JP3213797B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP3213797B2
JP3213797B2 JP06913196A JP6913196A JP3213797B2 JP 3213797 B2 JP3213797 B2 JP 3213797B2 JP 06913196 A JP06913196 A JP 06913196A JP 6913196 A JP6913196 A JP 6913196A JP 3213797 B2 JP3213797 B2 JP 3213797B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
firing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06913196A
Other languages
Japanese (ja)
Other versions
JPH09227237A (en
Inventor
桂 松原
一久 板倉
和浩 浦島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP06913196A priority Critical patent/JP3213797B2/en
Publication of JPH09227237A publication Critical patent/JPH09227237A/en
Application granted granted Critical
Publication of JP3213797B2 publication Critical patent/JP3213797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディ−ゼル或いは
ガスタ−ビン等の熱機関用構造部材に好適な、優れた強
度を有する窒化珪素焼結体及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having excellent strength suitable for a structural member for a heat engine such as a diesel engine or a gas turbine, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素焼結体は、機械的特性、耐熱性
及び耐食性等に優れているため、自動車用エンジンやガ
スタ−ビンエンジン等の熱機関で用いられる構造材料へ
の応用が試みられている。ここで窒化珪素は、共有結合
性が高いため難焼結性であって、焼結させるためにはA
23、MgO及び希土類元素酸化物等の焼結助剤が必
要である。また、その焼結温度は1500℃以上、場合
によっては窒素加圧雰囲気下1800℃以上で焼結す
る。
2. Description of the Related Art Silicon nitride sintered bodies are excellent in mechanical properties, heat resistance, corrosion resistance, etc., and have been applied to structural materials used in heat engines such as automobile engines and gas turbine engines. ing. Here, silicon nitride is difficult to sinter because of its high covalent bonding property.
Sintering aids such as l 2 O 3 , MgO and rare earth oxides are required. Further, the sintering temperature is 1500 ° C. or higher, and in some cases, the sintering is performed at 1800 ° C. or higher in a nitrogen pressurized atmosphere.

【0003】ここで、窒化珪素の焼成炉の発熱体として
グラファイトを使用している場合、焼成雰囲気はCO及
びまたはC等を微量に含む還元雰囲気になっているもの
と考えられている。このような焼成条件で得られた焼結
体は、焼き肌面が荒れており、これが機械的強度低下の
原因の1つとなっていた。このため焼き肌面強度の向上
に対して、これまでに様々な検討がなされてきた。例え
ば特開平6-219840号においては、窒化珪素原料
として適量のβ-Si34粉末をα-Si34粉末に混合
して使用することにより、焼き肌面の気孔サイズを小さ
くし、焼き肌面強度を内部強度の7割以上にする技術が
示されている。また特開平7-41367号において
は、適切な焼結助剤及び焼成条件を限定することによ
り、焼き肌面から50μmまでの深さを研磨した研磨面
における破壊靱性値を5.5MPa・m1/2以上とする
ことで焼き肌面における強度を向上させている。
[0003] When graphite is used as a heating element of a silicon nitride firing furnace, it is considered that the firing atmosphere is a reducing atmosphere containing trace amounts of CO and / or C. The sintered body obtained under such sintering conditions has a rough baked surface, which is one of the causes of a decrease in mechanical strength. For this reason, various studies have been made to improve the baked surface strength. For example, in Japanese Patent Application Laid-Open No. 6-219840, by using an appropriate amount of β-Si 3 N 4 powder mixed with α-Si 3 N 4 powder as a silicon nitride raw material, the pore size of the burnt surface is reduced, A technique for reducing the baked surface strength to 70% or more of the internal strength is disclosed. In JP-A-7-41367, the fracture toughness value of a polished surface polished to a depth of 50 μm from a burnt surface is 5.5 MPa · m 1 by limiting appropriate sintering aids and firing conditions. By setting it to / 2 or more, the strength on the baked surface is improved.

【0004】[0004]

【発明が解決しようとする課題】窒化珪素焼結体は、上
述のように微量の還元性ガスを含有する不活性雰囲気下
で高温焼成されるため、得られる焼結体の焼き肌面は通
常荒れてしまうことが多く、その機械的強度は焼結体表
面を研磨加工したものに比べ通常低いものである。この
ため、特に高い機械的強度が要求されるものへの製品化
の際には、焼結体表面を研磨加工する必要が生じてい
た。しかし、複雑な形状の構造部材においては、研磨加
工が困難であることや、単純な形状においても研磨加工
に要するコストが非常に高いことから、焼き肌面強度の
向上は重要な課題となっている。
Since the silicon nitride sintered body is fired at a high temperature in an inert atmosphere containing a small amount of reducing gas as described above, the burning surface of the obtained sintered body is usually It often becomes rough, and its mechanical strength is usually lower than that obtained by polishing the surface of the sintered body. For this reason, particularly when commercializing products requiring high mechanical strength, it has been necessary to polish the surface of the sintered body. However, in the case of a structural member having a complicated shape, polishing is difficult, and even in a simple shape, the cost required for polishing is very high. I have.

【0005】ここで低い焼き肌面強度の原因が、焼き肌
面に存在する開気孔等の凹部が欠陥として作用するため
であることに鑑み、本発明者らは焼き肌面に凹部があっ
てもその内部に特定の結晶を生成させることにより焼結
体の機械的強度を向上できることを見い出した。すなわ
ち本発明は、焼き肌面に凹部があっても焼き肌面強度を
向上させることを目的として、本発明の窒化珪素焼結体
及びその製造方法を提供するものである。
[0005] In view of the fact that the cause of the low burnt surface strength is that concave portions such as open pores existing in the burnt surface act as defects, the present inventors consider that the burnt surface has a concave portion. Have also found that the mechanical strength of the sintered body can be improved by forming a specific crystal therein. That is, the present invention provides a silicon nitride sintered body of the present invention and a method for producing the same, for the purpose of improving the strength of the burnt surface even if there are recesses on the burnt surface.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の請求項1の発明は、窒化珪素焼結体の焼き肌面に存在
する凹部に、β−窒化珪素の針状結晶を該凹部の30体
積%以上有する窒化珪素焼結体であって、該凹部に存在
するβ−窒化珪素の針状結晶間には粒界相が存在しない
ことを特徴とする窒化珪素焼結体を要旨とする。
According to a first aspect of the present invention, a needle-like crystal of β-silicon nitride is formed in a concave portion present on the surface of a silicon nitride sintered body. A silicon nitride sintered body having at least 30% by volume, wherein the
The gist of the present invention is a silicon nitride sintered body characterized in that there is no grain boundary phase between the needle-like crystals of β-silicon nitride.

【0007】請求項2の発明は、窒化珪素焼結体が、粒
界相として希土類元素、Si、O及びNを含む化合物を
有することを特徴とする請求項1に記載の窒化珪素焼結
体を要旨とする。
According to a second aspect of the present invention, the silicon nitride sintered body according to claim 1, wherein the silicon nitride sintered body has a compound containing a rare earth element, Si, O and N as a grain boundary phase. Is the gist.

【0008】請求項3の発明は、凹部の差し渡し最大長
さが100μm以下であることを特徴とする請求項1、
2のいずれか1つに記載の窒化珪素焼結体を要旨とす
る。
According to a third aspect of the present invention, the maximum length of the recess is 100 μm or less.
The gist is the silicon nitride sintered body described in any one of 2.

【0009】請求項4の発明は、窒化珪素粉末と希土類
元素酸化物粉末とを主成分とする原料粉末を混合して成
形体とする混合成形工程と、前記成形体を10atm以
下の不活性雰囲気下1750〜1950℃で焼成し予備
焼結体とする予備焼成工程と、前記予備焼結体を50a
tm以上の不活性雰囲気下1750〜1950℃でガス
圧焼成あるいはHIP焼成し窒化珪素焼結体とする本焼
成工程とを有する窒化珪素焼結体の製造方法において、
本焼成工程を窒化珪素製のケ−ス中、あるいは窒化珪素
を内表面にコ−ティングした非酸化物製のケ−ス中で行
うことを特徴とする窒化珪素焼結体の製造方法を要旨と
する。
A fourth aspect of the present invention is a mixing and molding step of mixing a raw material powder containing silicon nitride powder and a rare earth element oxide powder as main components to form a compact, and forming the compact into an inert atmosphere of 10 atm or less. A pre-sintering step of firing at 1750 to 1950 ° C. to form a pre-sintered body;
sintering at 1750 to 1950 ° C. under an inert atmosphere of at least tm or gas pressure firing or HIP firing to form a silicon nitride sintered body.
A method for producing a silicon nitride sintered body, characterized in that the main firing step is performed in a silicon nitride case or a non-oxide case in which silicon nitride is coated on the inner surface. And

【0010】ここで、粒界相として希土類元素、Si、
O及びNを含む化合物を有する窒化珪素焼結体とは、焼
結助剤である希土類元素化合物などが焼成時に液相とな
り、これが冷却後にR−Si−O−N(R:希土類元
素)系のガラスあるいはR−Si−O−N系化合物の結
晶などが窒化珪素粒子の粒界に存在することを意味す
る。
Here, a rare earth element, Si,
A silicon nitride sintered body containing a compound containing O and N means that a rare earth element compound or the like as a sintering aid becomes a liquid phase at the time of firing, and this is an R-Si-ON (R: rare earth element) -based material after cooling. Glass or R-Si-ON-based compound crystal exists at the grain boundary of silicon nitride particles.

【0011】焼結体の焼き肌面に存在する凹部に、β−
窒化珪素の針状結晶を該凹部の30体積%以上有すると
は以下のことを意味する。すなわち、予備焼結体を窒化
珪素製のケ−ス中、あるいは窒化珪素を内表面にコ−テ
ィングした非酸化物製のケ−ス中にてガス圧焼成あるい
はHIP焼成を行うことにより、予備焼結体の焼き肌面
に存在する凹部にβ−窒化珪素の針状結晶が多数生成し
た状態を言う。また、凹部の30体積%以上とは、凹部
の開口部より内部の空間を凹部の空間とみなし、この空
間に占めるβ−窒化珪素の針状結晶の体積が30%以上
であることを意味する。そして、針状結晶が梁の役割を
することで、凹部における応力を緩和、あるいは破壊開
始時点の強度を向上させることができる。ここで、凹部
においてはβ−窒化珪素の針状結晶間には粒界相が存在
しないため、針状結晶がより密であることが必要で、最
低限の30体積%以上とすることにより強度向上の効果
を得ることができる。
[0011] In the recesses present on the burning surface of the sintered body, β-
Having a silicon nitride needle crystal of 30% by volume or more of the concave portion means the following. That is, the pre-sintered body is subjected to gas pressure firing or HIP firing in a silicon nitride case or a non-oxide case in which silicon nitride is coated on the inner surface to thereby obtain a pre-sintered body. This refers to a state in which a large number of needle-like crystals of β-silicon nitride have been formed in concave portions present on the burning surface of the sintered body. Further, 30% by volume or more of the concave portion means that the space inside the opening portion of the concave portion is regarded as the space of the concave portion, and the volume of the needle crystal of β-silicon nitride occupying the space is 30% or more. . When the needle-shaped crystal plays the role of a beam, the stress in the concave portion can be reduced or the strength at the time of starting breaking can be improved. Here, since there is no grain boundary phase between the acicular crystals of β-silicon nitride in the concave portions, it is necessary that the acicular crystals be denser. The effect of improvement can be obtained.

【0012】一方、凹部自体は破壊起源の1つとなるた
め、少なく且つ小さい方が好ましいのは当然である。そ
して、窒化珪素焼結体の焼き肌面に存在する凹部の差し
渡し最大長さが100μmより大きいと、本発明のβ−
窒化珪素の針状結晶が凹部に存在してもその効果は小さ
くなる。なお凹部の差し渡し最大長さとは、凹部すなわ
ち実質的に粒界相が存在せずβ−窒化珪素の針状結晶お
よびまたは空隙部とから構成されると認められる低密度
部の外殻における差し渡しの長さの最大値を言う。
On the other hand, since the recess itself is one of the origins of destruction, it is natural that a smaller and smaller one is preferable. When the maximum length of the concave portion existing on the burnt surface of the silicon nitride sintered body is larger than 100 μm, the β-
Even if needle-like crystals of silicon nitride are present in the recesses, the effect is reduced. The maximum length of the recess is defined as the width of the recess in the outer shell of the low-density portion which is recognized as being substantially composed of needle-like crystals and / or voids of β-silicon nitride without substantially having a grain boundary phase. Say the maximum length.

【0013】第2の発明の製造方法で、予備焼成工程を
10atm以下の不活性雰囲気下1750〜1950℃
で行う理由としては、雰囲気圧力をこれ以上高くすると
焼結を阻害するからである。また焼成温度に関しては、
1750℃未満では焼結体密度を十分に上昇させること
はできず、結果としてガス圧焼成あるいはHIP焼成後
に完全に緻密化した焼結体を得ることが困難である。ま
た1950℃より高い温度で焼成する場合は、焼結体密
度は十分上昇するものの、焼き肌面が特に荒れてしま
い、予備焼結体の焼き肌面に生成する開気孔等の凹部が
大きくなってしまうため好ましくない。なお不活性雰囲
気は、窒素、アルゴンなどの不活性ガスを供給すること
で得ることができ、特に窒素雰囲気が好ましい。
In the manufacturing method according to the second aspect of the present invention, the pre-firing step is performed at 1750 to 1950 ° C. in an inert atmosphere of 10 atm or less.
The reason is that if the atmospheric pressure is further increased, sintering is hindered. Regarding the firing temperature,
When the temperature is lower than 1750 ° C., the density of the sintered body cannot be sufficiently increased, and as a result, it is difficult to obtain a completely densified sintered body after gas pressure firing or HIP firing. In the case of firing at a temperature higher than 1950 ° C., although the density of the sintered body is sufficiently increased, the burnt surface is particularly roughened, and recesses such as open pores formed on the burnt surface of the pre-sintered body become large. This is not preferred. Note that the inert atmosphere can be obtained by supplying an inert gas such as nitrogen or argon, and a nitrogen atmosphere is particularly preferable.

【0014】本焼成工程のガス圧焼成あるいはHIP焼
成を50atm以上の不活性雰囲気下1750〜195
0℃で行う理由としては、50atm未満であると緻密
な焼結体が得られないためである。また1750℃未満
としても同様に緻密な焼結体が得られないためである。
一方、1950℃より高い温度で焼成を行うと、緻密な
焼結体が得られるものの、焼き肌面が特に荒れてしまう
ため好ましくない。
The gas pressure firing or HIP firing in the main firing step is performed under an inert atmosphere of 50 atm or more at 1750 to 195.
The reason why it is performed at 0 ° C. is that if it is less than 50 atm, a dense sintered body cannot be obtained. Also, if the temperature is lower than 1750 ° C., a dense sintered body cannot be obtained.
On the other hand, when sintering is performed at a temperature higher than 1950 ° C., although a dense sintered body can be obtained, the baked surface is particularly rough, which is not preferable.

【0015】ここで本発明の特徴である、ガス圧焼成あ
るいはHIP焼成を窒化珪素製のケ−ス中または窒化珪
素を内表面にコ−ティングした非酸化物製のケ−ス中で
行う理由は以下の通りである。すなわち、前記ケ−スで
焼成することにより焼成炉のヒ−タの材質であるグラフ
ァイトから発生するC、CO等の還元性ガスを、窒化珪
素製のケ−スで遮断し、もしくは還元性ガスの分圧を低
下し、且つ予備焼結体及びケ−スから発生するSiO分
圧を高くすることができる。そして、この雰囲気に接し
ている予備焼結体の焼き肌面で、β−窒化珪素粒子が気
相成長し易くなる。結果として、予備焼結体の焼き肌面
に存在する開気孔等の凹部に多数のβ−窒化珪素の針状
結晶が気相成長するためである。
The reason why the gas pressure firing or HIP firing, which is a feature of the present invention, is performed in a silicon nitride case or a non-oxide case having silicon nitride coated on its inner surface. Is as follows. That is, reducing gas such as C and CO generated from graphite which is a material of a heater of a firing furnace by firing in the above-mentioned case is blocked by a case made of silicon nitride, or a reducing gas. And the partial pressure of SiO generated from the pre-sintered body and the case can be increased. Then, the β-silicon nitride particles are likely to grow in a vapor phase on the surface of the pre-sintered body that is in contact with this atmosphere. As a result, a large number of needle-like crystals of β-silicon nitride grow in vapor phase in concave portions such as open pores existing on the burnt surface of the pre-sintered body.

【0016】ケ−スの材質は、請求項4で言う焼成条件
でSiO雰囲気を形成できるものであればよい。例えば
上記の窒化珪素製のケ−スが使用できる。窒化珪素製と
は窒化珪素を主成分とするものであればよく、焼結助剤
として希土類元素化合物等を副成分として含むものでも
よい。また窒化珪素を、グラファイトやBN(窒化ボロ
ン)等の非酸化物製のケ−スの内表面にコ−ティングし
たものでもよい。
The case may be made of any material that can form an SiO atmosphere under the sintering conditions described in claim 4. For example, the above-mentioned case made of silicon nitride can be used. The term "made of silicon nitride" means that the material contains silicon nitride as a main component, and may contain a rare earth element compound or the like as an auxiliary component as a sintering aid. Alternatively, silicon nitride may be coated on the inner surface of a non-oxide case such as graphite or BN (boron nitride).

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態を、本
発明の範囲内の例を実施例として、また本発明の範囲外
の例を比較例として記載する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below by way of examples within the scope of the present invention, and comparative examples outside the scope of the present invention.

【0018】[0018]

【実施例】【Example】

実施例1〜5 平均粒径0.6μm、α率97%のSi34粉末と、焼
結助剤として希土類元素酸化物粉末及びSiO2、V2
5、MoO3、MoSi2、WO3の各粉末を表1に示した
組成割合で調合し、これらを窒化珪素製のボ−ルミル中
で湿式混合、粉砕した。なお焼結助剤の各粉末は平均粒
径がそれぞれ、Y23:1.0μm、Yb23:1.0
μm、Er23:1.0μm、SiO2:1.3μm、Mo
Si2:3.0μm、V25:2.5μm、MoO3:2.
0μm、WO3:0.3μmであるものを使用した。
Examples 1 to 5 Si 3 N 4 powder having an average particle diameter of 0.6 μm and an α ratio of 97%, a rare earth element oxide powder, SiO 2 and V 2 O as sintering aids
5 , MoO 3 , MoSi 2 , and WO 3 powders were prepared at the composition ratios shown in Table 1, and these were wet-mixed and ground in a silicon nitride ball mill. Note The average particle size powders of sintering aids, Y 2 O 3: 1.0μm, Yb 2 O 3: 1.0
μm, Er 2 O 3 : 1.0 μm, SiO 2 : 1.3 μm, Mo
Si 2 : 3.0 μm, V 2 O 5 : 2.5 μm, MoO 3 : 2.
Those having a thickness of 0 μm and WO 3 : 0.3 μm were used.

【0019】[0019]

【表1】 [Table 1]

【0020】次に乾燥を行い、得られた混合粉末を2t
on/cm2の圧力で静水圧プレス成形し55×55×
25mmの成形体を得た。次に成形体を表1に示す条件
で予備焼成を行った。得られた予備焼結体を、表1に示
す材質であり内部空間が約100φ×50tmmとなる
ケ−ス中に収容し、表1の条件でガス圧焼成あるいはH
IP焼成を行い窒化珪素焼結体を得た。
Next, drying is performed, and the obtained mixed powder is dried for 2 tons.
Isostatic pressing with on / cm 2 pressure 55 × 55 ×
A 25 mm compact was obtained. Next, the compact was preliminarily fired under the conditions shown in Table 1. The obtained preliminary sintered body, Quai inner space a material shown in Table 1 is about 100φ × 50 t mm - housed in the scan, gas pressure firing or H under the conditions of Table 1
IP sintering was performed to obtain a silicon nitride sintered body.

【0021】得られた窒化珪素焼結体の焼結体密度、焼
き肌面強度、研磨面強度、室温強度比、凹部の差し渡し
最大長さ、凹部を占めるβ−窒化珪素の針状結晶の体積
割合を表2に示す。
[0021] The sintered body density, baking surface strength, polished surface strength, room temperature strength ratio, the maximum length of the recessed portion, and the volume of the β-silicon nitride needle crystal occupying the recessed portion of the obtained silicon nitride sintered body. The proportions are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】焼結体密度はアルキメデス法により測定
し、混合則で計算した理論密度に対する相対密度で表し
た。
The density of the sintered body was measured by the Archimedes method and expressed as a relative density to the theoretical density calculated by the mixing rule.

【0024】強度は、JIS R 1601及びJIS
R 1604に従い、四点曲げ強度測定法により測定
した。試験片はその表面粗さをJIS B 601に従
い0.8S以下にした。また、焼き肌面強度は、焼き肌
面側を引張り面として、また研磨面強度は研磨面側を引
張り面とし測定を行った。測定温度としては室温及び1
250℃の2条件とした。なお室温強度比とは、(焼き
肌面室温強度/研磨面室温強度)の値を示す。
The strength is measured according to JIS R 1601 and JIS
In accordance with R 1604, it was measured by a four-point bending strength measuring method. The test piece had a surface roughness of 0.8 S or less according to JIS B 601. The burnt surface strength was measured using the burnt surface side as a tensile surface, and the polished surface strength was measured using the polished surface side as a tensile surface. Room temperature and 1
Two conditions of 250 ° C. were set. The room temperature strength ratio indicates the value of (baked surface room temperature strength / polished surface room temperature strength).

【0025】焼き肌面における凹部の差し渡し長さは、
焼き肌面強度測定後に破壊起源となったと考えられる凹
部を含む断面、または任意断面をSEM観察し、測定し
た。
The length of the concave portion on the surface of the baked skin is
A cross section including a concave portion that is considered to be a fracture origin after the measurement of the baked surface strength or an arbitrary cross section was observed by SEM and measured.

【0026】凹部を占めるβ−窒化珪素の針状結晶の体
積割合は、凹部を含む焼結体断面をSEM観察し、SE
M観察写真上で測定される凹部及び針状結晶の占有面積
比からこれを求めた。
The volume ratio of the needle crystal of β-silicon nitride occupying the concave portion can be determined by observing the cross section of the sintered body including the concave portion by SEM observation.
This was determined from the ratio of the occupied area of the concave portion and the needle crystal measured on the M observation photograph.

【0027】図1は、実施例3の試料の破壊起源付近の
破断面のSEM観察写真である。写真からわかるよう
に、空隙部と写真で暗灰色、約10μm大のβ−窒化珪
素の針状結晶とから構成される差し渡し約70μm大の
凹部が破壊起源となっていたものと思われる。また凹部
で、β−窒化珪素の針状結晶が占める体積は、SEM観
察写真の面積比で70%であった。
FIG. 1 is a SEM observation photograph of a fracture surface near the origin of fracture of the sample of Example 3. As can be seen from the photograph, it is considered that the destruction originated from the depressed portion of approximately 70 μm in size composed of voids and needle-like crystals of β-silicon nitride of about 10 μm in dark gray in the photograph. The volume occupied by the needle-like crystals of β-silicon nitride in the recess was 70% in terms of the area ratio of the SEM observation photograph.

【0028】表2より明らかなように、本発明の範囲に
属する実施例1〜5の焼結体は室温強度比が0.8以上
であり、焼き肌面強度が高いのものである。なお、研磨
面強度が示すように焼結体自体の機械的強度も十分高い
ものであり、焼結体表面を研磨することなく高強度な窒
化珪素焼結体を得ることができた。
As is evident from Table 2, the sintered bodies of Examples 1 to 5 belonging to the scope of the present invention have a room temperature strength ratio of 0.8 or more and a high baked surface strength. The mechanical strength of the sintered body itself was sufficiently high as indicated by the polished surface strength, and a high-strength silicon nitride sintered body could be obtained without polishing the surface of the sintered body.

【0029】比較例1、2 比較例1、2は、ガス圧焼成あるいはHIP焼成におけ
るケ−スをグラファイト製とすること以外はそれぞれ実
施例1、3と同様に窒化珪素焼結体を得たものである。
得られた焼結体は、それぞれ焼き肌面強度が室温で55
0MPa、540MPa、室温強度比が0.71、0.
67と低いものであった。破壊起源と考えられる凹部で
のβ−窒化珪素の針状結晶の占める割合はそれぞれ5、
10体積%と不十分なものであった。なお図2は、比較
例2の試料の破壊起源付近の破断面のSEM観察写真で
ある。写真からわかるように、空隙部と写真で明灰色、
約10μm大のβ−窒化珪素の針状結晶とから構成され
る差し渡し約60μm大の凹部が破壊起源となっていた
ものと思われる。
Comparative Examples 1 and 2 In Comparative Examples 1 and 2, a silicon nitride sintered body was obtained in the same manner as in Examples 1 and 3, except that the case in gas pressure firing or HIP firing was made of graphite. Things.
Each of the obtained sintered bodies has a baked surface strength of 55 at room temperature.
0 MPa, 540 MPa, strength ratio at room temperature 0.71, 0.
It was as low as 67. The proportions of the acicular crystals of β-silicon nitride in the recesses considered to be the origin of the fracture were 5, respectively.
10% by volume was insufficient. FIG. 2 is an SEM observation photograph of a fracture surface near the fracture origin of the sample of Comparative Example 2. As you can see from the photo, the gap and the photo are light gray,
It is probable that a depressed portion of about 60 μm wide composed of β-silicon nitride needle crystals of about 10 μm size was the origin of the destruction.

【0030】比較例3 比較例3は、HIP焼成におけるケ−スをBN製とする
こと以外は実施例3と同様に窒化珪素焼結体を得たもの
である。得られた焼結体は、焼き肌面強度が室温で51
0MPa、室温強度比も0.64と低いものであった。
また、破壊起源と考えられる凹部にβ−窒化珪素の針状
結晶が20体積%占めていた。
Comparative Example 3 In Comparative Example 3, a silicon nitride sintered body was obtained in the same manner as in Example 3 except that the case in the HIP firing was made of BN. The obtained sintered body has a baked surface strength of 51 at room temperature.
At 0 MPa, the room temperature strength ratio was as low as 0.64.
In addition, the needle-like crystals of β-silicon nitride occupied 20% by volume in the concave portions considered to be the origin of the fracture.

【0031】比較例4 比較例4は、予備焼成を2000℃で行うこと以外は、
実施例1と同様に窒化珪素焼結体を得たものである。得
られた焼結体は、焼き肌面強度が室温で460MPaと
低いものであった。また、破壊起源と考えられる凹部の
差し渡し長さは150μmと、本発明の範囲外の大きさ
となっていた。
Comparative Example 4 Comparative Example 4 was performed except that the preliminary firing was performed at 2000 ° C.
A silicon nitride sintered body was obtained in the same manner as in Example 1. The obtained sintered body had a baked surface strength as low as 460 MPa at room temperature. In addition, the length of the recess, which is considered to be the origin of the fracture, was 150 μm, which was out of the range of the present invention.

【0032】比較例5 比較例5は、HIP焼成を2000℃で行うこと以外
は、実施例1と同様に窒化珪素焼結体を得たものであ
る。得られた焼結体は、焼き肌面強度が室温で530M
Paであり、研磨面強度850MPaに比べたいへん低
いものであった。
Comparative Example 5 In Comparative Example 5, a silicon nitride sintered body was obtained in the same manner as in Example 1 except that the HIP baking was performed at 2000 ° C. The obtained sintered body has a baked surface strength of 530M at room temperature.
Pa, which was much lower than the polished surface strength of 850 MPa.

【0033】[0033]

【発明の効果】以上より明らかなように本発明によれ
ば、窒化珪素製のケ−ス中、あるいは窒化珪素を内表面
にコ−ティングした非酸化物製のケ−ス中にてガス圧焼
成あるいはHIP焼成を行うことにより、窒化珪素焼結
体の焼き肌面に存在する開気孔等の凹部にβ−窒化珪素
の針状結晶が多数生成し、本状態とすることにより、焼
結体の焼き肌面強度を向上させ研磨面強度に近い値とす
ることができる。この為、複雑な形状の焼結体であって
も焼結体表面を研磨することなく高強度を得ることがで
きる。
As is apparent from the above, according to the present invention, the gas pressure is increased in a case made of silicon nitride or a case made of non-oxide having silicon nitride coated on the inner surface. By firing or HIP firing, a large number of needle-like crystals of β-silicon nitride are generated in concave portions such as open pores present on the burnt surface of the silicon nitride sintered body, and the sintered body is brought into this state. Can be improved to a value close to the polished surface strength. For this reason, even if the sintered body has a complicated shape, high strength can be obtained without polishing the surface of the sintered body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例3の試料の破壊起源部の破断面の結晶
構造を示すSEM観察写真である。
FIG. 1 is an SEM observation photograph showing a crystal structure of a fracture surface of a fracture origin part of a sample of Example 3.

【図2】 比較例2の試料の破壊起源部の破断面の結晶
構造を示すSEM観察写真である。
FIG. 2 is an SEM observation photograph showing a crystal structure of a fracture surface of a fracture origin part of a sample of Comparative Example 2.

フロントページの続き (56)参考文献 特開 平7−187799(JP,A) 特開 平6−92738(JP,A) 特開 平5−105520(JP,A) 特開 平3−275565(JP,A) 特開 平7−330436(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/584 - 35/596 Continuation of the front page (56) References JP-A-7-187799 (JP, A) JP-A-6-92738 (JP, A) JP-A-5-105520 (JP, A) JP-A-3-275565 (JP) , A) JP-A-7-330436 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/584-35/596

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化珪素焼結体の焼き肌面に存在する凹
部に、β−窒化珪素の針状結晶を該凹部の30体積%以
上有する窒化珪素焼結体であって、該凹部に存在するβ
−窒化珪素の針状結晶間には粒界相が存在しないことを
特徴とする窒化珪素焼結体。
1. A silicon nitride sintered body having needle-like crystals of β-silicon nitride in a concave portion present on the burnt surface of the silicon nitride sintered body in an amount of 30% by volume or more of the concave portion. Β
-A silicon nitride sintered body characterized in that no grain boundary phase exists between needle-like crystals of silicon nitride.
【請求項2】 窒化珪素焼結体が、粒界相として希土類
元素、Si、O及びNを含む化合物を有することを特徴
とする請求項1に記載の窒化珪素焼結体。
2. The silicon nitride sintered body according to claim 1, wherein the silicon nitride sintered body has a compound containing a rare earth element, Si, O and N as a grain boundary phase.
【請求項3】 凹部の差し渡し最大長さが100μm以
下であることを特徴とする請求項1、2のいずれか1つ
に記載の窒化珪素焼結体。
3. The silicon nitride sintered body according to claim 1, wherein the maximum length of the recess is 100 μm or less.
【請求項4】 窒化珪素粉末と希土類元素酸化物粉末と
を主成分とする原料粉末を混合して成形体とする混合成
形工程と、前記成形体を10atm以下の不活性雰囲気
下1750〜1950℃で焼成し予備焼結体とする予備
焼成工程と、前記予備焼結体を50atm以上の不活性
雰囲気下1750〜1950℃でガス圧焼成あるいはH
IP焼成し窒化珪素焼結体とする本焼成工程とを有する
窒化珪素焼結体の製造方法において、本焼成工程を窒化
珪素製のケ−ス中、あるいは窒化珪素を内表面にコ−テ
ィングした非酸化物製のケ−ス中で行うことを特徴とす
る窒化珪素焼結体の製造方法。
4. A mixing and forming step of mixing a raw material powder containing a silicon nitride powder and a rare earth element oxide powder as main components to form a compact, and the compact is subjected to an inert atmosphere of 10 atm or less at 1750 to 1950 ° C. A pre-sintering step of sintering the pre-sintered body into a pre-sintered body by gas pressure sintering at 1750 to 1950 ° C. or H under an inert atmosphere of 50 atm or more.
In the method for producing a silicon nitride sintered body having a main firing step of performing IP firing to form a silicon nitride sintered body, the main firing step is performed in a case made of silicon nitride or by coating silicon nitride on the inner surface. A method for producing a silicon nitride sintered body, which is performed in a non-oxide case.
JP06913196A 1996-02-28 1996-02-28 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP3213797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06913196A JP3213797B2 (en) 1996-02-28 1996-02-28 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06913196A JP3213797B2 (en) 1996-02-28 1996-02-28 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09227237A JPH09227237A (en) 1997-09-02
JP3213797B2 true JP3213797B2 (en) 2001-10-02

Family

ID=13393793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06913196A Expired - Fee Related JP3213797B2 (en) 1996-02-28 1996-02-28 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3213797B2 (en)

Also Published As

Publication number Publication date
JPH09227237A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
KR100417967B1 (en) Abrasion resistance materials and preparation method therefor
US5030597A (en) Process for producing ceramic composites
JPH09268072A (en) Production of silicon nitride sintered compact
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP3213797B2 (en) Silicon nitride sintered body and method for producing the same
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP2011132126A (en) Wear-resistant member
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP3810183B2 (en) Silicon nitride sintered body
JPH10259058A (en) Sialon complex and its production
JP3810806B2 (en) Sintered silicon nitride ceramics
JP2724764B2 (en) Method for producing silicon nitride based sintered body
JP3212450B2 (en) Silicon nitride sintered body
JPH04260669A (en) Production of silicon nitride composite material containing silicon carbide
JPH1149571A (en) Silicon nitride sintered compact and its production
JP4070254B2 (en) Composite sintered body of silicon nitride and silicon carbide and method for producing the same
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JPH07108815B2 (en) Method for manufacturing silicon nitride sintered body
JP3667145B2 (en) Silicon nitride sintered body
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JP3236733B2 (en) Silicon nitride sintered body
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JP3567001B2 (en) Method for producing composite sintered body of silicon carbide and silicon nitride
JP3498096B2 (en) Β-type silicon nitride sintered body for metal bonding and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees