JP2014006173A - Particle characteristic measurement apparatus - Google Patents

Particle characteristic measurement apparatus Download PDF

Info

Publication number
JP2014006173A
JP2014006173A JP2012142705A JP2012142705A JP2014006173A JP 2014006173 A JP2014006173 A JP 2014006173A JP 2012142705 A JP2012142705 A JP 2012142705A JP 2012142705 A JP2012142705 A JP 2012142705A JP 2014006173 A JP2014006173 A JP 2014006173A
Authority
JP
Japan
Prior art keywords
measured
fine particles
light
laser
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012142705A
Other languages
Japanese (ja)
Other versions
JP6050619B2 (en
Inventor
Seiichi Sudo
誠一 須藤
Kenju Otsuka
建樹 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gotoh Educational Corp
Original Assignee
Gotoh Educational Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gotoh Educational Corp filed Critical Gotoh Educational Corp
Priority to JP2012142705A priority Critical patent/JP6050619B2/en
Publication of JP2014006173A publication Critical patent/JP2014006173A/en
Application granted granted Critical
Publication of JP6050619B2 publication Critical patent/JP6050619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a particle characteristic measurement apparatus capable of simultaneously calculating the particle size and the zeta potential of an electrophoretic fine particle.SOLUTION: The particle characteristic measurement apparatus comprises: a laser oscillator having a light source and irradiating an object to be measured that contains a solvent and fine particles dispersed in the solvent with a laser beam output from the light source; a light detection unit for converting a laser output beam which is modulated with a scattered feedback beam from the object to be measured, into a signal; and a signal processor for analyzing the signal converted by the light detection unit. The signal processor obtains frequency characteristics of an intensity fluctuation of the modulated laser output beam by analyzing the signal, determines a diffusion coefficient of a fine particle contained in the object to be measured from the frequency characteristics of the intensity fluctuation, and determines a particle size of the fine particle contained in the object to be measured from the diffusion coefficient. The signal processor also determines a moving velocity of the fine particle contained in the object to be measured from the frequency characteristics of the intensity fluctuation and determines the zeta potential of the fine particle contained in the object to be measured from the moving velocity.

Description

本発明は,溶媒中に分散したコロイド粒子等の微粒子の粒子径とゼータ電位を測定する粒子特性計測装置に関するものである。   The present invention relates to a particle property measuring apparatus for measuring the particle size and zeta potential of fine particles such as colloidal particles dispersed in a solvent.

従来から,粉黛工業,化粧品工業,色材工業の分野では,溶媒中の微粒子の評価に,粒子径やゼータ電位の測定が広く行われてきた。溶液中に分散した微粒子の粒子径測定法として,顕微鏡による観察から粒子径を評価する方法や,粒子にレーザ光を照射してその散乱光から粒子径を測定する方法(動的光散乱法)が知られている。   Conventionally, in the fields of the powder industry, the cosmetics industry, and the color material industry, particle diameter and zeta potential have been widely measured for the evaluation of fine particles in solvents. As a method for measuring the particle size of fine particles dispersed in a solution, a method for evaluating the particle size from observation under a microscope, or a method for measuring the particle size from the scattered light by irradiating the particle with laser light (dynamic light scattering method) It has been known.

粒子のゼータ電位とは,溶液中の粒子の滑り面とバルクな溶媒との電位差である。溶媒と接する微粒子の界面は,基本的に帯電している。この帯電した微粒子の作る電場は,溶媒から逆極性の電荷のイオンを引き寄せ,粒子表面近傍に滞在させる。この溶媒に電場を作用させると,微粒子はイオンを引き連れた状態で電極に向かって電気泳動する。この移動が起こる面が滑り面であり,この滑り面と溶媒の電位差がゼータ電位と呼ばれる。ゼータ電位は,微粒子を含んだ溶液に電場を作用させたときの電気泳動移動度に基づいて評価される。この電気泳動移動度の検出には,顕微鏡での観察から電気泳動移動度を評価する方法や,レーザ光を照射し,微粒子からの散乱光の周波数がドップラー効果によって変化することを利用して電気泳動移動度を検出するレーザドップラー法が知られている。   The zeta potential of a particle is the potential difference between the sliding surface of the particle in solution and the bulk solvent. The interface of the fine particles in contact with the solvent is basically charged. The electric field created by the charged fine particles attracts ions of opposite polarity from the solvent and stays near the particle surface. When an electric field is applied to this solvent, the fine particles are electrophoresed toward the electrode in a state where ions are attracted. The surface where this movement occurs is a sliding surface, and the potential difference between the sliding surface and the solvent is called the zeta potential. The zeta potential is evaluated based on the electrophoretic mobility when an electric field is applied to a solution containing fine particles. This electrophoretic mobility is detected using a method of evaluating electrophoretic mobility from observation with a microscope, or the fact that the frequency of scattered light from fine particles is changed by the Doppler effect when irradiated with laser light. A laser Doppler method for detecting electrophoretic mobility is known.

このような従来技術では,粒子径とゼータ電位は別々の測定法により個別に測定されており,測定装置も個別に必要になっていた。各測定装置を一つの装置に組み上げた装置も存在するが,粒子径とゼータ電位の測定は個別に行うため,粒子径とゼータ電位を一度に測定することはできなかった。また電気泳動する微粒子の像を観察して得られる移動度から,数値演算で間接的に粒子径を求めることで,粒子径とゼータ電位を測定する方法が開示されている(例えば,特許文献1参照。)。しかしこの方法では,微粒子の像を観察するため,粒子径がナノメートルの微粒子の測定は行えない。   In such a conventional technique, the particle diameter and the zeta potential are individually measured by different measuring methods, and a measuring device is also required individually. There are devices that assemble each measurement device into one device, but the particle size and zeta potential cannot be measured at once because the particle size and zeta potential are measured separately. Further, a method is disclosed in which the particle diameter and zeta potential are measured by indirectly obtaining the particle diameter by numerical calculation from the mobility obtained by observing an image of the electrophoretic fine particles (for example, Patent Document 1). reference.). However, this method cannot measure fine particles with a nanometer diameter because the fine particle image is observed.

また,従来,光源から出射される出力光の一部を被測定物に入射させ,該被測定物からの散乱帰還光を前記光源に帰還させ,該帰還光と前記出力光との干渉により誘起される出力光の強度揺らぎの周波数を測定する技術を用いたレーザ速度計(例えば,特許文献2参照。),粒子径計測装置(例えば,非特許文献1参照。),及び流速測定装置(例えば,非特許文献2参照。)等が開示されている。   Conventionally, part of the output light emitted from the light source is incident on the object to be measured, and scattered feedback light from the object to be measured is fed back to the light source and induced by interference between the feedback light and the output light. A laser velocimeter (for example, see Patent Document 2), a particle diameter measuring device (for example, see Non-Patent Document 1), and a flow velocity measuring device (for example, see Patent Document 2) using a technique for measuring the frequency of intensity fluctuation of the output light. , See Non-Patent Document 2.) and the like.

特開2007−322329号公報JP 2007-322329 A 特開2004−226093号公報JP 2004-226093 A

S.Sudo, Y.Miyasaka, K.Otsuka, Y.Takahashi, T.Oishi, and J.−Y.Ko, “Quick and easy measurement of particle size of Brownian particles and planktons in water using a self−mixing laser”, OPTICS EXPRESS, 2006年2月6日, Vol.14, No.3, p.1044−1054.S. Sudo, Y. et al. Miyasaka, K. et al. Otsuka, Y. et al. Takahashi, T .; Oishi, and J.H. -Y. Ko, “Quick and easy measurement of particle size of Brownian particles and plantons in water using a self-mixing laser”, OPTICS EX6, June, 2003. 14, no. 3, p. 1044-1054. S.Sudo, Y.Miyasaka, K.Nemoto, K.Kamikariya, and K.Otsuka, “Detection of small particle in fluid flow using a self−mixing laser”, OPTICS EXPRESS, 2007年6月25日, Vol.15, No.13, p.8135−8145.S. Sudo, Y. et al. Miyasaka, K. et al. Nemoto, K .; Kamikariya, and K.K. Otsuka, “Detection of small particle in fluid using a self-mixing laser”, OPTICS EXPRESS, June 25, 2007, Vol. 15, no. 13, p. 8135-8145.

しかしながら,上述した従来技術では,一つの粒子特性計測装置を用いて,電気泳動するナノサイズの微粒子の粒子径とゼータ電位とを同時算出することはできなかった。   However, in the above-described prior art, it has been impossible to simultaneously calculate the particle size and the zeta potential of nano-sized fine particles to be electrophoresed using a single particle property measuring device.

本発明は,上記の課題に鑑みてなされたものであり,一つの粒子特性計測装置を用いて,簡易に且つ正確に,電気泳動する微粒子の粒子径を算出することのできる粒子特性計測装置を提供することを目的とする。   The present invention has been made in view of the above problems, and a particle characteristic measuring apparatus capable of calculating the particle diameter of fine particles to be electrophoresed easily and accurately using a single particle characteristic measuring apparatus. The purpose is to provide.

さらに,本発明は,電気泳動する微粒子の粒子径とゼータ電位を同時算出することのできる粒子特性計測装置を提供することを目的とする。   It is another object of the present invention to provide a particle characteristic measuring apparatus capable of simultaneously calculating the particle size and zeta potential of fine particles to be electrophoresed.

本発明の一実施形態に係る粒子特性計測装置は,光源を備え,前記光源から出力されるレーザ光を,溶媒及び前記溶媒中に分散した微粒子を含む被測定物に入射させるレーザ発振器と,前記被測定物からの散乱帰還光により変調されたレーザ出力光を信号に変換する光検出部と,前記光検出部により変換された前記信号を解析する信号処理部と,を備え,前記信号処理部は,前記信号を解析して前記変調されたレーザー出力光の強度揺らぎの周波数特性を求め,前記強度揺らぎの周波数特性から前記被測定物に含まれる前記微粒子の拡散係数を求め,前記拡散係数から前記被測定物に含まれる前記微粒子の粒子径を求めることを含むことを特徴とする。   A particle characteristic measurement apparatus according to an embodiment of the present invention includes a light source, and a laser oscillator that causes a laser beam output from the light source to be incident on a measurement object including a solvent and fine particles dispersed in the solvent; A signal detection unit that converts a laser output light modulated by scattered feedback light from the object to be measured into a signal; and a signal processing unit that analyzes the signal converted by the light detection unit, the signal processing unit Analyzing the signal to obtain a frequency characteristic of intensity fluctuation of the modulated laser output light, obtaining a diffusion coefficient of the fine particles contained in the object to be measured from the frequency characteristic of the intensity fluctuation, and from the diffusion coefficient It includes determining the particle diameter of the fine particles contained in the object to be measured.

前記信号処理部は,前記強度揺らぎの周波数特性から前記被測定物に含まれる前記微粒子の移動速度を求め,前記移動速度から前記被測定物に含まれる前記微粒子のゼータ電位を求めてもよい。   The signal processing unit may obtain a moving speed of the fine particles contained in the measured object from the frequency characteristic of the intensity fluctuation, and obtain a zeta potential of the fine particles contained in the measured object from the moving speed.

前記強度揺らぎの周波数特性,即ちパワースペクトル,をI(ω)とした場合に,次式(I)あるいは次式(I)の重ね合わせの式にカーブフィッティングさせることにより,前記被測定物の前記拡散係数及び前記移動速度を求めてもよい。

Figure 2014006173

但し,Fはフーリエ変換を表しており,jは虚数単位,tは時間,vは前記移動速度,Dは前記拡散係数,wは前記レーザ光のビーム幅,θは前記被測定物の移動方向と前記光源の発振軸のなす角度,kは波数を示す。また,波数kは次式(II)により導出される。
Figure 2014006173

但し,nは前記溶媒の屈折率,λは前記レーザ光の波長,φは散乱角を示す。 When the frequency characteristic of the intensity fluctuation, that is, the power spectrum is I (ω), the curve of the object to be measured is obtained by curve fitting to the following formula (I) or the superposition formula of the following formula (I). A diffusion coefficient and the moving speed may be obtained.
Figure 2014006173

Where F is Fourier transform, j is an imaginary unit, t is time, v is the moving speed, D is the diffusion coefficient, w is the beam width of the laser beam, and θ is the moving direction of the object to be measured. And k represents the wave number. The wave number k is derived from the following equation (II).
Figure 2014006173

Where n is the refractive index of the solvent, λ is the wavelength of the laser beam, and φ is the scattering angle.

前記レーザ光を周波数偏移させる光音響変調素子(AOM)をさらに備え,前記信号処理部は,前記光音響変調素子(AOM)により周波数偏移された前記レーザ光を前記被測定物に入射させて前記被測定物からの前記散乱帰還光により変調されたレーザ出力光を変換した信号を解析して前記強度揺らぎの周波数特性を求めてもよい。   A photoacoustic modulation element (AOM) that shifts the frequency of the laser light is further provided, and the signal processing unit causes the laser light frequency-shifted by the photoacoustic modulation element (AOM) to enter the object to be measured. Then, a signal obtained by converting the laser output light modulated by the scattered feedback light from the object to be measured may be analyzed to obtain the frequency characteristic of the intensity fluctuation.

また,本発明の一実施形態に係るプログラムは,溶媒及び前記溶媒中に分散した微粒子を含む被測定物にレーザ光を入射させて前記被測定物からの散乱帰還光により変調されたレーザ出力光を変換した信号をコンピュータに解析させて前記コンピュータに前記被測定物に含まれる前記微粒子の特性を求める処理を実行させるためのプログラムであって,前記コンピュータに,前記信号を解析して前記変調されたレーザ出力光の強度揺らぎの周波数特性を求め,前記強度揺らぎの周波数特性から前記被測定物に含まれる前記微粒子の拡散係数を求め,前記拡散係数から前記被測定物に含まれる前記微粒子の粒子径を求める処理を実行させることを特徴とする。   A program according to an embodiment of the present invention includes a laser output light modulated by scattering feedback light from a measurement object by causing a laser beam to enter the measurement object including a solvent and fine particles dispersed in the solvent. A program for causing a computer to analyze a signal obtained by converting the signal to obtain a characteristic of the fine particles contained in the object to be measured, the computer analyzing the signal and modulating the signal. The frequency characteristic of the intensity fluctuation of the laser output light is obtained, the diffusion coefficient of the fine particles contained in the measured object is obtained from the frequency characteristic of the intensity fluctuation, and the particles of the fine particles contained in the measured object are obtained from the diffusion coefficient. A process for obtaining a diameter is executed.

また,前記コンピュータに,前記強度揺らぎの周波数特性から前記被測定物に含まれる前記微粒子の移動速度を求め,前記移動速度から前記被測定物に含まれる前記微粒子のゼータ電位を求める処理を実行させてもよい。   Further, the computer is caused to execute a process of obtaining a moving speed of the fine particles contained in the measured object from the frequency characteristic of the intensity fluctuation, and obtaining a zeta potential of the fine particles contained in the measured object from the moving speed. May be.

本発明の一実施形態に係る粒子特性計測装置によれば,微粒子の像を顕微鏡等で観察することなく,一つの粒子特性計測装置を用いて,簡易に且つ正確に,電気泳動する微粒子の粒子径を算出することができる。   According to the particle characteristic measuring apparatus according to one embodiment of the present invention, the particles of the fine particles that are easily and accurately electrophoresed using one particle characteristic measuring apparatus without observing the image of the fine particles with a microscope or the like. The diameter can be calculated.

さらに,本発明の一実施形態に係る粒子特性計測装置によれば,電気泳動する微粒子の粒子径とゼータ電位を同時算出することが可能となる。   Furthermore, according to the particle characteristic measuring apparatus according to an embodiment of the present invention, it is possible to simultaneously calculate the particle diameter and zeta potential of the fine particles to be electrophoresed.

本発明の粒子特性計測装置の概略構成図である。It is a schematic block diagram of the particle characteristic measuring apparatus of this invention. 本発明の粒子特性計測装置による粒子特性を算出する処理を示したフロー図である。It is the flowchart which showed the process which calculates the particle characteristic by the particle characteristic measuring apparatus of this invention. 本発明の実施例に係る粒子特性計測装置の概略構成図である。It is a schematic block diagram of the particle characteristic measuring apparatus which concerns on the Example of this invention. 本発明の実施例に係る粒子特性計測装置により測定したレーザ出力光のパワースペクトルを示すグラフである。It is a graph which shows the power spectrum of the laser output light measured with the particle | grain characteristic measuring apparatus which concerns on the Example of this invention.

以下,図面を参照しながら,本発明の粒子特性計測装置について説明する。なお,本発明の粒子特性計測装置は,以下の実施形態に限定されることはなく,種々の変形を行ない実施することが可能である。   Hereinafter, the particle characteristic measuring apparatus of the present invention will be described with reference to the drawings. In addition, the particle characteristic measuring apparatus of the present invention is not limited to the following embodiment, and can be implemented with various modifications.

以下,図1を参照し,本発明に係る粒子特性計測装置1について説明する。図1は,本発明に係る粒子特性計測装置1の概略構成図である。この粒子特性計測装置1は,レーザ発振器2,ビームスプリッタ3,集光レンズ4,光検出器5,信号処理部6,被測定物7である微粒子を含む。   Hereinafter, the particle characteristic measuring apparatus 1 according to the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a particle property measuring apparatus 1 according to the present invention. The particle characteristic measuring apparatus 1 includes fine particles which are a laser oscillator 2, a beam splitter 3, a condensing lens 4, a photodetector 5, a signal processing unit 6, and an object to be measured 7.

レーザ発振器2は,光源を備え,光源から出力されるレーザ光が被測定物7に入射される。ビームスプリッタ3は,出力光の一部を透過させて被測定物7に入射させるとともに,残りの出力光を一定の角度に反射させ,光検出器5に入射させる。光検出器5は,入射された光を電気信号に変換し,信号処理部6は光検出器5から出力された信号を解析する。   The laser oscillator 2 includes a light source, and laser light output from the light source is incident on the object to be measured 7. The beam splitter 3 transmits a part of the output light and makes it incident on the object 7 to be measured, and reflects the remaining output light at a certain angle and makes it incident on the photodetector 5. The photodetector 5 converts the incident light into an electrical signal, and the signal processing unit 6 analyzes the signal output from the photodetector 5.

レーザ発振器2の光源から出射される出力光の一部(発振光)が被測定物7に入射すると,被測定物7からの散乱帰還光Eが光源の発振軸方向に帰還される。このような散乱帰還光Eによってレーザ出力光には変調が与えられるため,変調されたレーザ出力光が光検出器5によって電気信号に変換され,信号処理部6は,変換された信号を解析することにより,被測定物7の粒子特性を算出することができる。 When part of the output light emitted from the laser oscillator 2 of a light source (oscillation light) is incident on the object 7 to be measured, the scattered backward light E S from the object to be measured 7 is fed back to the oscillation axis of the light source. Since modulation is given to the laser output beam by such scattered returned light E S, the laser output light modulated is converted into an electric signal by the photodetector 5, the signal processing unit 6 analyzes the converted signal By doing so, the particle characteristics of the DUT 7 can be calculated.

以下,被測定物7からの散乱帰還光Eによって変調されたレーザ出力光に基づいて,信号処理部6において被測定物7の粒子特性を算出する方法について説明する。 Hereinafter, based on the laser output light modulated by the scattered backward light E S from the object to be measured 7, a method for calculating the particle properties of the object 7 in the signal processing unit 6.

まず,被測定物7からの散乱帰還光Eは,次式の様なドップラー周波数偏移f[Hz]を受ける。

Figure 2014006173
First, scattered returned light E S from the object to be measured 7 is subjected to Doppler frequency shift f D, such as the following formula [Hz].
Figure 2014006173

ここでv[m/s]は被測定物の移動速度,λ[m]は発振光の波長,θは被測定物の移動方向と光源の発振軸のなす角[rad]である。従って,レーザ発振器2にはfだけ周波数が偏移した光が注入されることになる。この結果,散乱帰還光Eは発振光Eと干渉することで,これら2つの電界の差周波数,すなわちfで発振光Eが強度変調される。このとき,発振光強度(S=E )の時間変化は,次式の様に表される。

Figure 2014006173
Here, v [m / s] is the moving speed of the object to be measured, λ [m] is the wavelength of the oscillation light, and θ is the angle [rad] between the moving direction of the object to be measured and the oscillation axis of the light source. Therefore, the the laser oscillator 2 is injected light shifted in frequency by f D. As a result, scattered returned light E S is by interfering with the oscillation light E 0, these two field difference frequency, that is, oscillation light E 0 at f D is intensity-modulated. At this time, the time change of the oscillation light intensity (S 0 = E 0 2 ) is expressed by the following equation.
Figure 2014006173

ただし,n[/m]は反転分布密度,t=τ/τ(τ[s]:時間,τ[s]:反転分布寿命),K=τ/τ(τ[s]:光子寿命),τ=τ/κ(κ:レーザ発振器2の出力鏡の振幅透過率)である。τ(=2L/c)は光のレーザ発振器2中での往復時間であり,cは光速度(2.99×10m/s)であり,L[m]はレーザ発振器長である。Kは反転分布寿命と光子寿命の比となる。 However, n p [/ m 3 ] is an inversion distribution density, t 0 = τ / τ 0 (τ [s]: time, τ 0 [s]: inversion distribution lifetime), K = τ 0 / τ pp [S]: Photon lifetime), τ p = τ 1 / κ 2 (κ: amplitude transmittance of the output mirror of the laser oscillator 2). τ l (= 2L / c) is the round-trip time of light in the laser oscillator 2, c is the speed of light (2.99 × 10 8 m / s), and L [m] is the laser oscillator length . K is the ratio of the inverted distribution lifetime to the photon lifetime.

式(2)に示したように,発振光強度Sはfの周波数で変調を受けることになり,この場合の変調度はK(=τ/τ)に比例する。従って,散乱帰還光Eの振幅が極微弱であってもKを大きくすれば十分大きな変調度が得られることになる。Lの小さなレーザではτが短く,しかもτがτに比例するので,極めて大きなKを得ることができる。例えば,レーザ発振器2として半導体レーザで励起される結晶厚み1mm程度のLiNdP12固体レーザを用いれば,K=10〜10が得られる。従って,結晶厚みの薄い固体レーザを用いるほど,高感度での計測が可能となる。 As shown in the equation (2), the oscillation light intensity S 0 is modulated at the frequency f D , and the modulation degree in this case is proportional to K (= τ 0 / τ p ). Therefore, the amplitude of the scattered return light E S is the sufficiently large degree of modulation by increasing the K be a very weak is obtained. In a laser with a small L, τ l is short and τ p is proportional to τ l , so an extremely large K can be obtained. For example, if a LiNdP 4 O 12 solid-state laser having a crystal thickness of about 1 mm excited by a semiconductor laser is used as the laser oscillator 2, K = 10 5 to 10 6 can be obtained. Therefore, the more sensitive the measurement is possible, the thinner the solid-state laser is used.

また式(2)に示したように,レーザ出力光の強度揺らぎを表す式(2)の第2項は,散乱帰還光Eと発振光Eの比,すなわちレーザ光の帰還率に比例する。従って,レーザ光の帰還率を高くすることで,十分大きな変調度が得られることになる。 Also as shown in Equation (2), the second term of equation (2) representing the intensity fluctuations of the laser output beam, the ratio of the scattered return light E S and the oscillation light E 0, i.e. proportional to the feedback of the laser beam To do. Therefore, a sufficiently large degree of modulation can be obtained by increasing the feedback rate of the laser beam.

しかし,溶媒中を電気泳動する微粒子は,一定の速度で並進移動するのではなく,溶媒分子との衝突によってゆらぎながら移動する。このとき,信号処理部6は,被測定物からの散乱帰還光によって変調されたレーザ出力光が光検出器5によって光電変換された信号に基づき,レーザ出力光の強度揺らぎの周波数特性を導出する。レーザ出力光の強度揺らぎの周波数特性(パワースペクトル)I(ω)は,次式のように表される。

Figure 2014006173
However, the microparticles that electrophorese in the solvent do not translate at a constant speed, but move while fluctuating due to collision with solvent molecules. At this time, the signal processing unit 6 derives the frequency characteristic of the intensity fluctuation of the laser output light based on the signal obtained by photoelectrically converting the laser output light modulated by the scattered feedback light from the object to be measured by the photodetector 5. . The frequency characteristic (power spectrum) I (ω) of the intensity fluctuation of the laser output light is expressed by the following equation.
Figure 2014006173

ここでFはフーリエ変換を表し,jは虚数単位,t[s]は時間,v[m/s]は被測定物の移動速度,Dは拡散係数,w[m]は微粒子に照射されたレーザ光のビーム幅,θ[rad]は被測定物の移動方向と光源の発振軸のなす角度,kは波数を示している。また,式(3)の第一項目はドップラーシフト,第二項目は微粒子の拡散,第三項目は微粒子の並進運動を表している。ここで波数kの大きさは,溶媒の屈折率nと発振光の波長λ[m]と散乱角φ[rad]を用いてk=4πn/λsin(φ/2)となる。但し,図1に示した粒子特性計測装置1においては,φ=πである。   Here, F represents Fourier transform, j is an imaginary unit, t [s] is time, v [m / s] is a moving speed of the object to be measured, D is a diffusion coefficient, and w [m] is irradiated to the fine particles. The beam width of the laser light, θ [rad] is the angle between the moving direction of the object to be measured and the oscillation axis of the light source, and k is the wave number. In addition, the first item of Equation (3) represents the Doppler shift, the second item represents the diffusion of fine particles, and the third item represents the translational movement of the fine particles. Here, the magnitude of the wave number k is k = 4πn / λsin (φ / 2) using the refractive index n of the solvent, the wavelength λ [m] of the oscillation light, and the scattering angle φ [rad]. However, in the particle property measuring apparatus 1 shown in FIG. 1, φ = π.

式(3)の拡散係数Dから,微粒子の粒子径d[m]は,次式のように求められる。

Figure 2014006173
From the diffusion coefficient D of Expression (3), the particle diameter d [m] of the fine particles can be obtained as follows.
Figure 2014006173

ここでkはボルツマン定数,T[K]は溶媒の温度,η[Ps・s]は溶媒の粘度である。一方,電気泳動する微粒子の電気泳動移動度U[m/Vs]とゼータ電位ζ[V]は次式のように求めることができる。

Figure 2014006173

Figure 2014006173
Here, k B is the Boltzmann constant, T [K] is the temperature of the solvent, and η [Ps · s] is the viscosity of the solvent. On the other hand, the electrophoretic mobility U [m 2 / Vs] and the zeta potential ζ [V] of the fine particles to be electrophoresed can be obtained as follows.
Figure 2014006173

Figure 2014006173

ここでEは微粒子を含む溶媒に加えた電場の大きさ,εは溶媒の誘電率である。従って,レーザ出力光の強度揺らぎの周波数特性I(ω)を式(3)に基づいて解析(カーブフィッティング)を行うことで,微粒子の粒子径dとゼータ電位ζを求めることができる。また、複数の微粒子の粒子径d及び複数のゼータ電位ζを求める場合には、式(3)の重ね合わせの式で解析(カーブフィッティング)してもよい。   Here, E is the magnitude of the electric field applied to the solvent containing fine particles, and ε is the dielectric constant of the solvent. Therefore, the particle diameter d and the zeta potential ζ of the fine particles can be obtained by analyzing the frequency characteristic I (ω) of the intensity fluctuation of the laser output light based on the equation (3) (curve fitting). Further, when obtaining the particle diameter d and the plurality of zeta potentials ζ of a plurality of fine particles, analysis (curve fitting) may be performed using the superposition equation of equation (3).

本発明の粒子特性計測装置1によれば,図2にフロー図として図示したように,まず,被測定物からの散乱帰還光Eによって変調されたレーザ出力光が光電変換された信号に基づき,信号処理部6においてレーザ出力光の強度揺らぎの周波数特性I(ω)を求める(図2のS1)。次に,求めた強度揺らぎの周波数特性I(ω)を式(3)を用いてカーブフィッティングすることによって,被測定物に含まれる微粒子の拡散係数Dと被測定物の移動速度vを求める(図2のS2)。次に,求めた拡散係数Dを式(4)に代入して被測定物に含まれる微粒子の粒子径dを求めることができる(図2のS3)。また,被測定物の移動速度vを式(1)に代入することによって,ドップラー周波数偏移fを求めることができる。さらに,式(5)に基づき,被測定物の移動速度vから電気泳動移動度Uを求めることができ,式(6)に基づき,電気泳動移動度Uから,ゼータ電位ζを求めることができる(図2のS4)。このように,同じ強度揺らぎの周波数特性I(ω)から,被測定物に含まれる微粒子の拡散係数Dと被測定物の移動速度vを同時にカーブフィッティングによって求めることができ,拡散係数Dから微粒子の粒子径dを,移動速度vからゼータ電位ζをそれぞれ求めることができる。 According to the particle characteristic measurement apparatus 1 of the present invention, as shown as a flow diagram in Figure 2, first, based on the signal laser output light modulated by the scattered backward light E S from the measured object is photoelectrically converted The signal processing unit 6 obtains the frequency characteristic I (ω) of the intensity fluctuation of the laser output light (S1 in FIG. 2). Next, the frequency characteristic I (ω) of the obtained intensity fluctuation is curve-fitted using the equation (3), thereby obtaining the diffusion coefficient D of the fine particles contained in the measured object and the moving speed v of the measured object ( S2 in FIG. Next, the obtained diffusion coefficient D can be substituted into the equation (4) to obtain the particle diameter d of the fine particles contained in the object to be measured (S3 in FIG. 2). Further, by substituting the moving velocity v of the object in the formula (1), it is possible to obtain the Doppler frequency shift f D. Furthermore, the electrophoretic mobility U can be obtained from the moving speed v of the object to be measured based on the equation (5), and the zeta potential ζ can be obtained from the electrophoretic mobility U based on the equation (6). (S4 in FIG. 2). Thus, from the frequency characteristic I (ω) of the same intensity fluctuation, the diffusion coefficient D of the fine particles contained in the object to be measured and the moving speed v of the object to be measured can be simultaneously obtained by curve fitting. And the zeta potential ζ can be determined from the moving speed v.

以上のとおり,本発明の一実施形態に係る粒子特性計測装置1によれば,簡易な構成の粒子特性計測装置1を用いて,電気泳動する微粒子の粒子径dを算出することができる。   As described above, according to the particle characteristic measuring apparatus 1 according to the embodiment of the present invention, the particle diameter d of the fine particles to be electrophoresed can be calculated using the particle characteristic measuring apparatus 1 having a simple configuration.

さらに,本発明の一実施形態に係る粒子特性計測装置1によれば,上述した式(3)〜式(6)を用いて,電気泳動する微粒子の粒子径dとともに,ゼータ電位ζを同時算出することが可能となる。   Furthermore, according to the particle characteristic measuring apparatus 1 according to the embodiment of the present invention, the zeta potential ζ is calculated simultaneously with the particle diameter d of the electrophoretic fine particles using the above-described equations (3) to (6). It becomes possible to do.

以下,図3及び図4を参照し,微粒子の粒子径d及びゼータ電位ζを同時に計測することが可能な本発明の実施例に係る粒子特性計測装置10について説明する。   Hereinafter, a particle characteristic measuring apparatus 10 according to an embodiment of the present invention capable of simultaneously measuring the particle diameter d and the zeta potential ζ of fine particles will be described with reference to FIGS. 3 and 4.

図3は本発明の実施例に係る粒子特性計測装置10の概略構成を図示したものである。粒子特性計測装置10は,固体レーザ11,固体レーザ励起用半導体レーザ部12,ビームスプリッタ13,集光レンズ14,光検出器15,信号処理部16,試料部17,光変調部18を含む。また,固体レーザ励起用半導体レーザ部12は,半導体レーザ22,レーザ形状成型部23,集光レンズ24を含む。固体レーザ11としては,固体レーザ励起用半導体レーザ部12で励起される結晶厚み1mm程度のLiNdP12固体レーザを用いた。Kは,10〜10である。 FIG. 3 illustrates a schematic configuration of the particle property measuring apparatus 10 according to the embodiment of the present invention. The particle characteristic measuring apparatus 10 includes a solid-state laser 11, a solid-state laser excitation semiconductor laser unit 12, a beam splitter 13, a condensing lens 14, a photodetector 15, a signal processing unit 16, a sample unit 17, and a light modulation unit 18. The solid-state laser excitation semiconductor laser unit 12 includes a semiconductor laser 22, a laser shape molding unit 23, and a condenser lens 24. As the solid-state laser 11, a LiNdP 4 O 12 solid-state laser having a crystal thickness of about 1 mm excited by the solid-state laser excitation semiconductor laser unit 12 was used. K is from 10 5 to 10 6 .

光変調部18は,光音響変調素子(AOM)35と変調素子ドライバ36を含み,試料部17の試料に照射するレーザ光をあらかじめ周波数偏移させるものである。固体レーザの発振光では,ペデスタルと呼ばれる低振動数成分や,固体レーザ固有の緩和振動が存在するため,出力光の強度揺らぎは低振動数成分や緩和振動に重畳されて観測される。このため,観測される変調光をスペクトル解析すると,微粒子の粒子径dやゼータ電位ζの情報を持つスペクトルに低振動周波成分や緩和振動のスペクトルが重畳されるため,抽出が困難になる。そこで,光音響変調素子35等を含む光変調部18を用いて,出力光の強度揺らぎの中心振動数(即ち,周波数偏移)をこれらの周波数から充分離れるように設定する。図3に示す実施例ではTiOで構成された光音響変調素子(AOM)35を用いた。光変調部18をレーザ光が往復することで,レーザ光にfAOMの周波数偏移が加えられる。 The light modulation unit 18 includes a photoacoustic modulation element (AOM) 35 and a modulation element driver 36, and shifts the frequency of the laser light applied to the sample of the sample unit 17 in advance. In solid-state laser oscillation light, there are low frequency components called pedestals and relaxation oscillations inherent to solid-state lasers, so the intensity fluctuation of the output light is observed superimposed on the low frequency components and relaxation oscillations. For this reason, if the spectrum of the modulated light to be observed is analyzed, extraction is difficult because the spectrum of the low vibration frequency component and the relaxation vibration are superimposed on the spectrum having information on the particle diameter d and the zeta potential ζ of the fine particles. Therefore, the center frequency (that is, frequency shift) of the intensity fluctuation of the output light is set to be sufficiently away from these frequencies by using the light modulation unit 18 including the photoacoustic modulation element 35 and the like. In the embodiment shown in FIG. 3, a photoacoustic modulation element (AOM) 35 made of TiO 2 is used. As the laser beam reciprocates through the optical modulation unit 18, a frequency shift of f AOM is added to the laser beam.

ビームスプリッタ13は,入射した出力光の一部を透過させるとともに,残りの出力光を一定の角度に反射させるものであれば,特に限定されない。光検出器15は,図3に図示した実施例ではInGaAsフォトダイオードを用いたが,これに限定されるものではない。   The beam splitter 13 is not particularly limited as long as it transmits a part of the incident output light and reflects the remaining output light at a certain angle. The photodetector 15 uses an InGaAs photodiode in the embodiment shown in FIG. 3, but is not limited to this.

信号処理部16は,光検出器15から出力される信号を解析する。信号処理部16は,図3に図示した実施例では,AD変換ボードを用いて信号を取得し,コンピュータ上でフーリエ変換を行ったが,スペクトルアナライザを用いても良い。この信号には式(2)に基づくレーザの強度変調由来の信号が含まれており,フーリエ変換及びフィルタ処理により強度変調由来の信号を抽出する。また計算されたスペクトルをコンピュータ上で式(3)によるカーブフィッティングを行い,拡散係数Dと移動速度vを同時に求める。そして,拡散係数Dから微粒子の粒子径dを,移動速度vからゼータ電位ζをそれぞれ求める。   The signal processing unit 16 analyzes the signal output from the photodetector 15. In the embodiment shown in FIG. 3, the signal processing unit 16 acquires a signal using an AD conversion board and performs Fourier transform on the computer, but a spectrum analyzer may be used. This signal includes a signal derived from the intensity modulation of the laser based on the expression (2), and the signal derived from the intensity modulation is extracted by Fourier transform and filter processing. Further, curve fitting is performed on the calculated spectrum by the equation (3) on a computer, and the diffusion coefficient D and the moving speed v are obtained simultaneously. Then, the particle diameter d of the fine particles is obtained from the diffusion coefficient D, and the zeta potential ζ is obtained from the moving speed v.

試料部17は,内部に一対の電極32を取り付けた石英セル31と,電極に電圧を加える直流電源33を含む。石英セル31に被測定物である微粒子を含む試料を充填し,電圧を加えることで微粒子を電気泳動させる。この石英セルに集光レンズ14で集光されたレーザ光を照射する。電極32は試料に接するため,腐食することがある。そこで図3に図示した実施形態ではステンレスを用いたが,金や白金製の電極,或いは金や白金でメッキされた金属でも良い。電極の大きさは問わないが,電極の間隔が近すぎる場合,試料に加えられる電場強度が大きくなりすぎるため,10mm以上間隔を離した方が良い。   The sample unit 17 includes a quartz cell 31 having a pair of electrodes 32 attached therein and a DC power source 33 that applies a voltage to the electrodes. The quartz cell 31 is filled with a sample containing fine particles as a measurement object, and the fine particles are electrophoresed by applying a voltage. The quartz cell is irradiated with the laser beam condensed by the condenser lens 14. Since the electrode 32 contacts the sample, it may corrode. Therefore, although stainless steel is used in the embodiment shown in FIG. 3, gold or platinum electrodes, or metal plated with gold or platinum may be used. The size of the electrodes is not limited, but if the distance between the electrodes is too close, the intensity of the electric field applied to the sample becomes too large.

図4は,試料に粒子径d=200nmのポリスチレンラテックスを水に分散させた分散液を用いた場合に,本発明の実施例に係る粒子特性計測装置10により測定された変調レーザ光のパワースペクトルを図示したグラフである。実線は,これら測定されたパワースペクトルを式(3)でカーブフィッティングしたものである。   FIG. 4 shows the power spectrum of the modulated laser beam measured by the particle characteristic measuring apparatus 10 according to the embodiment of the present invention when a dispersion in which polystyrene latex having a particle diameter d = 200 nm is dispersed in water is used as a sample. It is the graph which illustrated. The solid line is a curve fitting of these measured power spectra using Equation (3).

図4を参照すると,fAOM=2.0003MHzよりも高周波側に,式(3)で記述されるパワースペクトルが観測された。式(3)を用いた解析により,粒子径d=200nm,ドップラー周波数偏移f=85.0Hzを求めることができた。また,得られたドップラー周波数偏移fから,微粒子の電気泳動移動度Uは130μm/Vs,ゼータ電位ζは16.7mVと求めることができた。 Referring to FIG. 4, the power spectrum described by Equation (3) was observed on the higher frequency side than f AOM = 2.0003 MHz. The particle diameter d = 200 nm and the Doppler frequency shift f D = 85.0 Hz could be obtained by analysis using the equation (3). Further, from the obtained Doppler frequency shift f D , the electrophoretic mobility U of the fine particles was found to be 130 μm 2 / Vs, and the zeta potential ζ was found to be 16.7 mV.

このように,本発明の実施例に係る粒子特性計測装置10によれば,光変調部18によって周波数偏移されたレーザ光が,試料部17の試料からの散乱帰還光Eによって変調されるため,周波数特性I(ω)を精度良く求める事ができる。そして,このスペクトルを式(3)に基づき解析することにより被測定物に含まれる微粒子の拡散係数D及び移動速度vをより正確に算出することができる。従って,式(4)に基づき,拡散係数Dから被測定物に含まれる微粒子の粒子径dを正確に求めることができ(図2のS3),移動速度vからドップラー周波数偏移f,電気泳動移動度U及びゼータ電位ζをそれぞれ正確に求めることができる(図2のS4)。 Thus, according to the particle characteristics measurement apparatus 10 according to an embodiment of the present invention, the laser light frequency shift by the light modulation unit 18 is modulated by the scattered backward light E S from the sample of the sample portion 17 Therefore, the frequency characteristic I (ω) can be obtained with high accuracy. Then, by analyzing this spectrum based on the equation (3), the diffusion coefficient D and the moving speed v of the fine particles contained in the object to be measured can be calculated more accurately. Therefore, based on the equation (4), the particle diameter d of the fine particles contained in the object to be measured can be accurately obtained from the diffusion coefficient D (S3 in FIG. 2), the Doppler frequency shift f D , Electrophoretic mobility U and zeta potential ζ can be determined accurately (S4 in FIG. 2).

このように,本発明に係る粒子特性計測装置1,10によれば,微粒子の像を顕微鏡等で観察することなく,簡易な構成の粒子特性計測装置1,10を用いて,電気泳動する微粒子の粒子径dを検出することができる。また,光変調部18によりあらかじめレーザ光を周波数偏移させることにより,より正確に粒子特性等を算出することが可能となる。   As described above, according to the particle characteristic measuring apparatuses 1 and 10 according to the present invention, fine particles that are electrophoresed using the particle characteristic measuring apparatuses 1 and 10 having a simple configuration without observing an image of the fine particles with a microscope or the like. Can be detected. In addition, it is possible to calculate the particle characteristics and the like more accurately by shifting the frequency of the laser beam in advance by the light modulator 18.

また,本発明の一実施形態に係る粒子特性計測装置1,10によれば,電気泳動する微粒子の粒子径dとゼータ電位ζを同時検出することが可能となる。   In addition, according to the particle characteristic measuring apparatuses 1 and 10 according to an embodiment of the present invention, it is possible to simultaneously detect the particle diameter d and the zeta potential ζ of the electrophoretic fine particles.

上述した本発明の粒子特性計測装置1,10の信号処理部6,16はコンピュータ上で動作するコンピュータプログラムの形態で実装される。当該コンピュータプログラムは,コンピュータ読み取り可能な記録媒体(HDD等)に記録される。このコンピュータプログラムは,光ディスクの形態で提供されてもよいし,インターネット経由で接続されたサーバ装置よりダウンロード可能な形態で提供されてもよい。このコンピュータプログラムは,コンピュータの主記憶にロードされて実行される。   The signal processing units 6 and 16 of the above-described particle property measuring apparatuses 1 and 10 of the present invention are implemented in the form of a computer program that runs on a computer. The computer program is recorded on a computer-readable recording medium (HDD or the like). This computer program may be provided in the form of an optical disc or may be provided in a form that can be downloaded from a server device connected via the Internet. This computer program is loaded into the main memory of the computer and executed.

本発明は,セラミックナノ粒子,金属ナノ粒子,カーボン,製薬,ウィルス,塗料・顔料,化粧品,各種ポリマー,食品,CMP(ケミカル・メカニカル・ポリッシャ)スラリー等の粒径及びゼータ電位の測定に用いることが可能である。   The present invention is used to measure the particle size and zeta potential of ceramic nanoparticles, metal nanoparticles, carbon, pharmaceuticals, viruses, paints / pigments, cosmetics, various polymers, foods, CMP (chemical mechanical polisher) slurries, etc. Is possible.

1 粒子特性計測装置
2 レーザ発振器
3 ビームスプリッタ
4 集光レンズ
5 光検出器
6 信号処理部
7 被測定物
10 粒子特性計測装置
11 固体レーザ
12 固体レーザ励起用半導体レーザ部
13 ビームスプリッタ
14 集光レンズ
15 光検出器
16 信号処理部
17 試料部
18 光変調部
22 半導体レーザ
23 レーザ形状成型部
24 集光レンズ
31 石英セル
32 電極
33 直流電源
35 光音響変調素子
36 変調素子ドライバ
DESCRIPTION OF SYMBOLS 1 Particle characteristic measurement apparatus 2 Laser oscillator 3 Beam splitter 4 Condensing lens 5 Photo detector 6 Signal processing part 7 Object to be measured 10 Particle characteristic measurement apparatus 11 Solid laser 12 Semiconductor laser part for solid laser excitation 13 Beam splitter 14 Condensing lens DESCRIPTION OF SYMBOLS 15 Photodetector 16 Signal processing part 17 Sample part 18 Optical modulation part 22 Semiconductor laser 23 Laser shape shaping part 24 Condensing lens 31 Quartz cell 32 Electrode 33 DC power supply 35 Photoacoustic modulation element 36 Modulation element driver

Claims (6)

光源を備え,前記光源から出力されるレーザ光を,溶媒及び前記溶媒中に分散した微粒子を含む被測定物に入射させるレーザ発振器と,
前記被測定物からの散乱帰還光により変調されたレーザ出力光を信号に変換する光検出部と,
前記光検出部により変換された前記信号を解析する信号処理部と,を備え,
前記信号処理部は,前記信号を解析して前記変調されたレーザ出力光の強度揺らぎの周波数特性を求め,前記強度揺らぎの周波数特性から前記被測定物に含まれる前記微粒子の拡散係数を求め,前記拡散係数から前記被測定物に含まれる前記微粒子の粒子径を求めることを含むことを特徴とする粒子特性計測装置。
A laser oscillator comprising a light source, and causing a laser beam output from the light source to be incident on a measurement object including a solvent and fine particles dispersed in the solvent;
A light detector for converting laser output light modulated by scattered feedback light from the object to be measured into a signal;
A signal processing unit for analyzing the signal converted by the light detection unit,
The signal processing unit analyzes the signal to obtain a frequency characteristic of intensity fluctuation of the modulated laser output light, obtains a diffusion coefficient of the fine particles contained in the object to be measured from the frequency characteristic of the intensity fluctuation, A particle characteristic measuring apparatus comprising: obtaining a particle diameter of the fine particles contained in the object to be measured from the diffusion coefficient.
前記信号処理部は,前記強度揺らぎの周波数特性から前記被測定物に含まれる前記微粒子の移動速度を求め,前記移動速度から前記被測定物に含まれる前記微粒子のゼータ電位を求めることを特徴とする請求項1に記載の粒子特性計測装置。   The signal processing unit obtains a moving speed of the fine particles contained in the measured object from the frequency characteristic of the intensity fluctuation, and obtains a zeta potential of the fine particles contained in the measured object from the moving speed. The particle characteristic measuring apparatus according to claim 1. 前記強度揺らぎの周波数特性をI(ω)とした場合に,次式(I)あるいは次式(I)の重ね合わせの式にカーブフィッティングさせることにより,前記被測定物の前記拡散係数及び前記移動速度を求めることを特徴とする請求項2に記載の粒子特性計測装置。
Figure 2014006173

但し,Fはフーリエ変換を表しており,jは虚数単位,tは時間,vは前記移動速度,Dは前記拡散係数,wは前記レーザ光のビーム幅,θは前記被測定物の移動方向と前記光源の発振軸のなす角度,kは波数を示す。また,波数kは次式(II)により導出される。
Figure 2014006173

但し,nは前記溶媒の屈折率,λは前記レーザ光の波長,φは散乱角を示す。
When the frequency characteristic of the intensity fluctuation is I (ω), the diffusion coefficient and the movement of the object to be measured are obtained by curve fitting to the following formula (I) or a superposition formula of the following formula (I). The particle characteristic measuring device according to claim 2, wherein a velocity is obtained.
Figure 2014006173

Where F is Fourier transform, j is an imaginary unit, t is time, v is the moving speed, D is the diffusion coefficient, w is the beam width of the laser beam, and θ is the moving direction of the object to be measured. And k represents the wave number. The wave number k is derived from the following equation (II).
Figure 2014006173

Where n is the refractive index of the solvent, λ is the wavelength of the laser beam, and φ is the scattering angle.
前記レーザ光を周波数偏移させる光音響変調素子(AOM)をさらに備え,
前記信号処理部は,前記光音響変調素子(AOM)により周波数偏移された前記レーザ光を前記被測定物に入射させて前記被測定物からの前記散乱帰還光により変調されたレーザ出力光を変換した信号を解析して前記強度揺らぎの周波数特性を求めることを特徴とする請求項1乃至3のいずれか一項に記載の粒子特性計測装置。
A photoacoustic modulation element (AOM) for shifting the frequency of the laser light;
The signal processing unit causes the laser light frequency-shifted by the photoacoustic modulation element (AOM) to enter the object to be measured, and outputs laser output light modulated by the scattered feedback light from the object to be measured. 4. The particle characteristic measuring apparatus according to claim 1, wherein the converted signal is analyzed to obtain a frequency characteristic of the intensity fluctuation. 5.
溶媒及び前記溶媒中に分散した微粒子を含む被測定物にレーザ光を入射させて前記被測定物からの散乱帰還光により変調されたレーザ出力光を変換した信号をコンピュータに解析させて前記コンピュータに前記被測定物に含まれる前記微粒子の特性を求める処理を実行させるためのプログラムであって,
前記コンピュータに,前記信号を解析して前記変調されたレーザ出力光の強度揺らぎの周波数特性を求め,前記強度揺らぎの周波数特性から前記被測定物に含まれる前記微粒子の拡散係数を求め,前記拡散係数から前記被測定物に含まれる前記微粒子の粒子径を求める処理を実行させることを特徴とするプログラム。
The computer analyzes the signal obtained by causing the laser beam to enter the object to be measured including the solvent and fine particles dispersed in the solvent, and converting the laser output light modulated by the scattered feedback light from the object to be measured. A program for executing processing for obtaining characteristics of the fine particles contained in the object to be measured,
The computer analyzes the signal to obtain a frequency characteristic of intensity fluctuation of the modulated laser output light, obtains a diffusion coefficient of the fine particles contained in the object to be measured from the frequency characteristic of the intensity fluctuation, and the diffusion The program which performs the process which calculates | requires the particle diameter of the said fine particle contained in the said to-be-measured object from a coefficient.
前記コンピュータに,前記強度揺らぎの周波数特性から前記被測定物に含まれる前記微粒子の移動速度を求め,前記移動速度から前記被測定物に含まれる前記微粒子のゼータ電位を求める処理を実行させることを特徴とする請求項5に記載のプログラム。   Causing the computer to determine a moving speed of the fine particles contained in the object to be measured from the frequency characteristic of the intensity fluctuation, and to execute a process for obtaining a zeta potential of the fine particles contained in the object to be measured from the moving speed. The program according to claim 5, wherein the program is characterized by:
JP2012142705A 2012-06-26 2012-06-26 Particle property measuring device Active JP6050619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142705A JP6050619B2 (en) 2012-06-26 2012-06-26 Particle property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142705A JP6050619B2 (en) 2012-06-26 2012-06-26 Particle property measuring device

Publications (2)

Publication Number Publication Date
JP2014006173A true JP2014006173A (en) 2014-01-16
JP6050619B2 JP6050619B2 (en) 2016-12-21

Family

ID=50104023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142705A Active JP6050619B2 (en) 2012-06-26 2012-06-26 Particle property measuring device

Country Status (1)

Country Link
JP (1) JP6050619B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568693A (en) * 2016-11-16 2017-04-19 西北大学 Particle size detection apparatus based on light pulse
RU2648889C1 (en) * 2016-03-10 2018-03-28 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Control method of carbon nanoparticles surface treatment efficiency for its introduction into polymer materials and device for its implementation
WO2018175039A1 (en) * 2017-03-20 2018-09-27 Miller John F Measuring electrophoretic mobility
CN109444004A (en) * 2018-12-14 2019-03-08 西安理工大学 Yb:YAG solid state laser self-mixed interference nano particle size sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322329A (en) * 2006-06-02 2007-12-13 Univ Of Tsukuba Particle characteristic measuring device and particle characteristic measuring method
US20080221814A1 (en) * 2004-04-10 2008-09-11 Michael Trainer Methods and apparatus for determining particle characteristics by measuring scattered light
WO2010041082A2 (en) * 2008-10-09 2010-04-15 Malvern Instruments Limited Apparatus for high-throughput suspension measurements
US8057655B1 (en) * 2004-08-20 2011-11-15 The Board Of Trustees Of The Leland Stanford Junior University Sub-micron object control arrangement and approach therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221814A1 (en) * 2004-04-10 2008-09-11 Michael Trainer Methods and apparatus for determining particle characteristics by measuring scattered light
US8057655B1 (en) * 2004-08-20 2011-11-15 The Board Of Trustees Of The Leland Stanford Junior University Sub-micron object control arrangement and approach therefor
JP2007322329A (en) * 2006-06-02 2007-12-13 Univ Of Tsukuba Particle characteristic measuring device and particle characteristic measuring method
WO2010041082A2 (en) * 2008-10-09 2010-04-15 Malvern Instruments Limited Apparatus for high-throughput suspension measurements

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016023992; Pam Moreton: 'Measureing Particle Size and Zeta Potential' International LABMATE Vol.22 No.3, 199705, Page.26-28 *
JPN7016001705; Ali A. Garrouch et al.: 'Dielectric Dispersion of Dilute Suspensions of Colloid Particles: Pratical Applications' J.Phys Chem Vol.100.No.42, 1996, 16996-17003 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648889C1 (en) * 2016-03-10 2018-03-28 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Control method of carbon nanoparticles surface treatment efficiency for its introduction into polymer materials and device for its implementation
CN106568693A (en) * 2016-11-16 2017-04-19 西北大学 Particle size detection apparatus based on light pulse
WO2018175039A1 (en) * 2017-03-20 2018-09-27 Miller John F Measuring electrophoretic mobility
US10690625B2 (en) 2017-03-20 2020-06-23 John F. Miller Measuring electrophoretic mobility
CN109444004A (en) * 2018-12-14 2019-03-08 西安理工大学 Yb:YAG solid state laser self-mixed interference nano particle size sensor
CN109444004B (en) * 2018-12-14 2021-05-18 西安理工大学 Yb-YAG solid laser self-mixing interference nano-grain size sensor

Also Published As

Publication number Publication date
JP6050619B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
Corbett et al. Measuring surface zeta potential using phase analysis light scattering in a simple dip cell arrangement
US9606052B2 (en) Tuning-fork based near field probe for spectral measurement, near-field microscope using the same, and spectral analysis method using near-field microscope
JP6050619B2 (en) Particle property measuring device
JP5946193B2 (en) Measuring apparatus and measuring method
JP2011180584A (en) Method and apparatus to measure mobility of particles in solution
Behroozi et al. Stokes’ dream: Measurement of fluid viscosity from the attenuation of capillary waves
JP6661198B2 (en) Particle analyzer
CN109642866B (en) Particle characterization in open optical resonator
JP5841475B2 (en) Dynamic light scattering measurement method and dynamic light scattering measurement device using low coherence light source
Sudo et al. Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser
US8313628B2 (en) Method and apparatus for evaluating dielectrophoretic intensity of microparticle
Imai et al. Direct velocity sensing of flow distribution based on low-coherence interferometry
JP2014081330A (en) Fine particle detection device and fine particle detection method
Sudo et al. Easy measurement and analysis method of zeta potential and electrophoretic mobility of water-dispersed colloidal particles by using a self-mixing solid-state laser
Carlse et al. Technique for rapid mass determination of airborne microparticles based on release and recapture from an optical dipole force trap
JP2003065930A (en) Method and apparatus for measuring local viscoelasticity in complex fluid
Mondal et al. Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters with femtosecond optical tweezers
Mariani et al. Single particle extinction and scattering allows novel optical characterization of aerosols
Pesce et al. Optical manipulation of charged microparticles in polar fluids
Sudo et al. Measurements of liquid surface fluctuations using a self-mixing solid-state laser
Brans et al. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere
JP2015152522A (en) Concentration measurement method and device
Völker et al. Advanced light scattering techniques
JP2011080819A (en) Particle-size measuring instrument
JP5109988B2 (en) Particle size measuring apparatus and particle size measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6050619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350