JP2000312988A - Ht590 class refractory steel submerge arc welding method - Google Patents

Ht590 class refractory steel submerge arc welding method

Info

Publication number
JP2000312988A
JP2000312988A JP11122184A JP12218499A JP2000312988A JP 2000312988 A JP2000312988 A JP 2000312988A JP 11122184 A JP11122184 A JP 11122184A JP 12218499 A JP12218499 A JP 12218499A JP 2000312988 A JP2000312988 A JP 2000312988A
Authority
JP
Japan
Prior art keywords
flux
wire
less
content
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11122184A
Other languages
Japanese (ja)
Other versions
JP3702124B2 (en
Inventor
Ryuichi Motomatsu
隆一 元松
Kazutoshi Ichikawa
和利 市川
Nobuyuki Ohama
展之 大濱
Naoaki Matsutani
直明 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12218499A priority Critical patent/JP3702124B2/en
Publication of JP2000312988A publication Critical patent/JP2000312988A/en
Application granted granted Critical
Publication of JP3702124B2 publication Critical patent/JP3702124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a welding part with high temperature elongation and excellent toughness even with large heat input one layer welding by using a specific composition of wire and flux, restricting B volume shifted from the flux, the wire and a steel plate into the welding metal, and appropriating the wire component and the flux base level. SOLUTION: HT590 refractory steel including 0.6-1.2 wt.% Mo and 0.001-0.05 wt.% Nb is welded by combining the flux for satisfying formulae I-VIII and the wire which satisfies formulae III-VIII and includes 0.01-0.13 wt.% C, 0.005-0.15 wt.% Si, 1.2-2.2 wt.% Mn, 0.60 wt.% or less Mo, 0.05 wt.% or less Nb, 0.02 wt.% or less V, 0.03 wt.% or less Ti, 0.0005 wt.% or less B and the balance of Fe. In this case, in the formula II, each component means the content in the flux. In the formulae IV and VI, [MO]W, [MO]P, and [Mo]F mean Mo contents in the wire, the base material and the flux respectively, which can be applied similarly to B and B2O3. Also, aW, aP, aF mean shifted rates of Mo and B to the welding metal in the wire, the base material, and the flux respectively. In the formula VIII, each component means the content in the welding metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は建築や橋梁分野にお
いて各種構造物に用いる耐火性に優れるHT590級鋼
板(以下、HT590級耐火鋼という)のサブマージア
ーク溶接方法に係わり、詳しくは耐火鋼を用いたボック
ス柱の角継手溶接に於いて溶接入熱10〜50kJ/m
mで1層溶接した場合、600℃での耐力及び高温伸び
に優れかつ良好な靭性を得るサブマージアーク溶接方法
に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submerged arc welding method for HT590 grade steel sheet (hereinafter referred to as HT590 grade fire resistant steel) having excellent fire resistance used for various structures in the field of construction and bridges. Heat input of 10 to 50 kJ / m in square joint welding of box columns
The present invention relates to a submerged arc welding method which is excellent in proof stress at 600 ° C. and high-temperature elongation and obtains good toughness when one layer is welded at m.

【0002】[0002]

【従来の技術】従来、耐火鋼としては常温強度が400
〜520N/mm2 のHT400級、HT490級、H
T520級耐火鋼および耐候性耐火鋼が実用化され、そ
れに用いる各種溶接材料が実用化されている。サブマー
ジアーク溶接としては、例えば特公平5−025598
号に耐火鋼用のサブマージアーク溶接ワイヤとフラック
スが提案されており、溶接金属において高温耐力と適正
な常温強度および良好な靭性を得ている。また、特開平
3−174978では600℃での高温耐力や常温での
耐候性などの特性を損なわずに靭性および高温延性に優
れ、クリープ破断寿命を向上させた耐火鋼及び耐候性耐
火鋼用のサブマージアーク溶接方法が提案されている。
2. Description of the Related Art Conventionally, as a refractory steel, a normal temperature strength of 400 is used.
HT400 class ~520N / mm 2, HT490 grade, H
T520 class fire resistant steel and weather resistant fire resistant steel have been put to practical use, and various welding materials used for them have been put into practical use. As submerged arc welding, for example, Japanese Patent Publication No. 5-025598
Submerged arc welding wire and flux for refractory steel are proposed in No.2, and the weld metal has obtained high temperature proof strength, proper room temperature strength and good toughness. Further, JP-A-3-174978 discloses a refractory steel and a weather-resistant refractory steel having excellent toughness and high-temperature ductility without impairing properties such as high temperature proof stress at 600 ° C. and weather resistance at ordinary temperature, and having improved creep rupture life. A submerged arc welding method has been proposed.

【0003】また、本発明者等は特願平8−58246
号において新規鋼板成分としてAl−B系耐火鋼とMo
−Nb系耐火鋼に共用できるサブマージアーク溶接法と
して、適正塩基度のフラックスを用い、フラックス、ワ
イヤおよび鋼板から溶接金属中に移行するMo、B量お
よび溶接金属の炭素量等を適正化し、高温耐力と伸びを
確保し、かつ、引張強度と靭性を適正に保つサブマージ
アーク溶接方法を提案した。
Further, the present inventors have disclosed in Japanese Patent Application No. 8-58246.
Al-B refractory steel and Mo
-As a submerged arc welding method that can be used for Nb-based refractory steel, a flux with an appropriate basicity is used, and the amount of Mo, B transferred from the flux, wire and steel plate into the weld metal, the amount of carbon in the weld metal, and the like are optimized. A submerged arc welding method that secures proof stress and elongation and maintains tensile strength and toughness appropriately was proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、特公平5−0
25598号で提案された耐火鋼用のサブマージアーク
溶接ワイヤとフラックスを用いたサブマージアーク溶接
方法は、高温特性として高温での耐力には着目している
が高温での伸びには充分考慮していない。
SUMMARY OF THE INVENTION However, Japanese Patent Publication No. 5-0
The submerged arc welding method using a submerged arc welding wire and a flux for refractory steel proposed in No. 25598 focuses on high-temperature strength as a high-temperature property, but does not sufficiently consider elongation at high temperature. .

【0005】また、特開平3−174978号では高温
での耐力に加え伸びも考慮した耐火鋼及び耐候性耐火鋼
用のサブマージアーク溶接方法が提案されている。この
場合の耐火鋼はMoあるいはNbとの複合添加した40
0〜520N/mm2 級耐火鋼であり、耐候性耐火鋼で
はさらにNi、Cuを添加したものであった。これに対
する溶接材料はBとTiを制限し良好な性能を得たもの
である。
Japanese Patent Application Laid-Open No. 3-174978 proposes a submerged arc welding method for fire-resistant steel and weather-resistant fire-resistant steel in which elongation is taken into consideration in addition to proof stress at high temperatures. In this case, the refractory steel was mixed with Mo or Nb.
It was a 0-520 N / mm 2 class fire-resistant steel, and Ni and Cu were further added to the weather-resistant fire-resistant steel. The welding materials for this are those which have good performance by limiting B and Ti.

【0006】更に、特願平8−58246号ではMoお
よびNbを低減し、AlとBを増加しボロン処理された
鋼板に対応する溶接材料として本発明者らは、溶接材料
のMo量と溶接金属のCeq、フラックスの塩基度を特
定して良好な高温伸びと靭性を得たものであるが、これ
はHT400〜HT520級耐火鋼用であり、常温強度
としては最大660N/mm2 程度でありそれ以上の強
度は考慮していない。しかしながらその後、さらに強度
の高い耐火鋼としてMoあるいはMoおよびNbを含有
したHT590N/mm2 の耐火鋼が開発され、この大
入熱1層サブマージアーク溶接方法においては、特開平
3−174978号に開示された溶接材料ではボックス
柱の角溶接のような母材希釈率の大きい溶接において
は、必ずしも良好な高温引張特性が得られない。
Further, in Japanese Patent Application No. 8-58246, the inventors of the present invention, as a welding material corresponding to a boron-treated steel sheet in which Mo and Nb are reduced, Al and B are increased, and the Mo amount of the welding material and the welding amount are determined. The Ceq of the metal and the basicity of the flux were specified to obtain good high-temperature elongation and toughness. This is for HT400 to HT520 class refractory steel, and the maximum strength at room temperature is about 660 N / mm 2 . No further strength is considered. However, after that, HT590 N / mm 2 refractory steel containing Mo or Mo and Nb was developed as a refractory steel having higher strength, and this large heat input single-layer submerged arc welding method is disclosed in JP-A-3-174978. In the welding material obtained, good high-temperature tensile properties cannot always be obtained in welding with a large base material dilution ratio, such as box column corner welding.

【0007】また、特願平8−58246号に提案した
溶接材料はボックス柱の角溶接のような母材希釈率の大
きい溶接においては、HT590N/mm2 の様な高強
度の溶接金属では、必ずしも良好な特性が得られない。
即ち、大入熱1層サブマージアーク溶接方法においては
母材希釈率は40〜60%程度大きく母材から溶接金属
中に移行する金属成分のうちMo、Mn、Siなど高温
耐力、常温強度、高温伸びおよび靭性に影響する元素が
適正値から外れるためすべての特性を満足することが困
難であった。
Further, in the large welding base material dilution rate, such as welding materials proposed in Japanese Patent Application No. 8-58246 is box columns corner weld, the weld metal of a high strength such as HT590N / mm 2, Good characteristics are not always obtained.
That is, in the large heat input single-layer submerged arc welding method, the base metal dilution ratio is about 40 to 60% larger than that of the metal components which migrate from the base metal to the weld metal, such as Mo, Mn, and Si, high temperature proof stress, normal temperature strength, and high temperature. It was difficult to satisfy all the characteristics because elements affecting elongation and toughness deviated from appropriate values.

【0008】従って、今回新たに開発されたHT590
N/mm2 の耐火鋼に用いるボックス柱角継手のような
大入熱1層サブマージアーク溶接材料の開発および溶接
方法の開発が急務となった。
[0008] Therefore, the newly developed HT590
There has been an urgent need to develop a high heat input single-layer submerged arc welding material such as a box column joint used for N / mm 2 refractory steel and a welding method.

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記課題
を解決するものであって、Mo:0.6〜1.2%、N
b:0.001〜0.05%を含有するHT590級耐
火鋼を溶接するためのサブマージアーク溶接方法であっ
て、下記式(1)、(2)、(3)および(4)を満足
するサブマージアーク溶接用フラックスと、おなじく下
記式(2)、(3)および(4)を満足し、且つ、C:
0.01〜0.13%、Si:0.005〜0.15
%、Mn:1.2〜2.2%、Mo:0.60%以下、
Nb:0.05%以下、V:0.02%以下、Ti:
0.03%以下、B:0.0005%以下を含有し、残
部がFe及び不可避不純物からなるサブマージアーク溶
接用ワイヤとを組み合わせて行うことを特徴とするサブ
マージアーク溶接方法。
Means for Solving the Problems The present inventors have solved the above-mentioned problems, and have found that Mo: 0.6-1.2%, N
b: A submerged arc welding method for welding HT590 grade refractory steel containing 0.001 to 0.05%, which satisfies the following formulas (1), (2), (3) and (4). The flux for submerged arc welding satisfies the following formulas (2), (3) and (4), and C:
0.01-0.13%, Si: 0.005-0.15
%, Mn: 1.2 to 2.2%, Mo: 0.60% or less,
Nb: 0.05% or less, V: 0.02% or less, Ti:
A submerged arc welding method characterized in that it is performed in combination with a submerged arc welding wire containing 0.03% or less and B: 0.0005% or less, with the balance being Fe and unavoidable impurities.

【0010】 0.55≦Bn≦1.40 (1) ここで、Bn=(0.108CaO+0.068MnO+0.100MgO +0.078CaF2 )/(0.105SiO2 +0.002Al2 3 +0.080TiO2 0.55 ≦ Bn ≦ 1.40 (1) where Bn = (0.108CaO + 0.068MnO + 0.100MgO + 0.078CaF 2 ) / (0.105SiO 2 + 0.002Al 2 O 3 + 0.080TiO 2 )

【0011】 [Mo]C ≧0.32 (2) ここで、[Mo]C =αW [Mo]W+αP [Mo]P+αF (Mo)F [Mo] C ≧ 0.32 (2) where [Mo] C = α W [Mo] W + α P [Mo] P + α F (Mo) F

【0012】 [B]C≦0.0010 (3) ここで、[B]C =αW [B]W+αP [B]P+αF (B2 3 F [B] C ≦ 0.0010 (3) where [B] C = α W [B] W + α P [B] P + α F (B 2 O 3 ) F ,

【0013】 0.37≦Ceq≦0.49 (4) ここで、Ceq=C+Si/24+Mn/6+(Mo+Nb)/5+5B0.37 ≦ Ceq ≦ 0.49 (4) where Ceq = C + Si / 24 + Mn / 6 + (Mo + Nb) / 5 + 5B

【0014】但し、(1)式でCaO、MnO、Mg
O、CaF2 、SiO2 、Al2 3、TiO2 :それ
ぞれフラックス中のCaO、MnO、MgO、Ca
2 、SiO2 、Al2 3 、TiO2 の含有量(重量
%)、(2)、(3)式で[Mo]W :ワイヤ中のMo
含有量(重量%)、[Mo] P :母材中のMo含有量
(重量%)、(Mo)F :フラックス中のMo含有量
(重量%)、[B]w :ワイヤ中 のB含有量(重量
%)、[B]p :母材中のB含有量(重量%)、(B2
3 F :フラックス中のB2 3 含有量(重量%) αw :ワイヤ中 のMoおよびBの溶接金属中への移行
率,αp :母材中のMoおよびBの溶接金属中への移行
率、αF :フラックス中のMoおよびBの溶接金属への
移行率であり、板厚19〜28mmはαw =0.37、
αp =0.43、αF =0.20,板厚28超〜40m
mはαw=0.42、αp=0.48、α F =0.10、
板厚40超〜55mmはαw =0.45、αp =0.5
0、αF=0.05、(4)式でC、Si、Mn、M
o、NbおよびBはそれぞれ溶接金属中のC、Si、M
n、Mo、NbおよびBの含有量(重量%)。
However, in formula (1), CaO, MnO, Mg
O, CaFTwo, SiOTwo, AlTwoOThree, TiOTwo:It
CaO, MnO, MgO, Ca in each flux
FTwo, SiOTwo, AlTwoOThree, TiOTwoContent (weight
%), [Mo] in equations (2) and (3)W: Mo in the wire
Content (% by weight), [Mo] P: Mo content in base metal
(% By weight), (Mo)F: Mo content in flux
(% By weight), [B]w: B content in wire (weight
%), [B]p: B content (% by weight) in base material, (BTwo
OThree)F: B in fluxTwoOThreeContent (% by weight) αw: Transfer of Mo and B in wire into weld metal
Rate, αp: Transfer of Mo and B in base metal into weld metal
Rate, αF: Mo and B in flux to weld metal
It is the transition rate.w= 0.37,
αp= 0.43, αF= 0.20, plate thickness more than 28 ~ 40m
m is αw= 0.42, αp= 0.48, α F= 0.10,
Plate thickness of 40 to 55 mm is αw= 0.45, αp= 0.5
0, αF= 0.05, C, Si, Mn, M in equation (4)
o, Nb and B are respectively C, Si, M in the weld metal.
Content of n, Mo, Nb and B (% by weight).

【0015】[0015]

【発明の実施の形態】本発明者らは、前記目的を達成す
るため種々検討し、適正組成のワイヤおよびフラックス
を用い、フラックス、ワイヤおよび鋼板から溶接金属中
に移行するB量を規制するとともに溶接金属の炭素等量
を適正にして高温伸びを確保し、かつ、ワイヤ成分およ
びフラックス塩基度の適正化により引張強度と靭性を良
好に保つ溶接方法を見出したのである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies in order to achieve the above-mentioned object, and have used a wire and a flux having an appropriate composition to regulate the amount of B transferred from the flux, the wire and the steel sheet into the weld metal, and We have found a welding method that ensures high-temperature elongation by optimizing the carbon equivalent of the weld metal and that maintains good tensile strength and toughness by optimizing wire components and flux basicity.

【0016】まず、本発明が対象とする被溶接材の鋼材
であるが、Mo:0.6〜1.2%、Nb:0.001
〜0.05%を含有することにより、従来から一般に用
いられてきた耐火鋼より強度を向上させたHT590級
耐火鋼である。この鋼材の全体の成分を上記Mo、Nb
も含めて記載すると、重量%で、C:0.05〜0.0
9%、Si:0.25〜0.35%、Mn:1.2〜
1.7%、Mo:0.6〜1.2%、Nb:0.001
〜0.05%、V:0.05%以下、Ti:0.02%
以下、B:0.0010%以下を含有し、残部がFe及
び不可避不純物からなるものが一般的である。
First, the steel material to be welded to which the present invention is applied is as follows: Mo: 0.6 to 1.2%, Nb: 0.001.
HT590 grade refractory steel which has been improved in strength from refractory steel generally used conventionally by containing up to 0.05%. The overall components of this steel material were converted to the above Mo, Nb
In addition, C: 0.05-0.0% by weight.
9%, Si: 0.25 to 0.35%, Mn: 1.2 to
1.7%, Mo: 0.6 to 1.2%, Nb: 0.001
-0.05%, V: 0.05% or less, Ti: 0.02%
Hereinafter, it is common to contain B: 0.0010% or less, with the balance being Fe and unavoidable impurities.

【0017】以前のHT490〜HT520級の耐火鋼
の溶接では溶接金属の600℃での耐力を得るため、溶
接金属中のMo量の尺度を表す特定式でその値を規定す
ることを提案した。本発明が対象とするHT590耐火
鋼で考えた場合、通常耐力の規格値440N/mm2
70%を600℃で保証するとすれば、耐力の規格値は
308N/mm2 以上となる。この耐力を得るためには
図1のグラフに示す如く溶接金属中のMo量の尺度を示
す鋼板、ワイヤおよびフラックスの特定式による[M
o]c 値を0.33以上とすることが必要である。
In the previous welding of HT490 to HT520 grade refractory steel, in order to obtain the proof stress of the weld metal at 600 ° C., it was proposed that the value be specified by a specific formula representing a scale of the amount of Mo in the weld metal. If the present invention is considered in the HT590 refractory steel of interest, if 70% of the standard value 440 N / mm 2 of the normal strength guaranteeing at 600 ° C., specifications of strength becomes 308N / mm 2 or more. In order to obtain this proof stress, as shown in the graph of FIG. 1, the specific formula of the steel sheet, wire and flux indicating the scale of the amount of Mo in the weld metal [M
o] The c value needs to be 0.33 or more.

【0018】次に、以前のHT490〜HT520の耐
火鋼の溶接では溶接金属のミクロ組織において適度の初
析フェライトを残すことを提案した。即ち、初析フェラ
イトは600℃での引張試験における伸びを18%以上
確保するためには残すことが必要であり、一方、良好な
靭性を確保するためにはできるだけ仰制することが必要
であるので、両立させるためにフラッククス、ワイヤお
よび鋼板から溶接金属に移行するB量の特定式を規定
し、さらにCeqとの関連式で適正範囲を規定した。溶
接金属の常温強度は490〜660N/mm2 であるの
で溶接金属に初析フェライトを残すことが比較的容易に
出来る。
Next, it was proposed that in the previous welding of HT490 to HT520 refractory steel, an appropriate amount of proeutectoid ferrite was left in the microstructure of the weld metal. That is, the proeutectoid ferrite must be left in order to secure an elongation of 18% or more in a tensile test at 600 ° C., while it is necessary to suppress as much as possible in order to ensure good toughness. Therefore, in order to achieve both, a specific expression for the amount of B transferred from the flux, wire, and steel plate to the weld metal was specified, and an appropriate range was specified by an expression related to Ceq. Since the room temperature strength of the weld metal is 490-660 N / mm 2 , it is relatively easy to leave proeutectoid ferrite in the weld metal.

【0019】しかしながら、本発明が対象とするHT5
90耐火鋼においては鋼板に0.6〜1.2%のMoが添
加されており、この鋼板をボックス柱の角溶接のような
大入熱一層溶接を行えば母材希釈率は45%程度とな
り、母材からの希釈だけで0.27〜0.57と最大0.
6%程度のMoが溶接金属へ移行する。溶接金属のMo
が増加するとミクロ組織において粒界の初析フェライト
が減少し、0.6%のMoでは極微の生成になる。この
ようなMoが多量に母材から溶接金属中に移行し初析フ
ェライトが減少しやすい溶接ではB量を厳しく仰制する
か、さらに溶接金属を高酸素として変態温度を高くして
初析フェライトが成長しやすい組成にする必要がある。
However, the HT5 targeted by the present invention
In 90 refractory steel, 0.6 to 1.2% of Mo is added to the steel sheet, and if this steel sheet is subjected to high heat input single-layer welding such as box column welding, the base metal dilution ratio is about 45%. It becomes 0.27-0.57 only at the dilution from the base material and a maximum of 0.5.
About 6% of Mo transfers to the weld metal. Mo of weld metal
When the content increases, the amount of pro-eutectoid ferrite at the grain boundaries decreases in the microstructure. In such welding where a large amount of Mo is transferred from the base metal into the weld metal and the proeutectoid ferrite is liable to decrease, the amount of B is strictly controlled, or the transformation temperature is increased by increasing the weld metal to high oxygen and the proeutectoid ferrite is increased. However, the composition must be easy to grow.

【0020】HT590鋼の溶接では溶接金属のB量は
フラックス、ワイヤ、鋼板の不純物から不可避的に入る
以外は添加せず、かつ、フラックスでは塩基度を低く設
定する。さらに、強度が過大とならないようにCeqは
適正範囲に規制することが必要である。
In welding HT590 steel, the B content of the weld metal is not added except that it is inevitable from impurities in the flux, wire and steel plate, and the flux has a low basicity. Further, it is necessary to regulate Ceq within an appropriate range so that the strength is not excessive.

【0021】Bは鋼板およびワイヤには0.0006%
程度以下、ボンドフラックスでは通常使用するマグネシ
アクリンカーからB2 3 として0.03%程度以下が
フラックスに不可避的に含まれる。溶接金属にBは意図
的に添加せず、さらに溶接金属に移行するB量の尺度と
して特定式の[B]c 値を用いて0.0010以下に規
定する。
B is 0.0006% for steel plate and wire
In the bond flux, the flux inevitably contains about 0.03% or less as B 2 O 3 from the normally used magnesia clinker. B is not intentionally added to the weld metal, and is defined as 0.0010 or less using a specific formula [B] c value as a measure of the amount of B transferred to the weld metal.

【0022】さらに、溶接金属に酸素を供給する尺度と
してBn=(0.108CaO+0.068MnO+0.
100MgO+0.078CaF2 )/(0.105S
iO2+0.002Al2 3 +0.080TiO2 )で
表される塩基度を0.55≦Bn≦1.40とする。それ
に加えて常温の強度を590N/mm2 以上を確保する
ためにはCeqを0.37%以上に規制する。
Further, Bn = (0.108 CaO + 0.068 MnO + 0.08) is a measure for supplying oxygen to the weld metal.
100MgO + 0.078CaF 2 ) / (0.105S
The basicity represented by (iO 2 + 0.002Al 2 O 3 + 0.080TiO 2 ) is set to 0.55 ≦ Bn ≦ 1.40. In addition, the Ceq is restricted to 0.37% or more in order to secure the strength at room temperature of 590 N / mm 2 or more.

【0023】さらに本発明を詳細に説明する。本発明者
らは、まず耐火鋼の溶接金属において[Mo]C 量と6
00℃の耐力(以下、YP600と言う)との関係を求
めた。[Mo]c 量が大きくなるに従ってYP600が
大きくなることがわかる。[Mo]c は溶接金属中のM
o量の尺度を示すもので、以前のHT400〜HT52
0級耐火鋼では本発明者等は[Mo]c として[Mo]
c =43[Mo]w +55[Mo]p +18(Mo)F
る計算値を用いYP600≧235N/mm2 を確保す
るために[Mo]c ≧8.5とすることを提案した。
Further, the present invention will be described in detail. The present inventors first found that the [Mo] C content and the 6
The relationship with the proof stress at 00 ° C. (hereinafter referred to as YP600) was determined. It can be seen that YP600 increases as the [Mo] c amount increases. [Mo] c is M in the weld metal
o indicates a measure of the amount of HT400 to HT52
In the case of 0-grade refractory steel, the present inventors have [Mo] c as [Mo] c .
It was proposed that [Mo] c ≧ 8.5 to ensure YP600 ≧ 235 N / mm 2 using a calculated value of c = 43 [Mo] w +55 [Mo] p +18 (Mo) F.

【0024】本発明が対象するHT590級耐火鋼にお
いてはSM590鋼の規格YP≧440N/mm2 に対
し耐火鋼としてはYP600≧308(=440×0.
7)N/mm2 が必要である。ここでその尺度として上
記式に変え板厚によって差のある母材希釈率を考量した
[Mo]c 、即ち、特定式[Mo]c w [Mo]w
αp[Mo]p +αF (Mo)F を得た。目標値を達成
するためには[Mo]cが0.33以上が必要である。こ
こで、[Mo]W :ワイヤ中のMo含有量(重量%)、
[Mo]P :母材中のMo含有量(重量%)、(Mo)
F :フラックス中のMo含有量(重量%)であり、
αw:ワイヤ中 のMoの溶接金属中への移行率、αp
母材中のMoの溶接金属中への移行率、αF :フラック
ス中のMoの溶接金属への移行率であり、板厚19〜2
8mmはαw =0.37、αp =0.43、αF =0.
20、板厚28超〜40mmはαw =0.42、αp
0.48、αF =0.10、板厚40超〜55mmはα
w =0.45、αp =0.50、αF =0.05であ
る。
In the HT590 class refractory steel to which the present invention is applied, the standard YP ≧ 440 N / mm 2 of SM590 steel is used, whereas the YP600 ≧ 308 (= 440 × 0.
7) N / mm 2 is required. Here, instead of the above formula, the base material dilution ratio having a difference depending on the plate thickness is considered as the scale [Mo] c , that is, the specific formula [Mo] c = α w [Mo] w +
α p [Mo] p + α F (Mo) F was obtained. To achieve the target value, [Mo] c needs to be 0.33 or more. Here, [Mo] W : Mo content (% by weight) in the wire,
[Mo] P : Mo content (% by weight) in base material, (Mo)
F : Mo content (% by weight) in the flux
α w : Transfer rate of Mo in the wire into the weld metal, α p :
Transfer rate of Mo in the base metal into the weld metal, α F : Transfer rate of Mo in the flux to the weld metal, plate thickness 19 to 2
For 8 mm, α w = 0.37, α p = 0.43, α F = 0.
20, when the plate thickness exceeds 28 to 40 mm, α w = 0.42, α p =
0.48, α F = 0.10, plate thickness more than 40 to 55 mm is α
w = 0.45, α p = 0.50, α F = 0.05.

【0025】次に、600℃の引張試験の伸びを確保す
るための尺度としてHT400〜HT520級耐火鋼で
は本発明者等はまず溶接金属中のB量の尺度として
[B]c=4300[B]w +5500[B]p +12
0(B2 3 F を提案したがHT590鋼では上記式
に換え板厚によって差のある母材希釈率を考慮した
[B] c 、即ち、[B]c =αw [B]w +αp[B]p
+αF (B2 3 F を用い、[B]c ≦0.001
0が必要であることを見出した。[B]w :ワイヤ中の
B含有量(重量%)、[B]p :母材中のB含有量(重
量%)、(B2 3 F:フラックス中のB2 3 含有
量(重量%)、αw :ワイヤ中 のBの溶接金属中への
移行率、αp :母材中のBの溶接金属中への移行率、α
F :フラックス中のBの溶接金属への移行率であり、板
厚19〜28mmはαw =0.37、αp=0.43、
αF =0.20、板厚28超〜40mmはαw =0.4
2、αp =0.48、αF =0.10、板厚40超〜5
5mmはαw =0.45、αp =0.50、αF =0.
05である。
Next, the elongation of the tensile test at 600 ° C. is secured.
HT400 to HT520 grade refractory steel
First, the present inventors used a measure of the B content in the weld metal.
[B] c = 4300 [B]w+5500 [B]p +12
0 (BTwoOThree)FWas proposed for HT590 steel.
Base material dilution ratio that varies depending on
[B] c That is, [B]c = Αw [B]w + Αp[B]p
 + ΑF(BTwoOThree)F Using [B]c ≦ 0.001
0 was required. [B]w : In the wire
B content (% by weight), [B]p : B content in base material (weight
%), (BTwoOThree)F: B in fluxTwoOThreeContained
Amount (% by weight), αw : B in the wire into the weld metal
Transition rate, αp : Transfer rate of B in the base metal into the weld metal, α
F: Transfer rate of B in the flux to the weld metal
19-28mm thickness is αw = 0.37, αp= 0.43,
αF= 0.20, plate thickness 28 to 40 mm is αw = 0.4
2, αp = 0.48, αF= 0.10, plate thickness more than 40 ~ 5
5mm is αw = 0.45, αp = 0.50, αF= 0.
05.

【0026】さらに、600℃の引張試験の伸びを確保
するため粒界の初析フェライトが生成するためにはフラ
ックスの塩基度を小さくすることが必要である。フラッ
クスの塩基度は溶接金属中への酸素量の尺度である。即
ち、塩基度が小さくなるほど溶接金属中の酸素量が増加
し、粒界の初析フェライトが生成して600℃の引張試
験の伸びが向上する。いま塩基度としてBn=(0.1
08CaO+0.068MnO+0.100MgO+0.
078CaF2 )/(0.105SiO2 +0.002A
2 3 +0.080TiO2 )を用いるとして、60
0℃の引張試験で良好な伸びを確保するためにはBn≦
1.40が必要である。一方、Bnが0.55未満となる
と靭性が劣化する。即ち、0.55≦Bn≦1.40とな
る。
Furthermore, in order to secure elongation in a tensile test at 600 ° C., it is necessary to reduce the basicity of the flux in order to generate pro-eutectoid ferrite at grain boundaries. Flux basicity is a measure of the amount of oxygen in the weld metal. That is, as the basicity decreases, the amount of oxygen in the weld metal increases, and pro-eutectoid ferrite at the grain boundaries is generated, thereby improving the elongation in the tensile test at 600 ° C. Now, as basicity, Bn = (0.1
08CaO + 0.068MnO + 0.10MgO + 0.08
078CaF 2 ) / (0.105SiO 2 + 0.002A)
l 2 O 3 +0.080 TiO 2 )
In order to ensure good elongation in a 0 ° C. tensile test, Bn ≦
1.40 is required. On the other hand, if Bn is less than 0.55, the toughness deteriorates. That is, 0.55 ≦ Bn ≦ 1.40.

【0027】また、常温での引張強度(以下TSRTと言
う)を適正範囲に保つには焼き入れの尺度の制限が必要
である。即ち、Ceq≦0.49%であることが必要で
ある。また、590N/mm2 以上にするにはCeq≧
0.37%である。即ち、 0.37≦Ceq≦0.49%
である。
[0027] In addition, in order to keep the tensile strength at room temperature (hereinafter referred to as TS RT) in an appropriate range it is necessary to limit the scale of hardening. That is, it is necessary that Ceq ≦ 0.49%. In addition, in order to obtain 590 N / mm 2 or more, Ceq ≧
0.37%. That is, 0.37 ≦ Ceq ≦ 0.49%
It is.

【0028】以下に本発明で使用するサブマージアーク
溶接用ワイヤの成分について説明する。Cは常温強度の
確保ならびにMo、Nbの添加効果を発揮させるために
必要であり0.01%が下限である。また、0.13%
を越えると高温割れ感受性が増加するとともに靭性が劣
化する。
The components of the submerged arc welding wire used in the present invention will be described below. C is necessary for ensuring the room temperature strength and for exhibiting the effect of adding Mo and Nb, and the lower limit is 0.01%. In addition, 0.13%
Exceeding the temperature increases the susceptibility to hot cracking and deteriorates toughness.

【0029】Siは脱酸元素として0.005%以上の
添加が必要であるが0.15%を越えると溶接金属の靭
性を劣化させる。Mnは強度および靭性を確保するため
に不可欠であり1.2%以上の添加が必要であるが、
2.2%を越えると、高温割れ感受性が増加するととも
に靭性が劣化する。
Si needs to be added in an amount of 0.005% or more as a deoxidizing element, but if it exceeds 0.15%, the toughness of the weld metal deteriorates. Mn is indispensable for securing strength and toughness and needs to be added in an amount of 1.2% or more.
If it exceeds 2.2%, the hot cracking susceptibility increases and the toughness deteriorates.

【0030】MoおよびNbは十分な高温耐力を確保す
るために必要であるが、フラックスからも添加が可能で
あるから特に下限は規定しない。一方、Mo、Nbが過
多になると、常温強度が高くなりすぎ靭性が劣化するの
で、添加量はMoは0.60%以下、Nbは0.05%
以下にする必要がある。
Mo and Nb are necessary to ensure a sufficient high-temperature proof stress, but the lower limits are not particularly defined since they can be added from the flux. On the other hand, when Mo and Nb become excessive, the room temperature strength becomes too high and the toughness is deteriorated. Therefore, the addition amounts of Mo are 0.60% or less and Nb is 0.05% or less.
It must be:

【0031】Vは常温強度の確保に必要であるが、ワイ
ヤとしては0.02%を越えると靭性が劣化する。Ti
は脱酸元素であり、且つ、靭性確保に重要な元素であり
0.001%以上の添加が望ましいが、過剰に添加する
と溶接金属の高温伸びを劣化させるので0.03%以下
にする必要がある。
V is necessary for securing the strength at room temperature, but if the wire content exceeds 0.02%, the toughness deteriorates. Ti
Is a deoxidizing element and an important element for securing toughness, and it is desirable to add 0.001% or more. However, if added excessively, the high-temperature elongation of the weld metal is deteriorated. is there.

【0032】Bは600℃の高温引張の伸びの確保に重
要であり、意図的に添加せず0.0005%以下と不純
物から不可避的に入る量に規制する必要がある。また、
本発明ワイヤには以上規定した成分以外としては、Ni
を1%以下、Crを0.5%以下、Cuをメッキも含め
0.5%以下、Pを0.025%以下、Sを0.015%
以下を許容できる。その他残部はFeおよび不可避的不
純物である。
B is important for securing the elongation at a high temperature of 600 ° C., and it is necessary not to add B intentionally and to regulate it to 0.0005% or less, which is an unavoidable amount from impurities. Also,
In the wire of the present invention, other than the components specified above, Ni
1% or less, Cr is 0.5% or less, Cu is 0.5% or less including plating, P is 0.025% or less, and S is 0.015%.
The following are acceptable. The rest is Fe and inevitable impurities.

【0033】[0033]

【実施例】以下実施例により、本発明の効果をさらに具
体的に示す。鋼板は表1に示すP1〜P4の4種類、ワ
イヤは表2に示すW1〜W3の3種類の組成のものを用
いた。フラックスは表3のF1〜F6の6種類のボンド
フラックスを作製した。このうちF1〜F4は本発明例
のフラックス、F5、F6は本発明の効果を明確にする
ための比較例のフラックスである。
EXAMPLES The effects of the present invention will be more specifically shown by the following examples. The steel plates used were four types of P1 to P4 shown in Table 1, and the wires used were three types of compositions W1 to W3 shown in Table 2. The flux prepared six types of bond flux of F1-F6 of Table 3. Among them, F1 to F4 are fluxes of the present invention, and F5 and F6 are fluxes of comparative examples for clarifying the effect of the present invention.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】図2に示す(a)の開先形状はY型開先、
(b)はレ型開先であって、(a)の開先形状のθ1
開先角度35゜、T1 は板厚40mm又は45mm、r
1 はルートフェース2mm、t1 は裏当金25mmであ
る。また、(b)の開先形状のθ2 は開先角度40゜、
2 は板厚25mm、r2 はルートフェース2mm、t
2 は裏当金25mmである。以上の3種類の試験体を用
い、表4に示す溶接条件C1〜C3の条件で、予熱を行
わずに2電極によるサブマージアーク溶接を実施した。
The groove shape shown in FIG. 2A is a Y-shaped groove,
(B) is a bevel groove destination, theta 1 is included angle 35 ° of the groove shape of (a), T 1 is the thickness 40mm or 45 mm, r
1 is a root face of 2 mm, and t 1 is a backing metal of 25 mm. In addition, θ 2 of the groove shape shown in FIG.
T 2 is a plate thickness of 25 mm, r 2 is a root face of 2 mm, t
2 is a backing metal of 25 mm. Using the above three types of specimens, submerged arc welding using two electrodes was performed without performing preheating under the welding conditions C1 to C3 shown in Table 4.

【0038】[0038]

【表4】 [Table 4]

【0039】溶接終了後、板表面10mm下の溶接部よ
りJIS A1号引張試験片を1個、JIS4号Vノッ
チシャルピー試験片を3個、高温引張試験片(6mm
径)1個および分析試料ををそれぞれ採取して供試し
た。その結果を表5、表6および表7に示す。表6の中
で記号1〜12は本発明の実施例、記号13〜21は本
発明の効果を明確にするための比較例である。これらの
結果、本発明の実施例1〜12はTSRT、YP600、E
l600およびvE-5℃のいずれも良好な値を示し問題は
なかった。
After completion of welding, one JIS A1 tensile test piece, three JIS No. V notch Charpy test pieces, and a high-temperature tensile test piece (6 mm
(Diameter) One sample and an analysis sample were collected and tested. The results are shown in Tables 5, 6, and 7. In Table 6, symbols 1 to 12 are examples of the present invention, and symbols 13 to 21 are comparative examples for clarifying the effects of the present invention. As a result, Examples 1 to 12 of the present invention showed TS RT , YP600, E
Both l600 and vE -5 ° C showed good values and no problem.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【表7】 [Table 7]

【0043】比較例のうち13は式(1)の値の下限を
割ったため靭性が劣化した。また比較例のうち14は式
(1)の値の上限を超えたためEl600が劣化した。ま
た比較例のうち15は(3)値の上限を越えたためEl
600が劣化し、式(2)の値の下限を割ったためYP600
が劣化した。
Thirteen of the comparative examples had lower toughness because the lower limit of the value of equation (1) was broken. Further, among the comparative examples, El600 deteriorated because 14 exceeded the upper limit of the value of the expression (1). Further, among the comparative examples, 15 exceeded the upper limit of the value (3), and thus El
600 has deteriorated and the lower limit of the value of equation (2) has been broken, so YP600
Has deteriorated.

【0044】比較例のうち16は式(4)の値の下限を
割ったため強度不足及び(2)値の下限を割ったためY
P600が劣化した。また比較例のうち17は式(2)の
値が下限を割ったためYP600が劣化した。また比較例
のうち18は式(2)の値が下限を割ったためYP600
が劣化した。
In 16 of the comparative examples, the strength was insufficient because the lower limit of the value of the equation (4) was divided, and Y was smaller than the lower limit of the value of the equation (2).
P600 has deteriorated. In addition, YP600 of 17 of the comparative examples was deteriorated because the value of equation (2) was below the lower limit. In the comparative example 18, YP600 was obtained because the value of the equation (2) was lower than the lower limit.
Has deteriorated.

【0045】比較例のうち19は式(3)の値が上限を
越えたためEl600が劣化した。また比較例のうち20
は式(3)の値が上限を越えたためEl600が劣化し
た。また比較例のうち21は式(4)の値の上限を越え
たためTSRTが過大となった。
In Comparative Examples 19, El600 deteriorated because the value of the equation (3) exceeded the upper limit. 20 of the comparative examples
The value of equation (3) exceeded the upper limit, so El600 deteriorated. Further, among the comparative examples, 21 exceeded the upper limit of the value of the expression (4), so that the TSRT was excessively large.

【0046】[0046]

【発明の効果】以上説明したごとく本発明を用いれば、
実施例にも示した通りHT590級耐火鋼のサブマージ
アーク溶接方法において、溶接入熱10〜40kJ/m
mで一層溶接した場合、600℃での耐力および高温伸
びに優れ、且つ、靭性も良好な溶接部が得られ、大型構
造物の溶接に貢献するところ大である。
According to the present invention as described above,
As shown in the examples, in the submerged arc welding method for HT590 class refractory steel, the welding heat input is 10 to 40 kJ / m.
In the case of further welding at m, a welded portion having excellent proof stress at 600 ° C. and high-temperature elongation and good toughness can be obtained, which greatly contributes to welding of a large structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶接金属の[Mo]cと600℃の耐力(YP6
00)との関係を示したグラフ
FIG. 1 [Mo] c of weld metal and proof stress at 600 ° C. (YP6
00)

【図2】(a)、(b)はそれぞれ実施例で用いた溶接
試験板の開先形状を示す断面図
FIGS. 2A and 2B are cross-sectional views each showing a groove shape of a welding test plate used in Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大濱 展之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 松谷 直明 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4E001 AA03 BB05 CA04 EA05 EA07 4E084 AA02 AA03 AA06 AA07 AA08 AA11 AA12 AA20 BA09 CA02 DA16 GA05 HA04  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Noriyuki Ohama 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (72) Inventor Naoaki Matsuya 20-1 Shintomi, Futtsu City, Chiba Prefecture New Japan F-term in the Technology Development Division of Steel Corporation (reference) 4E001 AA03 BB05 CA04 EA05 EA07 4E084 AA02 AA03 AA06 AA07 AA08 AA11 AA12 AA20 BA09 CA02 DA16 GA05 HA04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mo:0.6〜1.2%、Nb:0.0
01〜0.05%を含有するHT590級耐火鋼を溶接
するためのサブマージアーク溶接方法であって、下記式
(1)、(2)、(3)および(4)を満足するサブマ
ージアーク溶接用フラックスと、おなじく下記式
(2)、(3)および(4)を満足し、且つ、C:0.
01〜0.13%、Si:0.005〜0.15%、M
n:1.2〜2.2%、Mo:0.60%以下、Nb:
0.05%以下、V:0.02%以下、Ti:0.03
%以下、B:0.0005%以下を含有し、残部がFe
及び不可避不純物からなるサブマージアーク溶接用ワイ
ヤとを組み合わせて行うことを特徴とするサブマージア
ーク溶接方法。 0.55≦Bn≦1.40 (1) ここで、Bn=(0.108CaO+0.068MnO+0.100MgO +0.078CaF2 )/(0.105SiO2 +0.002Al2 3 +0.080TiO2 ) [Mo]C ≧0.32 (2) ここで、[Mo]C =αW [Mo]W +αP [Mo]P +αF (Mo)F [B]C≦0.0010 (3) ここで、[B]C =αW [B]W +αP [B]P +αF (B2 3 F 、 0.37≦Ceq≦0.49 (4) ここで、Ceq=C+Si/24+Mn/6+(Mo+Nb)/5+5B 但し、(1)式でCaO、MnO、MgO、CaF2
SiO2 、Al2 3、TiO2 :それぞれフラックス
中のCaO、MnO、MgO、CaF2 、SiO2 、A
2 3 、TiO2 の含有量(重量%)、 (2)、(3)式で[Mo]W :ワイヤ中のMo含有量
(重量%)、[Mo] P :母材中のMo含有量(重量
%)、(Mo)F :フラックス中のMo含有量(重量
%)、[B]w :ワイヤ中 のB含有量(重量%)、
[B]p :母材中のB含有量(重量%)、(B2 3
F :フラックス中のB2 3 含有量(重量%) αw :ワイヤ中 のMoおよびBの溶接金属中への移行
率,αp :母材中のMoおよびBの溶接金属中への移行
率、αF :フラックス中のMoおよびBの溶接金属への
移行率であり、板厚19〜28mmはαw =0.37、
αp =0.43、αF =0.20,板厚28超〜40m
mはαw=0.42、αp=0.48、α F =0.10、
板厚40超〜55mmはαw =0.45、αp =0.5
0、αF=0.05、 (4)式でC、Si、Mn、Mo、NbおよびBはそれ
ぞれ溶接金属中のC、Si、Mn、Mo、NbおよびB
の含有量(重量%)。
1. Mo: 0.6 to 1.2%, Nb: 0.0
Welding HT590 class refractory steel containing 01-0.05%
Submerged arc welding method for performing
Sub-matrix that satisfies (1), (2), (3) and (4)
Flux for arc welding and the following formula
(2), (3) and (4) are satisfied, and C: 0.
01-0.13%, Si: 0.005-0.15%, M
n: 1.2 to 2.2%, Mo: 0.60% or less, Nb:
0.05% or less, V: 0.02% or less, Ti: 0.03
%, B: 0.0005% or less, with the balance being Fe
And submerged arc welding wire consisting of unavoidable impurities
Submerger that is performed in combination with
Welding method. 0.55 ≦ Bn ≦ 1.40 (1) where Bn = (0.108CaO + 0.068MnO + 0.100MgO + 0.078CaF)Two) / (0.105SiOTwo + 0.002AlTwoOThree+ 0.080TiOTwo) [Mo]C≧ 0.32 (2) where [Mo]C= ΑW[Mo]W + ΑP[Mo]P+ ΑF(Mo)F [B] C ≦ 0.0010 (3) where [B]C= ΑW[B]W+ ΑP[B]P+ ΑF(BTwoOThree)F0.37 ≦ Ceq ≦ 0.49 (4) Here, Ceq = C + Si / 24 + Mn / 6 + (Mo + Nb) / 5 + 5B where, in the formula (1), CaO, MnO, MgO, CaFTwo,
SiOTwo, AlTwoOThree, TiOTwo: Each flux
CaO, MnO, MgO, CaF inTwo, SiOTwo, A
lTwoOThree, TiOTwo(% By weight), [Mo] in formulas (2) and (3)W: Mo content in wire
(% By weight), [Mo] P: Mo content (weight) in base metal
%), (Mo)F: Mo content in flux (weight
%), [B]w: B content (% by weight) in wire,
[B]p: B content (% by weight) in base material, (BTwoOThree)
F: B in fluxTwoOThreeContent (% by weight) αw: Transfer of Mo and B in wire into weld metal
Rate, αp: Transfer of Mo and B in base metal into weld metal
Rate, αF: Mo and B in flux to weld metal
It is the transition rate.w= 0.37,
αp= 0.43, αF= 0.20, plate thickness more than 28 ~ 40m
m is αw= 0.42, αp= 0.48, α F= 0.10,
Plate thickness of 40 to 55 mm is αw= 0.45, αp= 0.5
0, αF= 0.05, C, Si, Mn, Mo, Nb and B in the formula (4)
C, Si, Mn, Mo, Nb and B in the weld metal respectively
Content (% by weight).
JP12218499A 1999-04-28 1999-04-28 Submerged arc welding method for HT590 grade refractory steel Expired - Fee Related JP3702124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12218499A JP3702124B2 (en) 1999-04-28 1999-04-28 Submerged arc welding method for HT590 grade refractory steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12218499A JP3702124B2 (en) 1999-04-28 1999-04-28 Submerged arc welding method for HT590 grade refractory steel

Publications (2)

Publication Number Publication Date
JP2000312988A true JP2000312988A (en) 2000-11-14
JP3702124B2 JP3702124B2 (en) 2005-10-05

Family

ID=14829667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12218499A Expired - Fee Related JP3702124B2 (en) 1999-04-28 1999-04-28 Submerged arc welding method for HT590 grade refractory steel

Country Status (1)

Country Link
JP (1) JP3702124B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268548A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Backing flux for one side submerged arc welding
CN112372117A (en) * 2020-12-02 2021-02-19 南京钢铁股份有限公司 Large heat input submerged arc welding method for refractory steel with yield strength of 460MPa and thickness of 60mm
CN115338282A (en) * 2022-10-17 2022-11-15 南通长石科技有限公司 Magnesium alloy forging product stamping forming system and stamping forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268548A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Backing flux for one side submerged arc welding
CN112372117A (en) * 2020-12-02 2021-02-19 南京钢铁股份有限公司 Large heat input submerged arc welding method for refractory steel with yield strength of 460MPa and thickness of 60mm
CN115338282A (en) * 2022-10-17 2022-11-15 南通长石科技有限公司 Magnesium alloy forging product stamping forming system and stamping forming method

Also Published As

Publication number Publication date
JP3702124B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
KR970010882B1 (en) SUBMERGED ARC WELDING METHOD FOR HIGH STRENGTH Cr-Mo STEEL
EP2048255A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP5792050B2 (en) Submerged arc welding method for low temperature steel
JP2001107196A (en) Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material
JP4841400B2 (en) Gas shielded arc welding flux cored wire for high strength steel
KR102088179B1 (en) Submerged Arc Welding Wire
JP4767592B2 (en) Submerged arc welding method for refractory structural steel
JP4672177B2 (en) Submerged arc welding method for duplex stainless steel
JP2013141681A (en) Bond flux for submerged arc welding, wire, welding metal and welding method
JPH09225682A (en) Submerged arc welding for fire resistant steel
JPH09277084A (en) Submerged arc welding method for high-chromium ferritic heat resisting steel
JPH11291086A (en) Submerged arc welding method for high cr ferritic heat resistant steel
JP3657135B2 (en) Solid wire for gas shielded arc welding
JP6425959B2 (en) Ferritic stainless steel excellent in high temperature oxidation resistance, high temperature creep strength and high temperature tensile strength
JP2000312988A (en) Ht590 class refractory steel submerge arc welding method
JP2593614B2 (en) Submerged arc welding method for high Cr ferritic heat resistant steel
JP5726017B2 (en) Bond flux and welding method for submerged arc welding
JP2742201B2 (en) TIG welding wire for high strength Cr-Mo steel
JPS61186446A (en) Heat resistant alloy
JPH0788554B2 (en) Fireproof steel for construction
JPH09277083A (en) Submerged arc welding method for weatherproof steel of large heat input
JPH04193907A (en) Production of 50kgf/mm2 class refractory steel plate for construction use
WO2017038975A1 (en) Wire for submerged arc welding
JPH11314193A (en) Submerged arc welding method for refractory steel
JPH05285691A (en) Submerged arc welding method for high-cr ferritic heat resisting steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees