に電界をかけながらレーザ光Lを照射して、所定角度で散乱される散乱光Sを受光し、散乱光Sと参照光Rとの振動数の差(干渉現象)を測定することにより、液体試料中の粒子の移動速度を算出する。更に、得られた移動速度に所定の演算処理を行うことによりゼータ電位を算出する。   As shown in FIG. 5, the zeta potential measuring mechanism includes a laser 3, an electrode sensor 6 including a pair of electrodes 9 made of platinum or the like, a reference optical system 5, and a light receiving unit 42. In order to measure the zeta potential, an electrophoretic method is used, a direct current or an alternating voltage is applied to the electrode sensor 6 inserted in the measurement cell 2, and a laser beam L is irradiated while applying an electric field to particles in the liquid sample. The scattered light S scattered at a predetermined angle is received, and the difference in frequency (interference phenomenon) between the scattered light S and the reference light R is measured to calculate the moving speed of the particles in the liquid sample. Further, the zeta potential is calculated by performing predetermined arithmetic processing on the obtained moving speed.

電極センサ6は、図6及び図7に示すように、貫通孔71と空気抜き路72が形成してある本体7と、本体7の上端に設けてある蓋部8と、本体7及び蓋部8に埋設された一対の電極9と、を備えている。   As shown in FIGS. 6 and 7, the electrode sensor 6 includes a main body 7 in which a through hole 71 and an air vent path 72 are formed, a lid portion 8 provided at the upper end of the main body 7, and the main body 7 and the lid portion 8. A pair of electrodes 9 embedded therein.

本体7は、円柱状であり、その下部に、横方向の貫通孔71が形成してあるとともに、貫通孔71を通って縦方向に延伸した空気抜き路72が形成してあるものである。空気抜き路72は、それぞれ貫通孔71の開口端を通るように本体7の側周面に2本形成されており、また、貫通孔71により、その下側に形成された下部空気抜き路721と、その上側に形成された上部空気抜き路722とに分断されている。   The main body 7 has a cylindrical shape, and has a horizontal through hole 71 formed in the lower portion thereof, and an air vent path 72 extending in the vertical direction through the through hole 71. Two air vent paths 72 are formed on the side peripheral surface of the main body 7 so as to pass through the open ends of the through holes 71, respectively, and the lower air vent path 721 formed below the through holes 71, It is divided into an upper air vent path 722 formed on the upper side.

蓋部8は、円盤状であり、本体7の上端に設けてあり、本体7より横方向に突出していて、空気抜き路72に連なる縦方向の貫通孔81が形成してあるものである。   The lid portion 8 has a disk shape, is provided at the upper end of the main body 7, protrudes in the horizontal direction from the main body 7, and has a vertical through-hole 81 connected to the air vent path 72.

本体7及び蓋部8は、例えば、ポリフッ化ビニル(poly(vinyl fluoride),PVF)、ポリフッ化ビニリデン(poly(vinylidene fluoride),PVDF)、ポリテトラフルオロエチレン(poly(tetrafluoroethylene),PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(tetrafluoroethylene/hexafluoropropylene copolymer,FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(tetrafluoroethylene/perfluoroalkylvinylether copolymer,PFA)等のフッ素樹脂により成形してあり、電極9を内包した状態で一体成形してある。   The main body 7 and the lid 8 are made of, for example, polyvinyl fluoride (poly (vinyl fluoride), PVF), polyvinylidene fluoride (poly (vinylidene fluoride), PVDF), polytetrafluoroethylene (PTFE), tetra Fluoroethylene / hexafluoropropylene copolymer (tetrafluoroethylene / hexafluoropropylene copolymer, FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (tetrafluoroethylene / perfluoroalkylene copolymer, etc.) It is integrally formed in a state of enclosing the.

電極9は、白金等からなる互いに対向した一対の長尺板状体であり、本体7及び蓋部8に埋設されていて、その下部が貫通孔71の内壁面より露出しているものである。電極9の上端は蓋部8の上端面から突出していて、図示しない電圧印加回路等に接続される。   The electrode 9 is a pair of long plate-like bodies made of platinum or the like facing each other, embedded in the main body 7 and the lid portion 8, and the lower portion thereof is exposed from the inner wall surface of the through hole 71. . The upper end of the electrode 9 protrudes from the upper end surface of the lid 8 and is connected to a voltage application circuit or the like (not shown).

電極センサ6は測定セル2に挿入して使用されるが、測定セル2は電極センサ6と嵌合するものであり、互いに別体をなす筒部21と底部22とからなるものであり、底部22と筒部21とは脱着可能である。   The electrode sensor 6 is used by being inserted into the measurement cell 2, and the measurement cell 2 is fitted with the electrode sensor 6, and is composed of a cylindrical portion 21 and a bottom portion 22 that are separate from each other. 22 and the cylinder part 21 are detachable.

電極センサ6を測定セル2内に挿入すると、蓋部8が測定セル2の上端に突き当り所定の位置で掛止して、測定セル2の内底面と電極センサ6の底面との間に間隙23が形成される。   When the electrode sensor 6 is inserted into the measurement cell 2, the lid portion 8 comes into contact with the upper end of the measurement cell 2 and is latched at a predetermined position, and a gap 23 is formed between the inner bottom surface of the measurement cell 2 and the bottom surface of the electrode sensor 6. Is formed.

本実施形態では、電極センサ6を測定セル2内に挿入したままで粒子の各種物性値を測定することができる。液体試料が収容された測定セル2内に電極センサ6を挿入すると、まず、測定セル2内の空気が空気抜き路72を通って外部に流出する。次いで、本体7が測定セル2に収容された液体試料に浸漬すると下部空気抜き路721に液体試料が流入する。更に電極センサ6を測定セル2内に深く挿入すると、下部空気抜き路721に流入した液体試料が貫通孔71内に流れ込み、貫通孔71内の空気は流入してきた液体試料に押し出され、上部空気抜き路722に流れ込む。更に電極センサ6を測定セル2内に深く挿入して、上部空気抜き路722にも液体試料が流入してくると、上部空気抜き路722内の空気は、蓋部8の貫通孔81から外部に排出される。   In this embodiment, various physical property values of particles can be measured while the electrode sensor 6 is inserted into the measurement cell 2. When the electrode sensor 6 is inserted into the measurement cell 2 containing the liquid sample, first, the air in the measurement cell 2 flows out through the air vent path 72. Next, when the main body 7 is immersed in the liquid sample stored in the measurement cell 2, the liquid sample flows into the lower air vent path 721. When the electrode sensor 6 is further inserted deeply into the measurement cell 2, the liquid sample flowing into the lower air vent 721 flows into the through hole 71, and the air in the through hole 71 is pushed out by the liquid sample that has flowed into the upper air vent. Flow into 722. Further, when the electrode sensor 6 is inserted deeply into the measurement cell 2 and a liquid sample flows into the upper air vent path 722, the air in the upper air vent path 722 is discharged to the outside from the through hole 81 of the lid portion 8. Is done.

そして、ゼータ電位を測定する場合は、貫通孔71内の液体試料にレーザ光Lを照射し、一方、アスペクト比や凝集度等の形状物性値、粒子径及び分子量を測定する場合は、間隙23内の液体試料にレーザ光Lを照射する。これら粒子の各種物性値を迅速に測定するために、レーザ光Lをダブルビームとして、貫通孔71内の液体試料と間隙23内の液体試料とに同時にレーザ光Lを照射してもよい。   When measuring the zeta potential, the liquid sample in the through-hole 71 is irradiated with the laser beam L. On the other hand, when measuring the physical properties such as the aspect ratio and the degree of aggregation, the particle diameter, and the molecular weight, the gap 23 The liquid sample inside is irradiated with laser light L. In order to quickly measure various physical property values of these particles, the laser beam L may be simultaneously irradiated to the liquid sample in the through hole 71 and the liquid sample in the gap 23 by using the laser beam L as a double beam.

なお、本実施形態では、液溜まり部として機能する貫通孔71は、その周囲を壁面で囲まれているが、仮に液溜まり部の下方が開口していると、電極9に電圧を印加したときに、液溜まり部内の液体試料の流れが乱れて、ゼータ電位測定時に粒子の移動速度を正確に測定することが難しくなる。   In the present embodiment, the through-hole 71 functioning as a liquid reservoir is surrounded by a wall surface. However, if a voltage is applied to the electrode 9 if the lower part of the liquid reservoir is open, In addition, the flow of the liquid sample in the liquid reservoir is disturbed, making it difficult to accurately measure the moving speed of the particles when measuring the zeta potential.

したがって、このように構成した粒子物性測定装置1によれば、電極センサ6の本体7の側周面には、液溜まり部として機能する貫通孔71を通って縦方向に延伸した空気抜き路72が形成されているので、液体試料が収容された測定セル2に電極センサ6を挿入すると、まず、液体試料が下部空気抜き路721に流入し、下部空気抜き路721に流入した液体試料が貫通孔71内に流れ込む。次いで、流入した液体試料に押し出されて貫通孔71から流出した空気は、上部空気抜き路722に流れ込み貫通孔81から測定セル2外に排出される。このため、本実施形態によれば、空気抜き路72により測定セル2内の液体試料と空気の流れを制御することができるので、貫通孔71における気泡の残留を防ぐことが可能になる。従って、ゼータ電位測定時に貫通孔71内の液体試料中の粒子の移動や光の散乱が気泡により阻害されず、ゼータ電位の測定精度を高く保つことができる。   Therefore, according to the particle physical property measuring apparatus 1 configured as described above, the air vent path 72 extending in the vertical direction through the through hole 71 functioning as a liquid reservoir is formed on the side peripheral surface of the main body 7 of the electrode sensor 6. Therefore, when the electrode sensor 6 is inserted into the measurement cell 2 containing the liquid sample, first, the liquid sample flows into the lower air vent path 721, and the liquid sample that flows into the lower air vent path 721 flows into the through hole 71. Flow into. Next, the air pushed out by the inflowing liquid sample and flowing out from the through hole 71 flows into the upper air vent path 722 and is discharged out of the measurement cell 2 from the through hole 81. For this reason, according to the present embodiment, since the flow of the liquid sample and the air in the measurement cell 2 can be controlled by the air vent path 72, it is possible to prevent bubbles from remaining in the through hole 71. Accordingly, movement of particles in the liquid sample in the through hole 71 and light scattering are not hindered by bubbles during zeta potential measurement, and the measurement accuracy of the zeta potential can be kept high.

また、電極センサ6を測定セル2内に挿入すると、蓋部8が測定セル2の上端に突き当り所定の位置で掛止して、測定セル2の内底面と電極センサ6の底面との間に間隙23が生じるので、電極センサ6に形成された貫通孔71内の液体試料に電圧を印加することによってゼータ電位を測定することができるとともに、間隙23内の液体試料に多角度から光を照射し、その散乱光を検出することによってアスペクト比や凝集度等の形状物性値、粒子径及び分子量を測定することができるので、測定セル2内に電極センサ6を挿入したままで、粒子の状態を乱すことなく、種々の物性値を効率的かつ高精度に測定することが可能となる。   Further, when the electrode sensor 6 is inserted into the measurement cell 2, the lid portion 8 comes into contact with the upper end of the measurement cell 2 and is latched at a predetermined position, and between the inner bottom surface of the measurement cell 2 and the bottom surface of the electrode sensor 6. Since the gap 23 is generated, the zeta potential can be measured by applying a voltage to the liquid sample in the through hole 71 formed in the electrode sensor 6, and the liquid sample in the gap 23 is irradiated with light from multiple angles. Then, by detecting the scattered light, it is possible to measure the shape physical property value such as aspect ratio and aggregation degree, particle diameter and molecular weight, so that the state of the particles can be maintained with the electrode sensor 6 inserted in the measurement cell 2. Various physical property values can be measured efficiently and with high accuracy without disturbing.

更に、本実施形態では、電極センサ6の本体7及び蓋部8が、耐薬品性の高いフッ素樹脂から構成されているので、液体試料の分散媒によらずに使用することができる。   Furthermore, in this embodiment, since the main body 7 and the lid portion 8 of the electrode sensor 6 are made of a fluorine resin having high chemical resistance, the electrode sensor 6 can be used regardless of the dispersion medium of the liquid sample.

また、測定セル2は、互いに別体をなす筒部71と底部72とからなるものであるので、電極センサ6の底面等に気泡が付着した場合は、当該気泡によってアスペクト比や凝集度等の形状物性値、粒子径及び分子量の測定が妨げられないように、電極センサ6が挿入された測定セル2をその底部72が上になるように上下を逆にしてから底部72を取り外して気泡を除くことができる。   Further, since the measurement cell 2 is composed of a cylindrical portion 71 and a bottom portion 72 which are separate from each other, when bubbles adhere to the bottom surface of the electrode sensor 6 or the like, the aspect ratio, the degree of aggregation, etc. are reduced by the bubbles. In order to prevent the measurement of the shape physical property value, the particle diameter and the molecular weight, the measurement cell 2 in which the electrode sensor 6 is inserted is turned upside down so that the bottom 72 is up, and then the bottom 72 is removed to remove bubbles. Can be excluded.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、粒子物性測定装置1がゼータ電位のみを測定するものである場合は、電極センサ6の本体7の形状及び測定セル2の形状は円柱状に限定されず、例えば、四角柱状であってもよい。そして、この場合は測定セル2の内底面と電極センサ6の底面との間に間隙23が形成されなくともよい。   For example, when the particle property measuring apparatus 1 measures only the zeta potential, the shape of the main body 7 of the electrode sensor 6 and the shape of the measurement cell 2 are not limited to a cylindrical shape. Good. In this case, the gap 23 may not be formed between the inner bottom surface of the measurement cell 2 and the bottom surface of the electrode sensor 6.

また、図8に示すように、電極センサ6に蓋部8がなく、測定セル2の内部空間が底側のほうが狭くなっていて、内部空間が狭くなる段部73において電極センサ6が掛止して、測定セル2の内底面と電極センサ6の底面との間に間隙23が形成されるようにしてあってもよい。更に、測定セル2の内底面と電極センサ6の底面との間に間隙を形成するのではなく、電極センサ6のゼータ電位測定用貫通孔71の上部又は下部に別途空間を設け、ここでゼータ電位以外の粒子物性測定を行うようにしてもよい。   Further, as shown in FIG. 8, the electrode sensor 6 does not have the lid portion 8, the inner space of the measurement cell 2 is narrower on the bottom side, and the electrode sensor 6 is hooked at the stepped portion 73 where the inner space becomes narrower. Then, the gap 23 may be formed between the inner bottom surface of the measurement cell 2 and the bottom surface of the electrode sensor 6. Further, instead of forming a gap between the inner bottom surface of the measurement cell 2 and the bottom surface of the electrode sensor 6, a separate space is provided above or below the zeta potential measurement through hole 71 of the electrode sensor 6. Particle physical properties other than the potential may be measured.

更に、空気抜き路72は本体7の側周面に形成されていなくともよく、例えば、本体7内部を貫通していてもよい。また、空気抜き路72は2本に限られず、1本であってもよく、3本以上であってもよい。更に、測定セル2は筒部21と底部22とが一体的に成型されたものであってもよい。   Furthermore, the air vent path 72 may not be formed on the side peripheral surface of the main body 7, and may penetrate through the inside of the main body 7, for example. Further, the air vent path 72 is not limited to two, and may be one or three or more. Further, the measurement cell 2 may be one in which the cylindrical portion 21 and the bottom portion 22 are integrally molded.

本発明は、その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてもよく、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   It goes without saying that the present invention may appropriately combine some or all of the above-described embodiments and modified embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態に係る粒子物性測定装置の概要を示す模式的全体図。1 is a schematic overall view showing an outline of a particle physical property measuring apparatus according to an embodiment of the present invention. 同実施形態における形状物性値測定機構を示す模式的構成図。The typical block diagram which shows the shape physical-property value measurement mechanism in the embodiment. 同実施形態における粒径測定機構を示す模式的構成図。The typical block diagram which shows the particle size measurement mechanism in the embodiment. 同実施形態における分子量測定機構を示す模式的構成図。The typical block diagram which shows the molecular weight measurement mechanism in the embodiment. 同実施形態におけるゼータ電位測定機構を示す模式的構成図。The typical block diagram which shows the zeta potential measurement mechanism in the embodiment. 同実施形態における電極センサ及び測定セルを示す斜視図。The perspective view which shows the electrode sensor and measurement cell in the embodiment. 同実施形態における電極センサ及び測定セルを示す縦断面図。The longitudinal cross-sectional view which shows the electrode sensor and measurement cell in the embodiment. 他の実施形態における電極センサ及び測定セルを示す縦断面図。The longitudinal cross-sectional view which shows the electrode sensor and measurement cell in other embodiment. 従来の電極センサを示す斜視図。The perspective view which shows the conventional electrode sensor.

符号の説明Explanation of symbols

1・・・粒子物性測定装置
2・・・測定セル
6・・・電極センサ
7・・・本体
71・・・貫通孔
72・・・空気抜き路
8・・・蓋部
9・・・電極
DESCRIPTION OF SYMBOLS 1 ... Particle physical property measuring apparatus 2 ... Measurement cell 6 ... Electrode sensor 7 ... Main body 71 ... Through-hole 72 ... Air vent path 8 ... Cover part 9 ... Electrode

Claims (4)

液体試料中に分散している粒子の物性値を測定するものであって、
横方向の貫通孔が形成してあるとともに前記貫通孔を通って縦方向に延伸した空気抜き路が形成してある本体と、前記本体に埋設されて前記貫通孔の内壁面より露出している互いに対向した一対の電極と、を有している電極センサを備えていることを特徴とする粒子物性測定装置。
Measuring physical properties of particles dispersed in a liquid sample,
A main body in which a through hole in the horizontal direction is formed and an air vent path extending in the vertical direction through the through hole is formed, and the main body embedded in the main body and exposed from the inner wall surface of the through hole An apparatus for measuring particle physical properties, comprising an electrode sensor having a pair of opposed electrodes.
前記電極センサの本体が、円柱状であり、かつ、
前記電極センサと嵌合可能な測定セルであって、前記電極センサが当該測定セル内に挿入されると、所定位置において掛止して、前記電極センサの底面と当該測定セルの内底面との間に間隙が形成される測定セルを備えている請求項1記載の粒子物性測定装置。
The electrode sensor body is cylindrical, and
A measurement cell that can be fitted with the electrode sensor, and when the electrode sensor is inserted into the measurement cell, the electrode cell is hooked at a predetermined position, and the bottom surface of the electrode sensor and the inner bottom surface of the measurement cell The particle physical property measuring apparatus according to claim 1, further comprising a measurement cell in which a gap is formed.
前記電極センサは、前記本体の上端に設けられ、前記本体より横方向に突出した蓋部を備えている請求項2記載の粒子物性測定装置。   The particle physical property measuring apparatus according to claim 2, wherein the electrode sensor includes a lid portion provided at an upper end of the main body and protruding laterally from the main body. 前記測定セルは、互いに別体をなす筒部と底部とからなる請求項2又は3記載の粒子物性測定装置。   4. The particle physical property measuring apparatus according to claim 2, wherein the measurement cell includes a cylindrical portion and a bottom portion that are separate from each other.
JP2008272284A 2008-10-22 2008-10-22 Instrument for measuring physical properties of particles Pending JP2010101705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272284A JP2010101705A (en) 2008-10-22 2008-10-22 Instrument for measuring physical properties of particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272284A JP2010101705A (en) 2008-10-22 2008-10-22 Instrument for measuring physical properties of particles

Publications (1)

Publication Number Publication Date
JP2010101705A true JP2010101705A (en) 2010-05-06

Family

ID=42292476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272284A Pending JP2010101705A (en) 2008-10-22 2008-10-22 Instrument for measuring physical properties of particles

Country Status (1)

Country Link
JP (1) JP2010101705A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423671A1 (en) * 2010-08-31 2012-02-29 HORIBA, Ltd. Particle charaterization cell and particle characterization instrument
WO2012172330A1 (en) * 2011-06-15 2012-12-20 Malvern Instruments Limited Surface charge measurement
JP2013546003A (en) * 2010-12-17 2013-12-26 マルバーン インストゥルメンツ リミテッド Laser Doppler electrophoresis using diffusion barrier
CN103926119A (en) * 2014-02-19 2014-07-16 中国矿业大学(北京) Method for preparing kaolinite with high radius-thickness ratio, and measuring and calculating radius-thickness ratio of kaolinite
US10648945B2 (en) 2010-12-17 2020-05-12 Malvern Panalytical Limited Laser doppler electrophoresis using a diffusion barrier

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034164B2 (en) 2010-08-31 2015-05-19 Horiba, Ltd. Particle characterization cell and particle characterization instrument
JP2012052839A (en) * 2010-08-31 2012-03-15 Horiba Ltd Particle physical property measuring cell and particle physical property measuring device
CN102401777A (en) * 2010-08-31 2012-04-04 株式会社堀场制作所 Particle characterization measuring cell and particle characterization measuring instrument
EP2423671A1 (en) * 2010-08-31 2012-02-29 HORIBA, Ltd. Particle charaterization cell and particle characterization instrument
JP2013546003A (en) * 2010-12-17 2013-12-26 マルバーン インストゥルメンツ リミテッド Laser Doppler electrophoresis using diffusion barrier
US10648945B2 (en) 2010-12-17 2020-05-12 Malvern Panalytical Limited Laser doppler electrophoresis using a diffusion barrier
JP2016200608A (en) * 2010-12-17 2016-12-01 マルバーン インストゥルメンツ リミテッド Laser doppler electrophoretic method using diffusion barrier
WO2012172330A1 (en) * 2011-06-15 2012-12-20 Malvern Instruments Limited Surface charge measurement
US20150022212A1 (en) * 2011-06-15 2015-01-22 Corbett Jason Surface charge measurement
JP2014518379A (en) * 2011-06-15 2014-07-28 マルバーン インストゥルメンツ リミテッド Surface charge measurement
US9829525B2 (en) 2011-06-15 2017-11-28 Malvern Instruments Limited Surface charge measurement
US10274528B2 (en) 2011-06-15 2019-04-30 Malvern Panalytical Limited Surface charge measurement
US11079420B2 (en) 2011-06-15 2021-08-03 Malvern Panalytical Limited Surface charge measurement
CN103926119A (en) * 2014-02-19 2014-07-16 中国矿业大学(北京) Method for preparing kaolinite with high radius-thickness ratio, and measuring and calculating radius-thickness ratio of kaolinite

Similar Documents

Publication Publication Date Title
Maguire et al. Characterisation of particles in solution–a perspective on light scattering and comparative technologies
Schärtl Light scattering from polymer solutions and nanoparticle dispersions
Han et al. Quasi-two-dimensional diffusion of single ellipsoids: Aspect ratio and confinement effects
JP6348187B2 (en) Particle tracking analysis (PTA) method using scattered light and apparatus for detecting and identifying nanometer-order particles in any liquid
EP2721399B1 (en) Surface charge measurement
EP2333516A1 (en) Device for measuring physical property of particle
JP2010101705A (en) Instrument for measuring physical properties of particles
Shaw Dynamic Light Scattering Training
JP2010181399A (en) Flow path device, complex dielectric constant measuring device, and dielectric cytometry device
JP4517145B2 (en) Light scattering device, light scattering measurement method, light scattering analysis device, and light scattering measurement analysis method
Lisicki et al. Translational and rotational near-wall diffusion of spherical colloids studied by evanescent wave scattering
JP2014521962A (en) Particle characterization
JP2016526689A (en) Particle suspension used as a low-contrast standard for liquid testing
JP5643497B2 (en) Particle measuring device using scattered light
US10031083B2 (en) Fixed position controller and method
Botin et al. Non-monotonic concentration dependence of the electro-phoretic mobility of charged spheres in realistic salt free suspensions
JP4944859B2 (en) Particle property measuring device
Ma et al. Measurement and characterization of bulk nanobubbles by nanoparticle tracking analysis method
Xu Electrophoretic light scattering: Zeta potential measurement
JP5514490B2 (en) Particle property measuring device
JP5257900B2 (en) Zeta potential measuring device and zeta potential measuring method
Jung et al. Nanoparticle sizing by a laser-induced breakdown detection using an optical probe beam deflection
Aberle et al. A comparison of 3D static light-scattering experiments with Monte Carlo simulations
JP2015034747A (en) Shape estimation device and shape estimation method of nonspherical micro objects
JP4998949B2 (en) Particle analysis apparatus and method by simultaneous measurement of Coulter principle and light scattering