JP3046504B2 - Particle measuring method and particle measuring device - Google Patents
Particle measuring method and particle measuring deviceInfo
- Publication number
- JP3046504B2 JP3046504B2 JP6220628A JP22062894A JP3046504B2 JP 3046504 B2 JP3046504 B2 JP 3046504B2 JP 6220628 A JP6220628 A JP 6220628A JP 22062894 A JP22062894 A JP 22062894A JP 3046504 B2 JP3046504 B2 JP 3046504B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- measurement target
- scattered light
- target space
- particle measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 title claims description 55
- 238000000034 method Methods 0.000 title claims description 13
- 230000010287 polarization Effects 0.000 claims description 37
- 238000005259 measurement Methods 0.000 claims description 35
- 230000003287 optical effect Effects 0.000 claims description 16
- 239000010419 fine particle Substances 0.000 claims description 15
- 238000003384 imaging method Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は測定対象空間の粒子にレ
ーザ光を照射し、その散乱光からMieの理論式に基づ
いて代表的な粒子の大きさ及び粒子濃度の二次元的な分
布を測定する方法及びその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention irradiates particles in a measurement object space with laser light, and calculates a two-dimensional distribution of typical particle size and particle concentration from the scattered light based on Mie's theoretical formula. The present invention relates to a method and an apparatus for measuring.
【0002】[0002]
【従来の技術】半導体集積回路の製造プロセスにおいて
は、微細な粒子が表面に付着することで、回路の欠陥と
なり、製品の歩留まりが低下する。このため、処理チャ
ンバー等の所定の系内の微粒子の粒子径や微粒子の数
(濃度)を検出する必要がある。2. Description of the Related Art In the process of manufacturing a semiconductor integrated circuit, fine particles adhere to the surface of the semiconductor integrated circuit, thereby causing defects in the circuit and reducing the product yield. Therefore, it is necessary to detect the particle diameter and the number (concentration) of the fine particles in a predetermined system such as a processing chamber.
【0003】ところで、粒子の測定にはMieの理論式
が適用され、このMieの理論式を適用した先行技術と
して特開平6−82358号公報及び雑誌(Plasma Sou
rcesScience and Technology 1993年 第2巻 3
5〜39頁)に記載された論文がある。Incidentally, Mie's theoretical formula is applied to the measurement of particles. As a prior art to which the Mie's theoretical formula is applied, Japanese Patent Application Laid-Open No. Hei 6-82358 and a magazine (Plasma Sou
rcesScience and Technology 1993 Volume 2 3
Pp. 5-39).
【0004】特開平6−82358号公報に開示される
方法は、Ar−Kr連続波レーザ(白色レーザ光)を粒子
に照射し、粒子からの散乱光をビデオカメラで測定し、
粒子の径の経時的な変化を散乱光の色の変化でもって検
出する方法である。The method disclosed in Japanese Patent Application Laid-Open No. 6-82358 discloses a method of irradiating particles with an Ar-Kr continuous wave laser (white laser light), measuring the scattered light from the particles with a video camera,
This is a method of detecting a change over time in particle diameter by a change in color of scattered light.
【0005】一方、前記論文に示される方法は図4に示
すように、レーザ光源100で生成された単一波長のレ
ーザ光を偏光解消板101にて無偏光のレーザ光とし、
このレーザ光を測定対象空間Sに照射する構成とし、ま
た、測定対象空間Sの左右には照射光軸に対して同じ光
軸交角となるように2つの光学系を配置し、各光学系を
測定対象空間Sに近い方から順に、アパーチャ102
a,102b、偏光フィルタ103a,103b、アパ
ーチャ104a,104b、レンズ105a,105
b、波長選択フィルタ106a,106b及び光電変換
素子107a,107bを配置し、測定対象空間Sから
の散乱光のうち観測面に対して偏光方向が0°の偏光成
分を光電変換素子107aに、偏光方向が90°の偏光
成分を光電変換素子107bに入射せしめ、それぞれの
偏光成分の光強度の比から代表的な粒子の大きさを求
め、更に前もって作成しておいた既知のデータとの比較
により粒子濃度を求めるようにしている。On the other hand, in the method described in the above-mentioned article, as shown in FIG. 4, a laser beam of a single wavelength generated by a laser light source 100 is converted into a non-polarized laser beam by a depolarizing plate 101,
The laser light is applied to the measurement target space S, and two optical systems are arranged on the left and right sides of the measurement target space S so as to have the same optical axis intersection angle with respect to the irradiation optical axis. The apertures 102 are arranged in order from the one closer to the measurement target space S.
a, 102b, polarizing filters 103a, 103b, apertures 104a, 104b, lenses 105a, 105
b, the wavelength selection filters 106a and 106b and the photoelectric conversion elements 107a and 107b are arranged, and a polarization component of the scattered light from the measurement target space S whose polarization direction is 0 ° with respect to the observation plane is polarized by the photoelectric conversion element 107a. A polarization component having a direction of 90 ° is made incident on the photoelectric conversion element 107b, a typical particle size is determined from the ratio of the light intensity of each polarization component, and a comparison is made with known data prepared in advance. The particle concentration is determined.
【0006】[0006]
【発明が解決しようとする課題】上述した先行技術のう
ち、特開平6−82358号公報に開示される方法で
は、系内の粒子の粒径変化を色の変化で観測することは
できても、系内の粒子の径を直接知ることはできない。
また、計測可能な粒子は0.2μm程度が実際上の限界
とされる。Among the above-mentioned prior arts, in the method disclosed in Japanese Patent Application Laid-Open No. Hei 6-82358, it is possible to observe the change in the particle size of the particles in the system by the change in color. However, the diameter of the particles in the system cannot be directly known.
The practical limit of measurable particles is about 0.2 μm.
【0007】一方、図4に示した方法によれば、リアル
タイムでしかも系を乱すことなく系内の粒子径や粒子数
(濃度)を知ることができるのであるが、これら粒子径
や粒子数は系内の1点に限定され、全体の粒子分布や系
内の平均的な粒子数を正確に測定することができない。
装置全体を測定対象空間Sに対して移動させればよいの
であるが、装置全体が大掛りとなり実際上このようなこ
とはできない。On the other hand, according to the method shown in FIG. 4, the particle diameter and the number of particles (concentration) in the system can be known in real time without disturbing the system. It is limited to one point in the system, and the entire particle distribution and the average number of particles in the system cannot be measured accurately.
It is sufficient to move the entire apparatus with respect to the measurement target space S, but the entire apparatus becomes large-sized, and such a situation cannot be practically performed.
【0008】また、図4に示した方法にあっては、アパ
ーチャのサイズが観測立体角を決め、その値が検出可能
な散乱偏光比の限界となり、測定可能な粒径値を決める
こととなる。従って、決められた粒径値の粒子を測定す
るには、高精度の位置決めを行わなければならない。In the method shown in FIG. 4, the size of the aperture determines the observation solid angle, and the value determines the limit of the detectable scattered polarization ratio, and determines the measurable particle size. . Therefore, high-precision positioning must be performed in order to measure particles having a determined particle size.
【0009】[0009]
【課題を解決するための手段】上記課題を解決すべく本
発明に係る微粒子測定方法は、所定角度の偏光成分から
なる第1のレーザ光と、この第1のレーザ光と偏光角度
及び波長が異なる第2のレーザ光とを同一方向から照射
光として測定対象空間に照射し、この測定対象空間内の
所定の平面的な領域から散乱光を取り出し、当該散乱光
を波長毎に分離することで散乱光を偏光成分毎の散乱光
に分離して撮像素子に入射せしめ、各偏光成分毎の散乱
光強度比から測定対象空間内に存在する微粒子群の代表
的な粒子の大きさ及び粒子濃度を求めるようにした。In order to solve the above-mentioned problems, a method for measuring fine particles according to the present invention comprises a first laser beam composed of a polarization component having a predetermined angle, and the first laser beam having a polarization angle and wavelength. By irradiating a different second laser beam to the measurement target space as irradiation light from the same direction, extracting scattered light from a predetermined planar area in the measurement target space, and separating the scattered light for each wavelength. The scattered light is separated into scattered light for each polarization component and made incident on the image sensor, and a typical particle size and particle concentration of the fine particles present in the measurement target space are determined from the scattered light intensity ratio for each polarization component. I asked for it.
【0010】また、本発明に係る微粒子測定装置は、所
定角度の偏光成分からなる第1のレーザ光を生成する第
1のレーザ光源と、前記第1のレーザ光と偏光角度及び
波長が異なる第2のレーザ光を生成する第2のレーザ光
源と、第1及び第2のレーザ光を照射光として測定対象
空間に照射するレンズ系と、この測定対象空間内の所定
の平面的な領域から散乱光を取り出すレンズ系と、この
レンズ系を介して取り出した散乱光から波長を指標とし
て二つの偏光成分に分離する波長選択手段と、この波長
選択手段で分離した一方の偏光成分の散乱光が入射する
第1の撮像素子と、他方の偏光成分の散乱光が入射する
第2の撮像素子とで構成し、前記第1の撮像素子と前記
第2の撮像素子が出力する散乱光強度に応じた電圧の比
から測定対象空間内に存在する微粒子群の代表的な粒子
の大きさ及び粒子濃度を求めるようにした。The particle measuring apparatus according to the present invention further comprises a first laser light source for generating a first laser beam having a polarization component at a predetermined angle, and a first laser beam having a polarization angle and a wavelength different from those of the first laser beam. A second laser light source for generating the second laser light, a lens system for irradiating the first and second laser lights as irradiation light to the measurement target space, and scattering from a predetermined planar area in the measurement target space. A lens system for extracting light, wavelength selecting means for separating the scattered light extracted through this lens system into two polarized light components using the wavelength as an index, and scattered light of one polarized light component separated by the wavelength selecting means is incident. to a first image sensor, constituted by a second image sensor which is the other of the scattered light of the polarization component incident the said first image sensor
Ratio of voltage according to scattered light intensity output from the second image sensor
Representative particles of the particle group existing in the space to be measured from
And the particle concentration were determined .
【0011】ここで、異なる偏光成分としては観測面に
対する角度が0°及び90°のものとし、また照射光を
シート状光とすることができる。また1つのレーザ光源
で2つの波長のレーザ光を生成するようにしてもよい。Here, the different polarization components may be those having angles of 0 ° and 90 ° with respect to the observation surface, and the irradiation light may be sheet light. Alternatively, one laser light source may generate two wavelengths of laser light.
【0012】[0012]
【作用】偏光角度が異なるレーザ光を2種類用い、夫々
のレーザ光の波長を異ならせておくことで、入射角に極
めて敏感な(入射角精度が厳しい)偏光フィルタを使用
せずに、入射角に敏感でない誘電体ミラー等で、波長を
弁別の指標として散乱光を偏光角度毎に分離することが
可能になる。したがって、ある程度二次元的な広がりを
もった状態で散乱光を撮像素子に入射せしめることが可
能になる。[Function] By using two types of laser beams having different polarization angles and making the wavelengths of the respective laser beams different, it is possible to use a polarization filter which is extremely sensitive to the incident angle (the incident angle accuracy is strict) without using a polarizing filter. With a dielectric mirror or the like that is not sensitive to angle, it becomes possible to separate scattered light for each polarization angle using wavelength as an index for discrimination. Therefore, it is possible to make the scattered light enter the image pickup device while having a two-dimensional spread to some extent.
【0013】[0013]
【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る微粒子測定装置
の全体構成図であり、この微粒子測定装置にあっては、
夫々異なる波長(λ1,λ2)のレーザ光を生成するレー
ザ光源1,2を備えている。レーザ光源1にて生成され
るレーザ光λ1は観測面に対する角度が90°の偏光成
分からなり、またレーザ光源2には1/2波長板3を付
設しレーザ光λ2の偏光成分を観測面に対する角度が0
°のものとしている。尚、レーザ光λ1とλ2の偏光面を
直交させるためには、単にレーザ光源を回転させてもよ
い。Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is an overall configuration diagram of a particle measuring apparatus according to the present invention.
Laser light sources 1 and 2 that generate laser beams of different wavelengths (λ 1 , λ 2 ) are provided. The laser light λ 1 generated by the laser light source 1 is composed of a polarized light component having an angle of 90 ° with respect to the observation surface, and the laser light source 2 is provided with a half-wave plate 3 to observe the polarized light component of the laser light λ 2. The angle to the plane is 0
° things. In order to make the polarization planes of the laser beams λ 1 and λ 2 orthogonal, the laser light source may simply be rotated.
【0014】レーザ光λ1はミラー4にて反射し、誘電
体ミラー5を透過し、またレーザ光λ2は誘電体ミラー
5で反射し、両者は合成され、シリンドリカルレンズ等
でなるレンズ系6によってシート状等の幅をもった照射
光Lとされ、この照射光Lは測定対象空間Sに照射され
る。The laser beam λ 1 is reflected by the mirror 4 and passes through the dielectric mirror 5, and the laser beam λ 2 is reflected by the dielectric mirror 5, and the two are combined to form a lens system 6 composed of a cylindrical lens or the like. The irradiation light L having a width such as a sheet shape is applied to the measurement target space S.
【0015】また、測定対象空間Sの一方の側には、1
つの受光系10を配置している。この受光系は測定対象
空間S内の所定の平面的な領域から散乱光を取り出すレ
ンズ系11、このレンズ系11を透過した散乱光のうち
波長がλ1またはλ2の散乱光、換言すれば偏光角度が9
0°または0°の一方の散乱光のみを反射する誘電体ミ
ラー12、誘電体ミラー12で反射した一方の散乱光の
波長の光のみを透過せしめる波長選択フィルタ13、誘
電体ミラー12を透過した他方の散乱光を反射する誘電
体ミラー14、この誘電体ミラー14で反射した他方の
散乱光の波長の光のみを透過せしめる波長選択フィルタ
15及びこれら波長選択フィルタ13,15を透過した
散乱光が入射する第1及び第2のCCD撮像素子16,
17から構成されている。On one side of the measurement target space S, 1
One light receiving system 10 is arranged. This light receiving system is a lens system 11 for extracting scattered light from a predetermined planar area in the measurement target space S. Of the scattered light transmitted through the lens system 11, scattered light having a wavelength of λ 1 or λ 2 , in other words Polarization angle 9
The dielectric mirror 12 reflects only one scattered light of 0 ° or 0 °, the wavelength selection filter 13 transmits only the light of the wavelength of one scattered light reflected by the dielectric mirror 12, and the dielectric mirror 12 is transmitted. The dielectric mirror 14 that reflects the other scattered light, the wavelength selection filter 15 that transmits only the light of the wavelength of the other scattered light reflected by the dielectric mirror 14, and the scattered light that has passed through these wavelength selection filters 13 Incident first and second CCD imaging elements 16,
17.
【0016】ここで、前記波長選択フィルタ13,15
は散乱光を分離するだけではなく、照射したレーザ光以
外の波長の光をカットし、S/Nを向上させるためのも
のである。Here, the wavelength selection filters 13, 15
Not only separates scattered light but also cuts light of a wavelength other than the irradiated laser light to improve S / N.
【0017】而して、測定対象空間Sからの散乱光のう
ち、観測面に対して偏光方向が90°の散乱光は第1の
CCD撮像素子16に入射し、観測面に対して偏光方向
が0°の散乱光は第2のCCD撮像素子17に入射す
る。ここで、測定対象空間S中の同じ位置を撮像してい
るCCD撮像素子16,17の画素子には同じ粒子群の
散乱光が入射するので、それぞれの偏光成分の光強度の
比からMieの理論式に基づき測定対象空間S内に浮遊
する微粒子の代表的な大きさが求められる。また、前も
って作成しておいた既知の微粒子についてのデータとの
比較により粒子濃度を求める。Thus, of the scattered light from the measurement target space S, the scattered light having a polarization direction of 90 ° with respect to the observation surface enters the first CCD image pickup device 16 and is polarized with respect to the observation surface. The scattered light having an angle of 0 ° is incident on the second CCD imaging device 17. Here, since the scattered light of the same particle group is incident on the image elements of the CCD image sensors 16 and 17 which image the same position in the measurement target space S, the Mie value is obtained from the ratio of the light intensity of each polarization component. Based on the theoretical formula, a representative size of the fine particles floating in the measurement target space S is obtained. In addition, the particle concentration is determined by comparing with data of known fine particles prepared in advance.
【0018】また、受光系は同一観測方向に設置される
ことが好ましい。即ち、照射光軸に対して同じ光軸交角
となるように配置されることが好ましい。本実施例では
図1に示したように測定対象空間Sの一方の側に受光系
を一つにまとめて配置しているので、照射光軸に対する
光軸交角が自ずと等しくなり、換言すれば光軸交角が特
定の角度に拘束されることがなくなり、位置合わせが容
易になる。Preferably, the light receiving systems are installed in the same observation direction. That is, it is preferable to arrange the optical axes so as to have the same optical axis intersection angle with the irradiation optical axis. In the present embodiment, as shown in FIG. 1, the light receiving systems are collectively arranged on one side of the measurement target space S, so that the optical axis intersection angle with respect to the irradiation optical axis is naturally equal, in other words, the light The axis intersection angle is no longer restricted to a specific angle, and alignment is facilitated.
【0019】図2は本発明に係る微粒子測定装置の他の
例を示す構成図であり、この微粒子測定装置にあって
は、図1に示した微粒子測定装置と異なり、測定対象空
間Sの左右に照射光軸に対して同じ光軸交角(γ)とな
るように2つの受光系を配置している。尚、図2に示し
た微粒子測定装置と同一の部材については同一の符号を
付し説明を省略する。FIG. 2 is a block diagram showing another example of the particle measuring apparatus according to the present invention. In this particle measuring apparatus, unlike the particle measuring apparatus shown in FIG. Two light receiving systems are arranged so as to have the same optical axis intersection angle (γ) with respect to the irradiation optical axis. Note that the same members as those of the particle measuring apparatus shown in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.
【0020】このような構成とすれば、同じ光軸交角
(γ)とするための手間は必要になるが、波長選択手段
として波長フィルタか誘電体ミラーの一方のみを設けれ
ば足りることになる。尚、光軸交角(γ)は90°が好
ましいが、予め双方の光軸交角(γ)が判明していれ
ば、双方の光軸交角(γ)が異なっていてもよい。With such a configuration, it is necessary to provide the same optical axis crossing angle (γ), but it is sufficient to provide only one of the wavelength filter and the dielectric mirror as the wavelength selecting means. . Although the optical axis intersection angle (γ) is preferably 90 °, both optical axis intersection angles (γ) may be different as long as both optical axis intersection angles (γ) are known in advance.
【0021】上述した実施例はいずれもレーザ光源を2
個使用しているが、要は偏光面の異なる2種類の波長が
存在すれば足りるのであるから、1つのレーザ光源であ
って、2波長同時発振のものを用いてもよい。In each of the above-described embodiments, the laser light source is two.
However, since it is only necessary that two types of wavelengths having different polarization planes exist, one laser light source may be used that oscillates at two wavelengths.
【0022】図3は2つの波長のレーザ光を1つのレー
ザ光源21で生成する例を示し、この図に示すように1
つのレーザ光源21、誘電体ミラー22、1/2波長板
23及びミラー24を用いることも可能である。FIG. 3 shows an example in which laser light of two wavelengths is generated by one laser light source 21. As shown in FIG.
It is also possible to use two laser light sources 21, a dielectric mirror 22, a half-wave plate 23 and a mirror 24.
【0023】尚、実施例としては検出感度を上げるため
に、異なる偏光成分として0°及び90°のものを示し
たが、特にこれに限定されるものではない。In the examples, different polarization components having 0 ° and 90 ° are shown in order to increase the detection sensitivity, but the present invention is not limited to these.
【0024】[0024]
【発明の効果】以上に説明したように本発明によれば、
観測面に対する偏光方向及び波長が異なる2つのレーザ
光を一定の広がりを持つ照射光として測定対象空間に照
射し、この測定対象空間内の所定の平面的な領域から散
乱光を偏光成分毎に撮像素子に入射せしめ、各偏光成分
毎の散乱光強度比から測定対象空間内に存在する微粒子
群の代表的な粒子の大きさ及び二次元の粒子濃度を求め
るようにしたので、装置を走査することなく所定の領域
での粒子径と粒子数を求めることができる。According to the present invention as described above,
Two laser beams having different polarization directions and wavelengths with respect to the observation surface are irradiated to the measurement target space as irradiation light having a certain spread, and scattered light is imaged for each polarization component from a predetermined planar area in the measurement target space. Scanning the device because it was made to enter the element and the typical particle size and two-dimensional particle concentration of the particle group existing in the measurement target space were obtained from the scattered light intensity ratio for each polarization component. The particle diameter and the number of particles in a predetermined region can be obtained without any problem.
【0025】また、従来の偏光特性を用いない測定法で
あれば、二次元的な空間分布しか測定できなかったが、
本発明のように散乱光の偏光特性に基づき、且つ波長を
媒介として2種類の偏光成分の散乱光強度を測定するこ
とで、粒子の大きさと二次元的な空間分布を同時に測定
することができる。In addition, the conventional measurement method using no polarization characteristic can measure only a two-dimensional spatial distribution.
By measuring the scattered light intensity of two types of polarized light components based on the polarization characteristics of the scattered light and using the wavelength as a medium as in the present invention, it is possible to simultaneously measure the particle size and the two-dimensional spatial distribution. .
【0026】また、平面的にある広がりを持った散乱光
を偏光フィルタによって分離する場合、フィルタへの入
射角が偏光分離に敏感に影響して分離が困難になるが、
偏光角が異なる2つのレーザ光の夫々の波長を異ならせ
ておけば、偏光フィルタの代りに入射角度にそれ程敏感
でない波長選択フィルタを用いることができ、更にアパ
ーチャのような高精度の位置合わせを必要とする部材を
使用しないので、結果として高精度な二次元分布が測定
可能となる。In the case where scattered light having a certain spread in a plane is separated by a polarizing filter, the angle of incidence on the filter sensitively affects the polarization separation, making separation difficult.
If the wavelengths of the two laser beams having different polarization angles are different, a wavelength selection filter that is not so sensitive to the incident angle can be used instead of the polarization filter, and a high-precision alignment such as an aperture can be achieved. Since a required member is not used, a highly accurate two-dimensional distribution can be measured as a result.
【0027】更に、測定対象空間内の所定の平面的な領
域から散乱光を取り出す受光系を1つとすれば、位置合
わせが極めて簡単に行える。一方、測定対象空間内の所
定の平面的な領域から散乱光を取り出す受光系左右に一
対配置するようにすれば、部品を省略することができ
る。Furthermore, if only one light receiving system is provided for extracting scattered light from a predetermined planar area in the space to be measured, alignment can be performed very easily. On the other hand, if a pair of light receiving systems for extracting scattered light from a predetermined planar area in the measurement target space are arranged on the left and right sides, parts can be omitted.
【図1】本発明に係る微粒子測定装置の全体構成図FIG. 1 is an overall configuration diagram of a particle measuring apparatus according to the present invention.
【図2】本発明に係る微粒子測定装置の他の例を示す全
体構成図FIG. 2 is an overall configuration diagram showing another example of the particle measurement device according to the present invention.
【図3】2つの波長のレーザ光を生成する1つのレーザ
光源を示す図FIG. 3 is a diagram showing one laser light source that generates laser light of two wavelengths;
【図4】従来の微粒子測定装置の構成図FIG. 4 is a configuration diagram of a conventional particle measuring apparatus.
1、2…レーザ光源、6…広がりをもった照射光とする
ためのレンズ系、10…受光系、11…散乱光を所定の
平面的な領域から取り出すレンズ系、12,14…誘電
体ミラー、13,15…波長選択フィルタ、16,17
…CCD撮像素子、L…シート状照射光、S…測定対象
空間。Reference numerals 1, 2, laser light source, 6: a lens system for providing divergent irradiation light, 10: a light receiving system, 11: a lens system for extracting scattered light from a predetermined planar area, 12, 14, a dielectric mirror , 13, 15 ... wavelength selection filter, 16, 17
... CCD imaging device, L ... Sheet irradiation light, S ... Measurement target space.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−185336(JP,A) Plasma Sources Sc ience and Technolo gy,2,(1993)p.35−39 (58)調査した分野(Int.Cl.7,DB名) G01N 15/00 - 15/14 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-185336 (JP, A), Plasma Sources Science and Technology, 2, (1993) p. 35-39 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 15/00-15/14 JICST file (JOIS)
Claims (9)
ザ光と、この第1のレーザ光と偏光角度及び波長が異な
る第2のレーザ光とを同一方向から照射光として測定対
象空間に照射し、この測定対象空間からの散乱光を所定
の平面的な領域から取り出し、当該散乱光を波長毎に分
離することで散乱光を偏光成分毎の散乱光に分離して撮
像素子に入射せしめ、各偏光成分毎の散乱光強度比から
測定対象空間内に存在する微粒子群の代表的な粒子の大
きさ及び粒子濃度を求めるようにしたことを特徴とする
微粒子測定方法。1. A measurement target space is irradiated with a first laser beam having a polarization component at a predetermined angle and a second laser beam having a different polarization angle and wavelength from the first laser beam as irradiation light from the same direction. Then, the scattered light from the measurement target space is taken out from a predetermined planar area, and the scattered light is separated for each wavelength by separating the scattered light for each wavelength, and the scattered light is incident on the imaging device. A method for measuring fine particles, wherein a typical particle size and particle concentration of a group of fine particles present in a measurement target space are determined from a scattered light intensity ratio of each polarized light component.
て、異なる偏光成分としては観測面に対する角度が0°
及び90°のものとし、また前記照射光が観測方向から
見て一定の幅を有するシート状光としたことを特徴とす
る微粒子測定方法。2. The method for measuring fine particles according to claim 1, wherein the different polarization components have an angle of 0 ° with respect to the observation plane.
And a 90 ° angle, and the irradiation light is a sheet-like light having a certain width when viewed from the observation direction.
ザ光を生成する第1のレーザ光源と、前記第1のレーザ
光と偏光角度及び波長が異なる第2のレーザ光を生成す
る第2のレーザ光源と、第1及び第2のレーザ光を照射
光として測定対象空間に照射するレンズ系と、この測定
対象空間内の所定の平面的な領域から散乱光を取り出す
レンズ系と、このレンズ系を介して取り出した散乱光か
ら波長を指標として二つの偏光成分に分離する波長選択
手段と、この波長選択手段で分離した一方の偏光成分の
散乱光が入射する第1の撮像素子と、他方の偏光成分の
散乱光が入射する第2の撮像素子とを備え、前記第1の
撮像素子と前記第2の撮像素子が出力する散乱光強度に
応じた電圧の比から測定対象空間内に存在する微粒子群
の代表的な粒子の大きさ及び粒子濃度を求めることを特
徴とする微粒子測定装置。3. A first laser light source for generating a first laser light composed of a polarization component having a predetermined angle, and a second laser light for generating a second laser light having a polarization angle and a wavelength different from those of the first laser light. A lens system for irradiating the measurement target space with the first and second laser lights as irradiation light, a lens system for extracting scattered light from a predetermined planar area in the measurement target space, and a lens system Wavelength selecting means for separating the scattered light extracted through the system into two polarized light components using the wavelength as an index, a first image pickup device on which scattered light of one polarized light component separated by the wavelength selecting means is incident, and A second image pickup device on which scattered light having a polarization component of
The intensity of the scattered light output by the image sensor and the second image sensor.
Particles present in the measurement target space from the corresponding voltage ratio
To determine the typical particle size and particle concentration of
Fine particle measuring device.
て、前記測定対象空間内の所定の平面的な領域から散乱
光を取り出すレンズ系を含む受光系は、測定対象空間の
一方の側に1つ配置されていることを特徴とする微粒子
測定装置。4. The fine particle measuring apparatus according to claim 3, wherein the light receiving system including a lens system for extracting scattered light from a predetermined planar area in the measurement target space is provided on one side of the measurement target space. A fine particle measuring device, comprising:
て、前記測定対象空間内の所定の平面的な領域から散乱
光を取り出すレンズ系を含む受光系は、測定対象空間の
左右にそれぞれ1つ配置されたことを特徴とする微粒子
測定装置。5. The particle measuring apparatus according to claim 3, wherein one light receiving system including a lens system for extracting scattered light from a predetermined planar area in the measurement target space is provided on each of the left and right sides of the measurement target space. A fine particle measuring device, which is arranged.
て、前記各受光系は照射光軸に対する光軸交角が90°
であることを特徴とする微粒子測定装置。6. The particle measuring apparatus according to claim 5, wherein each of the light receiving systems has an optical axis intersection angle of 90 ° with an irradiation optical axis.
A particle measuring device, characterized in that:
定装置において、前記波長選択手段は誘電体ミラーであ
ることを特徴とする微粒子測定装置。7. The particle measuring apparatus according to claim 3, wherein said wavelength selecting means is a dielectric mirror.
定装置において、前記第1及び第2のレーザ光源を1つ
のレーザ光源にしたことを特徴とする微粒子測定装置。8. The particle measuring apparatus according to claim 3, wherein the first and second laser light sources are one laser light source.
定装置において、異なる偏光成分としては観測面に対す
る角度が0°及び90°のものとし、また照射光が一定
の幅を有するシート状光としたことを特徴とする微粒子
測定装置。9. The fine particle measuring apparatus according to claim 3, wherein the different polarization components have an angle of 0 ° and 90 ° with respect to the observation surface, and the irradiation light has a sheet-like shape having a constant width. A fine particle measuring device characterized by light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6220628A JP3046504B2 (en) | 1994-09-14 | 1994-09-14 | Particle measuring method and particle measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6220628A JP3046504B2 (en) | 1994-09-14 | 1994-09-14 | Particle measuring method and particle measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0886737A JPH0886737A (en) | 1996-04-02 |
JP3046504B2 true JP3046504B2 (en) | 2000-05-29 |
Family
ID=16753958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6220628A Expired - Fee Related JP3046504B2 (en) | 1994-09-14 | 1994-09-14 | Particle measuring method and particle measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3046504B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7328871B2 (en) * | 2019-04-09 | 2023-08-17 | 株式会社日立製作所 | Particle size measuring device and measuring method |
-
1994
- 1994-09-14 JP JP6220628A patent/JP3046504B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
Plasma Sources Science and Technology,2,(1993)p.35−39 |
Also Published As
Publication number | Publication date |
---|---|
JPH0886737A (en) | 1996-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5805278A (en) | Particle detection method and apparatus | |
US5159412A (en) | Optical measurement device with enhanced sensitivity | |
KR100917912B1 (en) | Single-Polarizer Focused-Beam Ellipsometer | |
JP6299600B2 (en) | Fine particle measuring device | |
KR102696735B1 (en) | Instantaneous ellipsometer or scatterometer and related measuring methods | |
US10228287B2 (en) | Measuring polarisation via a gating frequency | |
US6859276B2 (en) | Extracted polarization intensity differential scattering for particle characterization | |
US6879391B1 (en) | Particle detection method and apparatus | |
US4976543A (en) | Method and apparatus for optical distance measurement | |
JP3365474B2 (en) | Polarizing imaging device | |
JP3113720B2 (en) | Pollen detector | |
JP4474509B2 (en) | Laser sheet forming apparatus, particle measuring apparatus, laser sheet forming method and particle measuring method for particle image flow velocity apparatus | |
JP3046504B2 (en) | Particle measuring method and particle measuring device | |
JP4252252B2 (en) | Imaging device | |
JP3046505B2 (en) | Particle measuring method and particle measuring device | |
JPH05172730A (en) | Measurement of particle-size distribution | |
JPH10176906A (en) | Measuring device | |
JPH04168347A (en) | Method and apparatus for detecting parallax refractive index for liquid chromatography | |
WO2019178822A1 (en) | Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit | |
JP2582797B2 (en) | Particle identification / separation method and device | |
JP3338118B2 (en) | Method for manufacturing semiconductor device | |
JPH0638064B2 (en) | Particle analyzer | |
JP2949179B2 (en) | Non-contact type shape measuring device and shape measuring method | |
JP2003315243A (en) | Apparatus for measuring distribution of particle sizes | |
JPH1090158A (en) | Apparatus for measuring concentration and grain size of air-borne particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |