JP4944859B2 - Particle property measuring device - Google Patents

Particle property measuring device Download PDF

Info

Publication number
JP4944859B2
JP4944859B2 JP2008247413A JP2008247413A JP4944859B2 JP 4944859 B2 JP4944859 B2 JP 4944859B2 JP 2008247413 A JP2008247413 A JP 2008247413A JP 2008247413 A JP2008247413 A JP 2008247413A JP 4944859 B2 JP4944859 B2 JP 4944859B2
Authority
JP
Japan
Prior art keywords
particle
zeta potential
particles
measurement result
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008247413A
Other languages
Japanese (ja)
Other versions
JP2010078468A (en
Inventor
哲司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008247413A priority Critical patent/JP4944859B2/en
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to GB1104774.3A priority patent/GB2475458B/en
Priority to EP09816190.4A priority patent/EP2333516A4/en
Priority to CN2009801370287A priority patent/CN102159934A/en
Priority to US13/121,170 priority patent/US8625093B2/en
Priority to CN2011101371344A priority patent/CN102323191B/en
Priority to PCT/JP2009/066628 priority patent/WO2010035775A1/en
Publication of JP2010078468A publication Critical patent/JP2010078468A/en
Application granted granted Critical
Publication of JP4944859B2 publication Critical patent/JP4944859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、アスペクト比や凝集度等の形状物性値、粒径、及び、ゼータ電位等を測定することができる粒子物性測定装置に関するものである。   The present invention relates to a particle property measuring apparatus capable of measuring shape property values such as aspect ratio and degree of aggregation, particle size, zeta potential, and the like.

近時、多様な形状を有するナノ粒子に対する産業界の需要が高まり、ナノ粒子の粒径や他の物性を詳細に計測することへの市場のニーズが高まっている。   Recently, the industry demand for nanoparticles having various shapes has increased, and the market needs for measuring the particle size and other physical properties of nanoparticles in detail.

従来のナノ粒子の物性は、アスペクト比や凝集度等の形状物性値は走査型電子顕微鏡(SEM)等の電子顕微鏡又は光学顕微鏡の観察により、粒径は動的光散乱法により、分散度はゼータ電位を測定することにより、それぞれ別個の分析装置を用いて測定されている。   The physical properties of conventional nanoparticles are as follows: physical property values such as aspect ratio and degree of aggregation are observed with an electron microscope such as a scanning electron microscope (SEM) or an optical microscope, the particle size is determined by dynamic light scattering, and the degree of dispersion is Each zeta potential is measured using a separate analyzer.

そして、電子顕微鏡又は光学顕微鏡を用いた場合は、画像処理結果として形状物性値や粒径が算出され、粒径分布測定装置を用いた場合の測定結果は、粒径が数値として、粒径分布がヒストグラムとして提示され、ゼータ電位測定装置を用いた場合は、ゼータ電位が数値又は分布として提示される。ゼータ電位とは、溶液中の微粒子の表面電荷であり、すなわち、溶液中の微粒子の周りに形成する電気二重層中の、液体流動が起こり始める「すべり面」の電位である。微粒子の場合、ゼータ電位の絶対値が増加すれば、粒子間の反発力が強くなり、粒子の安定性は高くなる。逆に、ゼータ電位がゼロに近くなると、粒子は凝集しやすくなる。すなわち、粒子の帯電量(荷電状態)によって、粒子の分散状態の安定性は左右されるため、溶液中の微粒子の凝集・分散制御及び特性評価に際して、ゼータ電位測定の重要度は高まってきている。   When an electron microscope or an optical microscope is used, shape physical property values and particle sizes are calculated as image processing results, and when using a particle size distribution measuring device, the particle size is a numerical value. Is presented as a histogram, and when the zeta potential measuring device is used, the zeta potential is presented as a numerical value or a distribution. The zeta potential is the surface charge of the fine particles in the solution, that is, the potential of the “slip surface” where liquid flow starts to occur in the electric double layer formed around the fine particles in the solution. In the case of fine particles, if the absolute value of the zeta potential increases, the repulsive force between the particles becomes stronger and the stability of the particles becomes higher. Conversely, when the zeta potential is close to zero, the particles tend to aggregate. In other words, since the stability of the dispersion state of the particles depends on the charge amount (charge state) of the particles, the importance of the zeta potential measurement is increasing in the control of the aggregation / dispersion of the fine particles in the solution and the characteristic evaluation. .

しかし、これらの測定結果は、装置の原理に熟知した測定者であれば容易に解釈することができるが、測定に不慣れな者にとっては、得られた数値や分布の持つ意味の解釈が難しいことがあった。
特開2004−317123 特開2004−271287
However, these measurement results can be easily interpreted by a measurer who is familiar with the principle of the instrument, but it is difficult for those who are unfamiliar with measurement to interpret the meaning of the numerical values and distributions obtained. was there.
JP 2004-317123 A JP2004-271287A

そこで本発明は、粒子の各種物性の測定に不慣れな者であっても、視覚を介して直接的かつ容易に測定結果を理解することが可能な粒子物性測定装置を提供すべく図ったものである。   Therefore, the present invention is intended to provide a particle property measuring apparatus that enables a person who is unfamiliar with measuring various physical properties of particles to understand the measurement result directly and easily through vision. is there.

すなわち本発明に係る粒子物性測定装置は、液体試料中に分散している粒子のアスペクト比や凝集度等を求める形状物性値測定機構と、該粒子の粒径を測定する粒径測定機構と、該粒子のゼータ電位を測定するゼータ電位測定機構と、を少なくとも備えた粒子物性測定装置であって、前記形状物性値測定機構及び前記粒径測定機構における測定結果データに基づき、粒子表面形状と粒子の大きさを画像として表示するための粒子画像データと、前記ゼータ電位測定機構における測定結果データに基づき、粒子のゼータ電位を該粒子の粒子表面からの層の大きさ及び/又は粒子表面からの層の色として表示するためのゼータ電位画像データと、を作成する画像データ作成部を更に備えていることを特徴とする。   That is, the particle property measuring apparatus according to the present invention includes a shape property value measuring mechanism for determining an aspect ratio, a degree of aggregation, and the like of particles dispersed in a liquid sample, a particle size measuring mechanism for measuring the particle size of the particles, A zeta potential measuring mechanism that measures at least a zeta potential of the particle, wherein the particle surface shape and the particle based on the measurement result data in the shape property value measuring mechanism and the particle size measuring mechanism Based on the particle image data for displaying the size of the particle as an image and the measurement result data in the zeta potential measurement mechanism, the zeta potential of the particle is determined from the particle surface of the particle and / or from the particle surface. An image data creation unit for creating zeta potential image data for display as a layer color is further provided.

このようなものであれば、数値等として得られた形状物性値や粒径等の測定結果に基づき、液中における粒子の画像が作成されるので、具現化された測定結果から液中の粒子の状態を立体的かつ感覚的に把握することが可能となり、測定に不慣れな者であっても容易に測定結果を理解することができる。また、前記電場を表す画像は層として表示されて、ゼータ電位の測定結果に応じて、電場を表す層の大きさや色が異なって表示されるので、ゼータ電位の測定結果を一目で容易に把握することができ、理解度が向上する。形状物性値や粒径等の測定結果に基づいて得られた粒子画像データの粒子周囲(外縁)に、ゼータ電位測定結果に基づいて得られた電場データ(ゼータ電位画像データ)を表示するので、測定に不慣れな者にとっても、溶液中での微粒子の状態を理解しやすい。更に、これらの各種物性の測定は液中で行なわれるので、SEM等の電子顕微鏡による乾燥状態の観察画像では分からなかった液中での粒子の状態が具体的に把握できる。   If this is the case, an image of the particle in the liquid is created based on the measurement result of the shape physical property value and the particle size obtained as numerical values, etc., so the particle in the liquid is obtained from the embodied measurement result. It is possible to grasp the state of the three-dimensionally and sensuously, and even a person unfamiliar with the measurement can easily understand the measurement result. In addition, the image representing the electric field is displayed as a layer, and depending on the measurement result of the zeta potential, the size and color of the layer representing the electric field are displayed differently, so the measurement result of the zeta potential can be easily grasped at a glance. Can improve understanding. Since the electric field data (zeta potential image data) obtained based on the zeta potential measurement result is displayed around the particle (outer edge) of the particle image data obtained based on the measurement result such as the shape physical property value and the particle size, Even those who are unfamiliar with the measurement can easily understand the state of the fine particles in the solution. Furthermore, since these various physical properties are measured in the liquid, the state of the particles in the liquid that could not be understood from the observation image of the dry state by an electron microscope such as SEM can be specifically grasped.

なお、本発明において色が変化するとは、色相、明度、彩度のいずれかの属性だけが変化してもよく、これらの色の三属性が組み合わさって変化してもよい。   In the present invention, the change of color means that only one of the attributes of hue, brightness, and saturation may be changed, or the three attributes of these colors may be combined and changed.

ゼータ電位の測定結果に応じて、前記電場を表す層の大きさや色が変化するためには、前記ゼータ電位測定機構における測定結果データと、前記粒子表面からの層の大きさ及び/又は前記粒子表面からの層の色とを関連付けているテーブルを格納するテーブル格納部を更に備えていることが好ましい。   In order to change the size and color of the layer representing the electric field according to the measurement result of the zeta potential, the measurement result data in the zeta potential measurement mechanism, the size of the layer from the particle surface and / or the particle It is preferable to further include a table storage unit that stores a table that associates the color of the layer from the surface.

このような本発明によれば、各種物性の測定結果が数値や分布と併せて画像として表示されることにより、粒子の各種物性を初めて測定する者や、あまり測定する機会のない者にとっても、液中における粒子の存在状態が具体的なイメージとして把握できるので、各種物性の測定結果の理解度が向上する。   According to the present invention as described above, the measurement results of various physical properties are displayed as an image together with numerical values and distributions, for those who measure various physical properties of particles for the first time, and those who do not have much opportunity to measure, Since the state of the presence of particles in the liquid can be grasped as a specific image, the degree of understanding of measurement results of various physical properties is improved.

以下、本発明の一実施形態を図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る粒子物性測定装置1の構成の概要を示すものである。本実施形態に係る粒子物性測定装置1は、形状物性値測定機構、粒径測定機構、分子量測定機構、及び、ゼータ電位測定機構を備えているものであって、図1に示すように、透明な石英ガラス等からなり、粒子群を水等の分散媒に分散させてなる液体試料を収容するセル2と、前記液体試料にレーザ光Lを照射するレーザ3と、前記レーザ光Lを照射された液体試料中の粒子群から発される散乱光Sを受光し、その光子数に応じたパルス信号又は光強度のゆらぎに応じた電気信号を出力する光電子倍増管からなる受光部41、42と、レーザ3から発射されるレーザ光Lの一部を分岐するハーフミラー51、ミラー52、53、及び、ミラー53からの参照光Rと散乱光Sとを混合するハーフミラー54からなる参照光学系5と、情報処理装置6と、を備えている。   FIG. 1 shows an outline of the configuration of a particle property measuring apparatus 1 according to this embodiment. The particle property measuring apparatus 1 according to this embodiment includes a shape property value measuring mechanism, a particle size measuring mechanism, a molecular weight measuring mechanism, and a zeta potential measuring mechanism, and is transparent as shown in FIG. Cell 2 that contains a liquid sample made of quartz glass or the like and in which a particle group is dispersed in a dispersion medium such as water, a laser 3 that irradiates the liquid sample with laser light L, and a laser beam L that is irradiated with the laser light L. Light receiving portions 41 and 42 each including a photomultiplier tube that receives scattered light S emitted from a group of particles in a liquid sample and outputs a pulse signal corresponding to the number of photons or an electric signal corresponding to fluctuations in light intensity; A reference optical system comprising a half mirror 51 for branching a part of the laser light L emitted from the laser 3, mirrors 52 and 53, and a half mirror 54 for mixing the reference light R and the scattered light S from the mirror 53. 5 and information processing equipment It is provided with a 6, a.

以下に各測定機構の構成について説明する。
アスペクト比や凝集度等を測定する形状物性値測定機構は、図2に示すように、レーザ3と、偏光子11、14と、1/4波長板12、13と、受光部41と、から構成される。偏光子11はレーザ3から射出されたレーザ光Lの偏光方向を固定するために使用されているが、1/4波長板12、13は光軸を中心に回転可能であり、1/4波長板12で直線偏光を楕円偏光に変換し、1/4波長板13と、偏光子14で楕円偏光を直線偏光に戻す。
The configuration of each measurement mechanism will be described below.
As shown in FIG. 2, the shape property value measuring mechanism for measuring the aspect ratio, the degree of aggregation, and the like includes a laser 3, polarizers 11 and 14, quarter wave plates 12 and 13, and a light receiving unit 41. Composed. The polarizer 11 is used to fix the polarization direction of the laser light L emitted from the laser 3, but the quarter-wave plates 12 and 13 are rotatable around the optical axis, and the quarter wavelength. The plate 12 converts linearly polarized light into elliptically polarized light, and the quarter wavelength plate 13 and the polarizer 14 return the elliptically polarized light to linearly polarized light.

形状物性値を測定するには、米国特許第6721051号に記載の方法を用い、まず、セル2中の液体試料のレーザ光Lの透過率を測定する。次いで、1/4波長板12、13及び偏光子14を光軸を中心に回転させながらレーザ光Lを発射して、複数態様の偏光パターンにおいて、受光部41の位置(角度)を変化させながら、所定散乱角度での散乱光Sの強度を測定する。そして、得られた透過率と散乱光強度比とに所定の演算処理を行うことにより、アスペクト比及び/又は凝集度を算出する。   In order to measure the physical property value of the shape, first, the transmittance of the laser beam L of the liquid sample in the cell 2 is measured using the method described in US Pat. No. 6,721,051. Next, the laser light L is emitted while rotating the quarter-wave plates 12 and 13 and the polarizer 14 around the optical axis, and the position (angle) of the light receiving unit 41 is changed in a plurality of modes of polarization patterns. Then, the intensity of the scattered light S at a predetermined scattering angle is measured. Then, predetermined aspect processing is performed on the obtained transmittance and scattered light intensity ratio to calculate the aspect ratio and / or the degree of aggregation.

粒径測定機構は、図3に示すように、レーザ3と、受光部41と、コリレータ15と、から構成される。粒径(粒径分布)を測定するには、動的光散乱法を用い、レーザ光Lをセル2中の液体試料に照射して、液体試料中の粒子群から発した散乱光Sを受光部41で受光し、その光子数に応じたパルス信号を受光部41から受信したコリレータ15で、そのパルス数の時系列データから自己相関データを生成し、当該自己相関データに基づいて所定の演算処理を行うことにより前記粒子群の粒径分布を算出する。なお、本実施形態では光子数に応じたパルス信号より演算する方法について詳述したが、光強度のゆらぎに応じた電気信号より演算することも可能であるのはいうまでもない。   As shown in FIG. 3, the particle size measuring mechanism includes a laser 3, a light receiving unit 41, and a correlator 15. To measure the particle size (particle size distribution), the dynamic light scattering method is used, the liquid sample in the cell 2 is irradiated with the laser light L, and the scattered light S emitted from the particles in the liquid sample is received. The correlator 15 that receives light from the light receiving unit 41 and receives a pulse signal corresponding to the number of photons from the light receiving unit 41 generates autocorrelation data from the time-series data of the number of pulses, and performs a predetermined calculation based on the autocorrelation data. By performing the processing, the particle size distribution of the particle group is calculated. In the present embodiment, the method of calculating from the pulse signal corresponding to the number of photons has been described in detail, but it is needless to say that the calculation can also be performed from the electric signal corresponding to the fluctuation of the light intensity.

図3に示す実施形態では、受光部41はレーザ光Lと直交する光路の散乱光Sを受光しているが、粒径(粒径分布)を測定する際の受光部41の好適な位置(角度)は、液体試料の濃度によって変わり、形状物性値を測定する際に測定された液体試料のレーザ光透過率に従い、透過率が高い(液体試料の濃度が低い)ときはレーザ光Lと直交する光路(散乱角度90°)の散乱光Sを受光し、透過率が低い(液体試料の濃度が高い)ときはレーザ光Lと合致する光路(散乱角度180°)の散乱光Sを受光するように、受光部41の位置(角度)が調節される。   In the embodiment shown in FIG. 3, the light receiving unit 41 receives the scattered light S in the optical path orthogonal to the laser light L, but a suitable position of the light receiving unit 41 when measuring the particle size (particle size distribution) ( The angle varies depending on the concentration of the liquid sample, and is orthogonal to the laser beam L when the transmittance is high (the concentration of the liquid sample is low) according to the laser beam transmittance of the liquid sample measured when measuring the shape property value. The scattered light S of the optical path (scattering angle 90 °) is received, and when the transmittance is low (the concentration of the liquid sample is high), the scattered light S of the optical path matching the laser light L (scattering angle 180 °) is received. As described above, the position (angle) of the light receiving unit 41 is adjusted.

分子量測定機構は、図4に示すように、レーザ3と、受光部41と、から構成される。分子量を測定するには、静的光散乱法を用い、濃度を変えた複数種類の液体試料を用い、受光部41の位置(角度)を変化させながら、セル2中の液体試料にレーザ光Lを照射して、当該液体試料中の粒子群から発した散乱光Sの光強度の角度分布を計測する。そして、液体試料の濃度と散乱角度変化による散乱光量変化から、Zimmプロットを行い、粒子の分子量を算出する。形状物性値測定機構及び粒径測定機構に加え、分子量測定機構における測定結果データに基づいて粒子表面形状と粒子の大きさを画像として表示するデータを作成することもできる。   As shown in FIG. 4, the molecular weight measurement mechanism includes a laser 3 and a light receiving unit 41. In order to measure the molecular weight, a plurality of types of liquid samples with different concentrations are used using the static light scattering method, and the laser beam L is applied to the liquid sample in the cell 2 while changing the position (angle) of the light receiving unit 41. , And the angular distribution of the light intensity of the scattered light S emitted from the particle group in the liquid sample is measured. Then, from the change in the amount of scattered light due to the concentration of the liquid sample and the change in the scattering angle, a Zimm plot is performed to calculate the molecular weight of the particles. In addition to the shape property value measurement mechanism and the particle size measurement mechanism, data for displaying the particle surface shape and the particle size as an image can be created based on the measurement result data in the molecular weight measurement mechanism.

ゼータ電位測定機構は、図5に示すように、レーザ3と、白金等からなる一対の電極16と、参照光学系5と、受光部42と、から構成される。ゼータ電位を測定するには、電気泳動法を用い、セル2に挿入した電極16に直流又は交流電圧を印加して、液体試料中の粒子に電界をかけながらレーザ光Lを照射して、所定角度で散乱される散乱光Sを受光し、散乱光Sと参照光Rとの振動数の差(干渉現象)を測定することにより、液体試料中の粒子の移動速度を算出する。更に、得られた移動速度に所定の演算処理を行うことによりゼータ電位を算出する。   As shown in FIG. 5, the zeta potential measurement mechanism includes a laser 3, a pair of electrodes 16 made of platinum or the like, a reference optical system 5, and a light receiving unit 42. To measure the zeta potential, electrophoresis is applied, a direct current or alternating voltage is applied to the electrode 16 inserted in the cell 2, and laser particles L are irradiated while applying an electric field to particles in the liquid sample. By receiving the scattered light S scattered at an angle and measuring the difference in frequency (interference phenomenon) between the scattered light S and the reference light R, the moving speed of the particles in the liquid sample is calculated. Further, the zeta potential is calculated by performing a predetermined calculation process on the obtained moving speed.

このような各測定機構において受光部41、42から出力された信号は、情報処理装置6に送信される。   Signals output from the light receiving units 41 and 42 in each measurement mechanism as described above are transmitted to the information processing device 6.

情報処理装置6は、CPUの他に、メモリ、キーボード等の入力手段、ディスプレイ等の出力手段等を備えた汎用乃至専用のものであり、メモリに所定のプログラムを格納し、当該プログラムに従ってCPUやその周辺機器を協働動作させることによって、演算処理部61、画像データ作成部62、テーブル格納部63、画像表示部64等としての機能を発揮するように構成してある。   The information processing apparatus 6 is a general-purpose or dedicated device including an input unit such as a memory and a keyboard, an output unit such as a display, in addition to the CPU, stores a predetermined program in the memory, By operating the peripheral devices in cooperation with each other, the functions as the arithmetic processing unit 61, the image data creation unit 62, the table storage unit 63, the image display unit 64, and the like are exhibited.

演算処理部61は、各測定機構において受光部41、42から発したパルス信号又は光強度信号を直接又はコリレータ15を介して受信し、所定の演算処理を行ない測定結果を算出する。   The arithmetic processing unit 61 receives pulse signals or light intensity signals emitted from the light receiving units 41 and 42 in each measurement mechanism, directly or via the correlator 15, and performs predetermined arithmetic processing to calculate a measurement result.

画像データ作成部62は、演算処理部61から各測定機構における測定結果データを取得し、前記粒子と、前記粒子の周囲に形成された電場とを、各種物性の測定結果に基づき画像として表示する画像データを作成するものである。ここで前記電場を表す層の大きさ又は色はゼータ電位の測定結果に応じて変化する。   The image data creation unit 62 acquires the measurement result data in each measurement mechanism from the arithmetic processing unit 61, and displays the particles and the electric field formed around the particles as an image based on the measurement results of various physical properties. Image data is created. Here, the size or color of the layer representing the electric field changes according to the measurement result of the zeta potential.

画像データ作成部62より作成される画像は、図6にその一例を示すように、前記粒径測定機構により測定された一次粒子の平均粒径を有する球体Sの周囲(外縁)に、前記ゼータ電位測定機構によるゼータ電位の測定結果から一次粒子の平均帯電量を求め、当該帯電量に基づき色等を変えて電場Eを層として表示するものである。この画像と同時に、ゼータ電位の測定結果に対応する色見本Mも合わせて表示される。また、一次粒子やそれが凝集してなる二次粒子が棒状である場合は、図7に示すように、形状物性値測定結果から得られた平均短径及び平均長径を、当該形状物性値に従い作成された楕円体や円柱等の棒状体Bとともに表示する。更に、図8に示すように、一次粒子が凝集して二次粒子Aを形成している場合は、既に粒径が判明している一次粒子が何個集まって二次粒子Aを形成しているか、どのようなフラクタル形状に凝集しているか等の凝集状態を3次元的に表示する。このような場合においても、棒状なる一次粒子Bや、凝集結果として棒状となった二次粒子Aの周囲に、前記ゼータ電位測定結果から平均帯電量を求め、当該帯電量に基づき色等を変えて電場Eを層として表示する。すなわち、粒子画像データの粒子表面形状と、粒子の大きさのデータと、ゼータ電位の測定結果に基づくゼータ電位画像データとより、粒子表面に層として電場を表示できるようにしている。   An image created by the image data creation unit 62 is, as shown in FIG. 6, an example of the zeta around the sphere S having the average particle size of the primary particles measured by the particle size measuring mechanism. The average charge amount of the primary particles is obtained from the measurement result of the zeta potential by the potential measurement mechanism, and the electric field E is displayed as a layer by changing the color or the like based on the charge amount. Simultaneously with this image, a color sample M corresponding to the measurement result of the zeta potential is also displayed. Further, when the primary particles and the secondary particles formed by agglomeration thereof are rod-shaped, as shown in FIG. 7, the average minor axis and the average major axis obtained from the shape property value measurement results are determined according to the shape property value. It is displayed together with the created ellipsoid or rod B such as a cylinder. Further, as shown in FIG. 8, when the primary particles are aggregated to form the secondary particles A, the secondary particles A are formed by collecting how many primary particles whose particle diameters are already known. The agglomeration state such as whether or not the fractal shape is aggregated is displayed three-dimensionally. Even in such a case, an average charge amount is obtained from the zeta potential measurement result around the rod-shaped primary particles B and the rod-shaped secondary particles A as a result of aggregation, and the color or the like is changed based on the charge amount. The electric field E is displayed as a layer. That is, the electric field can be displayed as a layer on the particle surface based on the particle surface shape of the particle image data, the particle size data, and the zeta potential image data based on the measurement result of the zeta potential.

テーブル格納部63は、ゼータ電位の測定結果と、前記電場を表す層の大きさ又は色と、が関連付けられているテーブルを格納しているものである。   The table storage unit 63 stores a table in which the measurement result of the zeta potential is associated with the size or color of the layer representing the electric field.

画像表示部64は、画像データ作成部62により作成された画像データを取得して、各種物性の測定結果を具現化して画像として表示するものである。   The image display unit 64 acquires the image data created by the image data creation unit 62, embodies measurement results of various physical properties, and displays them as an image.

次に、各測定機構で測定された結果を画像として表示する手順を図9のフローチャートを参照して説明する。   Next, a procedure for displaying the result measured by each measurement mechanism as an image will be described with reference to the flowchart of FIG.

まず、演算処理部61が受光部41、42から発した信号を直接又はコリレータ15等を介して受信して、所定の演算処理を行ない、各種物性の測定結果を算出する(ステップS1)。   First, the arithmetic processing unit 61 receives signals emitted from the light receiving units 41 and 42 directly or via the correlator 15, etc., performs predetermined arithmetic processing, and calculates various physical property measurement results (step S1).

次いで、画像データ作成部62が、演算処理部61から各種物性の測定結果データを取得する(ステップS2)。   Next, the image data creation unit 62 acquires measurement result data of various physical properties from the arithmetic processing unit 61 (step S2).

続いて、画像データ作成部62は、テーブル格納部63から、ゼータ電位の測定結果と前記粒子の周囲に形成された電場を示す画像の大きさ又は色とが対になっているテーブルを取得して、ゼータ電位の測定結果に対応する画像の大きさや色を選び出す(ステップS3)。   Subsequently, the image data creation unit 62 acquires from the table storage unit 63 a table in which the measurement result of the zeta potential and the size or color of the image indicating the electric field formed around the particle are paired. Thus, the size and color of the image corresponding to the measurement result of the zeta potential are selected (step S3).

そして、画像データ作成部62は、前記粒子と、前記粒子の周囲に形成された電場とを、測定された物性に基づき画像として表示する画像データを作成する(ステップS4)。ここで前記電場を表す層の大きさ又は色はゼータ電位の測定結果に応じて変化する。   Then, the image data creation unit 62 creates image data that displays the particles and the electric field formed around the particles as an image based on the measured physical properties (step S4). Here, the size or color of the layer representing the electric field changes according to the measurement result of the zeta potential.

画像表示部64は、画像データ作成部62で作成された画像データを取得して、
各測定機構により測定された結果を画像として出力する(ステップS5)。
The image display unit 64 acquires the image data created by the image data creation unit 62, and
The result measured by each measurement mechanism is output as an image (step S5).

このように構成した本実施形態に係る粒子物性測定装置1によれば、数値等として得られた形状物性値や粒径等の測定結果に基づき、液中における粒子の画像が作成されるので、具現化された測定結果から液中の粒子の状態を立体的かつ感覚的に把握することが可能となり、測定に不慣れな者であっても容易に測定結果を理解することができる。また、前記電場を表す層は、ゼータ電位の測定結果に応じて、大きさや色が異なって表示されるので、ゼータ電位の測定結果を一目で容易に把握することができ、理解度が向上する。アスペクト比や凝集度等の形状物性値や粒径等の測定結果に基づいて得られた粒子画像データの粒子周囲(外縁)に、ゼータ電位測定結果に基づいて得られた電場データ(ゼータ電位画像データ)を表示するので、測定に不慣れな者にとっても、溶液中での微粒子の状態を理解しやすい。更に、これらの各種物性の測定は液中で行なわれるので、SEM等の電子顕微鏡による乾燥状態の観察画像では分からなかった液中での粒子の状態が具体的に把握できる。   According to the particle property measuring apparatus 1 according to the present embodiment configured as described above, an image of particles in the liquid is created based on the measurement result of the shape property value and the particle size obtained as numerical values, etc. It is possible to grasp the state of the particles in the liquid three-dimensionally and sensuously from the embodied measurement results, and even a person unfamiliar with the measurement can easily understand the measurement results. In addition, since the layer representing the electric field is displayed in different sizes and colors according to the measurement result of the zeta potential, the measurement result of the zeta potential can be easily grasped at a glance and the understanding level is improved. . Electric field data (zeta potential image) obtained based on the zeta potential measurement result around the particle (outer edge) of the particle image data obtained based on the measurement result of the shape property value such as aspect ratio and aggregation degree and particle size. Data) is displayed, so even those who are unfamiliar with the measurement can easily understand the state of the fine particles in the solution. Furthermore, since these various physical properties are measured in the liquid, the state of the particles in the liquid that could not be understood from the observation image of the dry state by an electron microscope such as SEM can be specifically grasped.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、図6〜8では、前記電場を表す層はゼータ電位の測定結果に応じて色が変化するようにしてあるが、ゼータ電位の測定結果に応じて前記電場を表す層の大きさが変化するように、すなわち、粒子S、A、B又はBの外縁に層として表示してもよく、大きさと色とはいずれか一方又は両方を選択可能であってもよい。   For example, in FIGS. 6 to 8, the layer representing the electric field changes color according to the measurement result of the zeta potential, but the size of the layer representing the electric field changes according to the measurement result of the zeta potential. That is, it may be displayed as a layer on the outer edge of the particle S, A, B or B, and either or both of the size and the color may be selectable.

本発明に係る粒子物性測定装置は、粒子物性測定装置1に備わっている全ての測定機構を有していなくともよく、例えば、分子量測定機構を備えていなくともよい。   The particle physical property measuring apparatus according to the present invention may not have all the measurement mechanisms provided in the particle physical property measuring apparatus 1, and may not include, for example, a molecular weight measuring mechanism.

その他、本発明はその趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention can be variously modified without departing from the spirit of the present invention.

本発明の一実施形態に係る粒子物性測定装置の概要を示す模式的全体図。1 is a schematic overall view showing an outline of a particle physical property measuring apparatus according to an embodiment of the present invention. 同実施形態における形状物性値測定機構を示す模式的構成図。The typical block diagram which shows the shape physical-property value measurement mechanism in the embodiment. 同実施形態における粒径測定機構を示す模式的構成図。The typical block diagram which shows the particle size measurement mechanism in the embodiment. 同実施形態における分子量測定機構を示す模式的構成図。The typical block diagram which shows the molecular weight measurement mechanism in the embodiment. 同実施形態におけるゼータ電位測定機構を示す模式的構成図。The typical block diagram which shows the zeta potential measurement mechanism in the embodiment. 同実施形態における測定結果を表示した画像を示す概念図。The conceptual diagram which shows the image which displayed the measurement result in the embodiment. 同実施形態における測定結果を表示した画像を示す概念図。The conceptual diagram which shows the image which displayed the measurement result in the embodiment. 同実施形態における測定結果を表示した画像を示す概念図。The conceptual diagram which shows the image which displayed the measurement result in the embodiment. 同実施形態における画像作成方法を示すチャート。The chart which shows the image creation method in the embodiment.

符号の説明Explanation of symbols

1・・・粒子物性測定装置
62・・・画像データ作成部
S、B、A・・・粒子
E・・・電場
DESCRIPTION OF SYMBOLS 1 ... Particle physical property measuring apparatus 62 ... Image data preparation part S, B, A ... Particle E ... Electric field

Claims (2)

液体試料中に分散している粒子の形状物性値を求める形状物性値測定機構と、該粒子の粒径を測定する粒径測定機構と、該粒子のゼータ電位を測定するゼータ電位測定機構と、を少なくとも備えた粒子物性測定装置であって、
前記形状物性値測定機構及び前記粒径測定機構における測定結果データに基づき、粒子表面形状と粒子の大きさを画像として表示するための粒子画像データと、
前記ゼータ電位測定機構における測定結果データに基づき、粒子のゼータ電位を該粒子の粒子表面からの層の大きさ及び/又は粒子表面からの層の色として表示するためのゼータ電位画像データと、を作成する画像データ作成部を更に備えていることを特徴とする粒子物性測定装置。
A shape property value measurement mechanism for determining the shape property value of particles dispersed in a liquid sample, a particle size measurement mechanism for measuring the particle size of the particles, a zeta potential measurement mechanism for measuring the zeta potential of the particles, A particle physical property measuring apparatus comprising at least
Based on the measurement result data in the shape physical property measurement mechanism and the particle size measurement mechanism, particle image data for displaying the particle surface shape and particle size as an image,
Based on the measurement result data in the zeta potential measurement mechanism, zeta potential image data for displaying the zeta potential of the particle as the size of the layer from the particle surface and / or the color of the layer from the particle surface. An apparatus for measuring particle physical properties, further comprising an image data creation unit for creating.
前記ゼータ電位測定機構における測定結果データと、前記粒子表面からの層の大きさ及び/又は前記粒子表面からの層の色とを関連付けているテーブルを格納するテーブル格納部を更に備えていることを特徴とする請求項1記載の粒子物性測定装置。   A table storage unit for storing a table associating measurement result data in the zeta potential measurement mechanism with a layer size from the particle surface and / or a layer color from the particle surface; 2. The particle physical property measuring apparatus according to claim 1, wherein
JP2008247413A 2008-09-26 2008-09-26 Particle property measuring device Expired - Fee Related JP4944859B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008247413A JP4944859B2 (en) 2008-09-26 2008-09-26 Particle property measuring device
EP09816190.4A EP2333516A4 (en) 2008-09-26 2009-09-25 Device for measuring physical property of particle
CN2009801370287A CN102159934A (en) 2008-09-26 2009-09-25 Device for measuring physical property of particle
US13/121,170 US8625093B2 (en) 2008-09-26 2009-09-25 Particle characterization device
GB1104774.3A GB2475458B (en) 2008-09-26 2009-09-25 Particle characterization instrument
CN2011101371344A CN102323191B (en) 2008-09-26 2009-09-25 Device for measuring physical property of particle
PCT/JP2009/066628 WO2010035775A1 (en) 2008-09-26 2009-09-25 Device for measuring physical property of particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247413A JP4944859B2 (en) 2008-09-26 2008-09-26 Particle property measuring device

Publications (2)

Publication Number Publication Date
JP2010078468A JP2010078468A (en) 2010-04-08
JP4944859B2 true JP4944859B2 (en) 2012-06-06

Family

ID=42209090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247413A Expired - Fee Related JP4944859B2 (en) 2008-09-26 2008-09-26 Particle property measuring device

Country Status (1)

Country Link
JP (1) JP4944859B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608671B (en) 2011-06-15 2016-05-18 马尔文仪器有限公司 Surface charge measurement
CN104390895B (en) * 2014-11-25 2017-02-22 中国科学技术大学 Microimaging-based method for measuring particle size by utilizing image gray scale
JP6602211B2 (en) 2016-01-22 2019-11-06 株式会社堀場製作所 Particle analysis apparatus, particle analysis method, and particle analysis program
CN106940301B (en) * 2017-03-10 2019-10-11 华南师范大学 A kind of particle zeta potential measurement method and device based on asymmetric electric field
CN118130324B (en) * 2024-04-30 2024-07-23 深圳市研成工业技术有限公司 Wide-range environment dust monitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291580B2 (en) * 1993-03-26 2002-06-10 日本光電工業株式会社 Apparatus for measuring electric charge of particles in liquid, blood cell measuring method and electric charge detecting method
US6721051B2 (en) * 2000-09-20 2004-04-13 Synergetic Technologies, Inc. Non-intrusive method and apparatus for characterizing particles based on scattering matrix elements measurements using elliptically polarized radiation
US6706163B2 (en) * 2001-03-21 2004-03-16 Michael Seul On-chip analysis of particles and fractionation of particle mixtures using light-controlled electrokinetic assembly of particles near surfaces

Also Published As

Publication number Publication date
JP2010078468A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
Babick Dynamic light scattering (DLS)
US8625093B2 (en) Particle characterization device
Maaß et al. Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions
Schärtl Light scattering from polymer solutions and nanoparticle dispersions
JP4944859B2 (en) Particle property measuring device
JP5517000B2 (en) Particle size measuring device and particle size measuring method
US10427163B2 (en) Cuvette carrier
US11002655B2 (en) Cuvette carrier
JP2017500549A (en) Improvements in and relating to instrument calibration
EP3479083B1 (en) Method for calibrating investigated volume for light sheet based nanoparticle tracking
JP6726675B2 (en) Particle analyzer and particle analysis method
Vad et al. Experimental determination of resolution function parameters from small-angle neutron scattering data of a colloidal SiO2 dispersion
Bienert et al. The size distribution of'gold standard'nanoparticles
JP2010101877A (en) Instrument for measuring physical properties of particles
JP2011053002A (en) Particle measuring instrument using scattered light
Takahashi et al. Development of a standard method for nanoparticle sizing by using the angular dependence of dynamic light scattering
Safaie et al. Circular polarized light microscopy to investigate the crystal orientation of aluminium
Hoffmann et al. Determining nanorod dimensions in dispersion with size anisotropy nanoparticle tracking analysis
CN108613905A (en) A kind of water body recovery technology concentration real time on-line monitoring sensor and monitoring method
JP2010101705A (en) Instrument for measuring physical properties of particles
JP2000002644A (en) Laser diffraction/scattering type grain size distribution- measuring device
JPH10197439A (en) Method for comparing light intensity distribution data of diffracted/scattered light and particle size distribution measuring instrument
JP6602211B2 (en) Particle analysis apparatus, particle analysis method, and particle analysis program
KR20040020915A (en) Nonuniform-density sample analyzing method, device and system
Niskanen et al. Estimation of effective refractive index of birefringent particles using a combination of the immersion liquid method and light scattering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Ref document number: 4944859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees