JP5111009B2 - Manufacturing method of valve made of silicon nitride ceramic - Google Patents

Manufacturing method of valve made of silicon nitride ceramic Download PDF

Info

Publication number
JP5111009B2
JP5111009B2 JP2007206321A JP2007206321A JP5111009B2 JP 5111009 B2 JP5111009 B2 JP 5111009B2 JP 2007206321 A JP2007206321 A JP 2007206321A JP 2007206321 A JP2007206321 A JP 2007206321A JP 5111009 B2 JP5111009 B2 JP 5111009B2
Authority
JP
Japan
Prior art keywords
weight
silicon nitride
oxide
amount
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007206321A
Other languages
Japanese (ja)
Other versions
JP2007326778A (en
Inventor
政宏 佐藤
勝伺 坂上
武郎 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007206321A priority Critical patent/JP5111009B2/en
Publication of JP2007326778A publication Critical patent/JP2007326778A/en
Application granted granted Critical
Publication of JP5111009B2 publication Critical patent/JP5111009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、主に自動車や発電機等の内燃機関に用いられる窒化珪素質セラミック製バルブの製造方法に関するものである。
The present invention relates to a method for manufacturing a silicon nitride ceramic valve used mainly in internal combustion engines such as automobiles and generators.

従来、内燃機関に用いられる吸排気用バルブ(以下、単にバルブと言う。)としては、図3に示すように、傘部32と、この傘部32の中央に一体的に形成された柱状のステム部33とから構成されたものがあった。なお、傘部32の外周に形成されたテーパ面34はフェース部と呼ばれ、内燃機関の吸排気口のバルブシートと当接する部位である。   Conventionally, as an intake / exhaust valve (hereinafter simply referred to as a valve) used in an internal combustion engine, as shown in FIG. 3, an umbrella portion 32 and a columnar shape integrally formed at the center of the umbrella portion 32 are used. Some of them consisted of a stem portion 33. The tapered surface 34 formed on the outer periphery of the umbrella portion 32 is called a face portion, and is a portion that contacts the valve seat of the intake / exhaust port of the internal combustion engine.

そして、これまでバルブ31は金属製のものが一般的で、例えばSUH−3やSUH−11等の鋼材やインコネル等の耐熱合金が使用されていた。   Until now, the valve 31 is generally made of metal, and for example, steel materials such as SUH-3 and SUH-11 and heat-resistant alloys such as Inconel have been used.

しかしながら、内燃機関の高出力化、高回転化が求められるようになり、これに伴ってバルブ31も機械的及び熱的に過酷な環境でも耐えるもので、さらに軽量であるものが望まれるようになってきた。   However, higher output and higher rotation of the internal combustion engine are required, and accordingly, the valve 31 can withstand mechanical and thermal harsh environments, and a lighter one is desired. It has become.

そこで、このようなバルブ31を、耐熱性、耐熱衝撃性、耐摩耗性及び耐酸化性に優れ、かつ高い抗折強度を有する窒化珪素質セラミックスにより形成することが提案されている。   Therefore, it has been proposed that such a valve 31 is formed of a silicon nitride ceramic having excellent heat resistance, thermal shock resistance, wear resistance, and oxidation resistance and high bending strength.

このようなバルブ31を形成する窒化珪素質セラミックスとしては、窒化珪素を主成分とし、焼結助剤としてYなどの希土類元素酸化物と酸化アルミニウムを含有させたものが一般的に用いられていた(特許文献1、特許文献2参照)。 As silicon nitride ceramics for forming such a valve 31, generally used is silicon nitride as a main component and a rare earth element oxide such as Y 2 O 3 and aluminum oxide as a sintering aid. (See Patent Document 1 and Patent Document 2).

ところで、窒化珪素質セラミック製バルブを製造する場合、成形体の密度の不均一、焼成炉内の温度ばらつき、さらに焼成中における加熱の不均一等があると、バルブ31のステム部33が変形(主に曲がる)するといった課題があり、ステム部33の同軸度で見て0.5mm以上、酷いときには1mm以上も変形することがあった。   By the way, when manufacturing a silicon nitride ceramic valve, if the density of the molded body is uneven, the temperature in the firing furnace varies, and the heating is uneven during firing, the stem portion 33 of the valve 31 is deformed ( There is a problem that it is bent mainly), and when the coaxiality of the stem portion 33 is seen, it is deformed by 0.5 mm or more.

このようなステム部33の変形を少しでも抑えるため、特許文献3では、図4に示すように、成形体41のステム部43の端部に錘45を付けて筒状治具46内に挿入し、成形体41の傘部42を上記筒状治具46の開口部に引っかけて保持するとともに、錘45の引張応力によってステム部43を直下させた状態で焼成するようにすることが提案されている。   In order to suppress such deformation of the stem portion 33 as much as possible, in Patent Document 3, a weight 45 is attached to the end portion of the stem portion 43 of the molded body 41 and inserted into the cylindrical jig 46 as shown in FIG. It is proposed that the umbrella portion 42 of the molded body 41 is hooked and held in the opening of the cylindrical jig 46 and fired in a state where the stem portion 43 is directly below by the tensile stress of the weight 45. ing.

ところが、特許文献3に開示されている方法にて、窒化珪素質セラミック製バルブ31を製作すると、ステム部33の変形を抑えることができるものの、錘45の引張応力によってステム部33の密度が低下し、機械的強度が低下するといった課題があった。   However, when the silicon nitride ceramic valve 31 is manufactured by the method disclosed in Patent Document 3, the deformation of the stem portion 33 can be suppressed, but the density of the stem portion 33 is reduced by the tensile stress of the weight 45. However, there was a problem that the mechanical strength was lowered.

しかも、この方法では、成形体41のステム部43の端部に錘45を形成しておき、焼成後に除去しなければならないため、材料の無駄や作業工程が増え、生産性が悪いといった不都合もあった。
特開平7−133550号公報 特開平6−20652号公報 特開平3−137065号公報
Moreover, in this method, since the weight 45 must be formed at the end of the stem portion 43 of the molded body 41 and removed after firing, there is an inconvenience that waste of materials, work processes increase, and productivity is poor. there were.
JP-A-7-133550 JP-A-6-20652 Japanese Patent Laid-Open No. 3-137065

従って本発明の目的は、焼き上がり寸法精度が高く、焼き放し面での高い抗折強度を有する窒化珪素質セラミック製バルブの製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for manufacturing a silicon nitride ceramic valve having high baked dimensional accuracy and high bending strength on the burned-out surface.

そこで、本発明は上記課題に鑑み、窒化珪素を80〜92.5重量%、希土類元素酸化物を2〜10重量%、酸化アルミニウムを2〜5重量%、過剰酸素を酸化珪素換算量で0.5〜5重量%、かつ前記希土類元素酸化物量に対する前記酸化アルミニウム量の比及び前記希土類元素酸化物量に対する前記過剰酸素の酸化珪素換算量の比が0.5〜0.8となるように調合した原料粉末を用いて形成された柱状のステム部の一端に傘部が一体的に形成された成形体の前記ステム部を、内径が前記ステム部の外径より0.5〜3mm広い窒化珪素質セラミック製の円筒治具内に挿入して該円筒治具に前記成形体の前記傘部を開口端部に引っかけて保持させて、前記成形体を窒素雰囲気下またはSiOを含む窒素雰囲気下にて1700〜1800℃の温度で焼成ることを特徴とする。
Therefore, in view of the above problems, the present invention provides 80 to 92.5% by weight of silicon nitride, 2 to 10% by weight of rare earth element oxide, 2 to 5% by weight of aluminum oxide, and 0% of excess oxygen in terms of silicon oxide. 0.5 to 5 wt%, and the ratio of the aluminum oxide amount to the rare earth element oxide amount and the ratio of the excess oxygen to silicon oxide equivalent amount to the rare earth oxide amount are adjusted to 0.5 to 0.8 raw material powder umbrella portion at one end of the scan Temu of the columnar formed using the said stem portion of the molded body formed integrally with an inner diameter of 0.5~3mm wider nitride than an outer diameter of the stem portion It is inserted into a cylindrical jig made of silicon ceramic and the umbrella part of the molded body is hooked and held at the opening end by the cylindrical jig, and the molded body is placed under a nitrogen atmosphere or a nitrogen atmosphere containing SiO. 1700-1800 ° C It characterized that you fired at temperature.

また、窒化珪素質セラミック製バルブの製造方法は、珪素を10〜70重量%、該珪素と窒化珪素との合計を80〜92.5重量%、希土類元素酸化物を2〜10重量%、酸化アルミニウムを2〜5重量%、過剰酸素を酸化珪素換算量で0.5〜5重量%、かつ前記希土類元素酸化物量に対する前記酸化アルミニウム量の比及び前記希土類元素酸化物量に対する前記過剰酸素の酸化珪素換算量の比が0.5〜0.8となるように調合した原料粉末を用いて形成された柱状のステム部の一端に傘部が一体的に形成された成形体を窒素雰囲気下にて1000〜1400℃で熱処理して窒化珪素を生成させた後、内径が前記ステム部の外径より0.5〜3mm広い窒化珪素質セラミック製の円筒治具内に前記ステム部を挿入して該円筒治具に前記成形体の前記傘部を開口端部に引っかけて保持させて、前記成形体を窒素雰囲気下またはSiOを含む窒素雰囲気下にて1700〜1800℃の温度で焼成することを特徴とする。
A method of manufacturing nitrided silicon ceramic made valves, silicon 10 to 70 wt%, the sum of the該珪element and the silicon nitride 80 to 92.5 wt%, 2-10 wt% of rare earth element oxides, Aluminum oxide is 2 to 5% by weight, excess oxygen is 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the amount of aluminum oxide to the amount of rare earth element oxide and the oxidation of excess oxygen to the amount of rare earth element oxide A molded body in which an umbrella part is integrally formed at one end of a columnar stem part formed using raw material powder prepared so that the ratio of silicon equivalent amount is 0.5 to 0.8 is placed under a nitrogen atmosphere. After heat treatment at 1000 to 1400 ° C. to generate silicon nitride, the stem portion is inserted into a silicon nitride ceramic cylindrical jig whose inner diameter is 0.5 to 3 mm wider than the outer diameter of the stem portion. The cylindrical jig has the above-mentioned composition. The umbrella portion of the body is held by hooking the opening end, the molded body, characterized that you fired at a temperature of 1700 to 1800 ° C. under a nitrogen atmosphere containing nitrogen atmosphere or SiO.

以上のように、本発明の窒化珪素質セラミックス製バルブの製造方法によれば、窒化珪素を80〜92.5重量%、希土類元素酸化物を2〜10重量%、酸化アルミニウムを2〜5重量%、過剰酸素を酸化珪素換算量で0.5〜5重量%、かつ前記希土類元素酸化物量に対する前記酸化アルミニウム量の比及び前記希土類元素酸化物量に対する前記過剰酸素の酸化珪素換算量の比が0.5〜0.8となるように調合した原料粉末を用いて形成された柱状のステム部の一端に傘部が一体的に形成された成形体の前記ステム部を、内径が前記ステム部の外径より0.5〜3mm広い窒化珪素質セラミック製の円筒治具内に挿入して該円筒治具に前記成形体の前記傘部を開口端部に引っかけて保持させて、前記成形体を窒素雰囲気下またはSiOを含む窒素雰囲気下にて1700〜1800℃の温度で焼成することにより、前記ステム部の同軸度を0.15mm/100mm以下とすることができ、焼結後の研削加工を少なくでき、作業工程を減らすこともできるため、安価で精度の高いバルブとすることができるとともに、焼き放し面のままでもステム部の抗折強度が770MPa以上を有する破損し難いバルブを提供することができる。
As described above, according to the method for manufacturing a silicon nitride ceramic valve of the present invention, silicon nitride is 80 to 92.5% by weight, rare earth element oxide is 2 to 10% by weight, and aluminum oxide is 2 to 5% by weight. %, Excess oxygen is 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the amount of aluminum oxide to the amount of rare earth element oxide and the ratio of the amount of excess oxygen to silicon oxide in terms of the amount of rare earth element oxide are 0 the stem portion of the valve head at one end of the columnar scan Temu portion formed by using the raw material powder which is prepared to have a .5~0.8 is formed integrally with the molded body, an inner diameter of said stem portion The molded body is inserted into a cylindrical jig made of silicon nitride ceramic that is 0.5 to 3 mm wider than the outer diameter of the outer diameter of the molded body, and the umbrella portion of the molded body is hooked and held on the open end by the cylindrical jig. under a nitrogen atmosphere or a SiO Ri O under nitrogen free atmosphere and baked at a temperature of 1700 to 1800 ° C., the coaxiality of the stem portion can be 0.15 mm / 100 mm or less, you can reduce the grinding after sintering, work Since the number of steps can be reduced, it is possible to provide an inexpensive and highly accurate valve, and it is possible to provide a non-breakable valve having a bending strength of the stem portion of 770 MPa or more even with the burned surface.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

本発明の製造方法によって得られる窒化珪素質セラミック製バルブ(以下、バルブと言う)は、図1に示すように、傘部12と、この傘部12の中央に一体的に形成された柱状のステム部13とからなり、ステム部13の同軸度が0.15mm/100mm以下と反りや曲がりが殆どないことを特徴とし、ステム部13の表面の30%以上が焼き放し面のままでも0.15mm/100mm以下の同軸度が得られていることを特徴とする。
As shown in FIG. 1, a silicon nitride ceramic valve (hereinafter referred to as a valve) obtained by the manufacturing method of the present invention has an umbrella portion 12 and a columnar shape integrally formed at the center of the umbrella portion 12. The stem portion 13 is characterized in that the coaxial degree of the stem portion 13 is 0.15 mm / 100 mm or less and there is almost no warping or bending. A coaxiality of 15 mm / 100 mm or less is obtained.

その為、本発明の窒化珪素質セラミック製バルブの製造方法によれば、ステム部13に反りや曲がりが殆どないため、焼結後の研削加工を少なくでき、用途によっては焼結後の研削加工が不要となるため、安価に製造することができる。
Therefore, according to the method for manufacturing a silicon nitride ceramic valve of the present invention, since the stem portion 13 is hardly warped or bent, grinding after sintering can be reduced, and depending on the application, grinding after sintering. Can be manufactured at low cost.

ところで、このような優れた同軸度を達成するには、焼結時における窒化珪素質セラミックスの変形が少ないことが必要であり、そのための組成としては、窒化珪素を80〜92.5重量%に対し、Y,Er,Yb,Lu,Sm,Dy等の希土類元素を酸化物換算で2〜10重量%、好ましくは5〜9重量%と、アルミニウムを酸化アルミニウム換算で2
〜5重量%、好ましくは3〜4重量%の範囲で含有するとともに、過剰酸素を酸化珪素換算で0.5〜5重量%、好ましくは2〜4重量%の範囲で含み、さらに前記希土類元素の酸化物換算量に対するアルミニウムの酸化アルミニウム換算量の比が0.5〜0.8で、かつ前記希土類元素の酸化物換算量に対する過剰酸素の酸化珪素換算量の比が0.5〜0.8であることが重要である。ここで、窒化珪素、希土類元素、アルミニウム、過剰酸素の含有量及び比率が前記範囲を外れると、焼結性及び焼結時の変形を抑制する効果が小さく、ステム部13の同軸度を0.15mm/100mm以下とすることが難しいからである。
By the way, in order to achieve such excellent coaxiality, it is necessary that the deformation of the silicon nitride ceramics is small during the sintering, and as a composition for that purpose, silicon nitride is 80 to 92.5% by weight. On the other hand, rare earth elements such as Y, Er, Yb, Lu, Sm, and Dy are 2 to 10% by weight in terms of oxide, preferably 5 to 9% by weight, and aluminum is 2 in terms of aluminum oxide.
Containing 5 to 5% by weight, preferably 3 to 4% by weight, and containing excess oxygen in terms of silicon oxide in the range of 0.5 to 5% by weight, preferably 2 to 4% by weight, and the rare earth element The ratio of the aluminum oxide equivalent of aluminum to the oxide equivalent of 0.5 to 0.8, and the ratio of excess oxygen to silicon oxide equivalent of the rare earth oxide equivalent to 0.5 to 0.8. It is important that it is 8. Here, if the content and ratio of silicon nitride, rare earth element, aluminum, and excess oxygen are out of the above ranges, the sinterability and the effect of suppressing deformation during sintering are small, and the concentricity of the stem portion 13 is set to 0. It is because it is difficult to make it 15 mm / 100 mm or less.

しかも、焼結助剤の各成分が前記範囲より少ないと、焼成時において液相成分が不足し、緻密化するために高温での焼成が必要となり、その結果、窒化珪素粒子の粒成長が生じて抗折強度が低下し、また、各成分が前記範囲より多いと、焼成時において液相成分が多くなり過ぎるため、窒化珪素粒子の粒成長が進行し、表層において、短軸長または長軸長の大きい結晶粒子が形成されやすくなる結果、それらの粗大粒が破壊源となり、抗折強度が低下する。   Moreover, if each component of the sintering aid is less than the above range, the liquid phase component is insufficient at the time of firing, and firing at a high temperature is necessary for densification, and as a result, grain growth of silicon nitride particles occurs. When the bending strength is reduced and the amount of each component is larger than the above range, the liquid phase component becomes excessive during firing, so that the grain growth of the silicon nitride particles proceeds, and in the surface layer, the minor axis length or the major axis is increased. As a result of the easy formation of large crystal grains, the coarse grains serve as a fracture source and the bending strength is lowered.

かくして、窒化珪素、希土類元素、アルミニウム、過剰酸素の含有量及び比率を前記範囲で含有することで、ステム部13は、その表面が焼き放し面でも770MPa以上の抗折強度を実現することができ、特に、ステム部の表面の30%以上が焼き放し面のままで、そのステム部の抗折強度が810MPa以上であることが望ましい。
Thus, by containing the content and ratio of silicon nitride, rare earth element, aluminum, and excess oxygen within the above ranges, the stem portion 13 can realize a bending strength of 770 MPa or more even when its surface is burned out. , in particular, remains grilled release surface 30% or more of the surface of the scan Temu portion, the bending strength of the stem portion is preferably at least 810MPa.

なお、770MPa以上の抗折強度を維持する観点から、焼結体中における窒化珪素粒子の平均結晶粒子径は50μm以下、好ましくは30μm以下の範囲にあるものが良い。   In addition, from the viewpoint of maintaining a bending strength of 770 MPa or more, the average crystal particle diameter of the silicon nitride particles in the sintered body is 50 μm or less, preferably 30 μm or less.

さらに、窒化珪素質セラミックス中には、他の成分として周期律表第4a、5a、6a族元素の金属や、TiC,TiN,TaC,TaN,VC,NbC,WC,WSi,Moなど周期律表第4a、5a、6a族元素の炭化物、窒化物、珪化物の少なくとも1種以上、又はSiCなどを分散粒子やウィスカ−の状態で含有させることで特性を改善することも可能である。ただし、これらの合計含有量は5重量%以下とすることが好ましい。 Further, in the silicon nitride ceramics, other components such as metals of Group 4a, 5a, 6a of the periodic table, TiC, TiN, TaC, TaN, VC, NbC, WC, WSi 2 , Mo 2, etc. It is also possible to improve the characteristics by containing at least one kind of carbides, nitrides and silicides of Group 4a, 5a, and 6a elements in the table, or SiC in a dispersed particle or whisker state. However, the total content of these is preferably 5% by weight or less.

次に、本発明の窒化珪素質セラミック製バルブ造方法について説明する。
Next, a description will be given manufacturing how the silicon nitride ceramic valve of the present invention.

まず、窒化珪素粉末を準備する。窒化珪素粉末としては、α−Si、β−Siのいずれの状態であっても良く、その粒径が0.4〜1.2μmでかつ酸素を0.5〜1.5重量%の範囲で含有しているものを用いることが良い。 First, silicon nitride powder is prepared. The silicon nitride powder may be in any state of α-Si 3 N 4 and β-Si 3 N 4 , the particle diameter is 0.4 to 1.2 μm, and oxygen is 0.5 to 1.. What is contained in the range of 5% by weight is preferably used.

そして、この窒化珪素粉末を80〜92.5重量%に対し、焼結助剤として希土類元素酸化物を2〜10重量%、好ましくは5〜9重量%と、酸化アルミニウムを2〜5重量%、好ましくは3〜4重量%の範囲でそれぞれ添加するとともに、酸化珪素を0.5〜5重量%、好ましくは2〜4重量%の範囲で添加し、さらに前記希土類元素酸化物の添加量に対する酸化アルミニウムの添加量の比が0.5〜0.8で、かつ前記希土類元素酸化物の添加量に対する酸化珪素量の比が0.5〜0.8となるように調合する。ただし、酸化珪素量とは、添加する酸化珪素粉末の添加量に、窒化珪素粉末中に不純物として含まれている過剰酸素を酸化珪素換算した量を加えた値で判断する。   The silicon nitride powder is 80 to 92.5% by weight, the rare earth element oxide as a sintering aid is 2 to 10% by weight, preferably 5 to 9% by weight, and the aluminum oxide is 2 to 5% by weight. The silicon oxide is preferably added in the range of 3 to 4% by weight, and the silicon oxide is added in the range of 0.5 to 5% by weight, preferably 2 to 4% by weight. Preparation is performed such that the ratio of the amount of aluminum oxide added is 0.5 to 0.8 and the ratio of the amount of silicon oxide to the amount of rare earth element oxide is 0.5 to 0.8. However, the amount of silicon oxide is determined by a value obtained by adding the amount of silicon oxide powder added to the amount of silicon oxide powder added to the excess oxygen contained as impurities in the silicon nitride powder.

これらの範囲で調合した原料粉末に対して、エタノールやイソプロピルアルコール等の有機溶剤及びバインダーを加えたあと、公知の粉砕方法、例えばボールミル、振動ミル、回転ミル、バレルミル等により原料粉末を均一に混合粉砕したものを、プレス成形、鋳込み成形、射出成形、冷間静水圧プレス成形等の公知のセラミック成形手段にて、図2に示すような、柱状のステム部23の一端に傘部22が一体的に形成された成形体21を製作する。   After adding an organic solvent such as ethanol and isopropyl alcohol and a binder to the raw material powder prepared in these ranges, the raw material powder is uniformly mixed by a known pulverization method such as a ball mill, vibration mill, rotary mill, barrel mill, etc. An umbrella portion 22 is integrated with one end of a columnar stem portion 23 as shown in FIG. 2 by a known ceramic molding means such as press molding, casting molding, injection molding, cold isostatic press molding or the like. The molded body 21 formed in a standard manner is manufactured.

次に、得られた成形体21のステム部23の外径Wより0.5〜3mmの範囲で広い内径Qを有する窒化珪素質セラミック製の円筒治具1内にステム部23を挿入し、成形体21の傘部22を円筒治具1の開口端部に引っかけて保持する。ここで、円筒治具1を窒化珪素質セラミックスにより形成するのは、治具を同質の窒化珪素で形成することにより、変形の大きな要因である成形体21からの助剤成分の分解を抑制できるからである。   Next, the stem portion 23 is inserted into the cylindrical jig 1 made of silicon nitride ceramic having a wide inner diameter Q in the range of 0.5 to 3 mm from the outer diameter W of the stem portion 23 of the obtained molded body 21. The umbrella portion 22 of the molded body 21 is hooked and held on the opening end portion of the cylindrical jig 1. Here, the cylindrical jig 1 is formed of silicon nitride ceramics. By forming the jig of the same quality silicon nitride, decomposition of the auxiliary component from the molded body 21 which is a major factor of deformation can be suppressed. Because.

また、円筒治具1の内径Qとステム部23の外径Wとの内外径差を0.5〜3mmとしたのは、内外径差が0.5mmより小さいと、成形体21のステム部23を円筒治具1内に挿入する際に破損させる可能性があり、逆に内外径差が3mmを越えた場合、焼結時にステム部23が変形すると焼結後の同軸度を0.15mm/100mm以下に抑えることが難しいからである。なお、内外径差の小さい円筒治具1を用いることにより、セット時における重心のずれが小さくなるため、さらに変形を抑制できる。
Moreover, the reason why the inner / outer diameter difference between the inner diameter Q of the cylindrical jig 1 and the outer diameter W of the stem portion 23 is set to 0.5 to 3 mm is that the difference between the inner and outer diameters is smaller than 0.5 mm. 23 may be damaged when inserted into the cylindrical jig 1, and conversely, if the difference between the inner and outer diameters exceeds 3 mm, and the stem portion 23 is deformed during sintering, the coaxiality after sintering is 0.15 mm. This is because it is difficult to suppress to / 100 mm or less. In addition, since the shift | offset | difference of the gravity center at the time of a setting becomes small by using the cylindrical jig | tool 1 with a small inner-outer diameter difference, a deformation | transformation can be suppressed further.

しかるのち、円筒治具1を用いて保持した成形体21を焼成するのであるが、窒素雰囲気下あるいはSiOを含む雰囲気下にて1700〜1800℃、好ましくは1750〜1800℃の温度で常圧焼成すれば良い。焼成温度が1700℃未満であると、焼結性が不十分であり緻密化させることができないからであり、逆に1800℃を越えると、窒化珪素質セラミック製の円筒治具1を用いても、成形体21中における助剤成分の分解が促進させ、ステム部13の変形を抑えることが難しいからである。   After that, the molded body 21 held using the cylindrical jig 1 is fired, and is fired at normal pressure at a temperature of 1700 to 1800 ° C., preferably 1750 to 1800 ° C. in a nitrogen atmosphere or an atmosphere containing SiO. Just do it. This is because if the firing temperature is less than 1700 ° C., the sinterability is insufficient and densification cannot be achieved. Conversely, if the firing temperature exceeds 1800 ° C., the cylindrical jig 1 made of silicon nitride ceramic can be used. This is because it is difficult to promote the decomposition of the auxiliary component in the molded body 21 and suppress the deformation of the stem portion 13.

このような条件下で製造すれば、窒化珪素を80〜92.5重量%に対し、Y,Er,Yb,Lu,Sm,Dy等の希土類元素を酸化物換算で2〜10重量%、アルミニウムを酸化アルミニウム換算で2〜5重量%、過剰酸素を酸化珪素換算で0.5〜5重量%の範
囲で含有し、さらに前記希土類元素の酸化物換算量に対するアルミニウムの酸化アルミニウム換算量の比が0.5〜0.8で、かつ前記希土類元素の酸化物換算量に対する過剰酸素の酸化珪素換算量の比が0.5〜0.8である窒化珪素質セラミックスからなり、焼き放し面のままでもステム部13の同軸度が0.15mm/100mm以下である窒化珪素質セラミック製バルブ11を得ることができる。
If manufactured under such conditions, silicon nitride is 80 to 92.5% by weight, rare earth elements such as Y, Er, Yb, Lu, Sm, and Dy are 2 to 10% by weight in terms of oxides, aluminum In the range of 2 to 5% by weight in terms of aluminum oxide, excess oxygen in the range of 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the aluminum oxide equivalent of aluminum to the oxide equivalent of the rare earth element is It is made of silicon nitride ceramics having a ratio of the amount of silicon oxide equivalent of excess oxygen to the amount of oxide equivalent of the rare earth element of 0.5 to 0.8, and is left to be an unfired surface However, the silicon nitride ceramic valve 11 in which the coaxial degree of the stem portion 13 is 0.15 mm / 100 mm or less can be obtained.

なお、本発明によれば、出発原料である窒化珪素粉末のうち、10〜70重量%を珪素粉末に置き換えることもでき、この場合、成形体21を焼成する前に、窒素雰囲気下にて1000〜1400℃の温度で熱処理を施してSi粉末を窒化処理して窒化珪素を生成させ、成形体21の密度を高めたうえで、前記焼成条件で焼成すれば良い。この製法によれば、焼成時の収縮を抑え、緻密で寸法精度の高い窒化珪素質セラミック製バルブ11を得ることができる。   According to the present invention, 10 to 70% by weight of the silicon nitride powder as a starting material can be replaced with silicon powder. In this case, before firing the compact 21, 1000% in a nitrogen atmosphere. A heat treatment is performed at a temperature of ˜1400 ° C. to nitride the Si powder to produce silicon nitride, and the density of the molded body 21 is increased, followed by firing under the firing conditions. According to this manufacturing method, the shrinkage | contraction at the time of baking can be suppressed, and the precise | minute and highly accurate dimensional accuracy valve | bulb 11 made from a silicon nitride ceramic can be obtained.

(実施例1)窒化珪素粉末(BET比表面積9m/g、α率98%、酸素量1.2重量%)に対し、焼結助剤として希土類元素酸化物の粉末(平均粒径1.5μm)と酸化アルミニウムの粉末(純度99.9%、平均粒径2μm)、さらに酸化珪素の粉末(純度99.9%、平均粒径2μm)を、焼成後の組成が表1となるように調合し、バインダー及び溶媒を添加して混練乾燥したあと、冷間静水圧成形法により、傘部22とステム部23とからなり、ステム部23の外径が10mm、長さが100mmである図1に示すような成形体21を形成した。 (Example 1) Rare earth element oxide powder (average particle diameter of 1.mm) as a sintering aid for silicon nitride powder (BET specific surface area 9m 2 / g, α rate 98%, oxygen content 1.2% by weight). 5 μm), aluminum oxide powder (purity 99.9%, average particle size 2 μm), and silicon oxide powder (purity 99.9%, average particle size 2 μm) so that the composition after firing is as shown in Table 1. The figure which consists of the umbrella part 22 and the stem part 23 by the cold isostatic pressing method after compounding, adding a binder and a solvent, kneading and drying, and the outer diameter of the stem part 23 is 10 mm, and length is 100 mm. 1 was formed.

次に、窒化珪素質セラミック製の円筒治具1を用意し、この円筒治具1内に成形体21のステム部23を挿入し、円筒治具1の開口端部に傘部22を引っかけて保持した状態で、炭化珪素質セラミックスからなる匣鉢に入れ、窒素雰囲気下にて1700℃〜1800℃の温度で焼成することにより、図1に示す窒化珪素質セラミック製バルブ11を製作した。   Next, the cylindrical jig 1 made of silicon nitride ceramic is prepared, the stem portion 23 of the molded body 21 is inserted into the cylindrical jig 1, and the umbrella portion 22 is hooked on the opening end of the cylindrical jig 1. In the held state, the silicon nitride ceramic valve 11 shown in FIG. 1 was manufactured by placing it in a bowl made of silicon carbide ceramics and firing it at a temperature of 1700 ° C. to 1800 ° C. in a nitrogen atmosphere.

そして、得られた窒化珪素質セラミック製バルブ11について、ICP発光分光分析にて表1に示す組成であることを確認したあと、ステム部13の焼き放し面上を、その長手方向に沿って接触式の測長器を走査させ、ステム部13の同軸度を計測したあと、4点曲げ試験機により焼き放し面の抗折強度を測定した。   The obtained silicon nitride ceramic bulb 11 was confirmed to have the composition shown in Table 1 by ICP emission spectroscopic analysis, and then contacted on the burned surface of the stem portion 13 along its longitudinal direction. After scanning the length measuring device of the type and measuring the coaxiality of the stem portion 13, the bending strength of the burned surface was measured by a four-point bending tester.

それぞれの結果は表1に示す通りである。

Figure 0005111009
Each result is as shown in Table 1.
Figure 0005111009

この結果、まず、焼結時に円筒治具1の内径Qとステム部23の外径Wとの内外径差が0.5mmよりも小さい試料No.5では、円筒治具1内に成形体21のステム部23を挿入する際に折れてしまい、内外径差が3mmよりも大きい試料No.4、6では、焼結後のステム部13の変形量が0.25mm、0.42mmと大きく、抗折強度も750MPa以下と低かった。   As a result, first, the sample No. 1 in which the inner and outer diameter difference between the inner diameter Q of the cylindrical jig 1 and the outer diameter W of the stem portion 23 is smaller than 0.5 mm during sintering. 5, the sample No. 5 was broken when the stem portion 23 of the molded body 21 was inserted into the cylindrical jig 1, and the difference between the inner and outer diameters was larger than 3 mm. In Nos. 4 and 6, the deformation amount of the stem portion 13 after sintering was large as 0.25 mm and 0.42 mm, and the bending strength was as low as 750 MPa or less.

また、試料No.14〜33のように、希土類元素の酸化物換算量が2〜10重量%、アルミニウムの酸化アルミニウム換算量が2〜5重量%、過剰酸素の酸化珪素換算量が0.5〜5重量%、希土類元素の酸化物換算量に対するアルミニウムの酸化アルミニウム換算量の比が0.5〜0.8、希土類元素の酸化物換算量に対する過剰酸素の酸化珪素換算量の比が0.5〜0.8のいずれかの範囲がはずれたものはいずれも、ステム部13の同軸度を0.15mm/100mm以下とすることができず、また、抗折強度も770MPa以下と低かった。
Sample No. As in 14-33, the oxide equivalent amount of the rare earth element is 2 to 10% by weight, the aluminum oxide equivalent amount is 2 to 5% by weight, the silicon oxide equivalent amount of excess oxygen is 0.5 to 5% by weight, The ratio of the aluminum oxide equivalent of aluminum to the oxide equivalent of the rare earth element is 0.5 to 0.8, and the ratio of the silicon oxide equivalent of excess oxygen to the oxide equivalent of the rare earth element is 0.5 to 0.8. In any case where any of these ranges was out of range, the concentricity of the stem portion 13 could not be 0.15 mm / 100 mm or less, and the bending strength was as low as 770 MPa or less.

これに対し、試料No.1〜3、7〜13は、窒化珪素質セラミックスの組成が、窒化珪素を80〜92.5重量%、希土類元素を酸化物換算で2〜10重量%、アルミニウムを酸化アルミニウム換算で2〜5重量%、過剰酸素を酸化珪素換算で0.5〜5重量%であり、前記希土類元素の酸化物換算量に対するアルミニウムの酸化アルミニウム換算量の比が0.5〜0.8でかつ前記希土類元素の酸化物換算量に対する過剰酸素の酸化珪素換算量の比が0.5〜0.8であるとともに、バルブ11の焼成時に、成形体21のステム部23の外径より0.5〜3mmの範囲で広い内径を有する窒化珪素質セラミック製の円筒治具1内に挿入、保持して焼結させるようにしたことから、焼成後のステム部13の変形を抑え、焼き放し面のままでもステム部13の同軸度を0.15mm/100mm以下とでき、また焼き放し面における抗折強度を770MPa以上の高強度を達成することができた。
In contrast, sample no. 1 to 3 and 7 to 13 have a silicon nitride ceramic composition of 80 to 92.5% by weight of silicon nitride, 2 to 10% by weight of rare earth element in terms of oxide, and 2 to 5 in terms of aluminum oxide. % By weight, excess oxygen is 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the amount of aluminum in terms of aluminum oxide to the amount in terms of oxide of the rare earth element is 0.5 to 0.8, and the rare earth element The ratio of the equivalent amount of excess oxygen to the equivalent amount of silicon oxide in the range of 0.5 to 0.8 is 0.5 to 3 mm from the outer diameter of the stem portion 23 of the molded body 21 when the bulb 11 is fired. Since it was inserted into a silicon nitride ceramic cylindrical jig 1 having a wide inner diameter, held and sintered, the deformation of the stem portion 13 after firing was suppressed, and the stem even with the burned surface remained Coaxiality of part 13 0.15 mm / 100 mm or less and can also the transverse rupture strength at burnt releasing surface was able to achieve a high strength of at least 770 MPa.

本発明の製造方法によって得られた窒化珪素質セラミック製バルブを示す側面図である。It is a side view which shows the valve | bulb made from a silicon nitride ceramic obtained by the manufacturing method of this invention. 本発明の窒化珪素質セラミック製バルブの製造方法における焼成時の治具による保持状態を説明するための断面図である。It is sectional drawing for demonstrating the holding state by the jig | tool at the time of baking in the manufacturing method of the valve | bulb made from a silicon nitride ceramic of this invention. 従来の製造方法によって得られた窒化珪素質セラミック製バルブを示す側面図である。It is a side view which shows the valve | bulb made from a silicon nitride ceramic obtained by the conventional manufacturing method . 従来の窒化珪素質セラミック製バルブの製造方法における焼成時の治具による保持状態を説明するための断面図である。It is sectional drawing for demonstrating the holding | maintenance state with the jig | tool at the time of baking in the manufacturing method of the conventional silicon nitride ceramic valve | bulb.

符号の説明Explanation of symbols

1:円筒治具
11:窒化珪素質セラミック製バルブ
12:傘部
13:ステム部
21:成形体
22:成形体の傘部
23:成形体のステム部
1: Cylindrical jig 11: Silicon nitride ceramic valve 12: Umbrella part 13: Stem part 21: Molded body 22: Umbrella part of molded body 23: Stem part of molded body

Claims (2)

窒化珪素を80〜92.5重量%、希土類元素酸化物を2〜10重量%、酸化アルミニウムを2〜5重量%、過剰酸素を酸化珪素換算量で0.5〜5重量%、かつ前記希土類元素酸化物量に対する前記酸化アルミニウム量の比及び前記希土類元素酸化物量に対する前記過剰酸素の酸化珪素換算量の比が0.5〜0.8となるように調合した原料粉末を用いて形成された柱状のステム部の一端に傘部が一体的に形成された成形体の前記ステム部を、内径が前記ステム部の外径より0.5〜3mm広い窒化珪素質セラミック製の円筒治具内に挿入して該円筒治具に前記成形体の前記傘部を開口端部に引っかけて保持させて、前記成形体を窒素雰囲気下またはSiOを含む窒素雰囲気下にて1700〜1800℃の温度で焼成ることを特徴とする窒化珪素質セラミック製バルブの製造方法80 to 92.5% by weight of silicon nitride, 2 to 10% by weight of rare earth element oxide, 2 to 5% by weight of aluminum oxide, 0.5 to 5% by weight of excess oxygen in terms of silicon oxide, and the rare earth Columnar shape formed using raw material powder prepared such that the ratio of the amount of aluminum oxide to the amount of element oxide and the ratio of the amount of silicon oxide equivalent of the excess oxygen to the amount of rare earth element oxide is 0.5 to 0.8 one end of the scan Temu portion said stem portion of the valve head molded body formed integrally, the inner diameter of the stem portion 0.5~3mm wide silicon nitride ceramic cylindrical jig in than the outer diameter of the inserting the umbrella portion of the molded body cylindrical jig and by holding hook at the open end, firing at a temperature of 1700 to 1800 ° C. the molded body in a nitrogen atmosphere containing nitrogen atmosphere or SiO and said to Rukoto Method for manufacturing of siliceous ceramic valve. 珪素を10〜70重量%、該珪素と窒化珪素との合計を80〜92.5重量%、希土類元素酸化物を2〜10重量%、酸化アルミニウムを2〜5重量%、過剰酸素を酸化珪素換算量で0.5〜5重量%、かつ前記希土類元素酸化物量に対する前記酸化アルミニウム量の比及び前記希土類元素酸化物量に対する前記過剰酸素の酸化珪素換算量の比が0.5〜0.8となるように調合した原料粉末を用いて形成された柱状のステム部の一端に傘部が一体的に形成された成形体を窒素雰囲気下にて1000〜1400℃で熱処理して窒化珪素を生成させた後、内径が前記ステム部の外径より0.5〜3mm広い窒化珪素質セラミック製の円筒治具内に前記ステム部を挿入して該円筒治具に前記成形体の前記傘部を開口端部に引っかけて保持させて、前記成形体を窒素雰囲気下またはSiOを含む窒素雰囲気下にて1700〜1800℃の温度で焼成することを特徴とする窒化珪素質セラミック製バルブの製造方法 10 to 70% by weight of silicon, 80 to 92.5% by weight of the total of the silicon and silicon nitride, 2 to 10% by weight of rare earth element oxide, 2 to 5% by weight of aluminum oxide, and excess oxygen to silicon oxide 0.5 to 5% by weight in terms of converted amount, and the ratio of the amount of aluminum oxide to the amount of rare earth element oxide and the ratio of the amount of silicon oxide converted to excess oxygen to the amount of rare earth element oxide are 0.5 to 0.8. The formed body in which the umbrella portion is integrally formed at one end of the columnar stem portion formed using the raw material powder thus prepared is heat-treated at 1000 to 1400 ° C. in a nitrogen atmosphere to generate silicon nitride. After that, the stem portion is inserted into a cylindrical jig made of silicon nitride ceramic whose inner diameter is 0.5 to 3 mm wider than the outer diameter of the stem portion, and the umbrella portion of the molded body is opened in the cylindrical jig. Hang it on the edge and hold it, Serial process for producing a molded article fired to you wherein Rukoto nitrided siliceous ceramic valve at a temperature of 1700 to 1800 ° C. under a nitrogen atmosphere containing nitrogen atmosphere or SiO.
JP2007206321A 2007-08-08 2007-08-08 Manufacturing method of valve made of silicon nitride ceramic Expired - Fee Related JP5111009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206321A JP5111009B2 (en) 2007-08-08 2007-08-08 Manufacturing method of valve made of silicon nitride ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206321A JP5111009B2 (en) 2007-08-08 2007-08-08 Manufacturing method of valve made of silicon nitride ceramic

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11120376A Division JP2000313672A (en) 1999-04-27 1999-04-27 Valve made of silicon nitride-based ceramic and production of the same valve

Publications (2)

Publication Number Publication Date
JP2007326778A JP2007326778A (en) 2007-12-20
JP5111009B2 true JP5111009B2 (en) 2012-12-26

Family

ID=38927509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206321A Expired - Fee Related JP5111009B2 (en) 2007-08-08 2007-08-08 Manufacturing method of valve made of silicon nitride ceramic

Country Status (1)

Country Link
JP (1) JP5111009B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227602A (en) * 1990-02-02 1991-10-08 Toyota Motor Corp Manufacture of ceramic valve disc
JPH05339064A (en) * 1992-06-05 1993-12-21 Riken Corp Method for calcining ceramic valve molding and device used therein
JPH08290972A (en) * 1995-02-20 1996-11-05 Sumitomo Electric Ind Ltd Silicon nitride ceramic member and its production
JP3318466B2 (en) * 1995-05-31 2002-08-26 京セラ株式会社 Silicon nitride sintered body and method for producing the same
JPH0987043A (en) * 1995-09-29 1997-03-31 Mitsubishi Heavy Ind Ltd Method for firing ceramic and apparatus therefor
JPH10279360A (en) * 1997-03-31 1998-10-20 Kyocera Corp Silicon nitride structural parts and its production

Also Published As

Publication number Publication date
JP2007326778A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5238161B2 (en) Silicon nitride sintered body and method for manufacturing the same, member for molten metal, member for hot working, member for excavation
KR100855226B1 (en) Silicon nitride based sintered material and method for producing the same, and molten-metal-resistant member and wear-resistant member using the same
JP4744704B2 (en) Method for manufacturing wear-resistant member
US6744016B2 (en) Ceramic heater and method for manufacturing the same
US6261511B1 (en) Method for producing ceramic composite particle
JP4454191B2 (en) Manufacturing method of ceramic heater
JP5111009B2 (en) Manufacturing method of valve made of silicon nitride ceramic
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP2000313672A (en) Valve made of silicon nitride-based ceramic and production of the same valve
JP2006305626A (en) Combined forming die
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JP3667145B2 (en) Silicon nitride sintered body
JP3810806B2 (en) Sintered silicon nitride ceramics
JPH1179848A (en) Silicon carbide sintered compact
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JPH10279360A (en) Silicon nitride structural parts and its production
JP3981510B2 (en) Method for producing silicon nitride sintered body
JP3810236B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JP3877532B2 (en) Ceramic heater and glow plug including the same
JP3213797B2 (en) Silicon nitride sintered body and method for producing the same
JPH038773A (en) Production of composite ceramics
JPH08325061A (en) Silicon nitride sintered compact and its production
JPH07187799A (en) Production of silicon nitride-based sintered compact

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees