JP5726017B2 - Bond flux and welding method for submerged arc welding - Google Patents

Bond flux and welding method for submerged arc welding Download PDF

Info

Publication number
JP5726017B2
JP5726017B2 JP2011178650A JP2011178650A JP5726017B2 JP 5726017 B2 JP5726017 B2 JP 5726017B2 JP 2011178650 A JP2011178650 A JP 2011178650A JP 2011178650 A JP2011178650 A JP 2011178650A JP 5726017 B2 JP5726017 B2 JP 5726017B2
Authority
JP
Japan
Prior art keywords
mass
metal
weld metal
toughness
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011178650A
Other languages
Japanese (ja)
Other versions
JP2013039604A (en
Inventor
鵬 韓
鵬 韓
統宣 佐藤
統宣 佐藤
裕一 小溝
裕一 小溝
新房 張
新房 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011178650A priority Critical patent/JP5726017B2/en
Priority to PCT/JP2012/069451 priority patent/WO2013024698A1/en
Publication of JP2013039604A publication Critical patent/JP2013039604A/en
Application granted granted Critical
Publication of JP5726017B2 publication Critical patent/JP5726017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3606Borates or B-oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Description

本発明は、サブマージアーク溶接用ボンドフラックス及びワイヤに関し、特に、溶接金属のγ粒径を適正化することができ、これにより、−60℃程度の極低温まで優れた靭性を有する溶接金属を得ることができ、主に海洋構造物又はLPGタンク等に使用される低温高強度用鋼用の溶接に適したサブマージアーク溶接用ボンドフラックス及びワイヤに関する。   The present invention relates to a bond flux and a wire for submerged arc welding, and in particular, can optimize the γ particle size of the weld metal, thereby obtaining a weld metal having excellent toughness up to an extremely low temperature of about −60 ° C. The present invention relates to a bond flux and a wire for submerged arc welding suitable for welding for low-temperature high-strength steel mainly used for offshore structures or LPG tanks.

特許文献1には、建築構造物に使用される高張力鋼をサブマージアーク溶接した際の溶接金属の強度及び靭性を向上させることを目的として、ソリッドワイヤとボンドフラックスとを組合せてサブマージアーク溶接で多層盛溶接された溶接金属が提案されている。この溶接金属は、溶接金属全質量当たり、質量%で、C:0.04〜0.09%、Si:0.20〜0.35%、Mn:1.6〜2.3%、Ni:2.5〜3.0%、Cr:0.55〜1.0%、Mo:0.55〜1.0%を含有し、Cu:0.20%以下、O:0.022%以下、N:0.006%以下で、残部はFe及び不可避不純物からなる組成を有する。これにより、強度が良好で安定した靭性が得られ、溶接時の作業性も良好で、溶接欠陥のない引張強さが900MPa以上の高張力鋼のサブマージアーク溶接金属が得られるとされている。また、この特許文献1には、フラックスの全質量に対して、質量%で、MgO:30〜38%、Al:14〜20%、CaF:14〜20、SiO:10〜18%、CaO:7〜12%、金属炭酸塩のCO換算値:3〜5%を含有し、その他はNaO、KO、合金剤、脱酸剤及び不可避不純物であるボンドフラックスが開示されている。 In Patent Document 1, submerged arc welding is performed by combining solid wire and bond flux for the purpose of improving the strength and toughness of weld metal when high-strength steel used for building structures is subjected to submerged arc welding. Multi-layer welded weld metals have been proposed. This weld metal is in mass% with respect to the total mass of the weld metal, C: 0.04 to 0.09%, Si: 0.20 to 0.35%, Mn: 1.6 to 2.3%, Ni: 2.5 to 3.0%, Cr: 0.55 to 1.0%, Mo: 0.55 to 1.0%, Cu: 0.20% or less, O: 0.022% or less, N: 0.006% or less, with the balance being composed of Fe and inevitable impurities. Thereby, it is said that the strength and stable toughness are obtained, the workability at the time of welding is good, and the high strength steel submerged arc weld metal having a tensile strength of 900 MPa or more without welding defects is obtained. Further, this Patent Document 1, with respect to the total mass of the flux, by mass%, MgO: 30~38%, Al 2 O 3: 14~20%, CaF 2: 14~20, SiO 2: 10~ 18%, CaO: 7 to 12%, CO 2 equivalent value of metal carbonate: 3 to 5%, others are Na 2 O, K 2 O, alloying agent, deoxidizing agent and bond flux which is an inevitable impurity Is disclosed.

また、特許文献2には、2.5〜3.5%Ni鋼及び小入熱溶接を強いられる高張力鋼などの溶接において、良好な作業性と高靭性の溶接金属を得ることを目的として、フラックス全体の主成分として、SiO:20〜30%、MgO:10〜17%、CaO:15〜25%、Al:9〜17%、BaO:6〜15%、金属炭酸塩(CO換算):4〜9%、CaF:2〜6%、Ca:0.2〜0.8%、NaO及びKOの1種又は2種:4〜8%、を含み、(CaO+BaO+MgO)/(SiO):1.5〜2.1を満たすボンドフラックスが開示されている。このボンドフラックスは、溶融型フラックスを50〜73%含有し、この溶融型フラックスは、溶融型フラックス全体に対する質量%で、SiO:22〜32%、CaO:22〜32%、MgO:16〜22%、Al:16〜22%、CaF:1〜7%、NaO及びKOの1種又は2種:1〜5%を含む。 Patent Document 2 describes the purpose of obtaining a weld metal with good workability and high toughness in welding of 2.5 to 3.5% Ni steel and high-tensile steel forced to perform small heat input welding. , as the main component in the entire flux, SiO 2: 20~30%, MgO : 10~17%, CaO: 15~25%, Al 2 O 3: 9~17%, BaO: 6~15%, metal carbonate (CO 2 terms): 4~9%, CaF 2: 2~6%, Ca: 0.2~0.8%, Na 2 O and K 2 1 type of O or two: 4% to 8%, the In addition, a bond flux that includes (CaO + BaO + MgO) / (SiO 2 ): 1.5 to 2.1 is disclosed. This bond flux contains 50 to 73% of a melt type flux, and this melt type flux is in mass% with respect to the entire melt type flux, SiO 2 : 22 to 32%, CaO: 22 to 32%, MgO: 16 to 22%, Al 2 O 3: 16~22%, CaF 2: 1~7%, Na 2 O and K 2 O of one or: containing 1-5%.

特開2007−260696号公報JP 2007-260696 A 特開平7−155986号公報Japanese Patent Laid-Open No. 7-155986

しかしながら、特許文献1に開示された溶接金属は、引張強度が900MPa以上の高強度鋼用の溶接金属として、ワイヤとボンドフラックスの成分組成を規制することにより、優れた溶接作業性及び低温靭性を得ようとするものであるが、特許文献1は、得られた溶接金属のシャルピー衝撃性能が−20℃程度までの低温における靭性を問題にしており、それ以上低温における靭性を向上させることができるものではない。   However, the weld metal disclosed in Patent Document 1 has excellent welding workability and low temperature toughness by regulating the composition of the wire and bond flux as a weld metal for high strength steel having a tensile strength of 900 MPa or more. Although it is going to obtain, patent document 1 makes the Charpy impact performance of the obtained weld metal the toughness in the low temperature to about -20 degreeC, and can improve the toughness in low temperature further. It is not a thing.

また、特許文献2には、−100℃での吸収エネルギ(低温靭性)と溶接金属の酸素量との関係が図示されているものの、フラックス組成と、溶接金属の低温靭性との関係については、何ら示唆されていない。   Moreover, although the relationship between the absorbed energy (low temperature toughness) in -100 degreeC and the oxygen amount of a weld metal is illustrated by patent document 2, about the relationship between a flux composition and the low temperature toughness of a weld metal, Nothing is suggested.

本発明はかかる問題点に鑑みてなされたものであって、フラックス組成と、ワイヤ組成を適切化することにより、0.2%耐力が690MPa以上、引張強さが780MPa以上、−60℃における吸収エネルギが69J以上の優れた低温靭性を有する溶接金属を得ることができるサブマージアーク溶接用ボンドフラックス及びワイヤを提供することを目的とする。   The present invention has been made in view of such problems. By optimizing the flux composition and wire composition, the 0.2% proof stress is 690 MPa or more, the tensile strength is 780 MPa or more, and absorption at −60 ° C. It aims at providing the bond flux and wire for submerged arc welding which can obtain the weld metal which has the low temperature toughness whose energy is 69J or more.

本発明に係るサブマージアーク溶接用ボンドフラックスは、MgO:25乃至35質量%、Al:10乃至20質量%、CaF:12乃至22質量%、SiO:10乃至20質量%、CaO:10乃至15質量%、金属炭酸塩(CO換算):3.0乃至9.0質量%を含有すると共に、金属Ca:0.10乃至0.40質量%、金属Si:0.3乃至1.0質量%、金属Al:0.10乃至0.80質量%、アルカリ金属Na、K、Li:夫々Na、K、Liの酸化物への換算値の合計で2.0乃至5.0質量%を含有し、([Al]+[Si]+[Ca])/[SiO]:0.04乃至0.15を満たす組成を有することを特徴とする。 The bond flux for submerged arc welding according to the present invention is MgO: 25 to 35% by mass, Al 2 O 3 : 10 to 20% by mass, CaF 2 : 12 to 22% by mass, SiO 2 : 10 to 20% by mass, CaO. : 10 to 15% by mass, metal carbonate (CO 2 equivalent): 3.0 to 9.0% by mass, metal Ca: 0.10 to 0.40% by mass, metal Si: 0.3 to 1.0% by mass, metal Al: 0.10 to 0.80% by mass, alkali metal Na, K, Li: 2.0 to 5.0 in total as converted values of Na, K, and Li to oxides, respectively The composition is characterized by containing mass% and satisfying ([Al] + [Si] + [Ca]) / [SiO 2 ]: 0.04 to 0.15.

上記ボンドフラックスを使用するとともに、C:0.09乃至0.15質量%、Mn:1.0乃至3.0質量%、Ni:1.8乃至3.5質量%、Mo:0.4乃至1.2質量%を含有し、N:0.008質量%以下に規制され、[Ni]/([Mn]+[Mo]):0.4乃至1.7を満たし、残部がFe及び不可避的不純物である組成を有するワイヤにより、サブマージアーク溶接することにより、Al:0.005乃至0.020質量%、Si:0.10乃至0.30質量%を含有し、[Al]/[O]:0.25乃至0.55を満たす溶接金属を得ることができる。


While using the said bond flux , C: 0.09 to 0.15 mass%, Mn: 1.0 to 3.0 mass%, Ni: 1.8 to 3.5 mass%, Mo: 0.4 to 1.2% by mass, N: regulated to 0.008% by mass or less, satisfying [Ni] / ([Mn] + [Mo]): 0.4 to 1.7, the balance being Fe and inevitable By submerged arc welding using a wire having a composition that is a typical impurity , Al: 0.005 to 0.020 mass%, Si: 0.10 to 0.30 mass% are contained, and [Al] / [O ]: A weld metal satisfying 0.25 to 0.55 can be obtained.


本発明によれば、フラックスの組成を適切に設定したので、優れた溶接作業性で、低温靭性が優れた溶接金属を得ることができる。   According to the present invention, since the composition of the flux is appropriately set, a weld metal having excellent welding workability and excellent low temperature toughness can be obtained.

また、フラックス組成に加えて、ワイヤ組成を適切に設定すれば、更に、高強度かつ優れた低温靭性の溶接金属を得ることができる。   Further, if the wire composition is appropriately set in addition to the flux composition, a weld metal having high strength and excellent low temperature toughness can be obtained.

このようにして、本発明によれば、0.2%耐力が690MPa以上、引張強さが780MPa以上、−60℃における衝撃吸収エネルギが69J以上の高強度高靭性の溶接金属を得ることができる。   Thus, according to the present invention, a high strength and high toughness weld metal having a 0.2% proof stress of 690 MPa or more, a tensile strength of 780 MPa or more, and an impact absorption energy at −60 ° C. of 69 J or more can be obtained. .

フラックスの([Al]+[Si]+[Ca])/[SiO]:0.04乃至0.15と、低温靭性及び溶接作業性との関係を示すグラフ図である。Flux ([Al] + [Si] + [Ca]) / [SiO 2]: 0.04 to 0.15 is a graph showing the relationship between the low-temperature toughness and weldability. ワイヤの[Ni]/([Mn]+[Mo]):0.4乃至1.7と、低温靭性及び耐高温割れとの関係を示すグラフ図である。It is a graph which shows the relationship between [Ni] / ([Mn] + [Mo]): 0.4 thru | or 1.7 of a wire, low temperature toughness, and hot cracking resistance. 溶接金属の[Al]/[O]:0.25乃至0.55と、低温靭性及び結晶粒径との関係を示すグラフ図である。It is a graph which shows the relationship between [Al] / [O]: 0.25 to 0.55 of a weld metal, low temperature toughness, and crystal grain size.

以下、本発明の実施の形態について添付の図面を参照して具体的に説明する。先ず、本発明のボンドフラックスの組成について説明する。このボンドフラックスの各成分の添加理由及び組成限定理由は以下のとおりである。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. First, the composition of the bond flux of the present invention will be described. The reason for adding each component of the bond flux and the reason for limiting the composition are as follows.

「MgO:25乃至35質量%」
ボンドフラックスにMgOを添加することにより、MgOは、スラグ中の塩基度を高めると共に、脱酸剤として溶接金属中の酸素を抑制する作用を有し、溶接金属の酸素低減に効果があり、スラグの耐火性も増加する。MgOが25質量%未満では、この作用が得られない。また、MgOが35質量%を超えると、スラグの剥離が生じ、ビード外観が悪化する。
“MgO: 25 to 35 mass%”
By adding MgO to the bond flux, MgO increases the basicity in the slag and has the effect of suppressing oxygen in the weld metal as a deoxidizer, and is effective in reducing oxygen in the weld metal. Fire resistance is also increased. If MgO is less than 25% by mass, this effect cannot be obtained. Moreover, when MgO exceeds 35 mass%, peeling of slag will arise and bead appearance will deteriorate.

「Al:10乃至20質量%」
Alはスラグ形成剤としての作用を有し、ビードのスラグ剥離性を確保する効果がある。また、Alはアークの集中性及び安定性を高める作用を有する。しかし、Alが10質量%未満では、スラグの剥離性が悪化し、アークが不安定で、溶接が困難になり、またAlが20質量%を超えると、溶接金属中の酸素を増加させて、靭性を劣化させる。
“Al 2 O 3 : 10 to 20% by mass”
Al 2 O 3 has an effect as a slag forming agent and has an effect of ensuring the slag removability of the beads. Further, Al 2 O 3 has an effect of increasing the concentration and stability of the arc. However, if the Al 2 O 3 content is less than 10% by mass, the slag peelability is deteriorated, the arc is unstable, and welding becomes difficult. If the Al 2 O 3 content exceeds 20% by mass, Increases oxygen and degrades toughness.

「CaF:12乃至22質量%」
CaFは一般的に知られている生成スラグの融点を調整するという作用と共に、溶接金属中の酸素を低減させる効果を有している。しかし、CaFが12質量%未満では、この効果が発揮されず、またCaFが22質量%を超えると、アークが不安定になり、ビード外観が劣化し、また、ビード上にポックマークが発生することがある。
“CaF 2 : 12 to 22% by mass”
CaF 2 has the effect of reducing oxygen in the weld metal, together with the action of adjusting the melting point of the generally known slag. However, when CaF 2 is less than 12% by mass, this effect is not exhibited. When CaF 2 exceeds 22% by mass, the arc becomes unstable, the bead appearance is deteriorated, and a pock mark is formed on the bead. May occur.

「SiO:10乃至20質量%」
SiOはスラグ形成剤としてビード外観及びビード形状を整える作用を有する。しかし、SiOが10質量%未満ではこの効果が発揮されず、またSiOが20質量%を超えると、溶接金属中の酸素を増加させて靭性を劣化させる。
“SiO 2 : 10 to 20% by mass”
SiO 2 has the effect of adjusting the bead appearance and bead shape as a slag forming agent. However, if SiO 2 is less than 10% by mass, this effect is not exhibited. If SiO 2 exceeds 20% by mass, oxygen in the weld metal is increased and the toughness is deteriorated.

「CaO:10乃至15質量%」
CaOは塩基度を高め、溶接金属中の酸素量を低減させる効果を有する。しかし、CaOが10質量%未満では、この効果が発揮されず、またCaOが15質量%を超えると、アーク安定性及びビード外観が劣化する。
“CaO: 10 to 15% by mass”
CaO has the effect of increasing basicity and reducing the amount of oxygen in the weld metal. However, when CaO is less than 10% by mass, this effect is not exhibited, and when CaO exceeds 15% by mass, the arc stability and the bead appearance deteriorate.

「金属炭酸塩(CO換算):3.0乃至9.0質量」
金属炭酸塩は溶接熱によりガス化し、アーク雰囲気中の水蒸気分圧を下げて、溶接金属中の拡散性水素量を低下させるというアークのシールド効果を奏する。しかし、金属炭酸塩が3.0質量%未満では、この効果が発揮されない。また、金属炭酸塩が9.0質量%を超えると、スラグの剥離性が悪化し、場合によってはビード上にポックマークが発生し、作業性が不良となる。一般的に、金属炭酸塩としては、CaCO、及びBaCO等がある。
“Metal carbonate (CO 2 equivalent): 3.0 to 9.0 mass”
Metal carbonate is gasified by welding heat, and has an arc shielding effect of lowering the partial pressure of water vapor in the arc atmosphere and reducing the amount of diffusible hydrogen in the weld metal. However, when the metal carbonate is less than 3.0% by mass, this effect is not exhibited. On the other hand, when the metal carbonate exceeds 9.0% by mass, the slag releasability deteriorates, and in some cases, a pock mark is generated on the bead, resulting in poor workability. In general, examples of the metal carbonate include CaCO 3 and BaCO 3 .

「金属Ca:0.10乃至0.40質量%」
金属Caは溶接金属中の酸素量[O]を減少させ、溶接金属の靭性の向上に有効な成分である。しかし、金属Caが0.10質量%未満では、酸素量[O]の低減効果が認められず、一方、金属Caが0.40質量%を超えると、フラックス製造時に発熱反応を生じ、製造が困難となる。また、金属Caが0.40質量%を超えると、ビードの焼き付きが発生し、ビード外観も劣化する。Caは、例えば、レア・アースCa−Si又はCa−Si等で添加される。
“Metal Ca: 0.10 to 0.40 mass%”
Metal Ca is an effective component for reducing the oxygen content [O] in the weld metal and improving the toughness of the weld metal. However, if the metal Ca is less than 0.10% by mass, the effect of reducing the amount of oxygen [O] is not observed. On the other hand, if the metal Ca exceeds 0.40% by mass, an exothermic reaction occurs during the flux production, and the production is It becomes difficult. Moreover, when metal Ca exceeds 0.40 mass%, bead seizure will generate | occur | produce and a bead external appearance will also deteriorate. Ca is added, for example, as rare earth Ca—Si or Ca—Si.

「金属Si:0.3乃至1.0質量%」
金属Siは溶接金属中の酸素量を抑制する脱酸効果を有する。このSiは、Fe−Si、Fe−Si−Mn合金等の合金として添加されるが、合金中のSiの合計(これを金属Siという)が0.3質量%未満では、上記脱酸効果が発揮されない。また、金属Siが1.0質量%を超えると、脱酸効果が向上せず、溶接金属のビード形状が劣化すると共に、溶接金属の強度が上がり過ぎて、靭性が低下する。
"Metal Si: 0.3 to 1.0 mass%"
Metal Si has a deoxidation effect that suppresses the amount of oxygen in the weld metal. This Si is added as an alloy such as an Fe-Si or Fe-Si-Mn alloy. However, if the total amount of Si in the alloy (this is referred to as metal Si) is less than 0.3% by mass, the deoxidation effect is not achieved. It is not demonstrated. On the other hand, if the metal Si exceeds 1.0 mass%, the deoxidation effect is not improved, the bead shape of the weld metal is deteriorated, the strength of the weld metal is excessively increased, and the toughness is lowered.

「金属Al:0.10乃至0.80質量%」
Alは主に酸化物として溶接金属中に存在し、溶接金属のγ粒径を小さくして、組織を微細化し、靭性を向上させる効果がある。フラックス中の金属Alが0.10質量%未満であると、溶接金属中の介在物はSi−Mn系となるため、溶接金属の組織の微細化による靭性の向上効果が得られず、金属Alが0.80質量%を超えると、溶接金属中にAl等の大型の酸化物が析出して、溶接金属の靭性を低下させる。金属Alは、例えば、Fe−Al、Al−Mg合金等で添加される。
"Metal Al: 0.10 to 0.80 mass%"
Al is mainly present in the weld metal as an oxide, and has the effect of reducing the γ grain size of the weld metal to refine the structure and improve toughness. If the metal Al in the flux is less than 0.10% by mass, inclusions in the weld metal are Si-Mn based, so that the effect of improving toughness due to the refinement of the structure of the weld metal cannot be obtained. There exceeds 0.80 wt%, oxide of large Al 2 O 3 or the like in the weld metal is precipitated to lower the toughness of the weld metal. Metal Al is added by Fe-Al, Al-Mg alloy, etc., for example.

「アルカリ金属Na、K、Li:夫々Na、K、Liの酸化物への換算値の合計で2.0乃至5.0質量%」
アルカリ金属Na、K、Liの夫々酸化物NaO,KO,LiOは、アークを安定させる作用を有する。この酸化物の量の合計が2.0質量%未満では、アーク安定化効果が得られない。また、酸化物の量の合計が5.0質量%を超えると、脱酸効果が向上せず、溶接金属の靭性が劣化すると共に、強度が上がりすぎてしまう。このため、Na、K、Liの酸化物NaO,KO,LiOへの換算値の合計で2.0乃至5.0質量%になるように、金属Na,金属K、金属Liを添加する。
“Alkali metals Na, K, Li: 2.0 to 5.0 mass% in total of converted values of Na, K, Li to oxides”
The oxides Na 2 O, K 2 O, and Li 2 O of alkali metals Na, K, and Li have an action of stabilizing the arc. When the total amount of these oxides is less than 2.0% by mass, the arc stabilizing effect cannot be obtained. On the other hand, if the total amount of oxides exceeds 5.0% by mass, the deoxidation effect is not improved, the toughness of the weld metal is deteriorated, and the strength is excessively increased. Therefore, metal Na, metal K, metal so that the total of converted values of Na, K, Li to oxides Na 2 O, K 2 O, Li 2 O is 2.0 to 5.0 mass%. Li is added.

「([Al]+[Si]+[Ca])/[SiO]:0.04乃至0.15」
図1は横軸にSiOの含有量をとり、縦軸に金属Al,金属Ca,金属Siの合計含有量をとって、低温靭性及び溶接作業性が優れている範囲を、太線で囲んで示すグラフ図である。フラックス中の金属Al、金属Si、金属Caの含有量を夫々[Al]+[Si]+[Ca]とし、SiOの量を[SiO]とすると、図1における線分(1)は、([Al]+[Si]+[Ca])/[SiO]=0.15を表し、線分(2)は([Al]+[Si]+[Ca])/[SiO]=0.04を表す。また、線分(3)は[Al]+[Si]+[Ca]=2.20を表し、線分(4)は[SiO]=20を表す。図1中、黒丸は、ボンドフラックスの実施例及び比較例を示す。線分(3)は金属Al,金属Si,金属Caの上限値の和であり、線分(4)はSiO含有量の上限値である。そして、線分(1)よりも[Al]+[Si]+[Ca]が多い領域では、溶接作業性が劣化し、線分(2)よりも[Al]+[Si]+[Ca]が少ない領域では、低温靭性が劣化する。よって、低温靭性と溶接作業性の双方を確保するためには、([Al]+[Si]+[Ca])/[SiO]の値を0.04乃至0.15とすることが必要である。前述のごとく、フラックス組成を調整することにより、破壊靭性と溶接作業性の双方をある程度向上させることができるが、上述の式([Al]+[Si]+[Ca])/[SiO]の値が0.04乃至0.15の範囲になるように、金属Al等の組成のバランスを図ることにより、低温靭性及び溶接作業性の双方を十分向上させることができる。
“([Al] + [Si] + [Ca]) / [SiO 2 ]: 0.04 to 0.15”
In FIG. 1, the horizontal axis indicates the content of SiO 2 , and the vertical axis indicates the total content of metal Al, metal Ca, and metal Si, and the range where the low temperature toughness and welding workability are excellent is surrounded by a thick line. FIG. Metal Al in the flux, metal Si, the content of the metallic Ca and respectively [Al] + [Si] + [Ca], when the amount of SiO 2 and [SiO 2], the line segment in FIG. 1 (1) is , ([Al] + [Si] + [Ca]) / [SiO 2 ] = 0.15, and the line segment (2) is ([Al] + [Si] + [Ca]) / [SiO 2 ]. = 0.04. The line segment (3) represents [Al] + [Si] + [Ca] = 2.20, and the line segment (4) represents [SiO 2 ] = 20. In FIG. 1, black circles indicate examples of bond flux and comparative examples. Line segment (3) is the sum of the upper limit values of metal Al, metal Si, and metal Ca, and line segment (4) is the upper limit value of the SiO 2 content. And in the area | region where there are more [Al] + [Si] + [Ca] than line segment (1), welding workability | operativity deteriorates and [Al] + [Si] + [Ca] rather than line segment (2). In a region where there is little, low temperature toughness deteriorates. Therefore, in order to ensure both low temperature toughness and welding workability, the value of ([Al] + [Si] + [Ca]) / [SiO 2 ] needs to be 0.04 to 0.15. It is. As described above, by adjusting the flux composition, both fracture toughness and welding workability can be improved to some extent, but the above formula ([Al] + [Si] + [Ca]) / [SiO 2 ] Both the low-temperature toughness and the welding workability can be sufficiently improved by balancing the composition of metal Al or the like so that the value of is in the range of 0.04 to 0.15.

このように、([Al]+[Si]+[Ca])/[SiO]が0.04未満であると、溶接金属中の酸素量が高く、粗大な組織を生成してしまうため、低温靭性が低下する。また、([Al]+[Si]+[Ca])/[SiO]が0.15を超えると、スラグの剥離性及びビード形状等の溶接作業性が劣化し、溶接金属強度も上がり、低温靭性が低下する。なお、フラックスの([Al]+[Si]+[Ca])/[SiO]のより好ましい範囲は0.07乃至0.12である。 Thus, when ([Al] + [Si] + [Ca]) / [SiO 2 ] is less than 0.04, the amount of oxygen in the weld metal is high, and a coarse structure is generated. Low temperature toughness decreases. Moreover, when ([Al] + [Si] + [Ca]) / [SiO 2 ] exceeds 0.15, welding workability such as slag peelability and bead shape deteriorates, and the weld metal strength also increases. Low temperature toughness decreases. A more preferable range of ([Al] + [Si] + [Ca]) / [SiO 2 ] of the flux is 0.07 to 0.12.

次に、上述のサブマージアーク溶接用ボンドフラックスを使用して、サブマージアーク溶接する際に使用するソリッドワイヤ(鋼線)の組成について説明する。   Next, the composition of a solid wire (steel wire) used when submerged arc welding is performed using the above-described bond flux for submerged arc welding will be described.

「C:0.09乃至0.15質量%」
Cは良好な靭性を得るために低くする必要があり、溶接金属で良好な低温靭性を得るためにはCを0.15質量%以下にすることが好ましい。但し、Cが0.09質量%未満では、脱酸不足となり、かえって靭性が劣化する。
“C: 0.09 to 0.15 mass%”
C needs to be lowered in order to obtain good toughness, and in order to obtain good low temperature toughness with a weld metal, C is preferably 0.15% by mass or less. However, if C is less than 0.09% by mass, deoxidation is insufficient and the toughness deteriorates.

「Mn:1.0乃至3.0質量%」
Mnは溶接金属の焼入れ性を確保し、粒内フェライトの変態核を生成する上で必要な元素である。このようなMnの作用効果を得るためには、Mnを1.0質量%以上添加することが好ましい。一方、Mnを3.0質量%を超えて添加すると、溶接金属の焼入れ性が過大となり、靭性が劣化する。
“Mn: 1.0 to 3.0% by mass”
Mn is an element necessary for securing the hardenability of the weld metal and generating a transformation nucleus of intragranular ferrite. In order to obtain such an effect of Mn, it is preferable to add 1.0% by mass or more of Mn. On the other hand, if Mn is added in excess of 3.0% by mass, the hardenability of the weld metal becomes excessive and the toughness deteriorates.

「Ni:1.8乃至3.5質量%」
Niは溶接金属のマトリックスに固溶してフェライトそのものを高靭性化する。このようなNiの作用はNiを1.8質量%以上添加することで得られる。一方、Niが3.5質量%を超えると、P及びSが粒界に析出しやすく、高温割れが生じ易くなる。
“Ni: 1.8 to 3.5 mass%”
Ni dissolves in the matrix of the weld metal to make the ferrite itself tough. Such an action of Ni can be obtained by adding at least 1.8 mass% of Ni. On the other hand, when Ni exceeds 3.5 mass%, P and S are likely to precipitate at the grain boundaries, and high temperature cracks are likely to occur.

「Mo:0.4乃至1.2質量%」
Moは溶接金属の焼入れ性を向上させる作用を有する。Moが0.4質量%未満では、この効果が少なく、またMoが1.2質量%を超えると、溶接金属の焼入れ性が大幅に上がり、かえって靭性が低下する。
“Mo: 0.4 to 1.2 mass%”
Mo has the effect | action which improves the hardenability of a weld metal. If Mo is less than 0.4% by mass, this effect is small, and if Mo exceeds 1.2% by mass, the hardenability of the weld metal is significantly increased and the toughness is reduced.

「N:0.008質量%以下」
Nは靭性を劣化させる元素であるため、Nの量は可及的に低い方がよい。このため、Nの量は0.008質量%以下とすることが好ましい。
“N: 0.008 mass% or less”
Since N is an element that degrades toughness, the amount of N should be as low as possible. For this reason, it is preferable that the quantity of N shall be 0.008 mass% or less.

「[Ni]/([Mn]+[Mo]):0.4乃至1.7」
図2は、横軸にMn及びMoの含有量合計をとり、縦軸にNiの含有量をとって、低温靭性及び耐高温割れ性の双方が優れている領域を太線で囲んで示すグラフ図である。ワイヤ中のNi、Mn、Moの含有量を夫々[Ni]、[Mn]、[Mo]とすると、図2中、線分(5)は[Ni]/([Mn]+[Mo]=1.7を表し、線分(6)は[Ni]/([Mn]+[Mo]=0.4を表し、線分(7)はNi含有量の上限値を表し、線分(8)はNi含有量の下限値を表し、線分(9)はMn及びMoの下限値の合計を表し、線分(10)はMn及びMoの上限値の合計を表す。この図2に示すように、低温靭性と耐高温割れ性の双方を向上させるためには、上記式[Ni]/([Mn]+[Mo])の値が0.4乃至1.7を満足する値になるように、Ni等の含有量のバランスをとることが好ましい。前述のように、ワイヤの各成分の組成を適切に設定することによって、低温靭性及び耐高温割れ性をある程度向上させることができるが、本発明者等は、更に、[Ni]/([Mn]+[Mo])を0.4乃至1.7の範囲にすることにより、低温靭性と耐高温割れ性の双方を更に向上させることができることを見いだした。[Ni]/([Mn]+[Mo])が0.4未満であると、溶接金属の焼入れ性が高く、低温靭性が低下する。また、[Ni]/([Mn]+[Mo])が1.7を超えると、高温割れが生じ易くなる。ワイヤの[Ni]/([Mn]+[Mo])値のより好ましい範囲は、0.7乃至1.3である。
“[Ni] / ([Mn] + [Mo]): 0.4 to 1.7”
FIG. 2 is a graph showing the region where both the low temperature toughness and the high temperature cracking resistance are excellent, surrounded by a thick line, with the total content of Mn and Mo on the horizontal axis and the Ni content on the vertical axis. It is. Assuming that the contents of Ni, Mn, and Mo in the wire are [Ni], [Mn], and [Mo], respectively, in FIG. 2, the line segment (5) is [Ni] / ([Mn] + [Mo] = 1.7, the line segment (6) represents [Ni] / ([Mn] + [Mo] = 0.4, the line segment (7) represents the upper limit of the Ni content, and the line segment (8 ) Represents the lower limit of the Ni content, line (9) represents the sum of the lower limits of Mn and Mo, and line (10) represents the sum of the upper limits of Mn and Mo. This is shown in FIG. Thus, in order to improve both the low temperature toughness and the high temperature cracking resistance, the value of the above formula [Ni] / ([Mn] + [Mo]) becomes a value satisfying 0.4 to 1.7. Thus, it is preferable to balance the content of Ni, etc. As described above, by appropriately setting the composition of each component of the wire, the low temperature toughness and the high temperature cracking resistance are improved. However, the present inventors further improved the low temperature toughness and the high temperature resistance by setting [Ni] / ([Mn] + [Mo]) in the range of 0.4 to 1.7. It has been found that both of the cracking properties can be further improved.If [Ni] / ([Mn] + [Mo]) is less than 0.4, the hardenability of the weld metal is high and the low temperature toughness is lowered. In addition, when [Ni] / ([Mn] + [Mo]) exceeds 1.7, high temperature cracking is likely to occur, and the [Ni] / ([Mn] + [Mo]) value of the wire is more preferable. The range is 0.7 to 1.3.

「残部:Fe及び不可避的不純物」
本発明のソリッドワイヤの残部は、Fe及び不可避的不純物である。
“Remainder: Fe and inevitable impurities”
The balance of the solid wire of the present invention is Fe and inevitable impurities.

前述の組成のボンドフラックスを使用し、上記ソリッドワイヤを使用してサブマージアーク溶接することにより、Al:0.005乃至0.020質量%、Si:0.10乃至0.30質量%を含有し、[Al]/[O]:0.25乃至0.55を満たす組成の溶接金属を得ることが好ましい。これにより、溶接金属の低温靭性を優れたものとすることができる。   By using the above-described bond flux and submerged arc welding using the solid wire, Al: 0.005 to 0.020 mass%, Si: 0.10 to 0.30 mass% is contained. [Al] / [O]: It is preferable to obtain a weld metal having a composition satisfying 0.25 to 0.55. Thereby, the low temperature toughness of a weld metal can be made excellent.

「Al:0.005乃至0.020質量%」
溶接金属中にAlが含有されると、初析フェライトの生成を抑制することができる。溶接金属のAl含有量が0.005質量%未満では、初析フェライトの抑制効果が発揮されず、靭性が劣化する。一方、溶接金属のAlが0.020質量%を超えると、溶接金属の焼入れ性が大きくなり、大型酸化物が生成して、靭性が劣化する。
“Al: 0.005 to 0.020 mass%”
When Al is contained in the weld metal, generation of proeutectoid ferrite can be suppressed. When the Al content of the weld metal is less than 0.005% by mass, the suppressing effect of pro-eutectoid ferrite is not exhibited, and the toughness deteriorates. On the other hand, if the Al content of the weld metal exceeds 0.020% by mass, the hardenability of the weld metal increases, large oxides are generated, and the toughness deteriorates.

「Si:0.10乃至0.30質量%」
溶接金属中のSiは粒内アシキュラーフェライトの変態核を生成して靭性を向上させる。しかし、溶接金属中のSi量が0.10質量%未満では、粒内アシキュラーフェライトの変態核の生成が少なく、靭性が劣化する。一方、Siが0.30質量%を超えると、粗大なラス状ベイナイトが生成することにより、溶接金属の靭性が劣化する。
“Si: 0.10 to 0.30 mass%”
Si in the weld metal generates a transformation nucleus of intragranular acicular ferrite and improves toughness. However, if the amount of Si in the weld metal is less than 0.10% by mass, the generation of transformation nuclei of intragranular acicular ferrite is small and toughness deteriorates. On the other hand, when Si exceeds 0.30 mass%, coarse lath-like bainite is generated and the toughness of the weld metal deteriorates.

「[Al]/[O]:0.25乃至0.55」
溶接金属中のAl及びOの含有量を、夫々[Al]及び[O]とすると、[Al]/[O]が0.25未満では、脱酸不足のため、粗大な初析フェライトが生成することにより、溶接金属の靭性が劣化する。一方、[Al]/[O]が0.55を超えると、粗大なラス状ベイナイトが生成することにより、溶接金属の靭性が劣化する。
“[Al] / [O]: 0.25 to 0.55”
If the contents of Al and O in the weld metal are [Al] and [O], respectively, if [Al] / [O] is less than 0.25, deoxidation is insufficient and coarse proeutectoid ferrite is generated. By doing so, the toughness of the weld metal deteriorates. On the other hand, if [Al] / [O] is more than 0.55, coarse lath bainite is generated, and the toughness of the weld metal deteriorates.

図3は、横軸に[Al]/[O]をとり、縦軸に−60℃における衝撃吸収エネルギ及び溶接金属の高温における結晶粒径をとって、[Al]/[O]と低温靭性との関係を示すグラフ図である。この図3に示すように、[Al]/[O]が0.25乃至0.55の場合に、−60℃における衝撃吸収エネルギが69J以上となり、優れた低温靭性が得られる。   FIG. 3 shows [Al] / [O] and low temperature toughness with [Al] / [O] on the horizontal axis and the impact absorption energy at −60 ° C. and the crystal grain size of the weld metal at high temperatures on the vertical axis. It is a graph which shows the relationship. As shown in FIG. 3, when [Al] / [O] is 0.25 to 0.55, the impact absorption energy at −60 ° C. is 69 J or more, and excellent low temperature toughness is obtained.

次に、本発明の実施例及び比較例の試験結果に基づいて、本発明の効果について説明する。下記表1に示すW1乃至W6の6種類の組成のソリッドワイヤを作製した。下記表1中、ワイヤW1乃至W3が本発明の請求項2を満たす実施例、ワイヤW4乃至W6が請求項2から外れる比較例である。ワイヤ径は全てのワイヤにおいて、4.0mmである。   Next, the effects of the present invention will be described based on the test results of Examples and Comparative Examples of the present invention. Solid wires having six types of compositions W1 to W6 shown in Table 1 below were produced. In Table 1 below, the wires W1 to W3 are examples that satisfy claim 2 of the present invention, and the wires W4 to W6 are comparative examples that deviate from claim 2. The wire diameter is 4.0 mm for all wires.

Figure 0005726017
Figure 0005726017

また、下記表2−1,表2−2は、本発明の請求項1における実施例のフラックスF1乃至F5と、請求項1における比較例のフラックスF6乃至F15の組成を示す。これらのボンドフラックスは水ガラスを固着材として原料粉を造粒した後、500℃で焼成し、10乃至48メッシュの粒度に整粒したものである。   Tables 2-1 and 2-2 below show the compositions of the fluxes F1 to F5 of the example in claim 1 of the present invention and the fluxes F6 to F15 of the comparative example of claim 1. These bond fluxes are obtained by granulating raw material powder using water glass as a fixing material, firing at 500 ° C., and adjusting the particle size to 10 to 48 mesh.

Figure 0005726017
Figure 0005726017

Figure 0005726017
Figure 0005726017

下記表3は母材の鋼板組成を示す。この母材は板厚が25mmである。また、下記表4は、全溶着金属溶接試験の溶接条件を示す。そして、下記表5はこの溶接試験により得られた溶接金属の試験方法を示す。   Table 3 below shows the steel plate composition of the base material. This base material has a plate thickness of 25 mm. Table 4 below shows the welding conditions of the all-welded metal welding test. Table 5 below shows a test method for weld metal obtained by this welding test.

Figure 0005726017
Figure 0005726017

Figure 0005726017
Figure 0005726017

Figure 0005726017
Figure 0005726017

そして、表1に示すワイヤと表2に示すフラックスの組合せにより、表3に示す組成の鋼板を使用し、表4に示す溶接条件によって溶接した溶接金属の機械的性質、溶接作業性及び化学成分を、表5に示す試験条件で求めた。また、耐高温割れ性能を試験するために、下記表6に示す溶接条件で、溶接した。使用したフラックス及びワイヤは、表1及び表2に示すものであり、溶接母材も表3に示すものである。得られた溶接金属の耐高温割れ性を拘束突合せ溶接割れ試験により求めた。割れ率は破断したビードのビード長に対する割れ長さの比率(%)とし、10%以下を合格(クレータ割れを含む)とした。   And by the combination of the wire shown in Table 1 and the flux shown in Table 2, the steel plate having the composition shown in Table 3 was used, and the weld metal welded according to the welding conditions shown in Table 4 were mechanical properties, welding workability and chemical composition Was obtained under the test conditions shown in Table 5. Further, in order to test the hot crack resistance, welding was performed under the welding conditions shown in Table 6 below. The flux and the wire used are shown in Tables 1 and 2, and the weld base material is also shown in Table 3. Hot crack resistance of the obtained weld metal was determined by a restrained butt weld crack test. The cracking rate was the ratio (%) of the crack length to the bead length of the broken bead, and 10% or less was accepted (including crater cracking).

Figure 0005726017
Figure 0005726017

下記表7は得られた溶接金属の組成を示す。また、下記8は、得られた溶接金属の機械的性質を示し、下記表9は同じく溶接金属の溶接作業性を示す。機械的性質においては、降伏強度(0.2%耐力)が690MPa以上、引張強さが780MPa以上及び−60℃吸収エネルギの平均値が69J以上を合格とした。また、溶接作業性欄の◎は優、○は良好、×は不良を示す。   Table 7 below shows the composition of the obtained weld metal. The following 8 shows the mechanical properties of the obtained weld metal, and Table 9 below shows the welding workability of the weld metal. In mechanical properties, a yield strength (0.2% yield strength) of 690 MPa or higher, a tensile strength of 780 MPa or higher, and an average value of absorbed energy of −60 ° C. of 69 J or higher was determined to be acceptable. In the welding workability column, ◎ indicates excellent, ○ indicates good, and X indicates poor.

Figure 0005726017
Figure 0005726017

Figure 0005726017
Figure 0005726017

Figure 0005726017
Figure 0005726017

表8及び表9にみるように、本発明の実施例T1乃至T5は、フラックス組成が本発明の範囲を満たし、式([Al]+[Si]+[Ca])/[SiO]も本発明の範囲を満たしており、更に、ワイヤ組成が本発明の請求項2の範囲を満たし、式[Ni]/([Mn]+[Mo])も本発明の請求項2の範囲を満たすため、−60℃における低温靭性及び溶接作業性が優れた溶接金属を得ることができた。また、耐高温割れ性も優れていた。 As seen in Tables 8 and 9, in Examples T1 to T5 of the present invention, the flux composition satisfies the scope of the present invention, and the formula ([Al] + [Si] + [Ca]) / [SiO 2 ] is also obtained. The scope of the present invention is satisfied, the wire composition satisfies the scope of claim 2 of the present invention, and the formula [Ni] / ([Mn] + [Mo]) also satisfies the scope of claim 2 of the present invention. Therefore, a weld metal having excellent low temperature toughness and welding workability at −60 ° C. could be obtained. Moreover, the hot crack resistance was also excellent.

実施例T6及びT7は、ワイヤ組成が本発明の請求項2を満たさないため、低温靭性が実施例T1乃至T5よりも若干低いものとなった。しかし、低温靭性及び溶接作業性のいずれも、本発明の目標値よりも優れていた。   In Examples T6 and T7, since the wire composition does not satisfy Claim 2 of the present invention, the low-temperature toughness is slightly lower than those in Examples T1 to T5. However, both low temperature toughness and welding workability were superior to the target values of the present invention.

比較例T8はフラックス組成が本発明の範囲から外れ、比較例T9乃至T18はフラックス組成及びワイヤ組成が本発明の範囲を外れているため、低温靭性又は強度若しくは溶接作業性が低いものであった。例えば、フラックスの([Al]+[Si]+[Ca])/[SiO]が0.15を超える比較例T8は、ビード外観及びビードの焼き付き等の溶接作業性が劣化した。また、フラックスの([Al]+[Si]+[Ca])/[SiO]が0.15を超える比較例T9は、スラグ剥離性、ビード外観及びビードの焼き付き等の溶接作業性が劣化した。また、比較例T10はワイヤの[Ni]/([Mn]+[Mo])が低いため、低温靭性が低い。比較例T11は、フラックスの([Al]+[Si]+[Ca])/[SiO]が低いと共に、ワイヤの[Ni]/([Mn]+[Mo])が低いため、低温靭性が低い。フラックスの([Al]+[Si]+[Ca])/[SiO]が低い比較例T14,T17は低温靭性が低い。比較例T12,T13,T14はワイヤの[Ni]/([Mn]+[Mo])が高いため、高温割れが発生した。比較例T15は、フラックスのCaFが高く、また金属Caを含有しないため、ビード外観が劣化すると共にポックマークが発生し、更に、靭性が低いものであった。比較例T16は、MgOが多く、金属炭酸塩が少ないため、溶接作業性(スラグ剥離及びビード外観)が低いと共に、溶接金属の拡散性水素量が多いものであった。 In Comparative Example T8, the flux composition was out of the scope of the present invention, and in Comparative Examples T9 to T18, the flux composition and the wire composition were out of the scope of the present invention, so the low temperature toughness or strength or welding workability was low. . For example, in Comparative Example T8 where the flux ([Al] + [Si] + [Ca]) / [SiO 2 ] exceeds 0.15, welding workability such as bead appearance and bead seizure deteriorated. Further, in Comparative Example T9 in which the flux ([Al] + [Si] + [Ca]) / [SiO 2 ] exceeds 0.15, welding workability such as slag removability, bead appearance, and bead seizure is deteriorated. did. In addition, Comparative Example T10 has low [Ni] / ([Mn] + [Mo]) of the wire and thus low temperature toughness. Since Comparative Example T11 has a low flux ([Al] + [Si] + [Ca]) / [SiO 2 ] and a low [Ni] / ([Mn] + [Mo]) of the wire, low temperature toughness Is low. Comparative examples T14 and T17 having a low flux ([Al] + [Si] + [Ca]) / [SiO 2 ] have low low-temperature toughness. In Comparative Examples T12, T13, and T14, since the wire [Ni] / ([Mn] + [Mo]) was high, hot cracking occurred. Comparative Example T15 had a high CaF 2 flux and contained no metallic Ca. Therefore, the bead appearance deteriorated, a pock mark was generated, and the toughness was low. In Comparative Example T16, the amount of MgO was small and the amount of metal carbonate was small, so that the welding workability (slag peeling and bead appearance) was low and the amount of diffusible hydrogen in the weld metal was large.

Claims (2)

MgO:25乃至35質量%、Al:10乃至20質量%、CaF:12乃至22質量%、SiO:10乃至20質量%、CaO:10乃至15質量%、金属炭酸塩(CO換算):3.0乃至9.0質量%を含有すると共に、金属Ca:0.10乃至0.40質量%、金属Si:0.3乃至1.0質量%、金属Al:0.10乃至0.80質量%、アルカリ金属Na、K、Li:夫々Na、K、Liの酸化物への換算値の合計で2.0乃至5.0質量%を含有し、([Al]+[Si]+[Ca])/[SiO]:0.04乃至0.15を満たす組成を有することを特徴とするサブマージアーク溶接用ボンドフラックス。 MgO: 25 to 35 wt%, Al 2 O 3: 10 to 20 wt%, CaF 2: 12 to 22 wt%, SiO 2: 10 to 20 wt%, CaO: 10 to 15 wt%, metal carbonate (CO 2 conversion): 3.0 to 9.0% by mass, metal Ca: 0.10 to 0.40% by mass, metal Si: 0.3 to 1.0% by mass, metal Al: 0.10 To 0.80% by mass, alkali metal Na, K, Li: 2.0 to 5.0% by mass in total of converted values of oxides of Na, K, and Li, respectively ([Al] + [ Si] + [Ca]) / [SiO 2 ]: A bond flux for submerged arc welding having a composition satisfying 0.04 to 0.15. 前記請求項1に記載のボンドフラックスを使用するとともに、C:0.09乃至0.15質量%、Mn:1.0乃至3.0質量%、Ni:1.8乃至3.5質量%、Mo:0.4乃至1.2質量%を含有し、N:0.008質量%以下に規制され、[Ni]/([Mn]+[Mo]):0.4乃至1.7を満たし、残部がFe及び不可避的不純物である組成を有するサブマージアーク溶接用ワイヤを使用してサブマージアーク溶接することにより、Al:0.005乃至0.020質量%、Si:0.10乃至0.30質量%を含有し、[Al]/[O]:0.25乃至0.55を満たす組成の溶接金属を得ることを特徴とするサブマージアーク溶接方法。 While using the bond flux according to claim 1 , C: 0.09 to 0.15 mass%, Mn: 1.0 to 3.0 mass%, Ni: 1.8 to 3.5 mass%, Mo: 0.4 to 1.2% by mass, N: 0.008% by mass or less, and [Ni] / ([Mn] + [Mo]): 0.4 to 1.7 are satisfied By submerged arc welding using a submerged arc welding wire having a composition in which the balance is Fe and inevitable impurities , Al: 0.005 to 0.020 mass%, Si: 0.10 to 0.30 A submerged arc welding method comprising obtaining a weld metal having a composition satisfying [Al] / [O]: 0.25 to 0.55, and containing mass%.
JP2011178650A 2011-08-17 2011-08-17 Bond flux and welding method for submerged arc welding Active JP5726017B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011178650A JP5726017B2 (en) 2011-08-17 2011-08-17 Bond flux and welding method for submerged arc welding
PCT/JP2012/069451 WO2013024698A1 (en) 2011-08-17 2012-07-31 Bonded flux and wire for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178650A JP5726017B2 (en) 2011-08-17 2011-08-17 Bond flux and welding method for submerged arc welding

Publications (2)

Publication Number Publication Date
JP2013039604A JP2013039604A (en) 2013-02-28
JP5726017B2 true JP5726017B2 (en) 2015-05-27

Family

ID=47715020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178650A Active JP5726017B2 (en) 2011-08-17 2011-08-17 Bond flux and welding method for submerged arc welding

Country Status (2)

Country Link
JP (1) JP5726017B2 (en)
WO (1) WO2013024698A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205795A (en) * 2016-05-19 2017-11-24 株式会社神戸製鋼所 Submerged arc welding flux
JP2022099821A (en) * 2020-12-23 2022-07-05 株式会社神戸製鋼所 Submerged arc welding flux
WO2024057534A1 (en) * 2022-09-16 2024-03-21 日本製鉄株式会社 Baked flux, method for manufacturing submerged-arc-welded joint, and submerged-arc-welded joint

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147990A (en) * 1984-12-21 1986-07-05 Kobe Steel Ltd Submerged arc welding wire for high tension steel
JPS6313694A (en) * 1986-07-02 1988-01-20 Kobe Steel Ltd Baked flux for submerged arc welding
JPH05337683A (en) * 1992-06-05 1993-12-21 Nippon Steel Corp Carbon dioxide shielded arc welding wire
JP3163838B2 (en) * 1993-05-17 2001-05-08 株式会社神戸製鋼所 Bond flux for submerged arc welding
JPH07171695A (en) * 1993-11-01 1995-07-11 Nippon Steel Corp Method for submerged arc welding of 960mpa high tensile steel
JP2711071B2 (en) * 1994-03-22 1998-02-10 株式会社神戸製鋼所 Bond flux for submerged arc welding
JPH10113791A (en) * 1996-10-09 1998-05-06 Nippon Steel Corp Bond flux and wire for submerged arc welding
JP3549502B2 (en) * 2001-07-24 2004-08-04 株式会社神戸製鋼所 Bond flux for submerged arc welding and method for producing the same

Also Published As

Publication number Publication date
JP2013039604A (en) 2013-02-28
WO2013024698A1 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5792050B2 (en) Submerged arc welding method for low temperature steel
JP6338593B2 (en) Welding wire for manufacturing ultra-high strength flux cored arc welded joints with excellent impact toughness
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
JP5415998B2 (en) Flux-cored wire for gas shielded arc welding
JP2009018316A (en) Flux-cored welding wire for gas shielded arc welding of fire-resistant steel
JP5627493B2 (en) Submerged arc welding method
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
CN104400250A (en) Low-temperature steel flux-cored wire
JP2016052667A (en) Flux-cored wire for gas shield arc welding
JP5744816B2 (en) Bond flux for submerged arc welding
CN104923989A (en) Flux cores for high heat-input electro-gas welding gas protection welding wires and gas protection welding wires
CN107949455B (en) Welding wire for submerged arc welding
JP2011245519A (en) Weld metal excellent in hot crack resistance
KR101464853B1 (en) Bond flux, wire, welding metal and welding method for submerged arc welding
JP5726017B2 (en) Bond flux and welding method for submerged arc welding
JP4495060B2 (en) Welded joints for refractory structures with excellent high-temperature strength and toughness
JPH06155079A (en) Flux cored wire for gas shielded arc welding
JP6185871B2 (en) Solid wire for submerged arc welding
JPH11291086A (en) Submerged arc welding method for high cr ferritic heat resistant steel
JP2011224612A (en) Electroslag welded joint with excellent toughness
JP2010046711A (en) Melt flux for submerged-arc welding, and method for submerged-arc welding of steel for low temperature service
JP2007054878A (en) Coated arc welding rod for steel for fire-resisting construction
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP2011000626A (en) Weld metal
KR101647148B1 (en) Flux cored arc weld wire for high tensile steel and weld metal joint using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5726017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150