JP2000313672A - Valve made of silicon nitride-based ceramic and production of the same valve - Google Patents

Valve made of silicon nitride-based ceramic and production of the same valve

Info

Publication number
JP2000313672A
JP2000313672A JP11120376A JP12037699A JP2000313672A JP 2000313672 A JP2000313672 A JP 2000313672A JP 11120376 A JP11120376 A JP 11120376A JP 12037699 A JP12037699 A JP 12037699A JP 2000313672 A JP2000313672 A JP 2000313672A
Authority
JP
Japan
Prior art keywords
oxide
silicon nitride
weight
rare earth
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11120376A
Other languages
Japanese (ja)
Inventor
Masahiro Sato
政宏 佐藤
Masashi Sakagami
勝伺 坂上
Takeo Fukutome
武郎 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11120376A priority Critical patent/JP2000313672A/en
Publication of JP2000313672A publication Critical patent/JP2000313672A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply produce a valve made of silicon nitride-based ceramics at a low cost, having high dimensional accuracy in a burnt state and high transverse strength in a surface left as it was burnt. SOLUTION: This valve made of silicon nitride-based ceramics which has high dimensional accuracy in a burnt state is formed by the following steps: adding 80-92.5 wt.% silicon nitride, 2-10 wt.% rare earth element oxide, 2-5 wt.% aluminum oxide and 0.5-5 wt.% (in terms of silicon oxide) excess oxygen so as for the ratio of quantities of aluminum oxide and excess oxygen in terms of silicon oxide to the quantity of rare earth element oxide to be respectively 0.3-1; making a compact from the above mixture in which a valve head 12 is formed at the end of a pillar-like stem 13 as one body and; burning the compact in a non-oxidizing atmosphere after inserting the stem in a cylindrical jig made of silicon nitride-based ceramics and having a wider inside diameter than the outside diameter of the stem so as to hold it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に自動車や発電
機等の内燃機関に用いられる窒化珪素質セラミック製バ
ルブとその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride ceramic valve mainly used for an internal combustion engine such as an automobile and a generator, and a method of manufacturing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
内燃機関に用いられる吸排気用バルブ(以下、単にバル
ブと言う。)としては、図3に示すように、傘部32
と、この傘部32の中央に一体的に形成された柱状のス
テム部33とから構成されたものがあった。なお、傘部
32の外周に形成されたテーパ面34はフェース部と呼
ばれ、内燃機関の吸排気口のバルブシートと当接する部
位である。
2. Description of the Related Art
As an intake / exhaust valve (hereinafter simply referred to as a valve) used in an internal combustion engine, as shown in FIG.
And a column-shaped stem portion 33 integrally formed at the center of the umbrella portion 32. The tapered surface 34 formed on the outer periphery of the umbrella portion 32 is called a face portion, and is a portion that comes into contact with a valve seat of an intake / exhaust port of the internal combustion engine.

【0003】そして、これまでバルブ31は金属製のも
のが一般的で、例えばSUH−3やSUH−11等の鋼
材やインコネル等の耐熱合金が使用されていた。
Conventionally, the valve 31 is generally made of metal, for example, a steel material such as SUH-3 or SUH-11 or a heat-resistant alloy such as Inconel.

【0004】しかしながら、内燃機関の高出力化、高回
転化が求められるようになり、これに伴ってバルブ31
も機械的及び熱的に過酷な環境でも耐えるもので、さら
に軽量であるものが望まれるようになってきた。
However, high output and high speed of the internal combustion engine have been demanded, and accordingly, the valve 31 has been required.
However, it has been desired to be able to withstand severe environments mechanically and thermally, and to be lighter.

【0005】そこで、このようなバルブ31を、耐熱
性、耐熱衝撃性、耐摩耗性及び耐酸化性に優れ、かつ高
い抗折強度を有する窒化珪素質セラミックスにより形成
することが提案されている。
Therefore, it has been proposed that such a valve 31 be formed of a silicon nitride ceramic having excellent heat resistance, thermal shock resistance, abrasion resistance and oxidation resistance and high bending strength.

【0006】このようなバルブ31を形成する窒化珪素
質セラミックスとしては、窒化珪素を主成分とし、焼結
助剤としてY2 3 などの希土類元素酸化物と酸化アル
ミニウムを含有させたものが一般的に用いられていた
(特開平7−133550号、特開平6−20652号
公報参照)。
As the silicon nitride ceramics forming such a valve 31, there is generally used one containing silicon nitride as a main component and a rare earth element oxide such as Y 2 O 3 and aluminum oxide as sintering aids. (See JP-A-7-133550 and JP-A-6-20652).

【0007】ところで、窒化珪素質セラミック製バルブ
を製造する場合、成形体の密度の不均一、焼成炉内の温
度ばらつき、さらに焼成中における加熱の不均一等があ
ると、バルブ31のステム部33が変形(主に曲がる)
するといった課題があり、ステム部33の同軸度で見て
0.5mm以上、酷いときには1mm以上も変形するこ
とがあった。
When a silicon nitride ceramic valve is manufactured, if the density of the compact is not uniform, the temperature in the firing furnace is uneven, and the heating is not uniform during firing, the stem portion 33 of the valve 31 is not suitable. Is deformed (mainly bent)
In some cases, the stem portion 33 may be deformed by 0.5 mm or more in terms of coaxiality, and in severe cases, may be deformed by 1 mm or more.

【0008】このようなステム部33の変形を少しでも
抑えるため、特開平3−137065号公報では、図4
に示すように、成形体41のステム部43の端部に錘4
5を付けて筒状治具46内に挿入し、成形体41の傘部
42を上記筒状治具46の開口部に引っかけて保持する
とともに、錘45の引張応力によってステム部43を直
下させた状態で焼成するようにすることが提案されてい
る。
In order to suppress such deformation of the stem portion 33 as much as possible, Japanese Patent Application Laid-Open No. Hei 3-1370065 discloses FIG.
As shown in the figure, the weight 4 is attached to the end of the stem 43 of the molded body 41.
5 and inserted into the cylindrical jig 46, the umbrella portion 42 of the molded body 41 is hooked and held on the opening of the cylindrical jig 46, and the stem portion 43 is directly lowered by the tensile stress of the weight 45. It has been proposed to fire in a heated state.

【0009】ところが、特開平3−137065号公報
に開示されている方法にて、窒化珪素質セラミック製バ
ルブ31を製作すると、ステム部33の変形を抑えるこ
とができるものの、錘45の引張応力によってステム部
33の密度が低下し、機械的強度が低下するといった課
題があった。
However, when the silicon nitride ceramic valve 31 is manufactured by the method disclosed in Japanese Patent Application Laid-Open No. 3-1370065, the deformation of the stem portion 33 can be suppressed, but the tensile stress of the weight 45 causes the stem portion 33 to deform. There has been a problem that the density of the stem portion 33 is reduced and the mechanical strength is reduced.

【0010】しかも、この方法では、成形体41のステ
ム部43の端部に錘45を形成しておき、焼成後に除去
しなければならないため、材料の無駄や作業工程が増
え、生産性が悪いといった不都合もあった。
Moreover, in this method, since the weight 45 must be formed at the end of the stem 43 of the molded body 41 and then removed after firing, waste of materials and work steps increase, and productivity is poor. There was also an inconvenience.

【0011】[0011]

【発明の目的】本発明の目的は、焼成時における変形が
少ない窒化珪素質セラミックスを用い、簡単な製法で精
度が高く、優れた抗折強度を有する窒化珪素質セラミッ
ク製バルブを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a valve made of silicon nitride ceramics which uses silicon nitride ceramics with little deformation during firing, has a high accuracy by a simple manufacturing method, and has excellent bending strength. is there.

【0012】[0012]

【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、傘部と、この傘部の中央に一体的に形成され
た柱状のステム部とからなる窒化珪素質セラミック製バ
ルブを、その組成が窒化珪素を80〜92.5重量%、
希土類元素を酸化物換算で2〜10重量%、アルミニウ
ムを酸化アルミニウム換算で2〜5重量%、過剰酸素を
酸化珪素換算で0.5〜5重量%の範囲でそれぞれ含有
するとともに、前記希土類元素の酸化物換算量に対する
アルミニウムの酸化アルミニウム換算量の比が0.3〜
1で、かつ前記希土類元素の酸化物換算量に対する過剰
酸素の酸化珪素換算量の比が0.3〜1である窒化珪素
質セラミックスにより形成し、前記ステム部の同軸度を
0.3mm以下としたことを特徴とする。
In view of the above problems, the present invention provides a silicon nitride ceramic valve comprising an umbrella and a columnar stem integrally formed at the center of the umbrella. Its composition is 80-92.5% by weight silicon nitride,
The rare earth element contains 2 to 10% by weight of a rare earth element in terms of oxide, 2 to 5% by weight in terms of aluminum oxide, and 0.5 to 5% by weight of excess oxygen in terms of silicon oxide. The ratio of aluminum oxide equivalent to aluminum oxide equivalent is 0.3 to
1, and made of silicon nitride ceramics in which the ratio of the amount of excess oxygen to the amount of oxide of the rare earth element is 0.3 to 1 and the coaxiality of the stem is 0.3 mm or less. It is characterized by having done.

【0013】また、本発明は、上記窒化珪素質セラミッ
ク製バルブのステム部の表面30%以上を焼き放し面の
ままとし、焼き放し面における抗折強度が700MPa
以上を有することを特徴とする。
The present invention also provides a silicon nitride ceramic valve in which at least 30% of the surface of the stem portion is a burned-out surface, and a flexural strength of the burned-out surface is 700 MPa.
It is characterized by having the above.

【0014】さらに、本発明は、前記窒化珪素質セラミ
ック製バルブを製造するにあたり、窒化珪素を80〜9
2.5重量%、希土類元素酸化物を2〜10重量%、酸
化アルミニウムを2〜5重量%、過剰酸素を酸化珪素換
算量で0.5〜5重量%とし、かつ前記希土類元素酸化
物量に対する酸化アルミニウム量の比及び前記希土類元
素酸化物量に対する過剰酸素の酸化珪素換算量の比が
0.3〜1となるように調合し、次にこれを柱状のステ
ム部の一端に傘部が一体的に形成された成形体に成形
し、次にこの成形体のステム部を、該ステム部の外径よ
り0.5〜10mmの範囲で広い内径を有する窒化珪素
質セラミック製の円筒治具内に挿入して円筒治具に成形
体を保持させ、しかる後、非酸化性雰囲気中にて170
0〜1800℃の温度で焼成することを特徴とする。
Further, according to the present invention, in manufacturing the silicon nitride ceramic valve, the silicon nitride is used in an amount of 80 to 9%.
2.5% by weight, 2 to 10% by weight of rare earth element oxide, 2 to 5% by weight of aluminum oxide, 0.5 to 5% by weight of excess oxygen in terms of silicon oxide, and based on the amount of the rare earth element oxide. The ratio of the amount of aluminum oxide and the ratio of the amount of excess oxygen in terms of silicon oxide to the amount of the rare earth element oxide are adjusted to be 0.3 to 1, and this is then integrated with one end of a columnar stem portion with an umbrella portion. Then, the stem portion of this molded body is placed in a silicon nitride ceramic cylindrical jig having an inner diameter that is wider than the outer diameter of the stem portion by 0.5 to 10 mm. Insert and hold the compact in a cylindrical jig. Then, in a non-oxidizing atmosphere,
It is characterized by firing at a temperature of 0 to 1800 ° C.

【0015】[0015]

【発明の実施の形態】以下、本発明について詳述する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0016】本発明の窒化珪素質セラミック製バルブ
(以下、バルブと言う)は、図1に示すように、傘部1
2と、この傘部12の中央に一体的に形成された柱状の
ステム部13とからなり、ステム部13の同軸度が0.
3mm以下、好ましくは0.2mm以下と反りや曲がり
が殆どないことを特徴とし、ステム部13の表面の30
%以上が焼き放し面のままでも0.3mm以下の同軸度
が得られていることを特徴とする。
As shown in FIG. 1, a valve made of a silicon nitride ceramic (hereinafter referred to as a valve) according to the present invention has
2 and a columnar stem portion 13 integrally formed at the center of the umbrella portion 12.
3 mm or less, preferably 0.2 mm or less, which is characterized by almost no warpage or bend.
% Or more, the coaxiality of 0.3 mm or less is obtained even if the as-baked surface remains.

【0017】その為、本発明のバルブ11によれば、ス
テム部13に反りや曲がりが殆どないため、焼結後の研
削加工を少なくでき、用途によっては焼結後の研削加工
が不要となるため、安価に製造することができる。
Therefore, according to the valve 11 of the present invention, since the stem portion 13 hardly bends or bends, the grinding after sintering can be reduced, and the grinding after sintering becomes unnecessary depending on the application. Therefore, it can be manufactured at low cost.

【0018】ところで、このような優れた同軸度を達成
するには、焼結時における窒化珪素質セラミックスの変
形が少ないことが必要であり、そのための組成として
は、窒化珪素を80〜92.5重量%に対し、Y,E
r,Yb,Lu,Sm,Dy等の希土類元素を酸化物換
算で2〜10重量%、好ましくは5〜9重量%と、アル
ミニウムを酸化アルミニウム換算で2〜5重量%、好ま
しくは3〜4重量%の範囲で含有するとともに、過剰酸
素を酸化珪素換算で0.5〜5重量%、好ましくは2〜
4重量%の範囲で含み、さらに前記希土類元素の酸化物
換算量に対するアルミニウムの酸化アルミニウム換算量
の比が0.3〜1.0、好ましくは0.5〜0.8で、
かつ前記希土類元素の酸化物換算量に対する過剰酸素の
酸化珪素換算量の比が0.3〜1.0、好ましくは0.
5〜0.8であることが重要である。ここで、窒化珪
素、希土類元素、アルミニウム、過剰酸素の含有量及び
比率が前記範囲を外れると、焼結性及び焼結時の変形を
抑制する効果が小さく、ステム部13の同軸度を0.3
mm以下とすることが難しいからである。
Incidentally, in order to achieve such excellent coaxiality, it is necessary that the silicon nitride ceramics be less deformed at the time of sintering. Y, E
Rare earth elements such as r, Yb, Lu, Sm and Dy are 2 to 10% by weight, preferably 5 to 9% by weight in terms of oxides, and aluminum is 2 to 5% by weight, preferably 3 to 4% in terms of aluminum oxide. % Of excess oxygen, and 0.5 to 5% by weight, preferably 2 to 5% by weight of excess oxygen in terms of silicon oxide.
4% by weight, and the ratio of the aluminum oxide equivalent to the rare earth oxide equivalent is 0.3 to 1.0, preferably 0.5 to 0.8,
In addition, the ratio of excess oxygen equivalent to silicon oxide equivalent relative to the rare earth element equivalent to oxide is 0.3 to 1.0, preferably 0.1 to 1.0.
It is important that it is between 5 and 0.8. Here, when the contents and ratios of silicon nitride, rare earth elements, aluminum, and excess oxygen are out of the above-mentioned ranges, the sinterability and the effect of suppressing deformation during sintering are small, and the coaxiality of the stem 13 is set to 0.1. 3
mm or less.

【0019】しかも、焼結助剤の各成分が前記範囲より
少ないと、焼成時において液相成分が不足し、緻密化す
るために高温での焼成が必要となり、その結果、窒化珪
素粒子の粒成長が生じて抗折強度が低下し、また、各成
分が前記範囲より多いと、焼成時において液相成分が多
くなり過ぎるため、窒化珪素粒子の粒成長が進行し、表
層において、短軸長または長軸長の大きい結晶粒子が形
成されやすくなる結果、それらの粗大粒が破壊源とな
り、抗折強度が低下する。
Further, if each component of the sintering aid is less than the above range, the liquid phase component becomes insufficient at the time of firing, and firing at a high temperature is required for densification. When growth occurs, the transverse rupture strength decreases, and when each component is more than the above range, the liquid phase component becomes too large at the time of firing, so that the grain growth of silicon nitride particles progresses, and the short axis length in the surface layer is reduced. Alternatively, crystal grains having a large major axis length are likely to be formed. As a result, the coarse grains serve as a fracture source, and the bending strength is reduced.

【0020】かくして、窒化珪素、希土類元素、アルミ
ニウム、過剰酸素の含有量及び比率を前記範囲で含有す
ることで、ステム部13の表面が焼き放し面でも700
MPa以上の抗折強度を実現することができる。
Thus, by containing the contents and ratios of silicon nitride, rare earth elements, aluminum, and excess oxygen within the above ranges, the surface of the stem portion 13 can be burned 700 times even in the burned-out surface.
A bending strength of not less than MPa can be realized.

【0021】なお、700MPa以上の抗折強度を維持
する観点から、焼結体中における窒化珪素粒子の平均結
晶粒子径は50μm以下、好ましくは30μm以下の範
囲にあるものが良い。
From the viewpoint of maintaining a transverse rupture strength of 700 MPa or more, the average crystal grain size of the silicon nitride particles in the sintered body is preferably 50 μm or less, more preferably 30 μm or less.

【0022】さらに、窒化珪素質セラミックス中には、
他の成分として周期律表第4a、5a、6a族元素の金
属や、TiC,TiN,TaC,TaN,VC,Nb
C,WC,WSi2 ,Mo2 Cなど周期律表第4a、5
a、6a族元素の炭化物、窒化物、珪化物の少なくとも
1種以上、又はSiCなどを分散粒子やウィスカ−の状
態で含有させることで特性を改善することも可能であ
る。ただし、これらの合計含有量は5重量%以下とする
ことが好ましい。
Further, in the silicon nitride ceramics,
Other components include metals of elements of Groups 4a, 5a, and 6a of the periodic table, and TiC, TiN, TaC, TaN, VC, and Nb.
C, WC, WSi 2 , Mo 2 C, etc.
It is also possible to improve the characteristics by incorporating at least one of carbides, nitrides, and silicides of elements a and 6a, or SiC or the like in the form of dispersed particles or whiskers. However, the total content of these is preferably 5% by weight or less.

【0023】次に、本発明の窒化珪素質セラミック製バ
ルブ11を製造する方法について説明する。
Next, a method of manufacturing the silicon nitride ceramic valve 11 of the present invention will be described.

【0024】まず、窒化珪素粉末を準備する。窒化珪素
粉末としては、α−Si3 4 、β−Si3 4 のいず
れの状態であっても良く、その粒径が0.4〜1.2μ
mでかつ酸素を0.5〜1.5重量%の範囲で含有して
いるものを用いることが良い。
First, a silicon nitride powder is prepared. The silicon nitride powder may be in any state of α-Si 3 N 4 and β-Si 3 N 4 , and the particle size is 0.4 to 1.2 μm.
m and containing 0.5 to 1.5% by weight of oxygen.

【0025】そして、この窒化珪素粉末を80〜92.
5重量%に対し、焼結助剤として希土類元素酸化物を2
〜10重量%、好ましくは5〜9重量%と、酸化アルミ
ニウムを2〜5重量%、好ましくは3〜4重量%の範囲
でそれぞれ添加するとともに、酸化珪素を0.5〜5重
量%、好ましくは2〜4重量%の範囲で添加し、さらに
前記希土類元素酸化物の添加量に対する酸化アルミニウ
ムの添加量の比が0.3〜1.0、好ましくは0.5〜
0.8で、かつ前記希土類元素酸化物の添加量に対する
酸化珪素量の比が0.3〜1.0、好ましくは0.5〜
0.8となるように調合する。ただし、酸化珪素量と
は、添加する酸化珪素粉末の添加量に、窒化珪素粉末中
に不純物として含まれている過剰酸素を酸化珪素換算し
た量を加えた値で判断する。
Then, the silicon nitride powder was added to a powder of 80-92.
5% by weight of rare earth oxide as sintering aid
10 to 10% by weight, preferably 5 to 9% by weight, and aluminum oxide in the range of 2 to 5% by weight, preferably 3 to 4% by weight, and silicon oxide in the range of 0.5 to 5% by weight, preferably Is added in the range of 2 to 4% by weight, and the ratio of the added amount of aluminum oxide to the added amount of the rare earth element oxide is 0.3 to 1.0, preferably 0.5 to 1.0.
0.8, and the ratio of the amount of silicon oxide to the amount of the rare earth oxide added is from 0.3 to 1.0, preferably from 0.5 to 1.0.
Mix to give 0.8. However, the amount of silicon oxide is determined by a value obtained by adding the amount of excess oxygen contained as an impurity in the silicon nitride powder in terms of silicon oxide to the amount of silicon oxide powder to be added.

【0026】これらの範囲で調合した原料粉末に対し
て、エタノールやイソプロピルアルコール等の有機溶剤
及びバインダーを加えたあと、公知の粉砕方法、例えば
ボールミル、振動ミル、回転ミル、バレルミル等により
原料粉末を均一に混合粉砕したものを、プレス成形、鋳
込み成形、射出成形、冷間静水圧プレス成形等の公知の
セラミック成形手段にて、図2に示すような、柱状のス
テム部23の一端に傘部22が一体的に形成された成形
体21を製作する。
After adding an organic solvent such as ethanol or isopropyl alcohol and a binder to the raw material powder prepared in these ranges, the raw material powder is reduced by a known pulverizing method, for example, a ball mill, a vibration mill, a rotary mill, a barrel mill or the like. The uniformly mixed and pulverized product is press-formed, cast-molded, injection-molded, cold isostatically pressed by known ceramic molding means or the like, and an umbrella portion is formed at one end of a columnar stem portion 23 as shown in FIG. A molded body 21 integrally formed with 22 is manufactured.

【0027】次に、得られた成形体21のステム部23
の外径Wより0.5〜10mmの範囲で広い内径Qを有
する窒化珪素質セラミック製の円筒治具1内にステム部
23を挿入し、成形体21の傘部22を円筒治具1の開
口端部に引っかけて保持する。ここで、円筒治具1を窒
化珪素質セラミックスにより形成するのは、治具を同質
の窒化珪素で形成することにより、変形の大きな要因で
ある成形体21からの助剤成分の分解を抑制できるから
である。
Next, the stem portion 23 of the obtained molded body 21
The stem 23 is inserted into a cylindrical jig 1 made of silicon nitride ceramic having an inner diameter Q that is wider than the outer diameter W by 0.5 to 10 mm from the outer diameter W of the cylindrical jig 1. Hook and hold on the open end. Here, the cylindrical jig 1 is formed of silicon nitride ceramics. By forming the jig with silicon nitride of the same quality, the decomposition of the auxiliary component from the molded body 21, which is a major factor of deformation, can be suppressed. Because.

【0028】また、円筒治具1の内径Qとステム部23
の外径Wとの内外径差を0.5〜10mmとしたのは、
内外径差が0.5mmより小さいと、成形体21のステ
ム部23を円筒治具1内に挿入する際に破損させる可能
性があり、逆に内外径差が10mmを越えた場合、焼結
時にステム部23が変形すると焼結後の同軸度を0.3
mm以下に抑えることが難しいからである。なお、好ま
しくは内外径差を1〜3mmとすることが良い。また内
外径差の小さい円筒治具1を用いることにより、セット
時における重心のずれが小さくなるため、さらに変形を
抑制できる。
The inner diameter Q of the cylindrical jig 1 and the stem 23
The difference between the outer diameter W and the outer diameter W is 0.5 to 10 mm.
If the difference between the inner and outer diameters is smaller than 0.5 mm, there is a possibility that the stem portion 23 of the molded body 21 may be damaged when inserted into the cylindrical jig 1, and if the inner and outer diameter difference exceeds 10 mm, sintering may be performed. When the stem portion 23 is deformed sometimes, the concentricity after sintering becomes 0.3
This is because it is difficult to keep the thickness below mm. Preferably, the difference between the inner and outer diameters is 1 to 3 mm. In addition, by using the cylindrical jig 1 having a small difference between the inner and outer diameters, the displacement of the center of gravity during setting is reduced, so that the deformation can be further suppressed.

【0029】しかるのち、円筒治具1を用いて保持した
成形体21を焼成するのであるが、窒素雰囲気下あるい
はSiOを含む雰囲気下にて1700〜1800℃、好
ましくは1750〜1800℃の温度で常圧焼成すれば
良い。焼成温度が1700℃未満であると、焼結性が不
十分であり緻密化させることができないからであり、逆
に1800℃を越えると、窒化珪素質セラミック製の円
筒治具1を用いても、成形体21中における助剤成分の
分解が促進させ、ステム部13の変形を抑えることが難
しいからである。
Thereafter, the molded body 21 held by using the cylindrical jig 1 is fired. The molded body 21 is fired at a temperature of 1700 to 1800 ° C., preferably 1750 to 1800 ° C. in a nitrogen atmosphere or an atmosphere containing SiO. It may be fired at normal pressure. If the sintering temperature is lower than 1700 ° C., the sinterability is insufficient and densification cannot be performed. Conversely, if the firing temperature exceeds 1800 ° C., the cylindrical jig 1 made of silicon nitride ceramics may be used. This is because it is difficult to promote the decomposition of the auxiliary component in the molded body 21 and to suppress the deformation of the stem 13.

【0030】このような条件下で製造すれば、窒化珪素
を80〜92.5重量%に対し、Y,Er,Yb,L
u,Sm,Dy等の希土類元素を酸化物換算で2〜10
重量%、アルミニウムを酸化アルミニウム換算で2〜5
重量%、過剰酸素を酸化珪素換算で0.5〜5重量%の
範囲で含有し、さらに前記希土類元素の酸化物換算量に
対するアルミニウムの酸化アルミニウム換算量の比が
0.3〜1.0で、かつ前記希土類元素の酸化物換算量
に対する過剰酸素の酸化珪素換算量の比が0.3〜1.
0である窒化珪素質セラミックスからなり、焼き放し面
のままでもステム部13の同軸度が0.3mm以下であ
る窒化珪素質セラミック製バルブ11を得ることができ
る。
Under these conditions, silicon nitride is added to Y, Er, Yb, L in an amount of 80 to 92.5% by weight.
rare earth elements such as u, Sm, Dy, etc.
% By weight, aluminum is 2 to 5 in terms of aluminum oxide
% By weight and excess oxygen in the range of 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the aluminum oxide equivalent to the rare earth oxide equivalent is 0.3 to 1.0. And the ratio of the amount of excess oxygen converted to silicon oxide to the amount of rare earth element converted to oxide is 0.3 to 1.
Thus, a valve 11 made of silicon nitride-based ceramics, which is made of silicon nitride-based ceramics and has a coaxiality of the stem portion 13 of 0.3 mm or less can be obtained even when the surface is annealed.

【0031】なお、本発明によれば、出発原料である窒
化珪素粉末のうち、10〜70重量%を珪素粉末に置き
換えることもでき、この場合、成形体21を焼成する前
に、窒素雰囲気下にて1000〜1400℃の温度で熱
処理を施してSi粉末を窒化処理して窒化珪素を生成さ
せ、成形体21の密度を高めたうえで、前記焼成条件で
焼成すれば良い。この製法によれば、焼成時の収縮を抑
え、緻密で寸法精度の高い窒化珪素質セラミック製バル
ブ11を得ることができる。
According to the present invention, 10 to 70% by weight of the silicon nitride powder as a starting material can be replaced with silicon powder. Then, heat treatment is performed at a temperature of 1000 to 1400 ° C. to nitride the Si powder to generate silicon nitride, and the density of the molded body 21 is increased, followed by firing under the above firing conditions. According to this manufacturing method, shrinkage during firing is suppressed, and a dense and highly dimensional accurate silicon nitride ceramic valve 11 can be obtained.

【0032】[0032]

【実施例】(実施例1)窒化珪素粉末(BET比表面積
9m2 /g、α率98%、酸素量1.2重量%)に対
し、焼結助剤として希土類元素酸化物の粉末(平均粒径
1.5μm)と酸化アルミニウムの粉末(純度99.9
%、平均粒径2μm)、さらに酸化珪素の粉末(純度9
9.9%、平均粒径2μm)を、焼成後の組成が表1と
なるように調合し、バインダー及び溶媒を添加して混練
乾燥したあと、冷間静水圧成形法により、傘部22とス
テム部23とからなり、ステム部23の外径が10m
m、長さが100mmである図1に示すような成形体2
1を形成した。
(Example 1) A powder of a rare earth element oxide (average) was used as a sintering aid for silicon nitride powder (BET specific surface area 9 m 2 / g, α rate 98%, oxygen content 1.2% by weight). Particle size 1.5 μm) and aluminum oxide powder (purity 99.9)
%, Average particle size of 2 μm) and further powder of silicon oxide (purity 9
9.9%, average particle size of 2 μm) was prepared such that the composition after firing was as shown in Table 1, and after adding a binder and a solvent and kneading and drying, the mixture was mixed with the umbrella section 22 by cold isostatic pressing. The stem 23 has an outer diameter of 10 m.
m, a molded body 2 having a length of 100 mm as shown in FIG.
1 was formed.

【0033】次に、窒化珪素質セラミック製の円筒治具
1を用意し、この円筒治具1内に成形体21のステム部
23を挿入し、円筒治具1の開口端部に傘部22を引っ
かけて保持した状態で、炭化珪素質セラミックスからな
る匣鉢に入れ、窒素雰囲気下にて1700℃〜1800
℃の温度で焼成することにより、図1に示す窒化珪素質
セラミック製バルブ11を製作した。
Next, a cylindrical jig 1 made of a silicon nitride ceramic is prepared. The stem 23 of the molded body 21 is inserted into the cylindrical jig 1, and an umbrella 22 is attached to the open end of the cylindrical jig 1. Is held in a sagger made of silicon carbide-based ceramics, and held in a nitrogen atmosphere at 1700 ° C. to 1800 ° C.
By firing at a temperature of ° C., a silicon nitride ceramic valve 11 shown in FIG. 1 was manufactured.

【0034】そして、得られた窒化珪素質セラミック製
バルブ11について、ICP発光分光分析にて表1に示
す組成であることを確認したあと、ステム部13の焼き
放し面上を、その長手方向に沿って接触式の測長器を走
査させ、ステム部13の同軸度を計測したあと、4点曲
げ試験機により焼き放し面の抗折強度を測定した。
After the obtained silicon nitride ceramic bulb 11 was confirmed to have the composition shown in Table 1 by ICP emission spectroscopy, the burned-out surface of the stem 13 was moved in the longitudinal direction. The contact length measuring device was scanned along the same, the coaxiality of the stem portion 13 was measured, and then the bending strength of the annealed surface was measured by a four-point bending tester.

【0035】それぞれの結果は表1に示す通りである。The results are as shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】この結果、まず、焼結時に円筒治具1の内
径Qとステム部23の外径Wとの内外径差が0.5mm
よりも小さい試料No.5では、円筒治具1内に成形体
21のステム部23を挿入する際に折れてしまい、内外
径差が10mmよりも大きい試料No.6では、焼結後
のステム部13の変形量が0.42mmと大きく、抗折
強度も700MPa未満と低かった。
As a result, the difference between the inner and outer diameters of the inner diameter Q of the cylindrical jig 1 and the outer diameter W of the stem 23 during sintering is 0.5 mm.
Sample No. smaller than In Sample No. 5, when the stem portion 23 of the molded body 21 was inserted into the cylindrical jig 1, the sample No. 5 was broken, and the difference in inner and outer diameters was larger than 10 mm. In No. 6, the amount of deformation of the stem portion 13 after sintering was as large as 0.42 mm, and the transverse rupture strength was as low as less than 700 MPa.

【0038】また、試料No.16,17,20,2
1,24,25,28,29,32,33のように、希
土類元素の酸化物換算量が2〜10重量%、アルミニウ
ムの酸化アルミニウム換算量が2〜5重量%、過剰酸素
の酸化珪素換算量が0.5〜5重量%、希土類元素の酸
化物換算量に対するアルミニウムの酸化アルミニウム換
算量の比が0.3〜1、希土類元素の酸化物換算量に対
する過剰酸素の酸化珪素換算量の比が0.3〜1のいず
れかの範囲がはずれたものはいずれも、ステム部13の
同軸度を0.3mm以下とすることができず、また、抗
折強度も700MPa未満と低かった。
Sample No. 16, 17, 20, 2
As in 1,24,25,28,29,32,33, the amount of rare earth element as oxide is 2 to 10% by weight, the amount of aluminum as aluminum oxide is 2 to 5% by weight, and excess oxygen as silicon oxide. 0.5 to 5% by weight, the ratio of aluminum oxide equivalent to aluminum oxide equivalent to rare earth oxide equivalent is 0.3 to 1, the ratio of excess oxygen equivalent to silicon oxide equivalent to rare earth oxide equivalent. In all cases, the coaxiality of the stem portion 13 could not be reduced to 0.3 mm or less, and the transverse rupture strength was as low as less than 700 MPa.

【0039】これに対し、試料No.1〜4,7〜1
5,18,19,22,23,26,27,30,31
は、窒化珪素質セラミックスの組成が、窒化珪素を80
〜92.5重量%、希土類元素を酸化物換算で2〜10
重量%、アルミニウムを酸化アルミニウム換算で2〜5
重量%、過剰酸素を酸化珪素換算で0.5〜5重量%で
あり、前記希土類元素の酸化物換算量に対するアルミニ
ウムの酸化アルミニウム換算量の比が0.3〜1でかつ
前記希土類元素の酸化物換算量に対する過剰酸素の酸化
珪素換算量の比が0.3〜1であるとともに、バルブ1
1の焼成時に、成形体21のステム部23の外径より
0.5〜10mmの範囲で広い内径を有する窒化珪素質
セラミック製の円筒治具1内に挿入、保持して焼結させ
るようにしたことから、焼成後のステム部13の変形を
抑え、焼き放し面のままでもステム部13の同軸度を
0.3mm以下とでき、また焼き放し面における抗折強
度を700MPa以上の高強度を達成することができ
た。
On the other hand, the sample No. 1-4, 7-1
5,18,19,22,23,26,27,30,31
Means that the composition of the silicon nitride ceramic is 80%
-92.5% by weight, 2-10
% By weight, aluminum is 2 to 5 in terms of aluminum oxide
% By weight, excess oxygen is 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the aluminum oxide equivalent to the rare earth oxide equivalent is 0.3 to 1 and the oxidation of the rare earth element is The ratio of the amount of excess oxygen converted to silicon oxide to the amount converted to material is 0.3 to 1, and the valve 1
At the time of firing, the molded body 21 is inserted into a cylindrical jig 1 made of silicon nitride ceramic having an inner diameter that is wider than the outer diameter of the stem portion 23 of the molded body by 0.5 to 10 mm, and is sintered. Therefore, the deformation of the stem 13 after firing can be suppressed, the coaxiality of the stem 13 can be reduced to 0.3 mm or less even in the as-baked surface, and the transverse rupture strength in the as-baked surface can be as high as 700 MPa or more. Could be achieved.

【0040】[0040]

【発明の効果】以上のように、本発明によれば、傘部
と、この傘部の中央に一体的に形成された柱状のステム
部とからなる窒化珪素質セラミック製バルブを、その組
成が窒化珪素を80〜92.5重量%、希土類元素を酸
化物換算で2〜10重量%、アルミニウムを酸化アルミ
ニウム換算で2〜5重量%、過剰酸素を酸化珪素換算で
0.5〜5重量%の範囲でそれぞれ含有するとともに、
前記希土類元素の酸化物換算量に対するアルミニウムの
酸化アルミニウム換算量の比及び前記希土類元素の酸化
物換算量に対する過剰酸素の酸化珪素換算量の比が0.
3〜1である窒化珪素質セラミックスにより形成し、前
記ステム部の同軸度を0.3mm以下としたことによっ
て、焼結後の研削加工を少なくでき、作業工程を減らす
こともできるため、安価で精度の高いバルブとすること
ができるとともに、焼き放し面のままでもステム部の抗
折強度が700MPa以上を有する破損し難いバルブを
提供することができる。
As described above, according to the present invention, a silicon nitride ceramic valve comprising a head portion and a columnar stem portion integrally formed at the center of the head portion has a composition. 80 to 92.5% by weight of silicon nitride, 2 to 10% by weight of rare earth element in terms of oxide, 2 to 5% by weight of aluminum in terms of aluminum oxide, and 0.5 to 5% by weight of excess oxygen in terms of silicon oxide In addition to containing in the range of
The ratio of the equivalent amount of aluminum oxide to the equivalent amount of oxide of the rare earth element and the ratio of the equivalent amount of excess oxygen to the equivalent amount of oxide of the rare earth element are equivalent to 0.
Since it is made of silicon nitride ceramics having a diameter of 3 to 1 and the coaxiality of the stem is 0.3 mm or less, grinding after sintering can be reduced, and the number of working steps can be reduced. It is possible to provide a highly accurate valve and to provide a valve which has a bending strength of a stem portion of 700 MPa or more and is hard to be broken even if it is an annealed surface.

【0041】また、本発明によれば、前記窒化珪素質セ
ラミック製バルブを製造するにあたり、窒化珪素を80
〜92.5重量%、希土類元素酸化物を2〜10重量
%、酸化アルミニウムを2〜5重量%、さらに過剰酸素
を酸化珪素換算量で0.5〜5重量%とし、かつ前記希
土類元素酸化物量に対する酸化アルミニウム量の比及び
前記希土類元素酸化物量に対する過剰酸素の酸化珪素換
算量の比が0.3〜1となるように調合し、次にこれを
柱状のステム部の一端に傘部が一体的に形成された成形
体に成形し、次にこの成形体のステム部を、該ステム部
の外径より0.5〜10mmの範囲で広い内径を有する
窒化珪素質セラミック製の円筒治具内に挿入して円筒治
具に成形体を保持させ、しかる後、非酸化性雰囲気中に
て1700〜1800℃の温度で焼成するようにしたこ
とから、簡単な製法でステム部の変形が極めて小さい高
精度の窒化珪素質セラミック製バルブを製造することが
できるため、焼結後の研削加工を少なくできるととも
に、作業工程を減らすこともでき、安価に製造すること
ができる。
Further, according to the present invention, in manufacturing the silicon nitride ceramic valve, silicon nitride is
To 92.5% by weight, 2 to 10% by weight of rare earth oxide, 2 to 5% by weight of aluminum oxide, and 0.5 to 5% by weight of excess oxygen in terms of silicon oxide. The ratio of the amount of aluminum oxide to the amount of the material and the ratio of the amount of excess oxygen in terms of silicon oxide to the amount of the rare earth element oxide are adjusted to be 0.3 to 1, and then this is provided with an umbrella at one end of the columnar stem. The molded body is formed into an integrally formed body, and then the stem of the formed body is made of a silicon nitride ceramic cylindrical jig having an inner diameter that is wider than the outer diameter of the stem by 0.5 to 10 mm. The molded body is held in a cylindrical jig by inserting it inside, and then fired at a temperature of 1700 to 1800 ° C. in a non-oxidizing atmosphere. Small, high-precision silicon nitride It is possible to manufacture the electrochromic valve made, it is possible to reduce the grinding after sintering, can also reduce the working steps, it can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒化珪素質セラミック製バルブを示す
側面図である。
FIG. 1 is a side view showing a silicon nitride ceramic valve of the present invention.

【図2】本発明の窒化珪素質セラミック製バルブの焼成
方法を説明するための断面図である。
FIG. 2 is a cross-sectional view for explaining a method for firing a silicon nitride ceramic valve of the present invention.

【図3】従来の窒化珪素質セラミック製バルブを示す側
面図である。
FIG. 3 is a side view showing a conventional silicon nitride ceramic valve.

【図4】従来の窒化珪素質セラミック製バルブの焼成方
法を説明するための断面図である。
FIG. 4 is a cross-sectional view for explaining a conventional method of firing a silicon nitride ceramic valve.

【符号の説明】[Explanation of symbols]

1:円筒治具 11:窒化珪素質セラミック製バルブ
12:傘部 13:ステム部 21:成形体 22:成
形体の傘部 23:成形体のステム部
1: Cylindrical jig 11: Silicon nitride ceramic valve
12: umbrella 13: stem 21: molded body 22: umbrella of molded body 23: stem of molded body

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA03 BA08 BA09 BA32 BA73 BB03 BB08 BB09 BB32 BB73 BC12 BC13 BC21 BC23 BC52 BC62 BD14 BE11 BE31 BE35 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G001 BA03 BA08 BA09 BA32 BA73 BB03 BB08 BB09 BB32 BB73 BC12 BC13 BC21 BC23 BC52 BC62 BD14 BE11 BE31 BE35

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】傘部と、該傘部の中央に一体的に形成され
た柱状のステム部とからなるバルブを、窒化珪素が80
〜92.5重量%、希土類元素が酸化物換算で2〜10
重量%、アルミニウムが酸化アルミニウム換算で2〜5
重量%、過剰酸素が酸化珪素換算で0.5〜5重量%の
範囲で含有し、かつ前記希土類元素の酸化物換算量に対
するアルミニウムの酸化アルミニウム換算量の比及び前
記希土類元素の酸化物換算量に対する過剰酸素の酸化珪
素換算量の比が0.3〜1である窒化珪素質セラミック
スよりなり、前記ステム部の同軸度が0.3mm以下で
あることを特徴とする窒化珪素質セラミック製バルブ。
A valve comprising an umbrella portion and a columnar stem portion integrally formed in the center of the umbrella portion is made of silicon nitride having a thickness of 80 nm.
-92.5% by weight, rare earth element is 2-10
% By weight, aluminum is 2 to 5 in terms of aluminum oxide
% By weight, excess oxygen is contained in the range of 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the aluminum oxide equivalent to the rare earth oxide equivalent and the oxide equivalent of the rare earth oxide A valve made of silicon nitride ceramics, wherein the ratio of the amount of excess oxygen in terms of silicon oxide to silicon oxide is 0.3 to 1, and the coaxiality of the stem portion is 0.3 mm or less.
【請求項2】前記ステム部の表面の30%以上が焼き放
し面であり、該焼き放し面における抗折強度が700M
Pa以上であることを特徴とする請求項1に記載の窒化
珪素質セラミック製バルブ。
2. The baked surface accounts for at least 30% of the surface of the stem portion, and the baked surface has a flexural strength of 700M.
2. The valve according to claim 1, wherein the pressure is equal to or higher than Pa.
【請求項3】窒化珪素を80〜92.5重量%、希土類
元素酸化物を2〜10重量%、酸化アルミニウムを2〜
5重量%、過剰酸素を酸化珪素換算量で0.5〜5重量
%とし、かつ前記希土類元素酸化物量に対する酸化アル
ミニウム量の比及び前記希土類元素酸化物量に対する過
剰酸素の酸化珪素換算量の比が0.3〜1となるように
調合し、次にこれを柱状のステム部の一端に傘部が一体
的に形成された成形体に成形し、次に前記成形体のステ
ム部を、該ステム部の外径より0.5〜10mmの範囲
で広い内径を有する窒化珪素質セラミック製の円筒治具
内に挿入して円筒治具に成形体を保持させ、しかる後、
前記成形体を非酸化性雰囲気中にて1700〜1800
℃の温度で焼成することを特徴とする窒化珪素質セラミ
ック製バルブの製造方法。
3. A silicon nitride of 80 to 92.5% by weight, a rare earth element oxide of 2 to 10% by weight and an aluminum oxide of 2 to 10% by weight.
5% by weight, the excess oxygen is 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the amount of aluminum oxide to the amount of rare earth oxide and the ratio of the amount of excess oxygen to the amount of rare earth oxide in terms of silicon oxide are: 0.3 to 1, and then molded into a molded body in which an umbrella portion is integrally formed at one end of a columnar stem portion, and then the stem portion of the molded body is replaced with the stem. Inserted into a cylindrical jig made of silicon nitride ceramic having an inner diameter that is wider than the outer diameter of the part in the range of 0.5 to 10 mm to hold the molded body in the cylindrical jig, and then
The molded body is placed in a non-oxidizing atmosphere at 1700 to 1800
A method for producing a valve made of silicon nitride ceramic, characterized by firing at a temperature of ° C.
JP11120376A 1999-04-27 1999-04-27 Valve made of silicon nitride-based ceramic and production of the same valve Pending JP2000313672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11120376A JP2000313672A (en) 1999-04-27 1999-04-27 Valve made of silicon nitride-based ceramic and production of the same valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11120376A JP2000313672A (en) 1999-04-27 1999-04-27 Valve made of silicon nitride-based ceramic and production of the same valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007206321A Division JP5111009B2 (en) 2007-08-08 2007-08-08 Manufacturing method of valve made of silicon nitride ceramic

Publications (1)

Publication Number Publication Date
JP2000313672A true JP2000313672A (en) 2000-11-14

Family

ID=14784688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11120376A Pending JP2000313672A (en) 1999-04-27 1999-04-27 Valve made of silicon nitride-based ceramic and production of the same valve

Country Status (1)

Country Link
JP (1) JP2000313672A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356375A (en) * 2001-05-31 2002-12-13 Ngk Insulators Ltd Method of manufacturing slender compact of silicon nitride
US6694961B2 (en) 2001-03-26 2004-02-24 Nissan Motor Co., Ltd. Internal combustion engine
JP2009090623A (en) * 2007-10-12 2009-04-30 Tokuyama Corp Holder for ceramic molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694961B2 (en) 2001-03-26 2004-02-24 Nissan Motor Co., Ltd. Internal combustion engine
JP2002356375A (en) * 2001-05-31 2002-12-13 Ngk Insulators Ltd Method of manufacturing slender compact of silicon nitride
JP2009090623A (en) * 2007-10-12 2009-04-30 Tokuyama Corp Holder for ceramic molding

Similar Documents

Publication Publication Date Title
JP5238161B2 (en) Silicon nitride sintered body and method for manufacturing the same, member for molten metal, member for hot working, member for excavation
US7642209B2 (en) Silicon nitride sintered material and method for manufacturing
JP3801835B2 (en) Manufacturing method of ceramic heater
US6133180A (en) Ceramic composite particle and production method thereof
JPH09268072A (en) Production of silicon nitride sintered compact
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP2000313672A (en) Valve made of silicon nitride-based ceramic and production of the same valve
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP4651144B2 (en) Silicon nitride sintered body
JP5111009B2 (en) Manufacturing method of valve made of silicon nitride ceramic
JP3667145B2 (en) Silicon nitride sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JPH10279360A (en) Silicon nitride structural parts and its production
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JPH06219837A (en) Silicon nitride ceramic sintered compact and its production
JPH07291722A (en) Production of ceramics sintered compact
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JP3810236B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP3236733B2 (en) Silicon nitride sintered body
JP3981510B2 (en) Method for producing silicon nitride sintered body
JP3213797B2 (en) Silicon nitride sintered body and method for producing the same
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH08325061A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070831

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071102