JP5458258B2 - Suspended matter analysis method and suspended matter analysis system - Google Patents

Suspended matter analysis method and suspended matter analysis system Download PDF

Info

Publication number
JP5458258B2
JP5458258B2 JP2009110230A JP2009110230A JP5458258B2 JP 5458258 B2 JP5458258 B2 JP 5458258B2 JP 2009110230 A JP2009110230 A JP 2009110230A JP 2009110230 A JP2009110230 A JP 2009110230A JP 5458258 B2 JP5458258 B2 JP 5458258B2
Authority
JP
Japan
Prior art keywords
concentration
frequency
particle size
water temperature
attenuation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009110230A
Other languages
Japanese (ja)
Other versions
JP2010261719A (en
Inventor
仁志 古川
重光 猪股
力 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Nihon University
Original Assignee
Electric Power Development Co Ltd
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Nihon University filed Critical Electric Power Development Co Ltd
Priority to JP2009110230A priority Critical patent/JP5458258B2/en
Publication of JP2010261719A publication Critical patent/JP2010261719A/en
Application granted granted Critical
Publication of JP5458258B2 publication Critical patent/JP5458258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液体中の浮遊物質を解析するための浮遊物質解析方法及び浮遊物質解析システムに関する。 The present invention relates to a suspended matter analysis method and a suspended matter analysis system for analyzing suspended matter in a liquid.

ダム、河川その他の水系において、水質管理その他の目的で、浮遊物質の濃度測定が行われている。このような濃度測定は、浮遊物質が高濃度になった場合においても、正確に行う必要があり、このような測定を実現するために、超音波を用いた測定が用いられつつある。超音波測定に用いる装置としては、例えば、超音波を試料液体に照射して、通過したパルスに対応する電気信号から浮遊物質の濃度を算出するものがある。この測定装置は、パルスの送信部と受信部を共通化するとともに、パルスを受信部側へ反射させる反射体を設けることによって、測定効率を向上させることができる(例えば、特許文献1参照)。   In dams, rivers, and other water systems, suspended matter concentrations are measured for water quality management and other purposes. Such concentration measurement needs to be accurately performed even when the suspended matter becomes a high concentration, and in order to realize such measurement, measurement using ultrasonic waves is being used. As an apparatus used for ultrasonic measurement, for example, there is an apparatus that irradiates a sample liquid with ultrasonic waves and calculates the concentration of suspended solids from an electrical signal corresponding to a pulse that has passed. This measurement apparatus can improve measurement efficiency by providing a reflector that reflects a pulse to the receiving unit side while sharing a pulse transmitting unit and a receiving unit (see, for example, Patent Document 1).

しかし、上述のような測定装置では、粒度が一定の浮遊物質の濃度は正確に測定することができるが、浮遊物質の粒度が変化する場合は、濃度を正しく推測することが困難である。これは、水系によって浮遊物質の種類、形状、粒度等の特性が異なるため、同じ超音波減衰率を示していても浮遊物質の粒径分布が異なると濃度が変化するためである。水系のうち、特にダムにおいては、浮遊物質が沈降・堆積するため、ダムの堆積土砂対策を効果的に実施するためには、ダムに流入する浮遊物質量およびダムから流出する浮遊物質量を正確かつ迅速に把握する必要がある。   However, the above-described measuring apparatus can accurately measure the concentration of suspended matter having a constant particle size, but it is difficult to correctly estimate the concentration when the particle size of suspended matter changes. This is because the characteristics such as the type, shape, and particle size of the suspended matter differ depending on the water system, and the concentration changes if the suspended particle size distribution varies even though the same ultrasonic attenuation rate is exhibited. Among the water systems, especially in dams, suspended solids settle and accumulate. Therefore, in order to effectively implement measures against sediment accumulation in the dam, the amount of suspended solids flowing into and out of the dam must be accurately determined. And it is necessary to grasp quickly.

そこで、浮遊物質の粒度を反映した試料液体の濃度測定を行うことのできる浮遊物質解析方法を提供することが求められており、例えば、超音波減衰率と予め光工学的に測定した散乱光式濁度の関係から浮遊物質の相対粒子量と散乱光濁度の積を目的変数、各周波数に対応する超音波減衰率を説明変数とする重回帰モデルを求めることとし、超音波振動子を用いた濃度測定値に基づき、浮遊物質の粒度、粒径に基づく固有の減衰率を考慮した水の濁度(濃度)を計測する浮遊物質解析方法が提案されている(例えば、特許文献2参照)。   Accordingly, there is a need to provide a method for analyzing suspended solids that can measure the concentration of a sample liquid that reflects the particle size of suspended solids. For example, an ultrasonic attenuation rate and a scattered light method that has been optically measured in advance. Based on the relationship between turbidity, the product of the relative particle amount of suspended solids and scattered light turbidity is the objective variable, and the multiple regression model is obtained with the ultrasonic attenuation rate corresponding to each frequency as the explanatory variable. Based on the measured concentration value, a suspended matter analysis method for measuring the turbidity (concentration) of water in consideration of the particle size of the suspended matter and the inherent attenuation rate based on the particle size has been proposed (for example, see Patent Document 2). .

特開2004−271348号公報JP 2004-271348 A 特開2009−025027号公報JP 2009-025027 A

本発明は、上述した背景技術に鑑み、光学的に測定される濁度を用いることなく、測定される超音波減衰率の値から、試料としての液体中の粒径別濃度、ひいては粒径別濃度の総和(濃度)を求め得る浮遊物質解析方法を提案し、加えて、求められた粒径別濃度の総和(濃度)と超音波減衰率を用いて相対粒子量の算出を可能とし、さらに、求められる粒径別濃度の総和(濃度)を土粒子の密度で除し、濃度を容積表示とすることによって、例えば河川の水系ごとに土粒子の密度が異なる場合においても、河川の浮遊物質の容積(体積)濃度を測定することを可能とする浮遊物質解析方法及び浮遊物質解析システムを提案するものである。 In view of the above-described background art, the present invention is based on the measured ultrasonic attenuation rate value without using the optically measured turbidity, and the concentration by particle size in the liquid as the sample, and by particle size. Proposed a suspended solids analysis method that can calculate the total concentration (concentration), in addition, enables calculation of the relative particle amount using the calculated total concentration (concentration) by particle size and ultrasonic attenuation rate. By dividing the total concentration (concentration) by particle size by the density of soil particles and displaying the volume as a volume, for example, even when the density of soil particles varies from river system to river system, suspended matter in the river It proposes a suspended matter analysis method and a suspended matter analysis system that make it possible to measure the volume concentration.

本発明の浮遊物質解析方法のうち請求項1に係るものは、以下の工程からなることを特徴とする。
(1)試料液体に照射する超音波の周波数を系統的に変化させ、各周波数の減衰率α(f)を測定し、媒体である試料液体に由来する減衰と粒子に由来する減衰からなる測定値を下記数式1のように表し、
(ここで、αmedium(f)は周波数がfのときの媒体に由来する超音波減衰率、αmono(f,D)は周波数がfで、粒径Dを持つ単分散粒子に由来する超音波減衰率、g(D)は粒径がDからD+dDの間にある粒子の質量百分率(以下相対粒子量という)である。)
(2)水温を測定し、水温によって違いがある各周波数帯の基準スペクトルの計測値を水温の関数として下記数式2で求め、
(ここで、M0(fj)は水温tにおける周波数fjの基準スペクトルの計測値、tは計測時の水温[℃]、aj、bj、cj、djは周波数fjの基準スペクトル算定の定数である。但し、基準スペクトルとは、媒質が水だけの場合の試料液体の周波数スペクトルをいい、
ここで、α(fj)は周波数fjの超音波減衰率(dB/MHz)、fjは周波数(MHz)、M0(fj)は周波数fjの基準スペクトルの計測値、M(fj)は周波数fjの懸濁液の周波数スペクトルの計測値である。)
(3)(a)前記工程()で得た計測時の水温、(b)周波数スペクトルの計測値、及び、(c)水温t時の基準スペクトルの計測値と基準水温t0時の基準スペクトルの計測値との比である、周波数fjの水温補正係数τ(fj)を用いて、数式4、5により、水温に基づく補正を行い、基準水温下での超音波減衰率を求め、
(ここで、α(fj)は周波数fjの超音波減衰率[dB/MHz]、fjは周波数[MHz]、M0(fj)t=t0は数式2によって算出する基準水温t0時の周波数fjの基準スペクトルの計測値、M0(fj)t=t:数式2によって算出する水温t時の周波数fjの基準スペクトルの計測値、M(fj)t=tは水温t時の周波数fjの懸濁液の周波数スペクトルの計測値、τ(fj)は周波数fjの水温補正係数、t0は基準水温[℃]、tは計測時の水温[℃]である。)
(4)各周波数帯の下記数式6で表わされる濃度換算率を検証し(濃度換算率λ(fj)は、数式6中の超音波減衰率を濃度に換算するための率、すなわち単位濃度の超音波減衰率であり、単位濃度減衰率という。)、
(ここで、α(fj)は周波数fjの超音波減衰率[dB/MHz]、Cは濃度[mg/リットル]、λ(fj)は周波数fjにおける濃度換算率(単位濃度減衰率)である。)
(5)各粒径階の相対粒子量g(Di)を目的変数、前記数式6で算出した単位濃度減衰率λ(fj)を説明変数とする重回帰モデルを適用した変換手順として、
(ここで、g(Di)は粒径階Diの相対粒子量(%)、fjは周波数[MHz]、βijは偏回帰係数、λ(fj)は周波数fjの単位濃度減衰率、mは粒径階の分割数、nは周波数fjの数、εは残差である。)を実行し、
(6)前記数式8にそれぞれ前記数式6と前記数式7を代入して濃度Cについて整理して下記数式9を得、
超音波減衰率α(fj)の関数として前記試料液体の濃度Cを重回帰分析により求める。なおこの数式9の2行目の式では、左辺の{ }内に本来は数式7に示した残差+εが現れるべきであるが、この残差εは小さいものとして無視し、記載を省略した。
Among the suspended matter analysis methods of the present invention, the method according to claim 1 is characterized by comprising the following steps.
(1) Systematically changing the frequency of ultrasonic waves applied to the sample liquid, measuring the attenuation rate α (f) of each frequency, and measuring the attenuation derived from the sample liquid as a medium and the attenuation derived from the particles The value is expressed as Equation 1 below.
(Where α medium (f) is the ultrasonic attenuation factor derived from the medium when the frequency is f, and α mono (f, D) is the ultrasonic attenuation derived from monodisperse particles having the frequency f and the particle size D. The rate, g (D), is the mass percentage of particles whose particle size is between D and D + dD (hereinafter referred to as relative particle amount).
(2) The water temperature is measured, and the measured value of the reference spectrum of each frequency band that varies depending on the water temperature is obtained as a function of the water temperature by the following formula 2.
(Here, M0 (fj) is a measured value of the reference spectrum of the frequency fj at the water temperature t, t is the water temperature [° C.] at the time of measurement, and aj, bj, cj, dj are constants for calculating the reference spectrum of the frequency fj. However, the reference spectrum means the frequency spectrum of the sample liquid when the medium is only water.
Here, α (fj) is the ultrasonic attenuation rate (dB / MHz) of the frequency fj, fj is the frequency (MHz), M0 (fj) is the measurement value of the reference spectrum of the frequency fj, and M (fj) is the frequency fj. It is a measured value of the frequency spectrum of the suspension. )
(3) (a) Water temperature at the time of measurement obtained in the step ( 2 ) , (b) Measurement value of frequency spectrum , and (c) Measurement value of reference spectrum at water temperature t and reference spectrum at reference water temperature t0 Using the water temperature correction coefficient τ (fj) of the frequency fj, which is a ratio to the measured value of, the correction based on the water temperature is performed by Equations 4 and 5, and the ultrasonic attenuation rate under the reference water temperature is obtained.
(Where α (fj) is the ultrasonic attenuation rate [dB / MHz] of the frequency fj, fj is the frequency [MHz], and M0 (fj) t = t0 is the frequency fj at the reference water temperature t0 calculated by Equation 2. Measured value of reference spectrum, M0 (fj) t = t: Measured value of reference spectrum of frequency fj at water temperature t calculated by Equation 2, M (fj) t = t is suspension of frequency fj at water temperature t The measured value of the frequency spectrum of τ, τ (fj) is the water temperature correction coefficient of frequency fj, t0 is the reference water temperature [° C.], and t is the water temperature [° C.] at the time of measurement.
(4) The concentration conversion rate represented by the following formula 6 in each frequency band is verified (concentration conversion rate λ (fj) is a rate for converting the ultrasonic attenuation rate in formula 6 into a concentration, that is, a unit concentration Ultrasonic attenuation rate, called unit concentration attenuation rate)
(Where α (fj) is the ultrasonic attenuation rate [dB / MHz] at the frequency fj, C is the concentration [mg / liter], and λ (fj) is the concentration conversion rate (unit concentration attenuation rate) at the frequency fj. .)
(5) As a conversion procedure applying a multiple regression model using the relative particle amount g (Di) of each particle size floor as an objective variable and the unit concentration decay rate λ (fj) calculated by the equation 6 as an explanatory variable,
(Where g (Di) is the relative particle amount (%) of the particle size class Di, fj is the frequency [MHz], βij is the partial regression coefficient, λ (fj) is the unit concentration decay rate of the frequency fj, and m is the particle size. The number of divisions of the radial floor, n is the number of frequencies fj, and ε is the residual)
(6) Substituting the formula 6 and the formula 7 into the formula 8 respectively to arrange the concentration C, the following formula 9 is obtained,
The concentration C of the sample liquid is obtained by multiple regression analysis as a function of the ultrasonic attenuation rate α (fj). Note that in the expression in the second row of Equation 9, the residual + ε shown in Equation 7 should originally appear in {} on the left side, but this residual ε is ignored as it is small and is omitted. .

請求項2に係るものは、請求項1の浮遊物質解析方法において、
粒径別の濃度を示す前記数式9中の
を下記数式11として示し、
(ここで、cは粒径階Dの濃度[mg/リットル]、α(f)は周波数fの超音波減衰率[dB/MHz]、βijは偏回帰係数、nは周波数fの数である。)
これにより前記試料液体中の浮遊物質の粒径別の濃度を求めることを特徴とする。
According to claim 2, in the suspended matter analysis method of claim 1,
In the above formula 9 showing the concentration by particle size
Is expressed as Equation 11 below.
(Where c i is the concentration [mg / liter] of particle size floor D i , α (f j ) is the ultrasonic attenuation rate [dB / MHz] at frequency f j , β ij is the partial regression coefficient, and n is the frequency f is the number of j .)
Thus, the concentration of the suspended substance in the sample liquid is determined for each particle size.

請求項3に係るものは、請求項2の浮遊物質解析方法において、
前記数式9に前記数式11を代入して下記数式12を得て、
(ここで、Cは濃度[mg/リットル]、cは粒径階Dの濃度[mg/リットル]、mは粒径階の分割数である。)
減衰率を考慮した相対粒子量を測定可能とし、
試料液体の濃度を、粒径別濃度の総和として求めることを特徴とする。
According to claim 3, in the suspended matter analysis method of claim 2,
Substituting the equation 11 into the equation 9 to obtain the following equation 12,
(Where C is the concentration [mg / liter], c i is the concentration [mg / liter] of the particle size floor D i , and m is the number of particle size floor divisions.)
It is possible to measure the relative particle amount considering the attenuation rate,
It is characterized in that the concentration of the sample liquid is obtained as the sum of the concentrations by particle size.

請求項4に係るものは、請求項3の浮遊物質解析方法において、試料液体の濃度Cと超音波減衰率α(f)から前記数式6を用いて単位濃度減衰率λ(f)を算定し、相対粒子量g(D)は前記数式7の重回帰モデルの偏回帰係数と単位濃度減衰率λ(f)を用い、
(ここで、g(D)は粒径階Dの相対粒子量(%)、fは周波数[MHz]、βijは偏回帰係数、λ(f)は周波数fの単位濃度減衰率、mは粒径階の分割数、nは周波数fの数である。)
により相対粒子量を求めることを特徴とする。
According to a fourth aspect of the present invention, in the suspended matter analysis method according to the third aspect, the unit concentration attenuation rate λ (f j ) is calculated from the concentration C of the sample liquid and the ultrasonic attenuation rate α (f j ) using the formula 6. The relative particle amount g (D i ) is calculated by using the partial regression coefficient of the multiple regression model and the unit concentration decay rate λ (f j ) of Equation 7
(Where g (D i ) is the relative particle amount (%) of the particle size stage D i , f j is the frequency [MHz], β ij is the partial regression coefficient, and λ (f j ) is the unit concentration of the frequency f j Attenuation rate, m is the number of particle size divisions, and n is the number of frequencies f j .)
The relative particle amount is obtained by the following.

請求項5に係る浮遊砂濃度の解析方法は、請求項1から3のいずれかの浮遊物質解析方法を用い、河床変動計算において浮流砂の濃度を求める浮遊砂濃度の解析方法であって、
(1)前記浮流砂の濃度を、容積表示で下記数式14のように表示し、
(ここで、流量Q[m3/s]、その流量中の浮流砂量をQs[m3/s]である。)
(2)土粒子の密度をρ[mg/cm3]として、重量表示の濃度Cwと容積表示の濃度Cvolとの関係を下記数式15で表し、
上記数式6に示す単位濃度減衰率λ(fj)を計算する際に、上記数式15を用いて濃度を容積表示の濃度Cvolとして解析することによって、数式12で算出される濃度Cを無次元量である容積表示の濃度Cvolとすることを特徴とする。
(ここで、Cは濃度[mg/リットル]、ciは粒径階Diの濃度[mg/リットル]、mは粒径階の分割数である。)
The suspended sand concentration analysis method according to claim 5 is the suspended sand concentration analysis method for obtaining the suspended sand concentration in the river bed fluctuation calculation using the suspended matter analysis method according to any one of claims 1 to 3,
(1) The concentration of the floating sand is displayed in the volume display as in the following formula 14,
(Here, the flow rate is Q [m3 / s], and the amount of floating sand in the flow rate is Qs [m3 / s].)
(2) Assuming that the density of the soil particles is ρ [mg / cm 3], the relationship between the concentration Cw in weight display and the concentration Cvol in volume display is expressed by the following formula 15.
When calculating the unit concentration attenuation rate λ (fj) shown in Equation 6 above, the concentration C calculated by Equation 12 is analyzed as a dimensionless amount by analyzing the concentration as a volume display concentration Cvol using Equation 15 above. It is characterized by the density Cvol of volume display.
(Here, C is the concentration [mg / liter], ci is the concentration [mg / liter] of the particle size floor Di, and m is the number of particle size floor divisions.)

請求項6に係る浮遊物質解析システムは、請求項1から4のいずれかの浮遊物質解析方法を用い、液体中の浮遊物質を解析することを特徴とする。   A suspended matter analysis system according to a sixth aspect is characterized in that the suspended matter in a liquid is analyzed using the suspended matter analysis method according to any one of the first to fourth aspects.

請求項7に係る浮遊砂濃度の解析システムは、請求項5の浮遊砂濃度の解析方法を用い、河床変動計算において浮流砂の濃度を求めることを特徴とする。   The suspended sand concentration analysis system according to claim 7 is characterized in that the suspended sand concentration analysis method according to claim 5 is used to obtain the suspended sand concentration in the river bed fluctuation calculation.

本発明によれば、粒状物が高濃度に混ざり、透明度が極めて劣る液体においても、浮遊物質の粒度、粒径に基づく固有の減衰率を考慮した粒径別濃度の総和(濃度)、相対粒子量、さらに、容積(体積)濃度が計測可能となる。   According to the present invention, even in a liquid in which particulate matter is mixed at a high concentration and the transparency is extremely inferior, the particle size of the suspended solids, the sum of the concentration (concentration) by particle size in consideration of the inherent attenuation rate based on the particle size, The quantity and the volume (volume) concentration can be measured.

本発明に係る浮遊物質解析方法の実施に用いる解析システムのブロック図Block diagram of an analysis system used for carrying out the suspended matter analysis method according to the present invention 超音波式濃度計測装置(検出部)を示す図The figure which shows an ultrasonic concentration measuring device (detection part) プラノコンケーブ形超音波振動子の一例を示す図Diagram showing an example of a plano-concave ultrasonic transducer 試験用試料の粒度分布を示す図Diagram showing particle size distribution of test sample 水の周波数スペクトル(基準スペクトル)Water frequency spectrum (reference spectrum) 水温が基準スペクトルに与える影響を示す図Diagram showing the effect of water temperature on the reference spectrum 周波数スペクトル計測結果を示す図Figure showing frequency spectrum measurement results 減衰スペクトルの計算結果を示す図Diagram showing attenuation spectrum calculation results 補正後のSS濃度と減衰率αの関係を示す図The figure which shows the relationship between SS density | concentration after correction | amendment, and attenuation factor (alpha). 単位濃度減衰スペクトル(濃度換算率)を示す図Figure showing unit concentration decay spectrum (concentration conversion rate) 計測手順のフロー図Flow chart of measurement procedure 粒径別濃度計測結果を示す図Diagram showing concentration measurement results by particle size 濃度計測結果を示す図Figure showing concentration measurement results 相対粒子量の計測結果を示す図Diagram showing measurement results of relative particle amount 粒度分布(相対粒子量)の計測結果を示す図Figure showing the measurement result of particle size distribution (relative particle amount)

本発明の計測方法は、試料液体である懸濁液中の濃度と粒度分布(相対粒子量)の計測を実施し、超音波振動子から放射される、例えば約1〜10MHzの周波数帯の多数の超音波減衰率から、粒径別濃度、濃度、粒度分布(相対粒子量)を同時に計測する。   The measurement method of the present invention measures the concentration and particle size distribution (relative particle amount) in a suspension that is a sample liquid, and radiates from an ultrasonic transducer, for example, in a number of frequency bands of about 1 to 10 MHz. From the ultrasonic attenuation rate, the concentration, concentration, and particle size distribution (relative particle amount) by particle size are measured simultaneously.

まず本発明に係る浮遊物質解析方法の測定原理、すなわち粒度分布の測定原理について説明する。
微粒子が実用に供される場合、粒子濃度が高くて光を透過しないような分散系が多い。そのため、レーザなどの光を用いた手法では測定できない。そのため、注意深く試料を希釈するなど測定前に煩雑な作業を行う必要がある。また、希釈することで分散系の状態変化をもたらす可能性もあり、希薄系における粒度分布が必ずしも濃厚状態の粒度分布を示していないことも指摘されてきた。超音波減衰分光法(ultrasonic attenuation spectroscopy)や電気音響効果法(electrokinetic sonic amplitude)は、これまでの粒度分布測定法とは全く異なった測定原理に基づく方法で、この方法では光の代わりに超音波や交流電場を用いる。そのため、光が透過できないような粒子濃度が非常に高い懸濁液でも粒度分析が可能である。
First, the measurement principle of the suspended solids analysis method according to the present invention, that is, the measurement principle of the particle size distribution will be described.
When the fine particles are put to practical use, there are many dispersion systems in which the particle concentration is high and light is not transmitted. Therefore, it cannot be measured by a technique using light such as a laser. Therefore, it is necessary to perform complicated operations before measurement, such as diluting the sample carefully. Further, it has been pointed out that dilution may cause a change in the state of the dispersion, and the particle size distribution in the lean system does not necessarily indicate the particle size distribution in the rich state. Ultrasonic attenuation spectroscopy and electro-acoustic effect method are based on measurement principles that are completely different from conventional particle size distribution measurement methods. In this method, ultrasonic waves are used instead of light. Or an alternating electric field. Therefore, particle size analysis is possible even for a suspension with a very high particle concentration that cannot transmit light.

超音波を懸濁液に照射すると、粒子が溶媒に対して相対運動を起こすが、その運動に由来する音響エネルギーの減衰率を、発信した音響エネルギーに対して測定し、それを種々の減衰機構に関するECAH理論により解析して粒度分布関数に変換する。実際の測定では、照射する超音波の周波数を系統的に変化させ、各周波数の減衰率α(f)を測定する(本明細書において、ある周波数に対する減衰率変化を示す曲線を減衰スペクトルと呼ぶ)。その測定値は、媒体に由来する減衰と粒子に由来する減衰からなり、下記数式16のように表される。
ここで、αmedium(f)は周波数がfのときの媒体に由来する超音波減衰率、αmono(f,
D)は周波数がfで、粒径Dを持つ単分散粒子に由来する超音波減衰率、g(D)は粒径がDからD+dDの間にある粒子の質量百分率(以下相対粒子量という)である。g(D)は基本的には対数正規分布を想定している。粒度分布関数への変換手順は、粒度分布関数g(D)を種々変化させ、数式16の右辺第2項を計算させ、周波数の全領域にわたり測定された超音波減衰率に最もよく値が一致したときの分布関数を、測定した系の粒度分布関数として採用する。このような超音波減衰スペクトルの粒度分布依存性を利用して粒度分布を測定する方法を超音波減衰分光法という。
When ultrasonic waves are applied to the suspension, the particles cause relative movement with respect to the solvent. The attenuation rate of the acoustic energy resulting from the movement is measured with respect to the transmitted acoustic energy, and this is applied to various attenuation mechanisms. And is converted into a particle size distribution function. In actual measurement, the frequency of the ultrasonic wave to be irradiated is systematically changed, and the attenuation rate α (f) of each frequency is measured (in this specification, a curve indicating the attenuation rate change for a certain frequency is called an attenuation spectrum). ). The measured value is composed of the attenuation derived from the medium and the attenuation derived from the particles, and is expressed as the following Expression 16.
Here, α medium (f) is an ultrasonic attenuation factor derived from the medium when the frequency is f, α mono (f,
D) is an ultrasonic attenuation rate derived from monodisperse particles having a frequency of f and a particle size D, and g (D) is a mass percentage of particles having a particle size between D and D + dD (hereinafter referred to as relative particle amount). It is. g (D) basically assumes a lognormal distribution. The conversion procedure to the particle size distribution function varies the particle size distribution function g (D) in various ways, calculates the second term on the right side of Equation 16, and best matches the ultrasonic attenuation rate measured over the entire frequency range. The distribution function is used as the particle size distribution function of the measured system. A method for measuring the particle size distribution using the dependency of the ultrasonic attenuation spectrum on the particle size distribution is called ultrasonic attenuation spectroscopy.

次に超音波による濃度測定は、超音波が懸濁液中を通過する際に、その中に存在する粒子や媒質によって音響エネルギーの損失を生じるので、各濃度に対する周波数スペクトルの超音波減衰率が固体の微粒子では濃度に関係して増加するという測定原理に基づいて測定する。なお、減衰率については媒質が水だけの場合を0として各濃度における減衰割合を表す。   Next, in ultrasonic concentration measurement, when ultrasonic waves pass through the suspension, acoustic energy is lost due to the particles and media present in the suspension, so the ultrasonic attenuation rate of the frequency spectrum for each concentration is low. Measurement is performed based on the measurement principle that solid fine particles increase in relation to concentration. As for the attenuation rate, the attenuation rate at each concentration is represented by 0 when the medium is only water.

以下本発明に係る浮遊物質解析方法の実施例を図面を参照して説明する。   Embodiments of the suspended matter analysis method according to the present invention will be described below with reference to the drawings.

まず本実施例で用い得る計測装置について説明する。
浮遊物質解析方法の実施に用いる解析システム10は、図1に示すように、超音波減衰率測定装置11と、例えばパーソナルコンピュータを用いて構成した粒度測定装置12、制御部13、粒度解析装置14からなる解析装置30から構成することができる。パーソナルコンピュータは、そのCPU(Central Processing Unit)を制御部13として、また書き換え可能なRAM等の内部メモリーや、ハードディスクその他の外部記憶装置を記憶部15として用いることができる。なお、パーソナルコンピュータを用いる場合には、入力手段(例えばキーボード、マウス)、及び出力手段(例えばモニター、プリンタ)も備えることが好ましく、例えば入力手段によって各装置の動作を制御する指示信号を入力し、測定条件や測定結果を出力手段に出力することができるようにすることが好ましい。また、試料液体の水温測定のために、温度計等の温度測定手段(不図示)を用いる。なお解析装置30と温度測定手段とが測定データの送受信が有線あるいは無線で通信できない構成であれば、上述した入力手段による入力で代用できる。
First, a measuring apparatus that can be used in this embodiment will be described.
As shown in FIG. 1, the analysis system 10 used for carrying out the suspended matter analysis method includes an ultrasonic attenuation rate measuring device 11, a particle size measuring device 12, a control unit 13, and a particle size analyzing device 14 configured using, for example, a personal computer. It can comprise from the analysis apparatus 30 which consists of. The personal computer can use the CPU (Central Processing Unit) as the control unit 13, an internal memory such as a rewritable RAM, or a hard disk or other external storage device as the storage unit 15. In the case of using a personal computer, it is preferable to provide an input means (for example, a keyboard and a mouse) and an output means (for example, a monitor and a printer). For example, an instruction signal for controlling the operation of each device is input by the input means. It is preferable that measurement conditions and measurement results can be output to the output means. Further, temperature measuring means (not shown) such as a thermometer is used for measuring the water temperature of the sample liquid. If the analysis device 30 and the temperature measuring unit cannot communicate the measurement data by wire or wireless, the input by the input unit described above can be substituted.

超音波減衰率測定装置11では、超音波減衰率測定のための検出部に、図2に示すようなプラノコンケーブ形超音波振動子20(以下、単に振動子20と記載する場合もある)と反射板21を用い、浮遊物質を含む試料液体に対して超音波パルス波(Ultrasonic pulse wave)を照射し、試料液体通過後の反射超音波パルス波から得た反射パルス信号を得る。   In the ultrasonic attenuation rate measuring apparatus 11, a plano-concave type ultrasonic transducer 20 (hereinafter sometimes simply referred to as the transducer 20) as shown in FIG. 2 is used as a detection unit for measuring the ultrasonic attenuation rate. Using the reflection plate 21, an ultrasonic pulse wave is applied to the sample liquid containing floating substances, and a reflected pulse signal obtained from the reflected ultrasonic pulse wave after passing through the sample liquid is obtained.

プラノコンケーブ形超音波振動子20は、平凹面(プラノコンケーブ)を形成するため、例えば、図3(A)に示すような直径φ20mmの市販の円形チタン酸鉛製振動子の一面を、図3(B)に示すように曲率半径r=30mmで凹面状に加工し、その加工面と裏面に電極をつける。また、このプラノコンケーブ形振動子20の焦点に反射板21を置き、放射した広帯域超音波パルス波のエコー波を同一の振動子20で受波して超音波減衰率を計測する。図3(B)に示すように、振動子20の厚さが連続的に変化しているため、例えば1〜10MHz帯の広い周波数帯域の超音波の放射が可能であり、さらに超音波放射面が凹面であるために集束した超音波の放射も可能である。そのため、振動子にインパルス電圧を印加するとリンギングの少ない広帯域の集束した超音波を放射できる。このような超音波減衰率測定装置11を試料液体に対して使用するには、例えばプラノコンケーブ形超音波振動子20を試料液体を入れる容器内部の一方側に配置でき、容器内部の他方側に反射板21を配置できるようにサイズ等を構成する。   In order to form a plano-concave surface (plano concave), the plano-concave type ultrasonic transducer 20 is formed, for example, on one surface of a commercially available circular lead titanate transducer having a diameter of 20 mm as shown in FIG. As shown in (B), a concave surface is processed with a radius of curvature r = 30 mm, and electrodes are attached to the processed surface and the back surface. A reflector 21 is placed at the focal point of the plano-concave transducer 20, and the echo wave of the radiated broadband ultrasonic pulse wave is received by the same transducer 20 to measure the ultrasonic attenuation rate. As shown in FIG. 3B, since the thickness of the vibrator 20 continuously changes, it is possible to radiate ultrasonic waves in a wide frequency band of, for example, 1 to 10 MHz, and further, an ultrasonic radiation surface. Because of the concave surface, it is possible to emit focused ultrasonic waves. Therefore, when an impulse voltage is applied to the vibrator, it is possible to radiate a broadband focused ultrasonic wave with little ringing. In order to use such an ultrasonic attenuation rate measuring apparatus 11 for the sample liquid, for example, the plano-concave ultrasonic transducer 20 can be arranged on one side inside the container for containing the sample liquid, and on the other side inside the container. The size and the like are configured so that the reflector 21 can be arranged.

粒度測定装置12は、例えば、パルス発生部、エコーパルス収録・FFT(Fast Fourier transform)処理部、及びデータ送受信部を備え、パルス発生部は、制御部13の制御の下で、振動子20に励振パルス信号を送り、エコーパルス収録・FFT処理部は、反射板21が反射し、振動子20が受波した反射パルス波(超音波エコー)に対応する反射パルス信号を取込んで所定のデータに変換する。さらに、エコーパルス収録・FFT処理部は、変換された所定のデータを基に浮遊物質濃度、及び超音波減衰率を測定する。エコーパルス収録・FFT処理部における処理結果はデータ送受信部を介して制御部13に出力し、記憶部15に記憶させる。そのため、振動子20から放射される広帯域の超音波の周波数スペクトルの減衰特性から、浮遊物質の濃度をリアルタイムで測定することができる。なお解析システム10としては、反射パルス信号をデジタル化して表示するデジダルオシロスコープ等を備えるようにするとよい。   The particle size measurement device 12 includes, for example, a pulse generation unit, an echo pulse recording / FFT (Fast Fourier transform) processing unit, and a data transmission / reception unit. The pulse generation unit is connected to the vibrator 20 under the control of the control unit 13. The excitation pulse signal is sent, and the echo pulse recording / FFT processing unit takes in the reflected pulse signal corresponding to the reflected pulse wave (ultrasonic echo) reflected by the reflecting plate 21 and received by the transducer 20 to obtain predetermined data. Convert to Further, the echo pulse recording / FFT processing unit measures the suspended matter concentration and the ultrasonic attenuation rate based on the converted predetermined data. The processing result in the echo pulse recording / FFT processing unit is output to the control unit 13 via the data transmission / reception unit and stored in the storage unit 15. Therefore, the concentration of suspended solids can be measured in real time from the attenuation characteristics of the frequency spectrum of the broadband ultrasonic wave radiated from the transducer 20. The analysis system 10 may include a digital oscilloscope that digitizes and displays the reflected pulse signal.

粒度解析装置14は、記憶部15に保存された測定結果に基づいて試料液体に含まれる浮遊物質(Suspended Solid)の粒度を解析するものであって、解析プログラムが記憶されたメモリー部(不図示)と、解析プログラムを実行する演算部(不図示)を備える。これらのメモリー部及び演算部としては、例えばパーソナルコンピュータの記憶装置及びCPUを用いることができるので、記憶部15と制御部13とで兼用できる場合もある。すなわち、粒度解析装置14の演算部の機能を制御部13に、粒度解析装置14のメモリー部の機能を記憶部15に持たせることによって粒度解析を行うことができる。   The particle size analyzer 14 analyzes the particle size of suspended solids contained in the sample liquid based on the measurement results stored in the storage unit 15, and includes a memory unit (not shown) in which an analysis program is stored. And a calculation unit (not shown) for executing the analysis program. As the memory unit and the calculation unit, for example, a storage device and a CPU of a personal computer can be used, so that the storage unit 15 and the control unit 13 may be used in common. That is, the particle size analysis can be performed by providing the control unit 13 with the function of the arithmetic unit of the particle size analyzer 14 and the memory unit 15 with the function of the memory unit of the particle size analyzer 14.

粒度解析について説明する。
本実施例装置では、プラノコンケーブ形超音波振動子20を用いた上述のような検出部(センサー)から微粒子を含み懸濁液となっている試料液体中に放射される広帯域性の超音波のエコー波の超音波減衰率から微粒子の濃度を計測する。振動子20には、広帯域の励振パルス波として矩形状のインパルス電圧を粒度測定装置12のパルス発生部から印加する。矩形のインパルス電圧は、例えば、振動子の基本厚み共振周波数(1〜10MHz)において基準水温(20℃)時の基準スペクトルの計測値の最大値が1.0mVとなるパルス幅80ns、5Vp−pとする。
The particle size analysis will be described.
In the apparatus of the present embodiment, broadband ultrasonic waves radiated into a sample liquid containing fine particles from a detection unit (sensor) using the plano-concave ultrasonic transducer 20 as described above and being in a suspension. The concentration of fine particles is measured from the ultrasonic attenuation rate of the echo wave. A rectangular impulse voltage as a broadband excitation pulse wave is applied to the vibrator 20 from the pulse generator of the particle size measuring device 12. The rectangular impulse voltage is, for example, a pulse width of 80 ns at which the maximum value of the measured value of the reference spectrum at the reference water temperature (20 ° C.) at the basic thickness resonance frequency (1 to 10 MHz) of the vibrator is 1.0 mV, 5 V p−. Let p .

そして、振動子20から放射された超音波パルス波が試料液体中を伝搬し、反射板21で反射して戻ってきたエコーパルス波形を取り込み、A/D変換した後、その波形の周波数スペクトルを分析した値が計測値となる。   The ultrasonic pulse wave radiated from the transducer 20 propagates in the sample liquid, and the echo pulse waveform reflected by the reflecting plate 21 is captured and A / D converted. Then, the frequency spectrum of the waveform is obtained. The analyzed value becomes the measured value.

次に本願発明者等が実際に行った計測の手順について説明する。ただし、下記の物質、数値等は試験を行った例のものであって、本発明がこれらの物質や数値に関して限定されることはない。   Next, a measurement procedure actually performed by the inventors will be described. However, the following substances, numerical values, and the like are examples of tests, and the present invention is not limited with respect to these substances and numerical values.

まず、湿潤状態の約120gの試料を6リットルの蒸留水を入れた計測容器に入れ、懸濁液である試料液体をポンプで撹拌しながら上述のような超音波減衰率の計測を実施した。併せて水温と散乱光式濁度を測定した。計測が終わった6リットルの懸濁液から2リットルを採水して、SS濃度測定と粒度分析を行った。SS濃度測定はJIS−K0102に基づく。またSS濃度は1試料について各2回の測定を行い、平均値を算出した。粒度分布はレーザ回折式粒度分析装置(例えば株式会社島津製作所製SALD−3000J)を使用して測定した。測定はそれぞれ2回行い、その平均値を採用した。次に試料液体に蒸留水2リットルを加えて6リットルの懸濁液とし濃度を2/3に希釈して、同様の計測を行った。試料液体の希釈は合計10回行い、全試料で同様の計測試験を行った。   First, about 120 g of a wet sample was placed in a measurement container containing 6 liters of distilled water, and the ultrasonic attenuation rate as described above was measured while stirring the sample liquid as a suspension with a pump. In addition, water temperature and scattered light turbidity were measured. 2 liters of water was collected from the 6-liter suspension after measurement, and SS concentration measurement and particle size analysis were performed. SS concentration measurement is based on JIS-K0102. The SS concentration was measured twice for each sample, and the average value was calculated. The particle size distribution was measured using a laser diffraction particle size analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation). Each measurement was performed twice, and the average value was adopted. Next, 2 liters of distilled water was added to the sample liquid to obtain a 6-liter suspension, and the concentration was diluted to 2/3, and the same measurement was performed. The sample liquid was diluted 10 times in total, and the same measurement test was performed on all samples.

上述の試験で用いた試験用微粒子の精製について説明する。
試験用微粒子は、滝調整池(福島県南会津郡只見町)において採取した堆積土砂を水洗いしながらフルイによって分級して湿潤状態で精製したものを用いた。また、分級に使用したフルイは106μm、75μm、53μm、38μmおよび25μmの5種類である。試験用微粒子の粒度分布を図4に示す。図4に示す「−25−01」は粒径が25μmのフルイを通過した微粒子の第1回目の試験結果を表す。同様に「38−25−01」は38μmのフルイを通過して25μmのフルイに残留した微粒子の第1回の測定結果を表す。これは、図4(A)〜(E)の全ての図に関して同様である。
The purification of the test fine particles used in the above test will be described.
The fine particles for the test were those obtained by classifying the sediments collected in the Taki adjustment pond (Tadami-machi, Minamiaizu-gun, Fukushima Prefecture) with water and purifying them in a wet state. There are five types of sieves used for classification: 106 μm, 75 μm, 53 μm, 38 μm, and 25 μm. The particle size distribution of the test fine particles is shown in FIG. “−25-01” shown in FIG. 4 represents the first test result of the fine particles having passed through a sieve having a particle diameter of 25 μm. Similarly, “38-25-01” represents the first measurement result of fine particles that passed through the 38 μm sieve and remained on the 25 μm sieve. This is the same with respect to all the drawings in FIGS.

次に基準スペクトルについて説明する。
まず超音波減衰率について説明すると、超音波減衰率α(f)は、各周波数において媒質が水だけの場合を0として各濃度における減衰割合を下記数式17より求めたものである。ここで、媒質が水だけの場合の周波数スペクトルを以降「基準スペクトル」という。
ここで、
α(f):周波数fの超音波減衰率[dB/MHz]
:周波数[MHz]
(f):周波数fの基準スペクトルの計測値
M(f):周波数fの懸濁液の周波数スペクトルの計測値
である。
Next, the reference spectrum will be described.
First, the ultrasonic attenuation rate will be described. The ultrasonic attenuation rate α (f j ) is obtained by calculating the attenuation rate at each concentration from the following equation 17 with 0 when the medium is only water at each frequency. Here, the frequency spectrum when the medium is only water is hereinafter referred to as “reference spectrum”.
here,
α (f j ): ultrasonic attenuation rate of frequency f j [dB / MHz]
f j : Frequency [MHz]
M 0 (f j ): a measured value of the reference spectrum at the frequency f j M (f j ): a measured value of the frequency spectrum of the suspension at the frequency f j .

上述した基準スペクトルは水温によって変化する特性がある。蒸留水10リットルを入れた恒温水槽に上述した超音波減衰率測定装置11の検出部を入れて水温を変化させて基準スペクトルを計測した結果を図5に示す。この図の横軸は周波数、縦軸は基準スペクトルの計測値を示す。水温が上昇するにしたがって基準スペクトルの計測値は大きくなることから、基準水温を設定して、基準水温時の基準スペクトルの計測値の最大値が1.0mVとなるように計測値を調整する。   The above-described reference spectrum has a characteristic that changes depending on the water temperature. The result of having measured the reference | standard spectrum by changing the water temperature by putting the detection part of the ultrasonic attenuation rate measuring apparatus 11 mentioned above in the thermostat water tank which put 10 liters of distilled water is shown in FIG. In this figure, the horizontal axis indicates the frequency, and the vertical axis indicates the measured value of the reference spectrum. Since the measured value of the reference spectrum increases as the water temperature rises, the reference water temperature is set, and the measured value is adjusted so that the maximum value of the measured value of the reference spectrum at the reference water temperature is 1.0 mV.

次に、周波数毎に基準スペクトルの計測結果を整理すると図6のようになる。図6の横軸は水温、縦軸は各周波数に対応する基準スペクトルの計測値を示す。各周波数帯の基準スペクトルの計測値は水温の関数として下記数式18で表わすことができる。
ここで、
(f):水温tにおける周波数fの基準スペクトルの計測値
t:計測時の水温 [℃]
、b、c、d:周波数fの基準スペクトル算定の定数
である。
Next, the measurement results of the reference spectrum for each frequency are arranged as shown in FIG. In FIG. 6, the horizontal axis represents the water temperature, and the vertical axis represents the measured value of the reference spectrum corresponding to each frequency. The measured value of the reference spectrum in each frequency band can be expressed by the following Equation 18 as a function of the water temperature.
here,
M 0 (f j ): measured value of reference spectrum of frequency f j at water temperature t: water temperature during measurement [° C.]
a j , b j , c j , d j : constants for calculating the reference spectrum of the frequency f j .

したがって、各周波数帯において水温と基準スペクトルの計測値との関係を解析して数式18で表される定数を定めておき、周波数スペクトルの計測時に併せて水温を測定することによって、数式17を用いて水温から各周波数帯の基準スペクトルの計測値を求めることができる。   Accordingly, by analyzing the relationship between the water temperature and the measured value of the reference spectrum in each frequency band, the constant represented by Expression 18 is determined, and the water temperature is measured together with the measurement of the frequency spectrum, whereby Expression 17 is used. Thus, the measured value of the reference spectrum in each frequency band can be obtained from the water temperature.

次に計測試験結果例について説明する。
超音波減衰率測定装置11による周波数スペクトルの計測結果を図7に示す。図7の横軸は周波数、縦軸は周波数スペクトルの計測値を示す。使用した計測装置(SSH100)の1回の測定データは0〜12.5MHzの周波数帯において1024の周波数に対応した周波数スペクトルの計測データが得られる。周波数スペクトルの最大値は周波数が5.5MHz付近にある。今回実施した計測試験では希釈法を採用しており、測定回数が多くなるにしたがって濃度が薄くなるため減衰が小さくなり、周波数スペクトルの計測値が増大する。
Next, an example of a measurement test result will be described.
The measurement result of the frequency spectrum by the ultrasonic attenuation rate measuring device 11 is shown in FIG. In FIG. 7, the horizontal axis indicates the frequency, and the vertical axis indicates the measured value of the frequency spectrum. Measurement data of a frequency spectrum corresponding to 1024 frequencies in the frequency band of 0 to 12.5 MHz can be obtained from one measurement data of the used measuring apparatus (SSH100). The maximum value of the frequency spectrum is around 5.5 MHz in frequency. The measurement test performed this time employs the dilution method, and as the number of measurements increases, the concentration decreases, so the attenuation decreases and the measured value of the frequency spectrum increases.

超音波減衰率の水温補正について説明する。既述のように基準スペクトルの計測値は水温によって変動する。そのため、数式17の超音波減衰率は水温補正が必要になる。水温補正は、計測時の水温および周波数スペクトルの計測値と基準水温t時の基準スペクトルの計測値との比である水温補正係数τ(f)を用いて下記数式19、数式20により行う。
ここで、
α(f):周波数fの超音波減衰率 [dB/MHz]
:周波数[MHz]
(f)t=t:数式18によって算出する基準水温t時の周波数fの基準スペクトルの計測値
(f)t=t:数式18によって算出する水温t時の周波数fの基準スペクトルの計測値
M(f)t=t:水温t時の周波数fの懸濁液の周波数スペクトルの計測値
τ(f):周波数fの水温補正係数
:基準水温[℃]
t:計測時の水温[℃]
である。
The water temperature correction of the ultrasonic attenuation rate will be described. As described above, the measured value of the reference spectrum varies depending on the water temperature. Therefore, the ultrasonic attenuation rate of Equation 17 needs to be corrected for water temperature. The water temperature correction is performed by the following Equations 19 and 20 using the water temperature correction coefficient τ (f j ), which is the ratio of the measured value of the water temperature and frequency spectrum at the time of measurement and the measured value of the reference spectrum at the reference water temperature t 0. .
here,
α (f j ): ultrasonic attenuation factor of frequency f j [dB / MHz]
f j : Frequency [MHz]
M 0 (f j ) t = t 0 : Measured value of the reference spectrum of the frequency f j at the reference water temperature t 0 calculated by Equation 18 M 0 (f j ) t = t: at the water temperature t calculated by Equation 18 frequency f measured value of the reference spectrum j M (f j) t = t: measured value of the frequency spectrum of a suspension of a frequency f j of the water temperature t tau (f j): the water temperature correction coefficient for the frequency f j t 0 : Reference water temperature [℃]
t: Water temperature during measurement [° C]
It is.

図7に示す周波数スペクトルの計測値から数式19および数式20を用いて算出した超音波減衰率を図8に示す。横軸は周波数、縦軸は数式19で表される超音波減衰率を示す。この曲線を減衰スペクトルという。図8に見られるように、超音波減衰スペクトルの計測値は濃度のみならず粒度分布にも依存する。例えば周波数が8.0MHz帯の減衰率は粒径が大きくなるにしたがって増加する傾向を示す。一方、周波数が3.0MHz帯の減衰率は、粒径が大きくなるにしたがって減少する傾向を示す。   FIG. 8 shows the ultrasonic attenuation rate calculated from the frequency spectrum measurement values shown in FIG. The horizontal axis indicates the frequency, and the vertical axis indicates the ultrasonic attenuation rate expressed by Equation 19. This curve is called an attenuation spectrum. As seen in FIG. 8, the measured value of the ultrasonic attenuation spectrum depends not only on the concentration but also on the particle size distribution. For example, the attenuation rate in the frequency band of 8.0 MHz tends to increase as the particle size increases. On the other hand, the attenuation rate in the frequency band of 3.0 MHz shows a tendency to decrease as the particle size increases.

SS濃度(平均値)と超音波減衰率α(f=8.0MHz)との関係を図9に示す。横軸は超音波減衰率α(f)、縦軸はSS濃度を示す。SS濃度の計測値は、濃度の計測値と周波数f=8.0MHzにおける減衰率から、最小二乗法により平均濃度換算率を求め、この平均濃度換算率に超音波減衰率α(f)を乗じて濃度を補正した。図9は、この補正後のSS濃度と減衰率αの関係を示してある。 FIG. 9 shows the relationship between the SS concentration (average value) and the ultrasonic attenuation rate α (f = 8.0 MHz). The horizontal axis represents the ultrasonic attenuation rate α (f j ), and the vertical axis represents the SS concentration. The SS concentration measurement value is obtained from the concentration measurement value and the attenuation rate at the frequency f = 8.0 MHz by obtaining an average concentration conversion rate by the least square method, and the ultrasonic attenuation rate α (f j ) is calculated as the average concentration conversion rate. The density was corrected by multiplication. FIG. 9 shows the relationship between the corrected SS concentration and the attenuation rate α.

次に各周波数帯の濃度換算率を検証する。濃度換算率λ(f)は、下記数式21で表わされる。式中の濃度換算率は、超音波減衰率を濃度に換算するための率として定義した。濃度換算率は換言すれば単位濃度の超音波減衰率であり、以降、単位濃度減衰率と再定義する。
ここで、
α(f):周波数fの超音波減衰率[dB/MHz]
C:濃度[mg/リットル]
λ(f):周波数fにおける濃度換算率(単位濃度減衰率)
Next, the concentration conversion rate of each frequency band is verified. The density conversion rate λ (f j ) is expressed by the following formula 21. The concentration conversion rate in the equation was defined as a rate for converting the ultrasonic attenuation rate into a concentration. In other words, the concentration conversion rate is the ultrasonic attenuation rate of the unit concentration, and is hereinafter redefined as the unit concentration attenuation rate.
here,
α (f j ): ultrasonic attenuation rate of frequency f j [dB / MHz]
C: Concentration [mg / liter]
λ (f j ): concentration conversion rate (unit concentration decay rate) at frequency f j

単位濃度減衰率λ(f)を図10に示す。横軸は周波数、縦軸は数式21で表される単位濃度減衰率λ(f)を示す。数式21で用いたSS濃度Cは、先に補正した濃度とした。粒度分布が一定の場合には測定原理として超音波減衰率は濃度に比例することから、各周波数における単位濃度減衰率λ(f)は一定値となる。しかしながら、図10に示すように、一部の試料において単位濃度減衰率にバラツキが見られる。このバラツキが濃度、粒度分布(相対粒子量)の計測精度を低下させる原因となる。 The unit concentration decay rate λ (f j ) is shown in FIG. The horizontal axis indicates the frequency, and the vertical axis indicates the unit concentration attenuation rate λ (f j ) expressed by Equation 21. The SS concentration C used in Equation 21 was the previously corrected concentration. When the particle size distribution is constant, the ultrasonic attenuation rate is proportional to the concentration as a measurement principle, and therefore the unit concentration attenuation rate λ (f j ) at each frequency is a constant value. However, as shown in FIG. 10, there is a variation in the unit concentration attenuation rate in some samples. This variation causes a decrease in measurement accuracy of concentration and particle size distribution (relative particle amount).

次に超音波減衰分光法による濃度計測を説明する。
超音波減衰分光法による粒度分布の測定原理は既に述べたとおりである。すなわち、超音波減衰率と相対粒子量との関係は数式16で表される。単位濃度減衰スペクトル(濃度換算率)を粒度分布関数へ変換する手順を簡略化するため、超音波減衰スペクトルの粒度分布依存性を利用して粒度分布を計測する一つの方法として、各粒径階の相対粒子量g(D)を目的変数、数式21で算出した単位濃度減衰率λ(f)を説明変数とする重回帰モデル(数式22)を適用した変換手順を実行する。
ここで、
g(D):粒径階Dの相対粒子量[%]
:周波数[MHz]
βij:偏回帰係数
λ(f):周波数fの単位濃度減衰率
m:粒径階の分割数
n:周波数fの数
ε:残差
である。
Next, concentration measurement by ultrasonic attenuation spectroscopy will be described.
The principle of particle size distribution measurement by ultrasonic attenuation spectroscopy is as described above. That is, the relationship between the ultrasonic attenuation rate and the relative particle amount is expressed by Equation 16. In order to simplify the procedure for converting the unit concentration attenuation spectrum (concentration conversion rate) to the particle size distribution function, one method for measuring the particle size distribution using the particle size distribution dependency of the ultrasonic attenuation spectrum is as follows. A conversion procedure is performed using a multiple regression model (Equation 22) in which the relative particle amount g (D i ) is an objective variable and the unit concentration decay rate λ (f j ) calculated by Equation 21 is an explanatory variable.
here,
g (D i ): Relative particle amount [%] of the particle size floor D i
f j : Frequency [MHz]
β ij : Partial regression coefficient λ (f j ): Unit concentration decay rate m of frequency f j m: Number of particle size divisions n: Number of frequencies f j ε: Residual.

次に、数式23にそれぞれ数式21と数式22を代入して濃度Cについて
整理すると、下記数式24が得られる。
Next, by substituting Equation 21 and Equation 22 into Equation 23 and rearranging the concentration C, the following Equation 24 is obtained.

数式24は濃度Cの算定式となる。すなわち、数式22に示す偏回帰係数βijが既知であれば、濃度Cは数式24により超音波減衰率α(f)の関数として求めることができる。超音波減衰率α(f)は数式19を用いて計測時の水温と周波数スペクトルの計測値から算出する。また数式22のβij(偏回帰係数)は、粒度分布の異なる微粒子を用いて計測試験を行い、超音波減衰率α(f)と相対粒子量g(D)の計測データから重回帰分析により求めることができる。 Formula 24 is a formula for calculating the concentration C. That is, if the partial regression coefficient β ij shown in Equation 22 is known, the concentration C can be obtained as a function of the ultrasonic attenuation rate α (f j ) using Equation 24. The ultrasonic attenuation rate α (f j ) is calculated from the measured value of the water temperature and frequency spectrum at the time of measurement using Equation 19. Further, β ij (partial regression coefficient) of Equation 22 is subjected to a measurement test using fine particles having different particle size distributions, and is subjected to multiple regression from the measurement data of the ultrasonic attenuation rate α (f j ) and the relative particle amount g (D i ). It can be obtained by analysis.

本願発明者等は、濃度が未知数であることから散乱光式濁度計の測定値を用いて粒度分布(相対粒子量)を測定し、また、相対粒子量から濃度換算率λ(f)を推定する方法を提案した(特許文献2)が、その後の研究により、重回帰モデルに数式22を採用することにより、数式24を用いて超音波減衰率α(f)の関数として濃度Cを計測することを明らかにした。 The inventors of the present application measure the particle size distribution (relative particle amount) using the measured value of the scattered light turbidimeter because the concentration is unknown, and the concentration conversion rate λ (f j ) from the relative particle amount. (Patent Document 2) proposed a method for estimating the concentration C as a function of the ultrasonic attenuation rate α (f j ) using Equation 24 by adopting Equation 22 in the multiple regression model. It was clarified to measure.

また、数式24の括弧内の数式25
は粒径別の濃度を示しており、この粒径別濃度は下記数式26として示すことができる。
ここで、
:粒径階Dの濃度[mg/リットル]
α(f):周波数fの超音波減衰率[dB/MHz]
βij:偏回帰係数
n:周波数fの数
である。
In addition, Formula 25 in parentheses of Formula 24
Indicates the concentration for each particle size, and this concentration for each particle size can be expressed as Equation 26 below.
here,
c i : Concentration of particle size floor D i [mg / liter]
α (f j ): ultrasonic attenuation rate of frequency f j [dB / MHz]
β ij : Partial regression coefficient n: Number of frequencies f j .

数式24に数式26を代入すると下記数式27が得られる。試料液体(懸濁液)の濃度は、粒径別濃度の総和として数式27により求めることができる。
ここで、
C:濃度[mg/リットル]
:粒径階Dの濃度[mg/リットル]
m:粒径階の分割数
である。
Substituting Equation 26 into Equation 24 yields Equation 27 below. The concentration of the sample liquid (suspension) can be obtained by Equation 27 as the sum of the concentrations by particle size.
here,
C: Concentration [mg / liter]
c i : Concentration of particle size floor D i [mg / liter]
m: Number of particle size floor divisions.

次に、濃度Cと超音波減衰率α(f)から数式21を用いて単位濃度減衰率λ(f)を算定し、相対粒子量g(D)は数式22の重回帰モデルの偏回帰係数と単位濃度減衰率λ(f)を用いて数式28により求めることができる。
ここで、
g(D):粒径階Dの相対粒子量(%)
:周波数[MHz]
βij:偏回帰係数
λ(f):周波数fの単位濃度減衰率
m:粒径階の分割数
n:周波数fの数
である。
Next, the unit concentration attenuation rate λ (f j ) is calculated from the concentration C and the ultrasonic attenuation rate α (f j ) using Equation 21, and the relative particle amount g (D i ) is calculated from the multiple regression model of Equation 22. Using the partial regression coefficient and the unit concentration decay rate λ (f j ), it can be obtained by Equation 28.
here,
g (D i ): Relative particle amount (%) of the particle size floor D i
f j : Frequency [MHz]
β ij : Partial regression coefficient λ (f j ): Unit concentration decay rate m of frequency f j m: Number of particle size floor divisions n: Number of frequencies f j

次に重回帰モデルの決定について説明する。
重回帰モデル(数式22)の偏回帰係数βijは、図10に示す各微粒子の3回、全15の計測データを用いて重回帰分析により算出する。また、周波数2.0〜9.0MHzの帯域で超音波減衰率α(f)が安定しており、重回帰モデルの説明変数は、3.0〜9.0MHzの周波数帯において0.5MHz間隔で13の周波数に対応する超音波減衰率α(f)を用いる。
Next, determination of the multiple regression model will be described.
The partial regression coefficient β ij of the multiple regression model (Formula 22) is calculated by multiple regression analysis using the measurement data of all 15 times for each fine particle shown in FIG. In addition, the ultrasonic attenuation rate α (f j ) is stable in the frequency band of 2.0 to 9.0 MHz, and the explanatory variable of the multiple regression model is 0.5 MHz in the frequency band of 3.0 to 9.0 MHz. An ultrasonic attenuation rate α (f j ) corresponding to 13 frequencies at intervals is used.

次に本実施例における濃度と粒度分析の計測手順について図11を参照しつつ説明する。
まず計測開始に伴って試料液体について概略図11に示すような工程(以下、ステップという)を実施する。すなわち、まず上述のような超音波エコー測定ステップを実施する(ステップ1)。次にやはり上述のような水温補正を行い(ステップ2)、周波数解析を行い(ステップ3)、粒度別濃度を測定し(ステップ4)、粒度別濃度の総和を算出し(ステップ5)、単位濃度減衷率を算出し(ステップ6)、相対粒子量を算出し(ステップ7)、そして容積表示の濃度を算出する(ステップ8)。
Next, the measurement procedure for concentration and particle size analysis in this embodiment will be described with reference to FIG.
First, with the start of measurement, a process as shown in FIG. 11 (hereinafter referred to as a step) is performed on the sample liquid. That is, first, the ultrasonic echo measurement step as described above is performed (step 1). Next, the water temperature is corrected as described above (step 2), frequency analysis is performed (step 3), the concentration by particle size is measured (step 4), the sum of the concentration by particle size is calculated (step 5), and the unit The concentration reduction rate is calculated (step 6), the relative particle amount is calculated (step 7), and the concentration of the volume display is calculated (step 8).

具体的には、計測手順は、
(1)まず、水温と周波数スペクトルの計測データ(1024組の周波数とスペクトルの計測値)から数式19および数式20によって超音波減衰率α(f)を計算し、
(2)前項の手順で決定した偏回帰係数βijと超音波減衰率α(f)から数式26によって粒径別濃度cを計算し、
(3)粒径別濃度cから数式27によって濃度Cを計算し、
(4)濃度Cと超音波減衰率α(f)から数式21により単位濃度減衰率λ(f)を計算し、
(5)偏回帰係数βijと単位濃度減衰率λ(f)から数式28により相対粒子量を計算する、
というものになる。
Specifically, the measurement procedure is:
(1) First, the ultrasonic attenuation rate α (f j ) is calculated by Equation 19 and Equation 20 from water temperature and frequency spectrum measurement data (1024 sets of frequency and spectrum measurement values).
(2) Calculate the concentration c i for each particle size from the partial regression coefficient β ij and the ultrasonic attenuation rate α (f j ) determined by the procedure in the previous section by Equation 26,
(3) The concentration C is calculated from the concentration c i by particle size according to Equation 27,
(4) A unit concentration attenuation rate λ (f j ) is calculated by Equation 21 from the concentration C and the ultrasonic attenuation rate α (f j ).
(5) The relative particle amount is calculated from the partial regression coefficient β ij and the unit concentration decay rate λ (f j ) by Equation 28.
It becomes that.

ここで粒径別濃度計測について説明する。
前記の計測手順(1)および(2)に基づき算出した粒径別濃度cの計測値を図12に示す。横軸は周波数f=8.0MHzの平均濃度換算率と減衰率を用いて補正した濃度とレーザ粒度分析装置で測定した相対粒子量の積を示す。縦軸は数式26から算出した粒径別濃度を示す。本計測試験では、図12から明らかなように1,000mg/リットル未満の粒径別濃度は極端に計測精度が悪くなっているが、1,000〜10,000mg/リットルの範囲では計測値はレーザ回折式粒度分布測定装置の測定値とほぼ一致する。
Here, the concentration measurement by particle diameter will be described.
A measurement of particle径別concentration c i that calculated based on the measurement procedures (1) and (2) shown in FIG. 12. The horizontal axis represents the product of the concentration corrected using the average concentration conversion factor and the attenuation factor of the frequency f = 8.0 MHz and the relative particle amount measured by the laser particle size analyzer. The vertical axis represents the concentration by particle size calculated from Equation 26. In this measurement test, as apparent from FIG. 12, the concentration by particle size of less than 1,000 mg / liter is extremely poor in measurement accuracy, but the measured value is in the range of 1,000 to 10,000 mg / liter. It almost coincides with the measured value of the laser diffraction type particle size distribution measuring apparatus.

次に、上記計測手順(3)に基づく濃度の計測値を図13に示す。横軸は周波数f=8.0MHzの平均濃度換算率と減衰率を用いて補正した濃度を示す。縦軸は本計測装置による濃度の計測値を示す。ところで、今回採用した希釈法は、計測後のSS濃度と粒度分布を測定出来る利点はあるが、計測の過程において懸濁液濃度を均一に保つことが非常に難しく、結果として正確な濃度を測定することが難しいという欠点がある。今回の計測試験ではSS濃度の測定値を採用するのではなく、平均濃度換算率を用いて測定した濃度を補正した。この補正後の濃度と計測値の誤差は最大で±5%程度と推定される(図13参照)。   Next, the measurement value of the density based on the measurement procedure (3) is shown in FIG. The horizontal axis shows the density corrected using the average density conversion rate and the attenuation rate at the frequency f = 8.0 MHz. The vertical axis indicates the measured value of concentration by this measuring apparatus. By the way, the dilution method adopted this time has the advantage of being able to measure the SS concentration and particle size distribution after measurement, but it is very difficult to keep the suspension concentration uniform during the measurement process, and as a result, the exact concentration is measured. There is a drawback that it is difficult to do. In this measurement test, the measured concentration of SS was not adopted, but the measured concentration was corrected using the average concentration conversion rate. The error between the corrected concentration and the measured value is estimated to be about ± 5% at maximum (see FIG. 13).

粒度分析について説明する。上述した計測手順(4)および(5)に基づき計測した相対粒子量の計測結果を図14に示す。横軸はレーザ回折式粒度分析装置で計測した相対粒子量、縦軸は数式28から求めた相対粒子量の計測値を示す。今回使用した計測装置によって計測した粒度分布(相対粒子量)はレーザ回折式粒度分析装置の測定値と比較して5%以内の誤差となっている。また、各々の微粒子の相対粒子量の計測結果を図15に示す。特定の粒径の相対粒子量の計測値がレーザ回折式粒度分析装置の計測値との誤差がやや大きいが、全体として非常に良く一致することがわかる。なお、図15に示す計測値は各試料の最も濃度の高い懸濁液の相対粒子量の計測値を示す。高濃度の懸濁液を希釈することなく粒度分析を行うことができる。   The particle size analysis will be described. The measurement result of the relative particle amount measured based on the measurement procedures (4) and (5) described above is shown in FIG. The horizontal axis represents the relative particle amount measured by the laser diffraction particle size analyzer, and the vertical axis represents the measured value of the relative particle amount obtained from Equation 28. The particle size distribution (relative particle amount) measured by the measuring device used this time is within 5% of the measured value of the laser diffraction particle size analyzer. Moreover, the measurement result of the relative particle amount of each fine particle is shown in FIG. It can be seen that the measured value of the relative particle amount of a specific particle size has a slightly large error from the measured value of the laser diffraction particle size analyzer, but matches very well as a whole. In addition, the measured value shown in FIG. 15 shows the measured value of the relative particle amount of the suspension with the highest concentration of each sample. Particle size analysis can be performed without diluting a high concentration suspension.

本実施例の計測性能について説明する。
使用した計測装置は、超音波による濃度計測の原理と粒度分析の計測原理を利用するとともに、広帯域性の超音波を放射できるプラノコンケーブ形超音波振動子を計測装置の検出部に採用して1〜10MHzの周波数帯の複数の超音波減衰率から、濃度と相対粒子量を同時に計測するものである。実施した計測試験の結果、超音波式濃度計測装置は、微粒子の濃度と相対粒子量が同時に計測できることを検証することができた。また、本計測装置は、高濃度の懸濁液の計測に非常に適していることも明らかになった。微粒子の粒径が1〜100μmオーダーの場合、濃度の計測範囲は図12および図13に見られるように本計測装置の仕様で最大10,000mg/リットルまで十分計測可能と考えられる。
The measurement performance of this example will be described.
The measurement device used utilizes the principle of concentration measurement by ultrasonic waves and the measurement principle of particle size analysis, and adopts a plano-concave ultrasonic transducer capable of emitting broadband ultrasonic waves in the detection unit of the measurement device. Concentration and relative particle amount are simultaneously measured from a plurality of ultrasonic attenuation factors in a frequency band of 10 MHz. As a result of the measurement test, the ultrasonic concentration measuring apparatus was able to verify that the concentration of fine particles and the relative particle amount could be measured simultaneously. It was also found that this measuring device is very suitable for measuring high concentration suspensions. When the particle size of the fine particles is on the order of 1 to 100 μm, it is considered that the measurement range of the concentration can be sufficiently measured up to a maximum of 10,000 mg / liter according to the specification of the present measuring device as seen in FIGS.

水系ごとに異なる石灰質、粘土質など土粒子の特性を考慮した値としての「容積表示の濃度」(いわゆる容積濃度)も求めることができる実施例を説明する。   An embodiment will be described in which “volume display concentration” (so-called volume concentration) can be obtained as a value that takes into consideration the characteristics of soil particles such as calcareous and clay that differ for each water system.

まず、容積表示の濃度(Concentration)について説明する。
水の単位体積中に含まれる砂の数(容積または重さ)を濃度(Concentration)と呼びCで表す。SS濃度は[mg/リットル]の単位で表される濃度であり、SS濃度の測定方法はJIS−K0102に規定されている。河川、湖沼の環境基準項目や、下水・排水の放流水基準においてはSS濃度が用いられている。
First, the volume display density will be described.
The number (volume or weight) of sand contained in a unit volume of water is called “concentration” and is represented by C. The SS concentration is a concentration expressed in units of [mg / liter], and the SS concentration measurement method is defined in JIS-K0102. The SS concentration is used in the environmental standard items for rivers and lakes and in the effluent standard for sewage and drainage.

JIS−K0102に定めた測定方法において測定したSSは重量濃度であるが、河川における土砂の移動を検討する場合、土砂量(体積)を評価する必要があることから、河床変動解析等においては容積表示の濃度が用いられる。すなわち、河床変動計算において浮流砂の濃度は、容積表示で下記数式29のように表示される。
(ここで、流量をQ[m/s]、その流量中の浮流砂量をQs[m/s]である。)
SS measured by the measurement method defined in JIS-K0102 is weight concentration, but when examining sediment movement in rivers, it is necessary to evaluate sediment volume (volume). The displayed density is used. That is, in the river bed fluctuation calculation, the concentration of floating sand is displayed as the following Expression 29 in volume display.
(Here, the flow rate is Q [m 3 / s], and the amount of floating sand in the flow rate is Qs [m 3 / s].)

また、土粒子の密度をρ[mg/cm]とすると、重量表示の濃度Cと容積表示の濃度Cvolとの関係は下記数式30で表される。なお、土粒子の密度試験はJIS−A1202に定められている。
上記数式21に示す単位濃度減衰率λ(f)を計算する際に、上記数式29を用いて濃度を容積表示の濃度Cvolとして解析することによって、結果的に前記数式11で算出される濃度は容積表示の濃度(無次元量)となる。これは、原理的には、超音波式濃度計測装置は、重量表示の濃度ではなく、容積表示の濃度を計測する装置であると考えられるためであり、濃度を容積表示とすることによって、土粒子の密度の違いに関係なく、濃度の計測が可能となる。
Further, when the density of the soil particles is ρ [mg / cm 3 ], the relationship between the concentration Cw in weight display and the concentration Cvol in volume display is expressed by the following Equation 30. The density test for soil particles is defined in JIS-A1202.
When calculating the unit concentration decay rate λ (f j ) shown in the above equation 21, the concentration is analyzed as the volume display concentration C vol using the above equation 29, and as a result, the equation 11 is calculated. The density is a volume display density (dimensionless amount). This is because, in principle, the ultrasonic concentration measuring device is considered to be a device that measures the concentration of the volume display instead of the concentration of the weight display. The concentration can be measured regardless of the difference in particle density.

本発明について以上のように実施例を参照しつつ説明したが、本発明は上記実施例に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。特に測定、計測対象が上述したものに限定されることはなく、種々の液体に対して本発明は採用できる。   Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above-described embodiments, and can be improved or modified within the scope of the purpose of the improvement or the idea of the present invention. . In particular, the measurement and measurement objects are not limited to those described above, and the present invention can be applied to various liquids.

本願発明は、河川の濁り具合を超音波振動子に基づき測定し、当該河川の浮遊物質(SS)の粒度を考慮したデータ値に基づき、提案された関係式で解析して測定でき、浮遊物質(SS)の粒度を配慮した河川の真の汚れ具合を把握することができる。光学的に測定される濁度の値を参考とする必要が無く、粒状物が高濃度に混じった水の「粒径別濃度の総和(濃度)」、「相対粒子量」、さらに「容積(体積)濃度」の計測を極めて簡便に実施でき、したがって、現在環境問題や社会問題となっている砂浜や河川における砂の浸食、ダムの寿命低下(土砂のダム湖における湖底堆積)、砂防ダムでの堆積土砂の取り除きや運搬に伴うエネルギーロス、などの諸問題をなくすため、川上から河口までの河川の複数ポイントに関して本発明に係る解析を実施することにより、目的に沿って土砂を上流から下流まで効率的に流すことが可能となる。また台風や上流での工事などにより、河口から海に土砂が流出し、海の珊瑚を死滅させたり、海洋汚染することがないように河川をコントロール(水門の開閉等)する際に有用なものとなり得る。   The present invention can measure the turbidity of a river based on an ultrasonic transducer, and can analyze and measure the proposed relational expression based on the data value considering the granularity of suspended matter (SS) in the river. It is possible to grasp the true pollution level of rivers considering the granularity of (SS). There is no need to refer to the optically measured turbidity value. Water with a high concentration of particulate matter, “total concentration by particle size (concentration)”, “relative particle amount”, and “volume ( Volume ”concentration” can be measured very easily. Therefore, sand erosion on sandy beaches and rivers, which is currently an environmental and social issue, dam life reduction (sediment sedimentation in dam lakes), and sabo dams In order to eliminate various problems such as energy loss due to removal and transport of sediment, it is necessary to carry out the analysis according to the present invention for multiple points of the river from the upstream to the estuary, and to move the sediment from upstream to downstream according to the purpose. It is possible to flow efficiently. It is also useful for controlling rivers (opening and closing of sluice gates) so that earth and sand will flow from the estuary into the sea due to typhoons and upstream construction, etc. Can be.

11:超音波減衰率測定装置
12:粒度測定装置
13:制御部
14:粒度解析装置
15:記憶部
20:プラノコンケーブ形超音波振動子
21:反射板
30:解析システム
11: Ultrasonic attenuation rate measuring device 12: Particle size measuring device 13: Control unit 14: Particle size analyzing device 15: Storage unit 20: Plano-concave ultrasonic transducer 21: Reflecting plate 30: Analysis system

Claims (7)

以下の工程からなる浮遊物質解析方法。
(1)試料液体に照射する超音波の周波数を系統的に変化させ、各周波数の減衰率α(f)を測定し、媒体である試料液体に由来する減衰と粒子に由来する減衰からなる測定値を下記数式1のように表し、
(ここで、αmedium(f)は周波数がfのときの媒体に由来する超音波減衰率、αmono(f,D)は周波数がfで、粒径Dを持つ単分散粒子に由来する超音波減衰率、g(D)は粒径がDからD+dDの間にある粒子の質量百分率(以下相対粒子量という)である。)
(2)水温を測定し、水温によって違いがある各周波数帯の基準スペクトルの計測値を水温の関数として下記数式2で求め、
(ここで、M0(fj)は水温tにおける周波数fjの基準スペクトルの計測値、tは計測時の水温[℃]、aj、bj、cj、djは周波数fjの基準スペクトル算定の定数である。但し、基準スペクトルとは、媒質が水だけの場合の試料液体の周波数スペクトルをいい、


ここで、α(fj)は周波数fjの超音波減衰率[dB/MHz]、fjは周波数[MHz]、M0(fj)は周波数fjの基準スペクトルの計測値、M(fj)は周波数fjの懸濁液の周波数スペクトルの計測値である。)
(3)(a)前記工程()で得た計測時の水温、(b)周波数スペクトルの計測値、及び、(c)水温t時の基準スペクトルの計測値と基準水温t0時の基準スペクトルの計測値との比である、周波数fjの水温補正係数τ(fj)を用いて、数式4、5により、水温に基づく補正を行い、基準水温下での超音波減衰率を求め、
(ここで、α(fj)は周波数fjの超音波減衰率[dB/MHz]、fjは周波数[MHz]、M0(fj)t=t0は数式2によって算出する基準水温t0時の周波数fjの基準スペクトルの計測値、M0(fj)t=t:数式2によって算出する水温t時の周波数fjの基準スペクトルの計測値、M(fj)t=tは水温t時の周波数fjの懸濁液の周波数スペクトルの計測値、τ(fj)は周波数fjの水温補正係数、t0は基準水温[℃]、tは計測時の水温[℃]である。)
(4)各周波数帯の下記数式6で表わされる濃度換算率を検証し(濃度換算率λ(fj)は、数式6中の超音波減衰率を濃度に換算するための率、すなわち単位濃度の超音波減衰率であり、単位濃度減衰率という。)、
(ここで、α(fj)は周波数fjの超音波減衰率[dB/MHz]、Cは濃度[mg/リットル]、λ(fj)は周波数fjにおける濃度換算率(単位濃度減衰率)である。)
(5)各粒径階の相対粒子量g(Di)を目的変数、前記数式6で算出した単位濃度減衰率λ(fj)を説明変数とする重回帰モデルを適用した変換手順として、
(ここで、g(Di)は粒径階Diの相対粒子量[%]、fjは周波数[MHz]、βijは偏回帰係数、λ(fj)は周波数fjの単位濃度減衰率、mは粒径階の分割数、nは周波数fjの数、εは残差である。)を実行し、
(6)前記数式8にそれぞれ前記数式6と前記数式7を代入して濃度Cについて整理して下記数式9を得、
超音波減衰率α(fj)の関数として前記試料液体の濃度Cを重回帰分析により求める。
A suspended matter analysis method consisting of the following steps.
(1) Systematically changing the frequency of ultrasonic waves applied to the sample liquid, measuring the attenuation rate α (f) of each frequency, and measuring the attenuation derived from the sample liquid as a medium and the attenuation derived from the particles The value is expressed as Equation 1 below.
(Where α medium (f) is the ultrasonic attenuation factor derived from the medium when the frequency is f, and α mono (f, D) is the ultrasonic attenuation derived from monodisperse particles having the frequency f and the particle size D. The rate, g (D), is the mass percentage of particles whose particle size is between D and D + dD (hereinafter referred to as relative particle amount).
(2) The water temperature is measured, and the measured value of the reference spectrum of each frequency band that varies depending on the water temperature is obtained as a function of the water temperature by the following formula 2.
(Here, M0 (fj) is a measured value of the reference spectrum of the frequency fj at the water temperature t, t is the water temperature [° C.] at the time of measurement, and aj, bj, cj, dj are constants for calculating the reference spectrum of the frequency fj. However, the reference spectrum means the frequency spectrum of the sample liquid when the medium is only water.


Here, α (fj) is the ultrasonic attenuation rate [dB / MHz] of the frequency fj, fj is the frequency [MHz], M0 (fj) is the measurement value of the reference spectrum of the frequency fj, and M (fj) is the frequency fj. It is a measured value of the frequency spectrum of the suspension. )
(3) (a) Water temperature at the time of measurement obtained in the step ( 2 ) , (b) Measurement value of frequency spectrum , and (c) Measurement value of reference spectrum at water temperature t and reference spectrum at reference water temperature t0 Using the water temperature correction coefficient τ (fj) of the frequency fj, which is a ratio to the measured value of, the correction based on the water temperature is performed by Equations 4 and 5, and the ultrasonic attenuation rate under the reference water temperature is obtained.
(Where α (fj) is the ultrasonic attenuation rate [dB / MHz] of the frequency fj, fj is the frequency [MHz], and M0 (fj) t = t0 is the frequency fj at the reference water temperature t0 calculated by Equation 2. Measured value of reference spectrum, M0 (fj) t = t: Measured value of reference spectrum of frequency fj at water temperature t calculated by Equation 2, M (fj) t = t is suspension of frequency fj at water temperature t The measured value of the frequency spectrum of τ, τ (fj) is the water temperature correction coefficient of frequency fj, t0 is the reference water temperature [° C.], and t is the water temperature [° C.] at the time of measurement.
(4) The concentration conversion rate represented by the following formula 6 in each frequency band is verified (concentration conversion rate λ (fj) is a rate for converting the ultrasonic attenuation rate in formula 6 into a concentration, that is, a unit concentration Ultrasonic attenuation rate, called unit concentration attenuation rate)
(Where α (fj) is the ultrasonic attenuation rate [dB / MHz] at the frequency fj, C is the concentration [mg / liter], and λ (fj) is the concentration conversion rate (unit concentration attenuation rate) at the frequency fj. .)
(5) As a conversion procedure applying a multiple regression model using the relative particle amount g (Di) of each particle size floor as an objective variable and the unit concentration decay rate λ (fj) calculated by the equation 6 as an explanatory variable,
(Where g (Di) is the relative particle amount [%] of the particle size stage Di, fj is the frequency [MHz], βij is the partial regression coefficient, λ (fj) is the unit concentration decay rate of the frequency fj, and m is the particle size. The number of divisions of the radial floor, n is the number of frequencies fj, and ε is the residual)
(6) Substituting the formula 6 and the formula 7 into the formula 8 respectively to arrange the concentration C, the following formula 9 is obtained,
The concentration C of the sample liquid is obtained by multiple regression analysis as a function of the ultrasonic attenuation rate α (fj).
請求項1の浮遊物質解析方法において、
粒径別の濃度を示す前記数式9中の
を用いて下記数式11として示し、
(ここで、ciは粒径階Diの濃度[mg/リットル]、α(fj)は周波数fjの超音波減衰率[dB/MHz]、βijは偏回帰係数、nは周波数fjの数である。)
これにより前記試料液体中の浮遊物質の粒径別の濃度を求めることを特徴とする浮遊物質解析方法。
In the suspended matter analysis method according to claim 1,
In the above formula 9 showing the concentration by particle size
Is expressed as the following formula 11,
(Where ci is the concentration [mg / liter] of the particle size floor Di, α (fj) is the ultrasonic attenuation rate [dB / MHz] at the frequency fj, βij is the partial regression coefficient, and n is the number of the frequency fj. .)
Thus, the suspended matter analysis method is characterized in that the concentration of suspended matter in the sample liquid is determined for each particle size.
請求項2の浮遊物質解析方法において、
前記数式9に前記数式11を代入して下記数式12を得て、
(ここで、Cは濃度[mg/リットル]、ciは粒径階Diの濃度[mg/リットル]、mは粒径階の分割数である。)
減衰率を考慮した相対粒子量を測定可能とし、
試料液体の濃度を、粒径別濃度の総和として求めることを特徴とする浮遊物質解析方法。
In the suspended matter analysis method according to claim 2,
Substituting the equation 11 into the equation 9 to obtain the following equation 12,
(Here, C is the concentration [mg / liter], ci is the concentration [mg / liter] of the particle size floor Di, and m is the number of particle size floor divisions.)
It is possible to measure the relative particle amount considering the attenuation rate,
A method for analyzing suspended solids, wherein the concentration of a sample liquid is obtained as a sum of concentrations by particle size.
請求項3の浮遊物質解析方法において、
試料液体の濃度Cと超音波減衰率α(fj)から前記数式6を用いて単位濃度減衰率λ(fj)を算定し、
相対粒子量g(Di)は前記数式7の重回帰モデルの偏回帰係数と単位濃度減衰率λ(fj)を用い、
(ここで、g(Di)は粒径階Diの相対粒子量[%]、fjは周波数[MHz]、βijは偏回帰係数、λ(fj)は周波数fjの単位濃度減衰率、mは粒径階の分割数、nは周波数fjの数である。)
により相対粒子量を求めることを特徴とする浮遊物質解析方法。
In the suspended matter analysis method according to claim 3,
The unit concentration attenuation rate λ (fj) is calculated from the concentration C of the sample liquid and the ultrasonic attenuation rate α (fj) using the above equation 6.
The relative particle amount g (Di) is obtained by using the partial regression coefficient of the multiple regression model of Equation 7 and the unit concentration attenuation rate λ (fj).
(Where g (Di) is the relative particle amount [%] of the particle size stage Di, fj is the frequency [MHz], βij is the partial regression coefficient, λ (fj) is the unit concentration decay rate of the frequency fj, and m is the particle size. (The number of divisions of the radial floor, n is the number of the frequency fj.)
A method for analyzing suspended solids, characterized in that a relative particle amount is obtained by the above method.
請求項1から4のいずれかの浮遊物質解析方法を用い、河床変動計算において浮流砂の濃度を求める浮遊砂濃度の解析方法であって、
(1)前記浮流砂の濃度を、容積表示で下記数式14のように表示し、
(ここで、流量Q[m3/s]、その流量中の浮流砂量をQs[m3/s]である。)
(2)土粒子の密度をρ[mg/cm3]として、重量表示の濃度Cwと容積表示の濃度Cvolとの関係を下記数式15で表し、
上記数式6に示す単位濃度減衰率λ(fj)を計算する際に、上記数式15を用いて濃度Cを容積表示の濃度Cvolとして解析することによって、数式12で算出される濃度Cを無次元量である容積表示の濃度Cvolとすることを特徴とする浮遊砂濃度の解析方法。
(ここで、Cは濃度[mg/リットル]、ciは粒径階Diの濃度[mg/リットル]、mは粒径階の分割数である。)
A method for analyzing suspended sediment concentration using the suspended matter analysis method according to any one of claims 1 to 4 to obtain suspended sediment concentration in river bed fluctuation calculation,
(1) The concentration of the floating sand is displayed in the volume display as in the following formula 14,
(Here, the flow rate is Q [m3 / s], and the amount of floating sand in the flow rate is Qs [m3 / s].)
(2) Assuming that the density of the soil particles is ρ [mg / cm 3], the relationship between the concentration Cw in weight display and the concentration Cvol in volume display is expressed by the following formula 15.
When calculating the unit concentration attenuation rate λ (fj) shown in the above equation 6, the concentration C calculated by the equation 12 is dimensionless by analyzing the concentration C as a volume display concentration Cvol using the above equation 15. A method for analyzing suspended sand concentration, characterized in that the concentration is expressed by volume Cvol.
(Here, C is the concentration [mg / liter], ci is the concentration [mg / liter] of the particle size floor Di, and m is the number of particle size floor divisions.)
請求項1から4のいずれかの浮遊物質解析方法を用い、液体中の浮遊物質を解析することを特徴とする浮遊物質解析システム。 5. A suspended matter analysis system, wherein the suspended matter analysis method according to claim 1 is used to analyze suspended matter in a liquid. 請求項5の浮遊砂濃度の解析方法を用い、河床変動計算において浮流砂の濃度を求めることを特徴とする浮遊砂濃度の解析システム。 A floating sand concentration analysis system, wherein the floating sand concentration is calculated in a river bed variation calculation using the suspended sand concentration analysis method according to claim 5.
JP2009110230A 2009-04-30 2009-04-30 Suspended matter analysis method and suspended matter analysis system Active JP5458258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110230A JP5458258B2 (en) 2009-04-30 2009-04-30 Suspended matter analysis method and suspended matter analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110230A JP5458258B2 (en) 2009-04-30 2009-04-30 Suspended matter analysis method and suspended matter analysis system

Publications (2)

Publication Number Publication Date
JP2010261719A JP2010261719A (en) 2010-11-18
JP5458258B2 true JP5458258B2 (en) 2014-04-02

Family

ID=43359929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110230A Active JP5458258B2 (en) 2009-04-30 2009-04-30 Suspended matter analysis method and suspended matter analysis system

Country Status (1)

Country Link
JP (1) JP5458258B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156617B2 (en) * 2012-11-27 2017-07-05 電源開発株式会社 Suspended matter analysis method, suspended matter analysis device and ultrasonic attenuation spectrum analyzer using the same
JP2016520839A (en) * 2013-05-31 2016-07-14 ネステク ソシエテ アノニム System and method for detecting a water / product interface during food processing
JP6228772B2 (en) * 2013-07-25 2017-11-08 株式会社東京建設コンサルタント measuring device
JP6361062B2 (en) * 2013-11-25 2018-07-25 日本無線株式会社 Bubble detection device
CN103900789B (en) * 2014-04-18 2016-09-07 淮海工学院 A kind of bottom sediment settling flux nonlinear dynamical process digital monitoring method in situ
CN104849183B (en) * 2015-04-29 2017-06-09 上海理工大学 A kind of measuring method of hybrid solid grain diameter and concentration based on ultrasonic attenuation spectrum
CN107144506B (en) * 2017-06-21 2023-08-22 华南理工大学 Suspended matter dynamic monitoring method and device based on annular interweaved array
IT201900008754A1 (en) * 2019-06-12 2020-12-12 Gea Mech Equipment Italia S P A DOUBLE MEMBRANE PUMP FOR USE IN A HOMOGENIZATION APPARATUS OF A FLUID PRODUCT AND METHOD FOR DETECTING LEAKS IN THIS PUMP
CN112525988A (en) * 2020-11-25 2021-03-19 长江水利委员会长江科学院 Novel multi-frequency ultrasonic sand content grading measurement system and method
KR102355001B1 (en) * 2021-08-24 2022-01-24 서울대학교 산학협력단 Estimation of spatial distribution of suspended sediment concentration from hyperspectral images using machine learning regression models and probabilistic clustering method in rivers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121629A (en) * 1989-11-13 1992-06-16 E. I. Du Pont De Nemours And Company Method and apparatus for determining particle size distribution and concentration in a suspension using ultrasonics
JP2004516468A (en) * 2000-12-18 2004-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ultrasonic size measurement method and apparatus for particles in suspension
JP2005257353A (en) * 2004-03-10 2005-09-22 Kose Corp Stability evaluation method for emulsion, suspension or emulsified suspension
JP5277432B2 (en) * 2007-07-17 2013-08-28 学校法人日本大学 Suspended matter analysis method

Also Published As

Publication number Publication date
JP2010261719A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5458258B2 (en) Suspended matter analysis method and suspended matter analysis system
Gartner Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California
Holdaway et al. Comparison between ADCP and transmissometer measurements of suspended sediment concentration
Hanes et al. Wave‐formed sand ripples at Duck, North Carolina
Thorne et al. Backscattering by a suspension of spheres
Guerrero et al. The acoustic properties of suspended sediment in large rivers: Consequences on ADCP methods applicability
Jourdin et al. Dual-frequency ADCPs measuring turbidity
Brand et al. High-resolution measurements of turbulent flow close to the sediment–water interface using a bistatic acoustic profiler
Rahiman et al. The front-end hardware design issue in ultrasonic tomography
JP5277432B2 (en) Suspended matter analysis method
Pomázi et al. Comparative assessment of fluvial suspended sediment concentration analysis methods
Sahin et al. Acoustic doppler velocimeter backscatter for suspended sediment measurements: Effects of sediment size and attenuation
Marko et al. Laboratory measurements of acoustic backscattering from polystyrene pseudo-ice particles as a basis for quantitative characterization of frazil ice
JP2014106088A (en) Suspended matter analysis method, suspended matter analysis device using the same and ultrasonic attenuation spectrum analysis device
Thorne et al. On the use of acoustics for measuring shallow water suspended sediment processes
Xu et al. Assessment of a porous viscoelastic model for wave attenuation in ice-covered seas
Jia et al. Synchronous acquisition and analysis of ultrasonic spectral information for the characterization of particle size distribution
Meral A study on the estimating of sediment concentration with turbidity and acoustic backscatter signal for different sediment sizes
Abda et al. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements
Warren et al. Accounting for biological and physical sources of acoustic backscatter improves estimates of zooplankton biomass
Li et al. Nonlinear Bayesian inversion for estimating water pipeline dimensional and material parameters using acoustic wave dispersion
Pallarès et al. Suspended Sediment Monitoring: Comparison between Optical and Acoustic Turbidity
Pedocchi et al. Acoustic backscatter and attenuation of a flocculated cohesive sediment suspension
RU2556285C1 (en) Measuring method of geometrical parameters of non-spherical particles in liquid as per depolarised dynamic light scattering and device for its implementation
Huang et al. Measurement of solid suspension concentration and flow velocity with temperature compensation using a portable ultrasonic device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5458258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250