JP2009018316A - Flux-cored welding wire for gas shielded arc welding of fire-resistant steel - Google Patents

Flux-cored welding wire for gas shielded arc welding of fire-resistant steel Download PDF

Info

Publication number
JP2009018316A
JP2009018316A JP2007180941A JP2007180941A JP2009018316A JP 2009018316 A JP2009018316 A JP 2009018316A JP 2007180941 A JP2007180941 A JP 2007180941A JP 2007180941 A JP2007180941 A JP 2007180941A JP 2009018316 A JP2009018316 A JP 2009018316A
Authority
JP
Japan
Prior art keywords
wire
flux
steel
less
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007180941A
Other languages
Japanese (ja)
Other versions
JP5194593B2 (en
Inventor
Toshinaga Hasegawa
俊永 長谷川
Shigeru Okita
茂 大北
Ryuichi Shimura
竜一 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007180941A priority Critical patent/JP5194593B2/en
Publication of JP2009018316A publication Critical patent/JP2009018316A/en
Application granted granted Critical
Publication of JP5194593B2 publication Critical patent/JP5194593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-cored welding wire for gas shielded arc welding which is used for welding a steel for fireproof construction which is excellent in fire resistance at 700 to 800°C. <P>SOLUTION: The welding wire includes, by mass%, 0.002 to 0.2% C, 0.005 to 1% Si, 0.1 to 2.5% Mn, and predetermined amounts of P, S, Al, N with respect to the whole wire. The wire further includes predetermined amounts of one or more elements of Mo, W, Nb, V, Ta, Ti, wherein a Nb equivalent is 0.05 to 0.2%, and includes remainder being Fe and inevitable impurities. A steel outer skin includes 0.002 to 0.2% C, 0.005 to 1% Si, 0.1 to 2.5% Mn, and predetermined amounts of P, S, Al, N, Mo, W, Nb, V, Ta, Ti as the whole outer skin. Filler flux includes predetermined amounts of CaF<SB>2</SB>, TiO<SB>2</SB>, SiO<SB>2</SB>, ZrO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>, which are 0.5 to 20% in total, as the whole wire, and remainder being metal powder and inevitable impurities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、建築や橋梁等の各種構造物に用いる耐火性に優れた鋼(以下、耐火鋼、または、耐火構造用鋼ともいう。)のガスシールドアーク溶接に用いるフラックス入り溶接ワイヤに関するものであり、特に、溶接金属の700〜800℃での耐力、伸び(耐高温脆化特性)、低温靭性に優れた耐火構造物を得ることのできる、Ar+CO2溶接やCO2溶接に供される、耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤに関するものである。なお、本発明が対象とする、ガスシールドアーク溶接は、作業性が良好で、かつ全姿勢溶接も可能なことから、汎用性の高いものである。 The present invention relates to a flux-cored welding wire used for gas shielded arc welding of steel having excellent fire resistance (hereinafter also referred to as fireproof steel or fireproof structural steel) used for various structures such as buildings and bridges. In particular, it can be used for Ar + CO 2 welding and CO 2 welding, which can obtain a refractory structure excellent in yield strength, elongation (high temperature embrittlement resistance), low temperature toughness of weld metal at 700 to 800 ° C., The present invention relates to a flux-cored welding wire for gas shielded arc welding of refractory steel. The gas shielded arc welding targeted by the present invention is highly versatile because it has good workability and can be welded in all positions.

例えば、建築物には火災時の安全性を確保するために、火災時における鋼材表面温度が350℃以下で使用するように耐火基準が定められており、ロックウールなどの耐火被覆が必要となる。しかし、耐火被覆施工費用は高額であり、工程も余分にかかること、さらには景観上からも、耐火被覆を完全に省略したいという要求は非常に高まっている。   For example, in order to ensure safety in the event of a fire, fire resistance standards have been established so that the steel surface temperature during a fire is 350 ° C or lower, and fireproof coating such as rock wool is required. . However, there is a growing demand for fireproof coating to be completely omitted from the viewpoint that the construction cost of fireproof coating is expensive, extra steps are required, and the landscape is also required.

昭和57年から61年にかけて、旧建設省の総合プロジェクトとして「建築物の防火設計法の開発」が実施され、その成果を受けて、旧建築基準法第38条による建設大臣認定により性能型の設計が可能となった。その結果、鋼材の高温強度と建物に実際に加わっている荷重によってどの程度の耐火被覆が必要かを決定できるようになり、場合によっては無耐火被覆で鋼材を使用することも可能になった。その後、平成5年から9年にかけて、再度、旧建設省の総合プロジェクトとして「防・耐火性能評価技術の開発」が実施され(非特許文献1参照。)、その成果を受けて、平成10年に公布され平成12年に施行された改正建築基準法で、普通鋼を用いた部分にも耐火設計が利用できるようになった。しかし、立体駐車場などへ適用するには高温強度が不足するため、無被覆での普通鋼の使用は、コンクリート充填鋼管柱(CFT(Concrete Filled Steel Tube)柱)を除き限定的なものに留まっている。   From 1982 to 1986, the “Development of Fire Prevention Design Law for Buildings” was implemented as a comprehensive project of the former Ministry of Construction. Based on the results, the performance type was approved by the Minister of Construction under Article 38 of the former Building Standard Law. Design became possible. As a result, it has become possible to determine how much fireproof coating is necessary depending on the high-temperature strength of the steel and the load actually applied to the building, and in some cases, it has become possible to use steel with fireproof coating. After that, from 1993 to 1997, “Development of anti-fire and fire resistance evaluation technology” was carried out again as a comprehensive project of the former Ministry of Construction (see Non-Patent Document 1). The revised Building Standard Law, which was promulgated in 2000 and entered into force in 2000, has made it possible to use fire-resistant design for parts using ordinary steel. However, since high-temperature strength is insufficient for application to multistory parking lots, etc., the use of uncoated plain steel is limited except for concrete-filled steel tube columns (CFT (Concrete Filled Steel Tube) columns). ing.

必要な耐火性能は、火災に対して常時荷重を支持する柱、梁等の部材が崩壊しないことである。火災時に鋼部材が加熱されると、部材温度が上昇して降伏強度が低下する。耐火設計においては、部材へ流入する熱量(以下、熱入力ともいう。)をもとに鋼材温度を算定し、必要な高温強度を確保できるように鋼素材や部材断面の選定を行うことになる。鋼材に耐火被覆がなければ、鋼材は火災加熱を直接受けるので大幅な強度低下は免れないことから、通常は、認定された耐火被覆(吹付けロックウール、ケイ酸カルシウム板など)を施して、鋼材への熱入力を減じてやる処置を採る。しかし、高温強度に優れた耐火鋼を使用すると、可燃物が少なく火災が比較的弱い立体駐車場や駅ビル、学校などでの無耐火被覆の可能性が広がると考えられる。   The necessary fire resistance is that members such as pillars and beams that always support the load against a fire do not collapse. When a steel member is heated during a fire, the member temperature rises and the yield strength decreases. In fireproof design, the steel material temperature is calculated based on the amount of heat flowing into the member (hereinafter also referred to as heat input), and the steel material and member cross-section are selected to ensure the necessary high-temperature strength. . If steel does not have a fireproof coating, the steel is directly subjected to fire heating, so a significant reduction in strength is inevitable, so usually a certified fireproof coating (sprayed rock wool, calcium silicate plate, etc.) is applied, Take measures to reduce the heat input to the steel. However, the use of fire-resistant steel with excellent high-temperature strength is considered to increase the possibility of fire-resistant coating in multi-story parking lots, station buildings, schools, etc. with less combustibles and relatively less fire.

こうした状況から、短時間の高温強度を高めたいわゆる耐火鋼が多く開発された。最初は、600℃での高温降伏強度が常温時の2/3以上となる鋼材、すなわち600℃耐火鋼が開発され、直近においては、700℃あるいはさらに800℃での高温降伏強度を保証する700℃耐火鋼、800℃耐火鋼に関する技術も開示されつつある。   Under these circumstances, many so-called refractory steels with increased high-temperature strength for a short time have been developed. Initially, a steel material having a high-temperature yield strength at 600 ° C. of 2/3 or more at normal temperature, ie, a 600 ° C. refractory steel, was recently developed, and most recently 700 ° C. or even 800 ° C. guarantees high-temperature yield strength. Techniques relating to ℃ refractory steel and 800 ℃ refractory steel are being disclosed.

耐火鋼を用いた構造物においても、溶接構造が主であり、各々の耐火鋼部材の耐火強度に応じて溶接金属においても同等以上の特性を有する溶接継手が必要であり、そのための溶接材料、溶接方法が必要となる。   Also in the structure using refractory steel, the weld structure is mainly, and according to the fire resistance strength of each refractory steel member, it is necessary to have a welded joint having the same or better characteristics in the weld metal. A welding method is required.

例えば、特許文献1では、800℃までの高温耐火構造用鋼に適用するサブマージアーク溶接方法が提案されている。また、特許文献2、特許文献3ではガスシールドアーク溶接用の700〜800℃耐火鋼用の溶接ワイヤが開示されている。   For example, Patent Document 1 proposes a submerged arc welding method applied to high-temperature refractory structural steel up to 800 ° C. Patent Documents 2 and 3 disclose a welding wire for 700 to 800 ° C. refractory steel for gas shielded arc welding.

特開2003−311477号公報Japanese Patent Laid-Open No. 2003-311477 特開2005−305460号公報JP 2005-305460 A 特開2006−289405号公報JP 2006-289405 A 建設省建築研究所、(財)日本建築センター:建設省総合技術開発プロジェクト「防・耐火性能評価技術の開発」報告書、平成10年3月Ministry of Construction Architectural Institute, Japan Building Center: Ministry of Construction Comprehensive Technology Development Project “Development of Technology to Evaluate Prevention and Fireproof Performance”, March 1998

しかしながら、特許文献1に記載の発明は、700〜800℃耐火鋼用という点では本発明と同じであるが、溶接方法の全く異なるサブマージアーク溶接に関わるものである。サブマージアーク溶接では、フラックスを予め散布する必要性等から、一般的には下向き溶接専用となり、特に全姿勢のガスシールアーク溶接の代替手段とはならない。   However, the invention described in Patent Document 1 is the same as the present invention in terms of 700 to 800 ° C. refractory steel, but relates to submerged arc welding with a completely different welding method. Submerged arc welding is generally dedicated to downward welding because of the need to spread the flux in advance, and is not an alternative to gas seal arc welding in all positions.

また、特許文献2、特許文献3に示されている溶接ワイヤは、実質的に鋼製中実ワイヤである、いわゆるソリッドワイヤに関するものであり、本発明が対象とするフラックス入りワイヤに関するものではない。   Moreover, the welding wire shown by patent document 2 and patent document 3 is related to what is called a solid wire which is a steel solid wire substantially, and is not related to the flux cored wire which this invention makes object. .

ところで、ガスシールドアーク溶接用としては、鋼製外皮の中に成分原料や脱酸剤を充填したフラックス入りワイヤも使用される場合が多い。フラックス入りワイヤは、ワイヤの成分調整がソリッドワイヤに比べて容易であるため、製造の容易さの観点からは好ましく、また、作業性が良好でビード形状も好ましいため、ソリッドワイヤとは別にフラックス入りワイヤが望まれる。一方で、フラックス入りワイヤは、充填剤の選択によって、溶接ワイヤからの溶接金属への歩留まりが変化したり、酸素(O)含有量が高くなったりするなど、特有の問題があり、ソリッドワイヤとは全く異なった技術を必要とする。そのため、ソリッドワイヤの知見がそのままフラックス入りワイヤに適用できる訳ではない。このように、現在までのところ、700〜800℃用で溶接金属の高温強度と靭性が良好な耐火構造用鋼用のフラックス入りワイヤは提案されておらず、その開発が望まれている。   By the way, for gas shielded arc welding, a flux-cored wire in which a component raw material or a deoxidizer is filled in a steel outer shell is often used. Flux-cored wire is preferable from the viewpoint of ease of manufacture because the adjustment of wire components is easier than solid wire, and also has good workability and preferable bead shape. A wire is desired. On the other hand, the flux-cored wire has its own problems such as the yield from the welding wire to the weld metal is changed and the oxygen (O) content is high depending on the selection of the filler. Needs a completely different technique. For this reason, the knowledge of solid wires cannot be directly applied to flux-cored wires. Thus, to date, no flux-cored wire has been proposed for fire-resistant structural steels for high temperature strength and toughness of weld metal for 700 to 800 ° C., and its development is desired.

700〜800℃用耐火構造用鋼用の溶接ワイヤおよび溶接材料では、溶接金属の耐火特性、すなわち、700〜800℃における高温強度を一定以上確保するために、いずれも高温強度を発現する元素、代表的にはMo、Nb、V等の析出強化元素を溶接金属中に比較的多量に含有させる必要がある。このような高温強度発現元素は、室温でも当然ながら固溶強化、析出強化に寄与し、その分、靭性を大きく劣化させるため、700〜800℃用耐火構造用鋼用の溶接ワイヤおよび溶接材料においては、靭性を確保することが困難であるという問題がある。特に、フラックス入りワイヤの場合、充填剤中の不純物がソリッドワイヤに比べて多く、溶接ワイヤ全体としての酸素(O)量も高くなるため、他の溶接材料、溶接ワイヤに比べて高温強度と靭性との両立が一層難しい。   In welding wires and welding materials for 700-800 ° C. refractory structural steel, in order to ensure the fire resistance characteristics of the weld metal, that is, the high temperature strength at 700-800 ° C. above a certain level, an element that exhibits high temperature strength, Typically, it is necessary to contain a relatively large amount of precipitation strengthening elements such as Mo, Nb, and V in the weld metal. Such a high-temperature strength-expressing element naturally contributes to solid solution strengthening and precipitation strengthening even at room temperature, and greatly deteriorates toughness accordingly. Therefore, in welding wires and welding materials for 700 to 800 ° C. refractory structural steels. Has a problem that it is difficult to ensure toughness. In particular, in the case of flux-cored wires, there are more impurities in the filler than in solid wires, and the amount of oxygen (O) in the entire welding wire is also high, so high-temperature strength and toughness compared to other welding materials and welding wires. Is more difficult to achieve.

そこで、本発明は、上記の問題点を有利に解決して、高温強度が母材と同等以上であり、同時に靭性も良好な溶接金属を得ることが可能であり、700〜800℃における耐火性に優れた耐火構造用鋼の溶接に使用することができる、耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤを提供することを目的とするものである。より具体的な溶接金属の目標としては、700℃における0.2%耐力が約220MPa以上、かつ、800℃における0.2%耐力が70MPa以上で、さらに0℃における2mmVノッチシャルピー衝撃試験の吸収エネルギーが27J以上を目標とする。   Therefore, the present invention advantageously solves the above-mentioned problems, and can obtain a weld metal having high-temperature strength equivalent to or higher than that of the base material and at the same time having good toughness, and has fire resistance at 700 to 800 ° C. An object of the present invention is to provide a flux-cored welding wire for gas shielded arc welding of refractory steel, which can be used for welding of refractory structural steel excellent in the above. More specific weld metal targets include 0.2% proof stress at 700 ° C. of about 220 MPa or higher, 0.2% proof stress at 800 ° C. of 70 MPa or higher, and absorption of a 2 mm V notch Charpy impact test at 0 ° C. Target energy is 27J or more.

本発明は、上記課題を解決するものであって、その発明の要旨は以下の通りである。
(1) 鋼製外皮内にフラックスを充填してなる耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤにおいて、
溶接ワイヤ全体として、質量%で、C:0.002〜0.2%、Si:0.005〜1%(充填フラックス中のSiO2を除く。)、Mn:0.1〜2.5%、P:0.02%以下、S:0.01%以下、Al:0.001〜0.2%(充填フラックス中のAl23を除く。)、N:0.001〜0.015%を含有し、さらに、Mo:0.01〜2%、W:0.01〜2%、Nb:0.005〜0.1%、V:0.005〜0.5%、Ta:0.005〜0.5%、Ti:0.005〜0.5%(充填フラックス中のTiO2を除く。)の1種または2種以上を含有し、さらに、下記(1)式で示されるNb当量(Nbeq.)が0.05〜0.2%であり、残部がFeおよび不可避不純物からなる成分組成を有し、
かつ、前記鋼製外皮は、外皮全質量に対する質量%で、C:0.002〜0.2%、Si:0.005〜1%、Mn:0.1〜2.5%、P:0.02%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.001〜0.015%、Mo:2%以下(0%を含む。)、W:2%以下(0%を含む。)、Nb:0.1%以下(0%を含む。)、V:0.5%以下(0%を含む。)、Ta:0.5%以下(0%を含む。)、Ti:0.2%以下(0%を含む。)を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、
前記充填フラックスは、ワイヤ全質量に対する質量%で、CaF2:5%以下(0%を含む。)、TiO2:15%以下(0%を含む。)、SiO2:2%以下(0%を含む。)、ZrO2:2%以下(0%を含む。)、Al23:2%以下(0%を含む。)を含有し、さらに、上記、CaF2、TiO2、SiO2、ZrO2、Al23の含有量の合計が、0.5〜20%であり、残部が金属粉および不可避不純物からなる成分組成を有することを特徴とする、耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤ。
Nbeq.=Nb%+V%/5+Mo%/10+W%/10+Ta%/5
+Ti%/5 ・・・・・・・・・・・・・・(1)
ただし、Nb%、Mo%、W%、Ta%、Ti%は、それぞれ、溶接ワイヤ中に含有する各成分の質量%を示す。
(2) さらに、ワイヤ全体として、質量%で、Cr:0.01〜3%、Ni:0.01〜3%、Cu:0.01〜1.5%、Co:0.01〜6%、B:0.0005〜0.015%の1種または2種以上を、鋼製外皮と充填フラックスの一方または両方に含有することを特徴とする、上記(1)に記載の耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤ。
(3) さらに、ワイヤ全体として、質量%で、Ca:0.0002〜0.1%(充填フラックス中のCaF2を除く。)、Mg:0.0002〜1%、REM:0.0002〜1%の1種または2種以上を、鋼製外皮と充填フラックスの一方または両方に含有することを特徴とする、上記(1)または(2)に記載の耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤ。
The present invention solves the above problems, and the gist of the invention is as follows.
(1) In a flux-cored welding wire for gas shielded arc welding of refractory steel with a steel sheath filled with flux,
As a whole welding wire, C: 0.002 to 0.2%, Si: 0.005 to 1% (excluding SiO 2 in the filling flux), Mn: 0.1 to 2.5% by mass% , P: 0.02% or less, S: 0.01% or less, Al: 0.001 to 0.2% (excluding Al 2 O 3 in the filling flux), N: 0.001 to 0.015 In addition, Mo: 0.01 to 2%, W: 0.01 to 2%, Nb: 0.005 to 0.1%, V: 0.005 to 0.5%, Ta: 0 0.005 to 0.5%, Ti: 0.005 to 0.5% (excluding TiO 2 in the filling flux) or one or more of them are contained, and further represented by the following formula (1) Nb equivalent (Nbeq.) Is 0.05 to 0.2%, the balance has a component composition consisting of Fe and inevitable impurities,
And the said steel outer skin is the mass% with respect to the total mass of outer skin, C: 0.002-0.2%, Si: 0.005-1%, Mn: 0.1-2.5%, P: 0 0.02% or less, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.001 to 0.015%, Mo: 2% or less (including 0%), W: 2% or less (including 0%), Nb: 0.1% or less (including 0%), V: 0.5% or less (including 0%), Ta: 0.5% or less (0 Containing Ti: 0.2% or less (including 0%), the balance having a component composition consisting of Fe and inevitable impurities,
The filling flux is mass% with respect to the total mass of the wire, CaF 2 : 5% or less (including 0%), TiO 2 : 15% or less (including 0%), SiO 2 : 2% or less (0%) ZrO 2 : 2% or less (including 0%), Al 2 O 3 : 2% or less (including 0%), and the above, CaF 2 , TiO 2 , SiO 2 The total content of ZrO 2 and Al 2 O 3 is 0.5 to 20%, and the balance has a component composition consisting of metal powder and inevitable impurities. Flux-cored welding wire.
Nbeq. = Nb% + V% / 5 + Mo% / 10 + W% / 10 + Ta% / 5
+ Ti% / 5 (1)
However, Nb%, Mo%, W%, Ta%, and Ti% indicate mass% of each component contained in the welding wire, respectively.
(2) Further, as a whole wire, in mass%, Cr: 0.01 to 3%, Ni: 0.01 to 3%, Cu: 0.01 to 1.5%, Co: 0.01 to 6% B: One or more of 0.0005 to 0.015% is contained in one or both of the steel outer shell and the filling flux, and the gas of the refractory steel according to (1) above Flux-cored welding wire for shielded arc welding.
(3) Further, as a whole wire, by mass%, Ca: 0.0002 to 0.1% (excluding CaF 2 in the filling flux), Mg: 0.0002 to 1%, REM: 0.0002 to 1% or more of 1% is contained in one or both of the steel outer sheath and the filling flux, and the flux for gas shielded arc welding of refractory steel according to (1) or (2) above Cored welding wire.

本発明によれば、700〜800℃での耐火性に優れた耐火構造用鋼の、Ar+CO2溶接やCO2溶接などのガスシールドアーク溶接において、高温強度だけでなく、極めて良好な靭性に優れた溶接金属を得ることが可能な、耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤを提供することが可能となるため、その産業上の効果は極めて大きい。 According to the present invention, in gas-shielded arc welding such as Ar + CO 2 welding and CO 2 welding of a fire-resistant structural steel having excellent fire resistance at 700 to 800 ° C., not only high-temperature strength but also excellent toughness is excellent. Therefore, it is possible to provide a flux-cored welding wire for gas shielded arc welding of refractory steel, which can obtain a weld metal, and its industrial effect is extremely great.

建築鋼構造物の耐火設計では、火災継続時間内で高い高温強度を維持すればよく、従来のボイラなど圧力容器用の耐熱鋼のように500〜600℃程度の高温、高圧環境下で長時間使用する際の高温強度を考慮する必要はなく、比較的短時間の高温での降伏強度が維持できればよい。例えば、800℃で保持時間が30分程度の短時間での高温降伏強度が確保できれば800℃耐火鋼として十分利用できる。   In fire-resistant design of building steel structures, it is only necessary to maintain high high-temperature strength within the fire duration, and for a long time in a high-temperature environment at a high temperature of about 500-600 ° C like heat-resistant steel for pressure vessels such as conventional boilers. There is no need to consider the high-temperature strength at the time of use, as long as the yield strength at a high temperature for a relatively short time can be maintained. For example, if high temperature yield strength can be secured in a short time of about 30 minutes at 800 ° C., it can be sufficiently used as 800 ° C. refractory steel.

従来の600℃耐火鋼では、高温時の降伏強度が常温時の2/3以上となるように性能を定めていたが、鉄骨構造物の実設計範囲が常温降伏強度下限の0.2〜0.4倍であることを勘案し、常温降伏強度下限比0.4以上であれば使用できるとの考えに基づき、800℃高温強度の目安としては常温降伏強度に対する下限比が0.4以上とされている。すなわち800℃降伏強度の目標値は400MPa級鋼で94MPa以上、490MPa級鋼で130MPa以上である。   In the conventional 600 ° C refractory steel, the performance was determined so that the yield strength at high temperature was 2/3 or more at room temperature, but the actual design range of the steel structure was 0.2 to 0, which is the lower limit of room temperature yield strength. In consideration of the fact that the lower limit ratio of room temperature yield strength is 0.4 or more, the lower limit ratio to the room temperature yield strength is 0.4 or more as a guideline for 800 ° C high temperature strength. Has been. That is, the target value of 800 ° C. yield strength is 94 MPa or more for 400 MPa class steel and 130 MPa or more for 490 MPa class steel.

一方、建築構造物における鉄骨柱製作時の溶接部は作用応力が小さい位置に設けられるため、その溶接部の800℃降伏強度の目標値は、母材の800℃降伏強度の目標の1/2、すなわち490MPa級鋼として使用することを仮定しても、800℃の降伏強度の目標で70MPa以上が得られれば十分であることを発明者らは確認している。また、同様の根拠により700℃の降伏強度目標は220MPa以上となる。   On the other hand, since the welded part at the time of manufacturing the steel column in the building structure is provided at a position where the acting stress is small, the target value of 800 ° C yield strength of the welded part is 1/2 of the target of 800 ° C yield strength of the base material. In other words, the inventors have confirmed that even if it is assumed to be used as a 490 MPa class steel, it is sufficient that 70 MPa or more is obtained with a yield strength target of 800 ° C. On the same basis, the yield strength target at 700 ° C. is 220 MPa or more.

そこで、発明者らは、800℃までの高温耐火構造用鋼用の溶接材料として、700℃および800℃の降伏強度が各々220MPa以上、70MPa以上で、かつ、靭性に関しては、安全性をより重視して、0℃でのシャルピー吸収エネルギーが27J以上を有する溶接金属が得られるガスシールドアーク溶接用フラックス入り溶接ワイヤについて詳細な実験に基づいて検討した。   Therefore, the inventors, as welding materials for high-temperature refractory structural steel up to 800 ° C, have yield strengths of 700 ° C and 800 ° C of 220 MPa or more and 70 MPa or more, respectively, and safety is more important for toughness. Then, a flux-cored welding wire for gas shielded arc welding from which a weld metal having a Charpy absorbed energy at 0 ° C. of 27 J or more was obtained was examined based on detailed experiments.

本検討に先立ち、発明者らは、ソリッドワイヤによる溶接部の700℃、800℃における高温強度は、溶接金属中にMo、Nb、さらに、W、V、Taのいずれかを適正量含有させることで向上させることが可能であり、各々の元素は高温強度に対してほぼ同様の効果を発揮するが、その程度は元素により異なり、これらの元素の高温強度に対する効果は下記(2)式で定義されるNb当量(Nbeq.)で統一的に整理されることを、既に、特許文献3で開示した。
Nbeq.=Nb%+V%/5+Mo%/10+W%/10+Ta%/5・・・(2)
ただし、Nb%、Mo%、W%、Ta%は、それぞれ、溶接ワイヤ中に含有する各成分の質量%を示す。
Prior to this study, the inventors determined that the high-temperature strength at 700 ° C. and 800 ° C. of the welded portion made of solid wire should contain an appropriate amount of Mo, Nb, W, V, or Ta in the weld metal. Each element exhibits almost the same effect on high-temperature strength, but the degree depends on the element, and the effect of these elements on high-temperature strength is defined by the following equation (2) It has already been disclosed in Patent Document 3 that the Nb equivalent (Nbeq.) Is uniformly arranged.
Nbeq. = Nb% + V% / 5 + Mo% / 10 + W% / 10 + Ta% / 5 (2)
However, Nb%, Mo%, W%, and Ta% respectively indicate mass% of each component contained in the welding wire.

発明者らは、後述するように、フラックス入り溶接ワイヤについても同様の検討を進め、フラックス入り溶接ワイヤにおいても特許文献3で開示したNb当量と同様のNb当量(Nbeq.)で統一的に整理されることを見出した。ただし、特に全姿勢性を重視した場合にはフラックスにTiO2を添加することが多いフラックス入りワイヤでは溶接金属中のTi量も多くなり、Tiの高温強度への影響を無視できないことを新たに知見し、上記(2)式をベースにTiの効果も加味した(1)式のフラックス入り溶接ワイヤ用のNb当量を得た。
Nbeq.=Nb%+V%/5+Mo%/10+W%/10+Ta%/5
+Ti%/5 ・・・・・・・・・・・・・・(1)
ただし、Nb%、Mo%、W%、Ta%、Ti%は、それぞれ、溶接ワイヤ中に含有する各成分の質量%を示す。
As will be described later, the inventors proceeded with the same study on the flux-cored welding wire, and the flux-cored welding wire is uniformly arranged with the same Nb equivalent (Nbeq.) As the Nb equivalent disclosed in Patent Document 3. I found out that However, especially when placing emphasis on all orientation, TiO 2 is often added to the flux, and the amount of Ti in the weld metal also increases with the flux-cored wire, and the effect of Ti on the high-temperature strength cannot be ignored. Based on the above-described formula (2), an Nb equivalent for the flux-cored welding wire of the formula (1) that takes into account the effect of Ti was obtained.
Nbeq. = Nb% + V% / 5 + Mo% / 10 + W% / 10 + Ta% / 5
+ Ti% / 5 (1)
However, Nb%, Mo%, W%, Ta%, and Ti% indicate mass% of each component contained in the welding wire, respectively.

以下に、発明者らが、高温強度と溶接金属中の高温強度発現元素含有量との関係を詳細に調べ、上記(1)式を得るに至った実験について説明する。すなわち、溶接ワイヤ全質量に対する質量%で、0.04%C−0.05%Si(フラックスとしてのSiO2を除く。)−0.25%Mn−0.012%P−0.006%S−0.008%Al(フラックスとしてのAl23を除く。)−0.15%Cu−0.0035%N−2.5%CaF2−0.2%TiO2−0.35%SiO2をベースとして、Moを0〜2%、Wを0〜2%、Nbを0〜0.1%、Taを0〜0.5%、Vを0〜0.5%、Ti(フラックスとしてのTiO2を除く。)を0〜0.5%の範囲で、種々の添加量、組み合わせで添加したフラックス入り溶接ワイヤを小型実験室設備を用いて試作した。溶接ワイヤ径は1.4mmで、充填フラックス全体の充填率は12%としている。Mo、W、Nb、Ta、V、Tiは純金属または母合金の粉末からなる充填剤として添加量を調整した。 Below, the inventors will investigate in detail the relationship between the high-temperature strength and the content of the high-temperature strength-expressing element in the weld metal, and an experiment that has led to the above expression (1) will be described. That is, 0.04% C-0.05% Si (excluding SiO 2 as a flux) -0.25% Mn-0.012% P-0.006% S in mass% with respect to the total mass of the welding wire. −0.008% Al (excluding Al 2 O 3 as a flux) −0.15% Cu−0.0035% N−2.5% CaF 2 −0.2% TiO 2 −0.35% SiO 2 based, Mo 0-2%, W 0-2%, Nb 0-0.1%, Ta 0-0.5%, V 0-0.5%, Ti (as flux Of TiO 2 was added in various amounts and combinations in the range of 0 to 0.5%, and trial manufacture was performed using small laboratory equipment. The welding wire diameter is 1.4 mm, and the filling rate of the entire filling flux is 12%. Mo, W, Nb, Ta, V, and Ti were added in amounts as fillers made of pure metal or master alloy powder.

後述の実施例に用いた、表1に示す板厚25mmの、700℃から800℃での耐火特性を有する鋼板のうち、鋼板P3について、図1に示すような開先2を加工し、上記試作溶接ワイヤを用いて溶接継手を作製した。裏当金3も鋼板1と同じ鋼板を使用した。溶接は入熱3kJ/mmの多層盛CO2溶接とし、溶接後の試験体から図2に示す位置で高温引張試験片4を採取し、700℃における高温引張特性を調べた。この調査結果に基づき、700℃における0.2%耐力に及ぼす各合金成分の影響を、重回帰分析手法を用いて算出した。そして、算出した各成分の影響を、Nbの影響しろで規格化した結果が、上記(1)式である。Ti以外の成分の係数が(2)式と同等となる結果とともに、Tiの係数が1/5であることが判明した。 Of the steel plates having fire resistance at 700 ° C. to 800 ° C. with a plate thickness of 25 mm shown in Table 1 used in the examples described later, the groove 2 as shown in FIG. A welded joint was prepared using a prototype welding wire. The backing metal 3 was also the same steel plate as the steel plate 1. Welding was multi-layered CO 2 welding with a heat input of 3 kJ / mm, and a high-temperature tensile test piece 4 was taken from the specimen after welding at the position shown in FIG. 2 and examined for high-temperature tensile properties at 700 ° C. Based on the results of this investigation, the influence of each alloy component on the 0.2% yield strength at 700 ° C. was calculated using a multiple regression analysis technique. And the result of normalizing the influence of each calculated component with the influence of Nb is the above-mentioned formula (1). It was found that the coefficient of Ti is 1/5 together with the result that the coefficients of the components other than Ti are equivalent to the expression (2).

図3は、上記調査結果のうち、Nb当量に関わる元素を全く含まない溶接ワイヤにより作製した溶接継手の溶接金属の700℃における0.2%耐力に対する、溶接ワイヤ中にNbあるいはTi(フラックスとしてのTiO2は除外。)を各々単独に添加した溶接ワイヤにより作製した溶接継手の溶接金属の700℃における0.2%耐力の向上しろと、各元素の溶接ワイヤ中含有量との関係を示した図である。Nb、Tiとも含有量に応じて700℃における0.2%耐力は向上するが、同一質量%あたりの向上しろはNbに比べてTiの方が約1/5程度小さいことが分かり、上記重回帰分析結果と同等の値が得られた。以上のような知見から、上記(1)式のようにNb当量式におけるTiの係数を1/5とした。 FIG. 3 shows that, among the above investigation results, Nb or Ti (as flux) in the welding wire against the 0.2% proof stress at 700 ° C. of the weld metal of the welded joint produced by the welding wire containing no element related to the Nb equivalent. TiO 2 is excluded.) The relationship between the improvement in 0.2% proof stress at 700 ° C. of the weld metal of welded joints prepared by welding wires each independently added and the content of each element in the welding wire is shown. It is a figure. It can be seen that 0.2% proof stress at 700 ° C. is improved according to the content of both Nb and Ti, but the improvement margin per mass% is about 1/5 smaller than that of Nb. A value equivalent to the regression analysis result was obtained. From the above knowledge, the coefficient of Ti in the Nb equivalent formula is set to 1/5 as in the above formula (1).

本実験における全ての溶接継手について、溶接金属の700℃における0.2%耐力と新たなNb当量との関係を整理すると図4に示すようになる。図4から、本Nb当量と溶接金属の0.2%耐力とは明確な相関を有し、本Nb当量が0.05%以上であれば、溶接金属の700℃における0.2%耐力を220MPa以上とすることが可能であることが分かる。   For all the welded joints in this experiment, the relationship between the 0.2% proof stress of the weld metal at 700 ° C. and the new Nb equivalent is shown in FIG. From FIG. 4, the Nb equivalent has a clear correlation with the 0.2% yield strength of the weld metal. If the Nb equivalent is 0.05% or more, the 0.2% yield strength of the weld metal at 700 ° C. It can be seen that the pressure can be 220 MPa or more.

溶接金属の靱性についても、本Nb当量を適正化することにより所望のレベルを得ることが可能であるが、ソリッドワイヤによる溶接金属よりもフラックス入りワイヤによる溶接金属の方が、不純物元素や酸素(O)量の不可避的な多さの故に、同じ高温強度でも、すなわち、高温強度発現元素の量が同じでも靱性は低くならざるを得ず、高温強度を確保できる程度には含有させる必要はある一方で、必要最低限の量に止める必要がある、すなわち、含有量の範囲をより厳密に制限する必要があることも知見した。   As for the toughness of the weld metal, it is possible to obtain a desired level by optimizing the Nb equivalent. However, the weld metal using the flux-cored wire is more suitable for the impurity element or oxygen (not the solid weld metal). O) Because of the unavoidable amount, the toughness must be low even at the same high-temperature strength, that is, the same amount of elements exhibiting high-temperature strength, and it is necessary to contain it to the extent that high-temperature strength can be secured. On the other hand, it has also been found that it is necessary to limit to the minimum necessary amount, that is, it is necessary to strictly limit the content range.

また、溶接金属の靱性を安定的に向上させるためには、強度を発現するための基本元素である一方、炭化物や島状マルテンサイトを形成して靱性を阻害するCや、溶接金属のミクロ組織を規定するベースとなるSi、Mn、Al、Ti等の合金元素を適正化する必要があるが、これらの元素の溶接金属中での含有量を安定的に制御するためには、充填剤の成分によるだけでなく、鋼製外皮の化学組成を適正化する必要があることも知見した。従来、フラックス入りワイヤにおける成分調整は充填剤から行われており、鋼製外皮には軟鋼等の一般鋼が用いられ、その組成には特別の配慮はなされていなかった。   In addition, in order to stably improve the toughness of the weld metal, it is a basic element for developing strength, while forming a carbide or island martensite to inhibit the toughness, and a microstructure of the weld metal It is necessary to optimize the alloying elements such as Si, Mn, Al, Ti, etc., which serve as the base for defining the content. In order to stably control the content of these elements in the weld metal, It was also found that it is necessary to optimize the chemical composition of the steel outer skin as well as the components. Conventionally, component adjustment in a flux-cored wire has been performed from a filler, and general steel such as mild steel has been used for the steel outer sheath, and no special consideration has been given to its composition.

発明者らは、さらに、フラックス入りワイヤによる溶接金属靱性の影響因子を詳細に検討した結果、フラックス充填剤についても、特に靱性確保の観点、スパッタ、ビード形状の観点での作業性制御のために、CaF2、TiO2、SiO2、ZrO2、Al23を選択的に用い、かつ、各々適正量含有させる必要があることも見出した。 The inventors have further studied influential factors of weld metal toughness due to the flux-cored wire. As a result, the flux filler is also used for controlling workability particularly in terms of securing toughness and in terms of spatter and bead shape. It has also been found that CaF 2 , TiO 2 , SiO 2 , ZrO 2 , and Al 2 O 3 are selectively used and must be contained in appropriate amounts.

本発明は、上記の新たな知見に基づいてなされたものであり、鋼製外皮の組成、充填剤の組成を各々定め、かつ、厳密に制御する必要のある重要な元素については、充填剤と鋼製外皮との合計量についても規定することにより、溶接金属が所望の特性を得るようにするものである。   The present invention has been made on the basis of the above-mentioned new findings, and the important elements that need to be strictly controlled and to determine the composition of the steel outer shell and the filler are as follows. By defining the total amount with the steel outer shell, the weld metal can obtain desired characteristics.

先ず、鋼製外皮の化学組成の限定理由を示す。なお、鋼製外皮中の各元素の含有量は、鋼製外皮全体の質量に対する質量%で規定する。   First, the reasons for limiting the chemical composition of the steel shell will be shown. In addition, content of each element in steel outer skin is prescribed | regulated by the mass% with respect to the mass of the whole steel outer shell.

[鋼製外皮のC:0.002〜0.2%]
Cは、溶接金属中に適正量含有させることにより、焼入性向上による組織微細化や炭化物の形成効果を通して、室温および高温での強度確保に有効な元素であるが、溶接金属の靭性を劣化させる元素でもあり、溶接金属中の含有量を厳密に制御する必要性があるため、鋼製外皮における含有量を限定する。鋼製外皮中のC含有量が0.002%未満では溶接金属中のC量が過小となり、室温強度、高温強度の確保が困難となる。一方、鋼製外皮中のC含有量が0.2%超になると、溶接金属の靭性が大きく劣化するため、本発明においては、鋼製外皮中のC含有量は、0.0002〜0.2%とする。
[C of steel outer skin: 0.002 to 0.2%]
C is an element effective in securing strength at room temperature and high temperature through refinement of the structure by improving hardenability and the effect of forming carbides by containing an appropriate amount in the weld metal, but deteriorates the toughness of the weld metal. It is also an element to be made, and since it is necessary to strictly control the content in the weld metal, the content in the steel outer shell is limited. If the C content in the steel outer skin is less than 0.002%, the C content in the weld metal becomes too small, and it becomes difficult to ensure room temperature strength and high temperature strength. On the other hand, when the C content in the steel outer shell exceeds 0.2%, the toughness of the weld metal is greatly deteriorated. Therefore, in the present invention, the C content in the steel outer shell is 0.0002 to 0.00. 2%.

[鋼製外皮のSi:0.005〜1%]
Siは、溶接金属中に適正量含有させることにより、焼入性向上による組織微細化や固溶強化効果を通して、室温および高温での強度確保に有効な元素であるが、適正量を確実に溶接金属中に含有させる必要がある元素であるために、鋼製外皮中の含有量を限定する。鋼製外皮中のSi量が0.005%未満では上記効果が十分発現されず、また、1%超では溶接金属が過度に硬化したり、靭性を劣化させる島状マルテンサイトを過度に生成する等により、溶接金属の靭性を著しく損ねるため、本発明においては、鋼製外皮中のSi含有量を0.005〜1%に限定する。
[Si in steel hull: 0.005 to 1%]
Si is an element effective in securing strength at room temperature and high temperature through refinement of the structure by improving hardenability and solid solution strengthening effect by containing a proper amount in the weld metal. Since the element needs to be contained in the metal, the content in the steel outer shell is limited. If the amount of Si in the steel outer shell is less than 0.005%, the above effect is not sufficiently exhibited, and if it exceeds 1%, the weld metal is excessively hardened or island martensite that deteriorates toughness is excessively generated. In the present invention, the Si content in the steel outer skin is limited to 0.005 to 1%.

[鋼製外皮のMn:0.1〜2.5%]
Mnは、溶接金属中に適正量含有させることにより、焼入性向上による組織微細化や固溶強化効果を通して、室温および高温での強度確保に有効な元素であるが、適正量を確実に溶接金属中に含有させる必要がある元素であるために、鋼製外皮中の含有量を限定する。鋼製外皮中のMn量が0.1%未満では上記効果が十分発現されず、また、2.5%超では溶接金属が過度に硬化したり、靭性を劣化させる島状マルテンサイトを過度に生成する等により、溶接金属の靭性を著しく損ねるため、本発明においては、鋼製外皮中のMn含有量を0.1〜2.5%に限定する。
[Mn of steel outer skin: 0.1 to 2.5%]
Mn is an element that is effective in securing strength at room temperature and high temperature through the refinement of the hardenability and the effect of solid solution strengthening by including an appropriate amount in the weld metal. Since the element needs to be contained in the metal, the content in the steel outer shell is limited. If the amount of Mn in the steel outer shell is less than 0.1%, the above effect is not sufficiently exhibited, and if it exceeds 2.5%, the weld metal is excessively hardened or excessively island martensite that deteriorates toughness is excessive. In the present invention, the Mn content in the steel outer shell is limited to 0.1 to 2.5% because the toughness of the weld metal is remarkably impaired due to the generation.

[鋼製外皮のP:0.02%以下]
Pは、不純物元素であり、溶接金属の靭性や高温割れ性を劣化させるため、溶接金属中の含有量を極力低減することが好ましい。鋼製外皮中の含有量を規制することが溶接金属中のP含有量低減に確実であるため、本発明においては、鋼製外皮中のP含有量を限定する。鋼製外皮中のP含有量が0.02%以下であれば、溶接金属の靭性や耐高温割れ性に対する悪影響が許容できるものとなるため、本発明においては、鋼製外皮中のP含有量を0.02%以下とする。
[P of steel hull: 0.02% or less]
P is an impurity element, and it is preferable to reduce the content in the weld metal as much as possible in order to deteriorate the toughness and hot cracking property of the weld metal. In the present invention, the P content in the steel outer shell is limited because the P content in the weld metal is surely reduced by regulating the content in the steel outer shell. If the P content in the steel shell is 0.02% or less, the adverse effect on the toughness and hot cracking resistance of the weld metal can be tolerated. Therefore, in the present invention, the P content in the steel shell Is 0.02% or less.

[鋼製外皮のS:0.01%以下]
Sも、不純物元素であり、溶接金属の延性や靭性、さらには高温割れ性を劣化させるため、溶接金属中の含有量を極力低減することが好ましい。鋼製外皮中の含有量を規制することが溶接金属中のS含有量低減に確実であるため、本発明においては、鋼製外皮中のS含有量を限定する。鋼製外皮中のS含有量が0.01%以下であれば、溶接金属の靭性や耐高温割れ性に対する悪影響が許容できるものとなるため、本発明においては、鋼製外皮中のS含有量を0.01%以下とする。
[S of steel outer skin: 0.01% or less]
S is also an impurity element, and it is preferable to reduce the content in the weld metal as much as possible in order to degrade the ductility and toughness of the weld metal, and further the high temperature cracking property. In the present invention, the S content in the steel outer skin is limited because the content in the steel outer skin is surely reduced in reducing the S content in the weld metal. If the S content in the steel outer skin is 0.01% or less, the adverse effect on the toughness and hot cracking resistance of the weld metal can be tolerated. Therefore, in the present invention, the S content in the steel outer skin. Is 0.01% or less.

[鋼製外皮のAl:0.001〜0.1%]
Alは、脱酸元素として溶接金属中のO量が過度に多くならないために必要な元素であり、適正量を確実に溶接金属中に含有させる必要がある元素であるために、鋼製外皮中の含有量を限定する。鋼製外皮中のAl含有量が0.001%未満であると効果が明確でないため好ましくない。一方、鋼製外皮中のAl含有量が0.1%超であると、鋼製外皮中に粗大な酸化物を形成して鋼製外皮の靭性や延性を阻害して、ワイヤ製造性を阻害するため好ましくない。そのため、本発明においては、鋼製外皮中のAl含有量を0.001〜0.1%に限定する。
[Al of steel outer skin: 0.001 to 0.1%]
Al is an element necessary for the amount of O in the weld metal not to be excessively increased as a deoxidizing element, and since it is an element that needs to be contained in the weld metal in an appropriate amount, The content of is limited. If the Al content in the steel outer skin is less than 0.001%, the effect is not clear, which is not preferable. On the other hand, if the Al content in the steel outer shell exceeds 0.1%, a coarse oxide is formed in the steel outer shell to inhibit the toughness and ductility of the steel outer shell, thereby inhibiting the wire manufacturability. Therefore, it is not preferable. Therefore, in the present invention, the Al content in the steel outer skin is limited to 0.001 to 0.1%.

[鋼製外皮のN:0.001〜0.015%]
Nも、溶接金属中では不純物元素で、主として固溶状態で靭性に悪影響を及ぼすため、溶接金属中に過度に含有されないよう注意する必要がある。そのためには鋼製外皮中の含有量を制限することが好ましい。ただし、鋼中のN含有量を0.001%未満まで低減することは工業的に容易でなく、また、この程度であれば溶接金属特性への悪影響も無視できる程度であるため、本発明においては、鋼製外皮中のN含有量の下限を0.001%とする。一方、鋼製外皮中のN含有量の上限は、溶接金属での悪影響が許容できる範囲として決定され、本発明においては種々実験結果に基づいて、鋼製外皮中のN含有量の上限を0.015%と定める。
[N of steel outer skin: 0.001 to 0.015%]
N is also an impurity element in the weld metal and adversely affects toughness mainly in a solid solution state, so care must be taken so that it is not excessively contained in the weld metal. For this purpose, it is preferable to limit the content in the steel outer shell. However, it is not industrially easy to reduce the N content in the steel to less than 0.001%, and if it is about this level, the adverse effect on the weld metal properties is negligible. Has a lower limit of N content in the steel outer skin of 0.001%. On the other hand, the upper limit of the N content in the steel outer shell is determined as a range in which the adverse effect on the weld metal can be tolerated. In the present invention, the upper limit of the N content in the steel outer shell is set to 0 based on various experimental results. .015%.

以上の鋼製外皮中に含有することが必須である元素あるいは不純物元素の他、溶接ワイヤ全体としては必須であるが、鋼製外皮中と充填フラックス中との合計量で適正範囲を満足すればよい元素として、Mo、W、Nb、V、Ta、Tiがある。ただし、これらの元素については、鋼製外皮に含有する場合、下記の理由により、鋼製外皮中の含有量も限定する。なお、Mo、W、Nb、V、Ta、Tiの各元素を溶接ワイヤ全体として含有させる必要性と適正範囲については、別途、鋼製外皮中と充填フラックス中との合計量となる溶接ワイヤ全体の含有量としての限定理由の中で詳述する。   In addition to the elements or impurity elements that are essential to be contained in the above steel outer sheath, it is essential for the entire welding wire, but if the total amount in the steel outer sheath and in the filling flux satisfies the appropriate range Good elements include Mo, W, Nb, V, Ta, and Ti. However, when these elements are contained in the steel outer shell, the content in the steel outer shell is also limited for the following reasons. In addition, about the necessity and appropriate range which contain each element of Mo, W, Nb, V, Ta, and Ti as the whole welding wire, the whole welding wire used as the total amount in the steel outer shell and the filling flux separately. This will be described in detail in the reason for limitation as the content of.

[鋼製外皮のMo:2%以下(0%を含む。)]
Moを鋼製外皮に含有させる場合、その上限を2%とする。これは、鋼製外皮に2%を超えてMoを含有させると、鋼製外皮の製造性が劣化するとともに、鋼製外皮の強度が過度に高くなって、ワイヤ製造性や、溶接時のワイヤ送給性も阻害されるためである。
[Mo of steel shell: 2% or less (including 0%)]
When Mo is contained in the steel outer shell, the upper limit is made 2%. This is because if the steel outer shell contains Mo in excess of 2%, the manufacturability of the steel outer shell deteriorates and the strength of the steel outer shell becomes excessively high. This is because the feedability is also hindered.

[鋼製外皮のW:2%以下(0%を含む。)]
Wを鋼製外皮に含有させる場合、その上限を2%とする。これは、Moと同様、鋼製外皮に2%を超えてWを含有させると、鋼製外皮の製造性が劣化するとともに、鋼製外皮の強度が過度に高くなって、ワイヤ製造性や、溶接時のワイヤ送給性も阻害されるためである。
[W of steel outer skin: 2% or less (including 0%)]
When W is contained in the steel outer shell, the upper limit is made 2%. Like Mo, when steel content exceeds 2% and W is contained, the manufacturability of the steel shell deteriorates and the strength of the steel shell becomes excessively high, and the wire manufacturability, This is because the wire feedability during welding is also hindered.

[鋼製外皮のNb:0.1%以下(0%を含む。)]
Nbを鋼製外皮に含有させる場合、その上限を0.1%とする。これは、鋼製外皮に0.1%を超えてNbを含有させると、鋼製外皮の製造性が劣化するとともに、鋼製外皮の強度が過度に高くなって、ワイヤ製造性や、溶接時のワイヤ送給性も阻害されるためである。
[Nb of steel outer shell: 0.1% or less (including 0%)]
When Nb is contained in the steel outer shell, the upper limit is made 0.1%. This is because when the steel outer shell contains Nb in an amount exceeding 0.1%, the manufacturability of the steel outer shell deteriorates and the strength of the steel outer shell becomes excessively high. This is because the wire feedability is also hindered.

[鋼製外皮のV:0.5%以下(0%を含む。)]
Vを鋼製外皮に含有させる場合、その上限を0.5%とする。これは、鋼製外皮に0.5%を超えてVを含有させると、鋼製外皮の製造性が劣化するとともに、鋼製外皮の強度が過度に高くなって、ワイヤ製造性や、溶接時のワイヤ送給性も阻害されるためである。
[V of steel skin: 0.5% or less (including 0%)]
When V is contained in the steel outer shell, the upper limit is made 0.5%. This is because if the steel outer shell contains V exceeding 0.5%, the manufacturability of the steel outer shell deteriorates and the strength of the steel outer shell becomes excessively high, so that the wire manufacturability and This is because the wire feedability is also hindered.

[鋼製外皮のTa:0.5%以下(0%を含む。)]
Taを鋼製外皮に含有させる場合、その上限を0.5%とする。これは、鋼製外皮に0.5%を超えてTaを含有させると、鋼製外皮の製造性が劣化するとともに、鋼製外皮の強度が過度に高くなって、ワイヤ製造性や、溶接時のワイヤ送給性も阻害されるためである。
[Ta of steel outer layer: 0.5% or less (including 0%)]
When Ta is contained in the steel outer shell, the upper limit is made 0.5%. This is because when the steel outer shell contains Ta exceeding 0.5%, the manufacturability of the steel outer shell deteriorates and the strength of the steel outer shell becomes excessively high, so that the wire manufacturability and the welding time are reduced. This is because the wire feedability is also hindered.

[鋼製外皮のTi:0.2%以下(0%を含む。)]
Tiを鋼製外皮に含有させる場合、その上限を0.2%とする。これは、鋼製外皮に0.2%を超えてTiを含有させると、鋼製外皮の製造性が劣化するとともに、粗大介在物を形成する、あるいは、鋼製外皮の強度が過度に高くなる、等の理由によって、ワイヤ製造性や、溶接時のワイヤ送給性も阻害されるためである。
[Ti of steel hull: 0.2% or less (including 0%)]
When Ti is contained in the steel outer shell, the upper limit is made 0.2%. This is because if the steel shell contains more than 0.2% Ti, the productivity of the steel shell deteriorates and coarse inclusions are formed, or the strength of the steel shell becomes excessively high. This is because, for the reasons described above, wire manufacturability and wire feedability during welding are also hindered.

以上が、鋼製外皮にMo、W、Nb、V、Ta、Tiを含有させる場合の限定理由であるが、Mo、W、Nb、V、Ta、Tiは、固溶強化や析出強化によって700〜800℃での高温強度を発現する重要な元素である。高温強度に対する効果は類似であるため、1種または2種以上をワイヤとして含有する必要があり、かつ、高温強度の確保、靭性との両立等の観点から、各々その含有量を、鋼製外皮中と充填フラックス中の合計量となる溶接ワイヤ全体の含有量として限定する必要がある。   The above is the reason for limitation when Mo, W, Nb, V, Ta, and Ti are contained in the steel outer shell. Mo, W, Nb, V, Ta, and Ti are 700 by solid solution strengthening and precipitation strengthening. It is an important element that develops high temperature strength at ˜800 ° C. Since the effects on high temperature strength are similar, it is necessary to contain one or two or more types as wires, and from the viewpoints of ensuring high temperature strength, coexistence with toughness, etc. It is necessary to limit the content of the entire welding wire as the total amount in the medium and the filling flux.

[溶接ワイヤ全体のMo:0.01〜2%]
Moは、固溶状態および析出状態で溶接金属の高温強度を高める基本元素であり、耐火特性向上に有効な元素である。このような効果を明確に発揮させるためにワイヤ中に含有させる場合、Moは鋼製外皮中と充填フラックス中の合計として0.01%以上必要であるが、鋼製外皮中と充填フラックス中の合計が2%を超えると常温強度が高くなりすぎ、また、溶接金属靭性も低下する可能性が大きいため、鋼製外皮中と充填フラックス中の合計でMoは0.01〜2%に限定する。
[Mo of the entire welding wire: 0.01 to 2%]
Mo is a basic element that increases the high-temperature strength of the weld metal in a solid solution state and a precipitated state, and is an element effective for improving the fire resistance. When it is contained in the wire in order to exert such an effect clearly, Mo is required to be 0.01% or more in total in the steel outer shell and the filling flux, but in the steel outer shell and in the filling flux. If the total exceeds 2%, the strength at room temperature becomes too high, and the weld metal toughness is likely to be lowered. Therefore, the Mo content is limited to 0.01 to 2% in the steel outer shell and the filling flux. .

[溶接ワイヤ全体のW:0.01〜2%]
Wも、Moと同様、固溶強化および析出強化により高温強度を高めることが可能な元素である。高温強度に対する効果、靭性への悪影響の程度もMoとほぼ同程度であるため、本発明において、溶接ワイヤにWを含有させる場合には、鋼製外皮中と充填フラックス中の合計量で、0.01〜2%の範囲とする。
[W of the entire welding wire: 0.01 to 2%]
W, like Mo, is an element that can increase the high-temperature strength by solid solution strengthening and precipitation strengthening. Since the effect on the high temperature strength and the adverse effect on the toughness are almost the same as those of Mo, in the present invention, when W is contained in the welding wire, the total amount in the steel outer shell and the filling flux is 0. The range is 0.01 to 2%.

[溶接ワイヤ全体のNb:0.005〜0.1%]
Nbは、主としてNbの炭窒化物が分散することによる析出強化あるいは分散強化機構により高温強度を高め、700℃を超える高温での耐火特性確保に有効である。Nbを高温強度向上のために溶接ワイヤ中に含有させる場合には、確実に高温強度向上効果を発揮するために、鋼製外皮中と充填フラックス中の合計量で、0.005%以上含有させる必要がある。ただし、Nbは靭性を顕著に劣化させる元素でもあり、鋼製外皮中と充填フラックス中の合計量で、0.1%を超えて過剰に溶接ワイヤに含有させると、溶接金属の靭性劣化が許容できなくなるため、好ましくない。また、高温脆化も助長するようになるため、本発明においては、溶接ワイヤにNbを含有させる場合には、鋼製外皮中と充填フラックス中の合計量で、0.005〜0.1%の範囲とする。
[Nb of entire welding wire: 0.005 to 0.1%]
Nb is effective for securing the fire resistance at a high temperature exceeding 700 ° C. by increasing the high-temperature strength mainly by precipitation strengthening or dispersion strengthening mechanism due to dispersion of Nb carbonitride. When Nb is contained in the welding wire for improving the high temperature strength, 0.005% or more is contained in the total amount in the steel outer shell and the filling flux in order to surely exert the effect of improving the high temperature strength. There is a need. However, Nb is also an element that significantly deteriorates toughness, and the total amount in the steel outer shell and filling flux exceeds 0.1% and excessively contained in the welding wire allows toughness deterioration of the weld metal. Since it becomes impossible, it is not preferable. Further, since high temperature embrittlement is also promoted, in the present invention, when Nb is contained in the welding wire, the total amount in the steel outer sheath and the filling flux is 0.005 to 0.1%. The range.

[溶接ワイヤ全体のV:0.005〜0.5%]
Vも、Nbと同様、主として析出物の分散により高温強度を発現する元素である。Vを高温強度向上のために溶接ワイヤ中に含有させる場合には、確実に高温強度向上効果を発揮するために、鋼製外皮中と充填フラックス中の合計量で、0.005%以上含有させる必要がある。ただし、鋼製外皮中と充填フラックス中の合計量で、0.5%を超えて過剰に溶接ワイヤに含有させると、溶接金属の靭性劣化が大きくなるため、本発明においては、溶接ワイヤにVを含有させる場合には、鋼製外皮中と充填フラックス中の合計量で、0.005〜0.5%の範囲とする。
[V of welding wire as a whole: 0.005 to 0.5%]
V, like Nb, is an element that develops high-temperature strength mainly due to the dispersion of precipitates. When V is contained in the welding wire for improving the high temperature strength, 0.005% or more is contained in the total amount in the steel outer shell and the filling flux in order to surely exert the effect of improving the high temperature strength. There is a need. However, if the total amount in the steel outer shell and the filling flux exceeds 0.5% and is excessively contained in the welding wire, the toughness of the weld metal is greatly deteriorated. When it is contained, the total amount in the steel outer shell and the filling flux is set to a range of 0.005 to 0.5%.

[溶接ワイヤ全体のTa:0.005〜0.5%]
Taも、Nb、Vと同様、主として析出物の分散により高温強度を発現する元素である。Taを高温強度向上のために溶接ワイヤ中に含有させる場合には、確実に高温強度向上効果を発揮するために、鋼製外皮中と充填フラックス中の合計量で、0.005%以上含有させる必要がある。ただし、鋼製外皮中と充填フラックス中の合計量で、0.5%を超えて過剰に溶接ワイヤに含有させると、溶接金属の靭性劣化が大きくなるため、本発明においては、溶接ワイヤにTaを含有させる場合には、鋼製外皮中と充填フラックス中の合計量で、0.005〜0.5%の範囲とする。
[Ta of the entire welding wire: 0.005 to 0.5%]
Ta, like Nb and V, is an element that exhibits high-temperature strength mainly due to the dispersion of precipitates. When Ta is contained in the welding wire to improve high temperature strength, 0.005% or more is contained in the total amount in the steel outer shell and the filling flux in order to surely exert the effect of improving high temperature strength. There is a need. However, since the total amount in the steel outer shell and the filling flux exceeds 0.5% and excessively contained in the welding wire, the toughness deterioration of the weld metal becomes large. When it is contained, the total amount in the steel outer shell and the filling flux is set to a range of 0.005 to 0.5%.

[溶接ワイヤ全体のTi:0.005〜0.5%(充填フラックス中のTiO2を除く。)]
Tiは、組織微細化効果により靭性向上にも寄与するが、安定なTiNを形成して固溶Nを固定することで、他の析出強化元素が粗大な窒化物を形成して高温強度に対する寄与が減ずることを防止したり、自身が微細化炭化物を形成して析出強化することにより高温強度向上に効果を発揮する。そのためには、鋼製外皮中と充填フラックス中の合計量で、0.005%以上含有させる必要がある。ただし、鋼製外皮中と充填フラックス中の合計量で、0.5%を超えて過剰に溶接ワイヤに含有させると、溶接金属の靭性劣化が大きくなるため、本発明においては、溶接ワイヤにTiを含有させる場合には、鋼製外皮中と充填フラックス中の合計量で、0.005〜0.5%の範囲とする。なお、ここで言うところのTiは、炭窒化物を形成し得るTiの意であり、従って、後述するスラグ形成剤として添加するTiO2はここに含まない。
[Ti of the entire welding wire: 0.005 to 0.5% (excluding TiO 2 in the filling flux)]
Ti contributes to improved toughness due to the effect of refining the structure, but by forming stable TiN and fixing solute N, other precipitation strengthening elements form coarse nitrides and contribute to high-temperature strength. It is effective to improve the high-temperature strength by preventing the decrease of the strength, or by forming a refined carbide and strengthening by precipitation. For that purpose, it is necessary to contain 0.005% or more in the total amount in the steel outer shell and the filling flux. However, since the total amount in the steel outer shell and the filling flux exceeds 0.5% and is excessively contained in the welding wire, the toughness deterioration of the weld metal increases. When it is contained, the total amount in the steel outer shell and the filling flux is set to a range of 0.005 to 0.5%. Here, Ti as used herein means Ti that can form a carbonitride, and therefore TiO 2 added as a slag forming agent to be described later is not included here.

以上、高温強度発現に重要なMo、W、Nb、V、Ta、Tiについては、鋼製外皮中含有量および鋼製外皮中と充填フラックス中の合計量となる溶接ワイヤ全体の含有量のいずれについても、個々に限定範囲を定めるが、さらに、溶接金属において所望の高温強度を確実に達成するために、本発明においては、高温強度に対する各元素の寄与率に基づいて求めた(1)式のNb当量(Nbeq.)も適正範囲内とする必要がある。
Nbeq.=Nb%+V%/5+Mo%/10+W%/10+Ta%/5
+Ti%/5 ・・・・・・・・・・・・・・(1)
ただし、Nb%、Mo%、W%、Ta%、Ti%は、それぞれ、溶接ワイヤ中に含有する各成分の質量%を示す。
As described above, for Mo, W, Nb, V, Ta, and Ti that are important for high-temperature strength development, any of the content in the steel outer shell and the total content of the welding wire that is the total amount in the steel outer shell and the filling flux In addition, in order to reliably achieve the desired high-temperature strength in the weld metal, in the present invention, the formula (1) obtained based on the contribution ratio of each element to the high-temperature strength is determined. Nb equivalent (Nbeq.) Must be within an appropriate range.
Nbeq. = Nb% + V% / 5 + Mo% / 10 + W% / 10 + Ta% / 5
+ Ti% / 5 (1)
However, Nb%, Mo%, W%, Ta%, and Ti% indicate mass% of each component contained in the welding wire, respectively.

(1)式のNb当量(Nbeq.)と溶接金属の機械的性質との関係を詳細な実験により検討した結果、溶接金属において、700℃での0.2%耐力を確実に220MPa以上、800℃における0.2%耐力を確実に70MPa以上とするためには、他の溶接ワイヤ組成を適正化する前提の上で、(1)式のNb当量(Nbeq.)を最低限0.05%とする必要がある。Nbeq.が0.05%未満では、700℃、800℃における0.2%耐力が各々220MPa、70MPaを下回る恐れがあり、耐火用途の溶接金属として好ましくない。Nbeq.が高いほど高温強度は向上するが、0.2%を超えると、室温強度が過度に高くなって、耐溶接割れ性を劣化させる上、靭性にも悪影響を及ぼすため、好ましくない。以上の理由により、本発明においては、(1)式のNb当量(Nbeq.)を0.05〜0.2%に限定する。   As a result of examining the relationship between the Nb equivalent (Nbeq.) Of the formula (1) and the mechanical properties of the weld metal through detailed experiments, it was confirmed that the 0.2% proof stress at 700 ° C. of the weld metal was 220 MPa or more, 800 In order to ensure that the 0.2% proof stress at 70 ° C. is 70 MPa or more, the Nb equivalent (Nbeq.) In the formula (1) is at least 0.05% on the premise of optimizing other welding wire compositions. It is necessary to. Nbeq. If it is less than 0.05%, the 0.2% proof stress at 700 ° C. and 800 ° C. may be less than 220 MPa and 70 MPa, respectively. Nbeq. However, if it exceeds 0.2%, the strength at room temperature becomes excessively high, the weld crack resistance is deteriorated, and the toughness is also adversely affected. For the above reasons, in the present invention, the Nb equivalent (Nbeq.) Of the formula (1) is limited to 0.05 to 0.2%.

[溶接ワイヤ全体のC、Si、Mn、P、S、Al、N量]
前記のように、本発明においては、鋼の組織、特性を決定する基本元素であるC、Si、Mn、P、S、Al、Nについては鋼製外皮組成として規定するが、これらの元素については、充填フラックス中に添加することも可能であり、また、不純物として含有される場合もあるため、本発明においては、これらの元素のワイヤ全体における含有量も合わせて限定する。
[C, Si, Mn, P, S, Al, N amount of the entire welding wire]
As described above, in the present invention, C, Si, Mn, P, S, Al, and N, which are basic elements that determine the structure and characteristics of steel, are defined as steel outer shell compositions. Can be added to the filling flux and may be contained as an impurity. In the present invention, the content of these elements in the entire wire is also limited.

すなわち、C、Si、Mn、P、S、Nについては、前記鋼製外皮における限定理由と全く同じ理由から、ワイヤ全体としての含有量は、C:0.002〜0.2%、Si:0.005〜1%(充填フラックス中のSiO2を除く。)、Mn:0.1〜2.5%、P:0.02%以下、S:0.01%以下、Al:0.001〜0.2%(充填フラックス中のAl23を除く。)、N:0.001〜0.015%とする。 That is, for C, Si, Mn, P, S, and N, the content of the entire wire is C: 0.002 to 0.2%, Si: 0.005 to 1% (excluding SiO 2 in the filling flux), Mn: 0.1 to 2.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.001 ˜0.2% (excluding Al 2 O 3 in the filling flux), N: 0.001 to 0.015%.

ただしAlについては、鋼製外皮では鋼の製造性から上限を低めの0.1%としているが、脱酸元素としては有効であり、溶接金属中のO量を低減する等の好ましい効果を発揮するため、充填フラックスにさらに含有させることが可能であり、鋼製外皮中と充填フラックス中との合計量の上限を0.2%とする。鋼製外皮中と充填フラックス中との合計量で0.2%を超えて過剰に含有すると、ワイヤ製造性を損ね、溶接金属の特性にも悪影響を及ぼすため、好ましくない。なお、ここでの充填フラックス中のAl含有量としては、効果が異なるため、Al23は除く。 However, with regard to Al, the upper limit is 0.1%, which is the lower upper limit in terms of steel manufacturability, but it is effective as a deoxidizing element and exhibits favorable effects such as reducing the amount of O in the weld metal. Therefore, it can be further contained in the filling flux, and the upper limit of the total amount in the steel outer shell and the filling flux is set to 0.2%. If the total amount in the steel outer shell and in the filling flux exceeds 0.2%, it is not preferable because the wire manufacturability is impaired and the properties of the weld metal are adversely affected. Note that the Al content in the filled flux here is different in the effect, and thus Al 2 O 3 is excluded.

[充填フラックス]
以上が、溶接金属の化学組成を主として規定する溶接ワイヤにおける化学組成の限定理由である。本発明はフラックス入り溶接ワイヤに関するものであり、フラックス入り溶接ワイヤとしての特徴である良好な作業性やビード形状を発現するためには、必要に応じて充填剤中に、溶接ワイヤ全質量に対する質量%で、CaF2:5%以下(0%を含む。)、TiO2:15%以下(0%を含む。)、SiO2:2%以下(0%を含む。)、ZrO2:2%以下(0%を含む。)、Al23:2%以下(0%を含む。)を含有する必要がある。なお、スラグ形成を極力嫌うような用途で、ビード形状や作業性の多少の劣化を許容する場合には、上記酸化物のいずれも含まなくとも構わない。
[Filling flux]
The above is the reason for limiting the chemical composition of the welding wire that mainly defines the chemical composition of the weld metal. The present invention relates to a flux-cored welding wire, and in order to develop good workability and bead shape, which are characteristics of a flux-cored welding wire, the mass relative to the total mass of the welding wire is included in the filler as necessary. %, CaF 2 : 5% or less (including 0%), TiO 2 : 15% or less (including 0%), SiO 2 : 2% or less (including 0%), ZrO 2 : 2% It is necessary to contain the following (including 0%), Al 2 O 3 : 2% or less (including 0%). In addition, in the use which dislikes slag formation as much as possible, when permitting a slight deterioration of the bead shape and workability, none of the above oxides may be included.

[充填フラックスのCaF2:5%以下(0%を含む。)]
CaF2は、スラグ形成剤さらに脱酸剤としての性質を有する。特に、溶接金属中のO量を低減して、靭性を向上させるのに有効である。従って、溶接金属の靭性確保を重視する用途の場合には、添加することが好ましい。ただし、溶接ワイヤ全質量に対する質量%で、5%超含有させると、スラグ剥離性、ビード形状および作業性が悪くなるため、本発明においてはその上限を5%とする。なお、CaF2は、0.5%未満では脱酸剤としての効果がなくなって靭性向上効果が明確でなくなるため、溶接金属の靭性を向上させる効果を期待する場合には、0.5%以上含有させることが好ましい。
[CaF 2 of filling flux: 5% or less (including 0%)]
CaF 2 has properties as a slag forming agent and a deoxidizing agent. In particular, it is effective in reducing the amount of O in the weld metal and improving toughness. Therefore, it is preferable to add in the case of an application that places importance on ensuring the toughness of the weld metal. However, if the content is more than 5% by mass with respect to the total mass of the welding wire, the slag peelability, bead shape and workability deteriorate, so the upper limit is made 5% in the present invention. When CaF 2 is less than 0.5%, the effect as a deoxidizer is lost and the effect of improving the toughness is not clear. Therefore, when the effect of improving the toughness of the weld metal is expected, 0.5% or more It is preferable to contain.

[充填フラックスのTiO2:15%以下(0%を含む。)]
TiO2は、スラグ形成剤、アーク安定剤としての働きを有し、良好な作業性を確保し、ビード形状を良好する必要がある場合には有用である。また、TiO2は溶接金属の金属組織中の粒内フェライトを形成する生成核となる効果がある。ただし、溶接ワイヤ全質量に対する質量%が15%を超えると、フラックス充填剤の比率(充填率)が一定の場合は他の充填剤を含有できなくなって、成分調整が困難となり、他の充填剤の量をそのままで、TiO2の量を15%超とすると、充填剤の充填率が過大となってワイヤ製造性が悪化するため、好ましくない。また、溶接金属中のO量や粗大な酸化物が増加して溶接金属の靭性に悪影響を及ぼす。よって、本発明においてはフラックス充填剤中にTiO2を含有させる場合、その上限を、溶接ワイヤ全質量に対する質量%で、15%とする。なお、TiO2はアークの安定性を保ち、被包性が良好なスラグを形成するに有効であるため、下向きだけでなく、立向上進等を含んだ全姿勢用のワイヤを目的とする場合には、TiO2は0.5%以上添加することが好ましい。
[TiO 2 of filling flux: 15% or less (including 0%)]
TiO 2 has a function as a slag forming agent and an arc stabilizer, and is useful when it is necessary to ensure good workability and to improve the bead shape. In addition, TiO 2 has an effect as a nucleus for forming intragranular ferrite in the metal structure of the weld metal. However, if the mass% with respect to the total mass of the welding wire exceeds 15%, when the ratio (filling rate) of the flux filler is constant, it becomes impossible to contain other fillers, making it difficult to adjust the components, and other fillers. If the amount of TiO 2 is more than 15%, the filler filling rate becomes excessive and wire manufacturability deteriorates, which is not preferable. In addition, the amount of O in the weld metal and coarse oxides increase and adversely affect the toughness of the weld metal. Therefore, in the present invention, when TiO 2 is contained in the flux filler, the upper limit is 15% in terms of mass% with respect to the total mass of the welding wire. Note that TiO 2 is effective for forming a slag that maintains arc stability and has good enveloping properties. In addition, it is preferable to add 0.5% or more of TiO 2 .

[充填フラックスのSiO2:2%以下(0%を含む。)]
[充填フラックスのZrO2:2%以下(0%を含む。)]
SiO2およびZrO2はともに、TiO2と類似の作用を有する。ただし、各々、溶接ワイヤ全質量に対する質量%が2%を超えると、溶接金属中に粗大な酸化物を形成して靭性を劣化させる恐れがあるため、本発明においては、その上限を、各々、溶接ワイヤ全質量に対する質量%で2%に限定する。
[Filling flux SiO 2 : 2% or less (including 0%)]
[ZrO 2 of filled flux: 2% or less (including 0%)]
Both SiO 2 and ZrO 2 have a similar action as TiO 2 . However, when the mass% with respect to the total mass of the welding wire exceeds 2%, there is a risk that a coarse oxide is formed in the weld metal and the toughness is deteriorated. It is limited to 2% by mass% with respect to the total mass of the welding wire.

[充填フラックスのAl23:2%以下(0%を含む。)]
Al23は、脱酸作用が強く、溶接金属中のOを低減して靭性向上に寄与し得る。ただし、溶接ワイヤ全質量に対する質量%で2%を超えて充填フラックス中に含有させると、O低減効果が飽和する一方、粗大なAl23が形成されて逆に溶接金属の靭性を劣化させる恐れがあるため、本発明においては、Al23を充填フラックス中に含有させる場合は、その上限を、溶接ワイヤ全質量に対する質量%で2%とする。
[Al 2 O 3 of filling flux: 2% or less (including 0%)]
Al 2 O 3 has a strong deoxidation action, and can contribute to improvement of toughness by reducing O in the weld metal. However, when the content of the welding wire exceeds 2% by mass with respect to the total mass of the welding wire, the effect of reducing O is saturated, while coarse Al 2 O 3 is formed and conversely deteriorates the toughness of the weld metal. Therefore, in the present invention, when Al 2 O 3 is contained in the filling flux, the upper limit is set to 2% in terms of mass% with respect to the total mass of the welding wire.

[CaF2、TiO2、SiO2、ZrO2、Al23の含有量の合計]
なお、上記、CaF2、TiO2、SiO2、ZrO2、Al23は、個別には上記理由により含有範囲を規定した上で、選択的に用いることができるが、フラックス入り溶接ワイヤとしての特長である、良好な作業性、良好なビード形状、さらには全姿勢性を確保するためのスラグ確保等々のためには、全含有量の上限、下限を規定する必要はある。すなわち、CaF2、TiO2、SiO2、ZrO2、Al23の含有量の合計が溶接ワイヤ全質量に対する質量%で、0.5%未満であると、溶接中に溶鋼を支持し、外気から保護してくれるスラグの形成量が十分でないため、特性劣化、ビード形状劣化、作業性の劣化を生じる恐れがある。一方、CaF2、TiO2、SiO2、ZrO2、Al23の含有量の合計が溶接ワイヤ全質量に対する質量%で、20%超であると、スラグ形成量が過大となって、作業性を阻害したり、ワイヤ製造性を劣化させるため、好ましくない。従って、本発明においては、CaF2、TiO2、SiO2、ZrO2、Al23の含有量の合計を溶接ワイヤ全質量に対する質量%で、0.5〜20%に限定する。
[Total content of CaF 2 , TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 ]
The CaF 2 , TiO 2 , SiO 2 , ZrO 2 , and Al 2 O 3 can be selectively used after individually defining the content range for the above reasons. In order to ensure good workability, good bead shape, and secure slag for ensuring all postures, etc., it is necessary to define the upper and lower limits of the total content. That is, when the total content of CaF 2 , TiO 2 , SiO 2 , ZrO 2 , and Al 2 O 3 is less than 0.5% by mass with respect to the total mass of the welding wire, the molten steel is supported during welding, Since the amount of slag that protects from the outside air is not sufficient, there is a risk of characteristic deterioration, bead shape deterioration, and workability deterioration. On the other hand, if the total content of CaF 2 , TiO 2 , SiO 2 , ZrO 2 , and Al 2 O 3 is mass% with respect to the total mass of the welding wire and exceeds 20%, the amount of slag formation is excessive, This is unfavorable because it hinders the properties and deteriorates the wire manufacturability. Therefore, in the present invention, the total content of CaF 2 , TiO 2 , SiO 2 , ZrO 2 , and Al 2 O 3 is limited to 0.5 to 20% in mass% with respect to the total mass of the welding wire.

また、本発明が目的とする溶接金属の高温強度と靭性の確保の観点からは、上記フッ化物や酸化物、さらに成分調整用の金属、合金を合わせた充填フラックスの割合、すなわち、ワイヤ全質量に対する充填フラックスの質量%(以降、充填率)は特に限定する必要はないが、成分調整の自由度を確保する観点からは下限を2%、ワイヤの製造性の観点からは上限を25%とすることが好ましい。   In addition, from the viewpoint of ensuring the high temperature strength and toughness of the weld metal that is the object of the present invention, the ratio of the filling flux including the above-mentioned fluorides and oxides, further the metal for adjusting the component, and the alloy, that is, the total mass of the wire The mass% (hereinafter referred to as the filling rate) of the filling flux with respect to is not particularly limited, but the lower limit is 2% from the viewpoint of ensuring the freedom of component adjustment, and the upper limit is 25% from the viewpoint of wire manufacturability. It is preferable to do.

以上が、本発明の耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤにおける必須要件に関する限定理由である。なお、本発明においては、溶接金属の室温強度や高温強度の調整、靭性の安定確保や延性向上等の目的のために、必要に応じて、Cr、Ni、Cu、Co、Bの1種または2種以上、さらには、Ca、Mg、REMの1種または2種以上を、鋼製外皮および/または充填フラックス中に含有させることが可能である。上記選択元素は、全て、鋼製外皮と充填フラックスとの合計量で限定すればよい。   The above is the limitation reason regarding the essential requirements in the flux-cored welding wire for gas shielded arc welding of the refractory steel of the present invention. In the present invention, for the purpose of adjusting the room temperature strength and high temperature strength of the weld metal, ensuring toughness stability, improving ductility, etc., one kind of Cr, Ni, Cu, Co, B or Two or more kinds, and further, one or more kinds of Ca, Mg, and REM can be contained in the steel outer sheath and / or the filling flux. All the above selected elements may be limited by the total amount of the steel outer shell and the filling flux.

[溶接ワイヤ全体のCr:0.01〜3%]
Crは、室温強度を高めるのに有効な元素である。一般的には高温強度も高める元素であるが、700℃以上の高温強度に対しては効果が小さい。その一方で溶接金属中に過剰に含有すると、靭性を大きく劣化させる悪影響も有する。溶接金属の室温強度調整等のために、ワイヤ中に含有させる場合、効果を明確に発揮するためには、ワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.01%以上必要である。一方、鋼製外皮中と充填フラックス中の合計質量で3%を超えると、溶接金属の靭性を劣化させるため、好ましくない。そこで、本発明においては、ワイヤ中にCrを含有させる場合、ワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.01〜3%に限定する。
[Cr of welding wire as a whole: 0.01 to 3%]
Cr is an element effective for increasing the room temperature strength. In general, it is an element that also increases the high-temperature strength, but is less effective for high-temperature strength of 700 ° C. or higher. On the other hand, when it contains excessively in a weld metal, it has the bad influence which deteriorates toughness greatly. In order to clearly show the effect when it is contained in the wire for adjusting the room temperature strength of the weld metal, etc., 0.01% or more in the total mass% in the steel outer shell and the filling flux with respect to the total mass of the wire is necessary. On the other hand, if the total mass in the steel outer shell and the filling flux exceeds 3%, the toughness of the weld metal is deteriorated, which is not preferable. Therefore, in the present invention, when Cr is contained in the wire, the total mass% in the steel outer shell and the filling flux with respect to the total mass of the wire is limited to 0.01 to 3%.

[溶接ワイヤ全体のNi:0.01〜3%]
Niは、一般的に鋼の靭性向上に極めて有効な元素である。本発明においても、必要に応じて溶接ワイヤ中にNiを含有させることが可能である。Niによる高靭化効果を明確に享受するためには、Niはワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.01%以上含有させる必要がある。一方、3%を超えて含有させると、加熱変態点(Ac1変態点)の低下が顕著となって、700℃でオーステナイトが生成するため、700℃以上の高温強度を大きく低減する恐れがある。そのため、本発明においては、ワイヤ中にNiを含有させる場合、ワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.01〜3%に限定する。
[Ni in the entire welding wire: 0.01 to 3%]
Ni is an element that is generally extremely effective for improving the toughness of steel. Also in the present invention, it is possible to contain Ni in the welding wire as necessary. In order to clearly enjoy the toughening effect of Ni, it is necessary to contain 0.01% or more of Ni in the total mass% in the steel outer shell and the filling flux with respect to the total mass of the wire. On the other hand, if the content exceeds 3%, the heating transformation point (Ac1 transformation point) is significantly lowered and austenite is generated at 700 ° C., so that the high-temperature strength at 700 ° C. or more may be greatly reduced. Therefore, in the present invention, when Ni is contained in the wire, the total mass% in the steel outer shell and the filling flux is limited to 0.01 to 3% with respect to the total mass of the wire.

[溶接ワイヤ全体のCu:0.01〜1.5%]
Cuは、室温強度向上に有効な元素である。本発明においても、必要に応じて溶接ワイヤ中にCuを含有させることが可能である。Cuの効果を明確に発揮するためには、Cuはワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.01%以上含有させる必要がある。一方、1.5%を超えて含有させると、溶接金属の靭性や耐高温割れ性を劣化させる恐れがあるため、本発明においては、ワイヤ中にCuを含有させる場合、ワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.01〜1.5%に限定する。
[Cu of welding wire as a whole: 0.01 to 1.5%]
Cu is an element effective for improving the room temperature strength. Also in this invention, it is possible to contain Cu in a welding wire as needed. In order to clearly exhibit the effect of Cu, Cu needs to be contained in an amount of 0.01% or more in the total mass% in the steel outer shell and the filling flux with respect to the total mass of the wire. On the other hand, if the content exceeds 1.5%, the toughness and hot cracking resistance of the weld metal may be deteriorated. Therefore, in the present invention, when Cu is contained in the wire, it is made of steel with respect to the total mass of the wire. The total mass% in the outer skin and the filling flux is limited to 0.01 to 1.5%.

[溶接ワイヤ全体のCo:0.01〜6%]
Coは、加熱変態点を大きく低下することなく、室温強度を向上できる元素である。本発明においても、必要に応じて溶接ワイヤ中にCoを含有させることが可能である。Coの効果を明確に発揮するためには、Coはワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.01%以上含有させる必要がある。一方、6%を超えて含有させると、溶接金属の靭性や耐高温割れ性を劣化させる恐れがあるため、本発明においては、ワイヤ中にCoを含有させる場合、ワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.01〜6%に限定する。
[Co of welding wire as a whole: 0.01 to 6%]
Co is an element that can improve the room temperature strength without greatly lowering the heat transformation point. Also in the present invention, Co can be contained in the welding wire as necessary. In order to clearly exhibit the effect of Co, it is necessary to contain Co in a total mass% of 0.01% or more in the steel outer shell and the filling flux with respect to the total mass of the wire. On the other hand, if the content exceeds 6%, the toughness and hot cracking resistance of the weld metal may be deteriorated. Therefore, in the present invention, when Co is contained in the wire, in the steel outer shell relative to the total mass of the wire. And the total mass% in the filling flux is limited to 0.01 to 6%.

[溶接ワイヤ全体のB:0.0005〜0.015%]
Bは、微量で焼入性を高めることで溶接金属組織の微細化に効果があり、室温強度や靭性向上に有効な元素である。本発明においても、必要に応じて、溶接ワイヤ中にBを含有させることが可能である。Bの効果を明確に発揮するためには、Bは、ワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.0005%以上含有させる必要がある。一方、0.015%を超えて含有させると、溶接金属の靭性や高温延性を劣化させる恐れがあるため、本発明においては、ワイヤ中にBを含有させる場合、ワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で0.0005〜0.015%に限定する。
[B of welding wire as a whole: 0.0005 to 0.015%]
B is an element effective in making the weld metal structure fine by increasing the hardenability in a small amount and effective in improving the room temperature strength and toughness. Also in this invention, it is possible to contain B in a welding wire as needed. In order to clearly exhibit the effect of B, it is necessary to contain B in an amount of 0.0005% or more in the total mass% in the steel outer shell and the filling flux with respect to the total mass of the wire. On the other hand, if the content exceeds 0.015%, the toughness and high-temperature ductility of the weld metal may be deteriorated. Therefore, in the present invention, when B is contained in the wire, in the steel outer shell relative to the total mass of the wire. And the total mass% in the filling flux is limited to 0.0005 to 0.015%.

[溶接ワイヤ全体のCa、Mg、REM量]
Ca、Mg、REMは、いずれも硫化物の構造を変化させ、また溶接金属中での硫化物、酸化物のサイズを微細化して、延性および靭性向上に有効である。その効果を発揮するための下限の含有量は、ワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で、いずれも0.0002%である。一方、過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性の劣化を招くため、また、溶接ビード形状の劣化、溶接性の劣化の可能性も生じるため、上限をワイヤ全質量に対する鋼製外皮中と充填フラックス中の合計質量%で、Caは0.1%、Mg、REMは1%とする。なお、Caについては、充填フラックス中にCaF2として含有するものもあるが、この場合のCaF2はここで述べるCaとは目的、効果が異なるため、除外する。ここでのCaは、純Caあるいは、Caを含有する母合金、Ca酸化物等、CaF2以外であればいずれの形態でも構わない。他の元素も特に断らない限り、存在形態は問わない。
[Ca, Mg, REM amount of the entire welding wire]
Ca, Mg, and REM are all effective in improving ductility and toughness by changing the structure of sulfides and reducing the size of sulfides and oxides in the weld metal. The lower limit content for exhibiting the effect is the total mass% in the steel outer shell and the filling flux with respect to the total mass of the wire, and both are 0.0002%. On the other hand, excessive content causes coarsening of sulfides and oxides, leading to deterioration of ductility and toughness, and also the possibility of deterioration of weld bead shape and weldability. The total mass% in the steel outer shell and the filling flux with respect to the mass is 0.1% for Ca and 1% for Mg and REM. Note that the Ca, there is also one containing as CaF 2 in the filled flux, CaF 2 the purpose is the Ca described here in this case, since the effect is different, excluded. Ca may be in any form as long as it is other than CaF 2 , such as pure Ca, a mother alloy containing Ca, Ca oxide, or the like. Existence of other elements is not limited unless otherwise specified.

本発明の効果を実施例によりさらに詳細に説明する。   The effects of the present invention will be described in more detail with reference to examples.

表1に示す化学組成を有する板厚25mmの、700から800℃での耐火特性を有する種々の鋼板1を、図1に示す寸法の開先2に開先加工し、溶接に供した。裏当金3も鋼板1と同じ鋼板を使用した。溶接は入熱3kJ/mmの多層盛CO2溶接とした。 Various steel plates 1 having a chemical composition shown in Table 1 and having a thickness of 25 mm and having fire resistance at 700 to 800 ° C. were grooved into a groove 2 having the dimensions shown in FIG. 1 and subjected to welding. The backing metal 3 was also the same steel plate as the steel plate 1. The welding was multi-layered CO 2 welding with a heat input of 3 kJ / mm.

使用した溶接ワイヤは、表2に示す鋼製外皮を用いて、溶接ワイヤ全体の組成が表3に示す組成となるように、充填フラックスの充填率、組成を調整した。溶接ワイヤは全ていわゆるシームレスタイプとしたが、本発明の効果は溶接ワイヤのタイプがシームレスタイプでもかしめタイプであっても何ら変わらない。   The welding wire used was adjusted to the filling rate and composition of the filling flux using the steel outer sheath shown in Table 2 so that the composition of the entire welding wire would be the composition shown in Table 3. Although all the welding wires are so-called seamless types, the effect of the present invention is not changed even if the type of the welding wire is a seamless type or a caulking type.

Figure 2009018316
Figure 2009018316
Figure 2009018316
Figure 2009018316

Figure 2009018316
Figure 2009018316

Figure 2009018316
Figure 2009018316
Figure 2009018316
Figure 2009018316

表2のうち、外皮番号HA1〜HA9は本発明を満足している鋼製外皮であり、外皮番号HB1〜HB6は本発明を満足していない比較例としての鋼製外皮である。溶接ワイヤは全て直径1.4mmに伸線して溶接に供した。表3のうち、ワイヤ番号WA1〜WA15は外皮組成も本発明を満足し、かつ、溶接ワイヤ全体としての要件も満足している溶接ワイヤであり、ワイヤ番号WB1〜WB16は本発明の要件を満足していない比較の溶接ワイヤである。表3には、溶接ワイヤの明細、すなわち、鋼製外皮の種類、原料、フラックスの充填率、溶接ワイヤ全体の化学組成ならびにワイヤ伸線時の断線有無で評価したワイヤ製造性も併せて示す。   In Table 2, skin numbers HA1 to HA9 are steel skins satisfying the present invention, and skin numbers HB1 to HB6 are steel skins as comparative examples not satisfying the present invention. All the welding wires were drawn to a diameter of 1.4 mm and subjected to welding. In Table 3, the wire numbers WA1 to WA15 are welding wires that satisfy the present invention in terms of the outer skin composition and also satisfy the requirements as a whole welding wire, and the wire numbers WB1 to WB16 satisfy the requirements of the present invention. It is a comparative welding wire that has not. Table 3 also shows details of the welding wire, that is, the steel manufactured type, raw material, flux filling rate, chemical composition of the entire welding wire, and wire manufacturability evaluated by the presence or absence of wire breakage during wire drawing.

溶接後の試験体から図2に示す位置で高温引張試験片4と2mmVノッチシャルピー衝撃試験片5を採取し、それぞれの試験に供した。試験片採取位置は両試験片とも溶接金属の中央としている。引張試験の試験温度は700℃とし、2mmVノッチシャルピー衝撃試験は0℃で試験を行った。   A high-temperature tensile test piece 4 and a 2 mmV notch Charpy impact test piece 5 were sampled from the test specimen after welding at the position shown in FIG. 2 and used for each test. The specimen collection position is the center of the weld metal for both specimens. The test temperature of the tensile test was 700 ° C., and the 2 mmV notch Charpy impact test was performed at 0 ° C.

試験結果を表4に示す。引張試験は繰り返し数2、2mmVノッチシャルピー繰り返し数3で、いずれも平均値を表4に示している。表4には、併せて溶接作業性、ビード形状、等を調査した結果を示す。溶接作業性は溶接中目視により、ビード形状は継手外観の目視ならびに断面マクロ組織観察により評価した。   The test results are shown in Table 4. The tensile test was performed with 2 repetitions and 2 mmV notch Charpy repetitions, and the average values are shown in Table 4. Table 4 also shows the results of investigation of welding workability, bead shape, and the like. Welding workability was evaluated by visual inspection during welding, and the bead shape was evaluated by visual inspection of the joint appearance and cross-sectional macrostructure observation.

Figure 2009018316
Figure 2009018316

表4のうち、継手JA1〜JA15は本発明の溶接ワイヤを用いて作製した継手の溶接金属の例であり、継手JB1〜JB16は本発明を満足していない比較例の溶接ワイヤを用いて作製した継手の例である。表4から明らかなように、本発明の溶接ワイヤによる継手JA1〜JA15の溶接金属は、700℃における0.2%耐力が約220MPaよりも十分高く、0℃におけるシャルピー試験の吸収エネルギーも27Jよりも十分高く、700℃における耐火性とともに構造材料として十分な安全性を有することが明らかである。併せて、本発明による溶接金属は、溶接作業性やビード形状も良好で問題ない。   Among Table 4, joints JA1 to JA15 are examples of weld metal of joints produced using the welding wire of the present invention, and joints JB1 to JB16 are produced using welding wires of comparative examples not satisfying the present invention. This is an example of a joint. As is apparent from Table 4, the weld metal of the joints JA1 to JA15 using the welding wire of the present invention has a 0.2% yield strength at 700 ° C. sufficiently higher than about 220 MPa, and the absorbed energy of the Charpy test at 0 ° C. is also from 27J. It is clear that it has a sufficient safety as a structural material together with a fire resistance at 700 ° C. In addition, the weld metal according to the present invention is satisfactory in welding workability and bead shape and has no problem.

一方、本発明を満足していない比較例の溶接ワイヤを用いて作製した継手JB1〜JB16の溶接金属は、700℃強度、シャルピー衝撃特性、作業性、ビード形状のいずれかが本発明に比べて大きく劣ることが明らかである。   On the other hand, the weld metal of the joints JB1 to JB16 manufactured using the welding wire of the comparative example not satisfying the present invention has one of 700 ° C. strength, Charpy impact characteristics, workability, and bead shape as compared with the present invention. It is clear that it is significantly worse.

すなわち、継手JB1は、鋼製外皮のC含有量が過大であるために、溶接金属中のC含有量が必要以上に多くなり、溶接金属の靱性(0℃におけるシャルピー吸収エネルギー)が劣る。   That is, in the joint JB1, the C content in the steel outer shell is excessive, so that the C content in the weld metal increases more than necessary, and the toughness (Charpy absorbed energy at 0 ° C.) of the weld metal is inferior.

継手JB2は、逆に鋼製外皮のC含有量が過小であるために、溶接金属中のC含有量が過小となり、耐火特性に有効な炭化物の析出が不十分となるため、Nb当量は本発明を満足しているものの、高温強度が700℃耐火用としては不十分である。   On the other hand, the joint JB2 has an excessively low C content in the steel outer shell, so that the C content in the weld metal is too low and the precipitation of carbides effective for fire resistance is insufficient. Although satisfying the invention, the high temperature strength is insufficient for 700 ° C. fire resistance.

継手JB3は、鋼製外皮のSi含有量が過大であるために、溶接金属中のSi含有量が必要以上に多くなり、溶接金属の靱性が劣る。   In the joint JB3, since the Si content of the steel outer shell is excessive, the Si content in the weld metal is increased more than necessary, and the toughness of the weld metal is inferior.

継手JB4は、鋼製外皮のMn含有量が過大であるために、溶接金属中のMn含有量が必要以上に多くなり、溶接金属の靱性が劣る。また、溶接金属中のMn含有量が過大であるため、加熱温度が低くなっていることに起因して、700℃における0.2%耐力が、目標の220MPaは上回っているものの、Nb当量の割には低めとなっている。さらに、Mnが過大に含まれると伸線加工における鋼の硬化が大きく、伸線中に断線が生じやすいため、ワイヤの製造性にも問題がある。   In the joint JB4, since the Mn content in the steel outer shell is excessive, the Mn content in the weld metal increases more than necessary, and the toughness of the weld metal is inferior. Moreover, since the Mn content in the weld metal is excessive, the 0.2% proof stress at 700 ° C. exceeds the target 220 MPa due to the lower heating temperature. It is relatively low. Furthermore, if Mn is excessively contained, the steel is hardened in the wire drawing process, and wire breakage is likely to occur during wire drawing.

継手JB5は、鋼製外皮のP含有量が過大であるために、溶接金属中のP含有量が必要以上に多くなり、溶接金属の靱性が劣る。   In the joint JB5, since the P content in the steel outer shell is excessive, the P content in the weld metal is more than necessary, and the toughness of the weld metal is inferior.

継手JB6は、鋼製外皮のS含有量が過大であるために、溶接金属中のS含有量が必要以上に多くなり、溶接金属の靱性が劣る。また、Sが過大に含まれると鋼の延性を著しく低下させるため、伸線中に断線が生じ、ワイヤの製造性も劣る。   In the joint JB6, since the S content in the steel outer shell is excessive, the S content in the weld metal is increased more than necessary, and the toughness of the weld metal is inferior. Further, if S is excessively contained, the ductility of the steel is remarkably reduced, so that disconnection occurs during wire drawing, and the productivity of the wire is also inferior.

継手JB7は、溶接ワイヤ中に、高温強度を発現するために必要な、Mo、W、Nb、V、Ta、Ti(TiO2以外)を含有していないため、溶接金属の高温強度が本発明に比べて著しく低いため、700〜800℃耐火用の溶接ワイヤとして好ましくない。 Since the joint JB7 does not contain Mo, W, Nb, V, Ta, and Ti (other than TiO 2 ) necessary for expressing the high temperature strength in the welding wire, the high temperature strength of the weld metal is the present invention. Therefore, it is not preferable as a welding wire for 700 to 800 ° C. fire resistance.

継手JB8は、溶接ワイヤ中に高温強度発現元素は含有されているものの、Nb当量(Nbeq.)が本発明範囲を逸脱して過小であるため、継手JB7と同様、高温強度が不十分である。   In the joint JB8, although an element exhibiting high-temperature strength is contained in the welding wire, the Nb equivalent (Nbeq.) Is too small to deviate from the scope of the present invention, so that the high-temperature strength is insufficient as in the joint JB7. .

継手JB9は、継手JB9とは逆に、溶接金属中のMo、W、Nb、V、Ta、Ti(TiO2以外)各々の含有量は本発明を満足しているものの、Nb当量(Nbeq.)が本発明範囲を逸脱して過大であるため、溶接金属の高温強度は十分高くはあるが、靭性が著しく劣るため、構造用材料の溶接ワイヤとしては好ましくない。 Contrary to the joint JB9, the joint JB9 has an Nb equivalent (Nbeq.) Although the contents of Mo, W, Nb, V, Ta, and Ti (other than TiO 2 ) in the weld metal satisfy the present invention. ) Deviates from the scope of the present invention, so that the high temperature strength of the weld metal is sufficiently high, but the toughness is remarkably inferior, so it is not preferable as a welding wire for structural materials.

継手JB10は、ワイヤ中の酸化物(TiO2、SiO2、ZrO2、Al23)とCaF2との合計量が過小な例である。この場合、フラックス入りワイヤとしての特長を発現できず、ビード形状が本発明のフラックス入りワイヤに比べて劣るため、好ましくない。 The joint JB10 is an example in which the total amount of oxide (TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 ) and CaF 2 in the wire is too small. In this case, the characteristics as a flux-cored wire cannot be expressed, and the bead shape is inferior to the flux-cored wire of the present invention.

継手JB11は、逆にワイヤ中の酸化物(TiO2、SiO2、ZrO2、Al23)とCaF2との合計量が過大な例である。この場合もビード形状が劣化する上、ワイヤ伸線中に断線を生じるため、好ましくない。 On the contrary, the joint JB11 is an example in which the total amount of oxide (TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 ) and CaF 2 in the wire is excessive. Also in this case, the bead shape deteriorates and breakage occurs during wire drawing, which is not preferable.

継手JB12は、ワイヤ中のCaF2量が過大であるため、溶接作業性が著しく劣る。すなわち、溶接中はスパッタが多量に生じ、生成したスラグが溶接ビードに固着して剥離が困難となるため、好ましくない。 Since the joint JB12 has an excessive amount of CaF 2 in the wire, the welding workability is remarkably inferior. That is, a large amount of spatter is generated during welding, and the generated slag adheres to the weld bead and is difficult to peel off.

継手JB13は、ワイヤ中の酸化物の内、TiO2が過大に含有されている例である。この場合、ワイヤの伸線中に断線を生じる頻度が多くなるため、好ましくない。 The joint JB13 is an example in which TiO 2 is excessively contained in the oxide in the wire. This is not preferable because the frequency of occurrence of disconnection during wire drawing increases.

継手JB14は、ワイヤ中の酸化物の内、SiO2が過大に含有されている例である。この場合、溶接金属中に粗大な酸化物が形成され、これが靭性を著しく劣化させるため、好ましくない。 The joint JB14 is an example in which SiO 2 is excessively contained in the oxide in the wire. In this case, a coarse oxide is formed in the weld metal, which is not preferable because the toughness is remarkably deteriorated.

継手JB15は、ワイヤ中の酸化物の内、ZrO2が過大に含有されている例である。この場合、溶接金属中に粗大な酸化物が形成され、これが靭性を著しく劣化させるため、好ましくない。 The joint JB15 is an example in which ZrO 2 is excessively contained in the oxide in the wire. In this case, a coarse oxide is formed in the weld metal, which is not preferable because the toughness is remarkably deteriorated.

継手JB16は、ワイヤ中の酸化物の内、Al23が過大に含有されている例である。この場合、溶接金属中に粗大な酸化物が形成され、これが靭性を著しく劣化させるため、好ましくない。 The joint JB16 is an example in which Al 2 O 3 is excessively contained in the oxide in the wire. In this case, a coarse oxide is formed in the weld metal, which is not preferable because the toughness is remarkably deteriorated.

実施例に用いた溶接継手の開先形状を断面図で模式的に示す図である。It is a figure which shows typically the groove shape of the welded joint used for the Example with sectional drawing. 溶接継手からの高温引張試験片および2mmVノッチシャルピー衝撃試験片の採取要領を模式的に示す図である。It is a figure which shows typically the extraction | collection point of the high temperature tensile test piece from a welded joint, and a 2 mmV notch Charpy impact test piece. 溶接金属の700℃における0.2%耐力の向上に対する、溶接ワイヤ中のNbあるいはTi含有量の効果を比較した図である。It is the figure which compared the effect of Nb or Ti content in a welding wire with respect to the improvement of 0.2% yield strength in 700 degreeC of a weld metal. (1)式で示されるNb当量と溶接金属の700℃における0.2%耐力との相関を示した図である。It is the figure which showed the correlation with Nb equivalent shown by (1) Formula, and the 0.2% yield strength in 700 degreeC of a weld metal.

符号の説明Explanation of symbols

1 鋼板
2 開先
3 裏当金
4 高温引張試験片
5 2mmVノッチシャルピー衝撃試験片
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Groove 3 Backing metal 4 High temperature tensile test piece 5 2mmV notch Charpy impact test piece

Claims (3)

鋼製外皮内にフラックスを充填してなる耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤにおいて、
溶接ワイヤ全体として、質量%で、
C :0.002〜0.2%、
Si:0.005〜1%(充填フラックス中のSiO2を除く。)、
Mn:0.1〜2.5%、
P :0.02%以下、
S :0.01%以下、
Al:0.001〜0.2%(充填フラックス中のAl23を除く。)、
N :0.001〜0.015%
を含有し、さらに、
Mo:0.01〜2%、
W :0.01〜2%、
Nb:0.005〜0.1%、
V :0.005〜0.5%、
Ta:0.005〜0.5%、
Ti:0.005〜0.5%(充填フラックス中のTiO2を除く。)
の1種または2種以上を含有し、さらに、下記(1)式で示されるNb当量(Nbeq.)が0.05〜0.2%であり、残部がFeおよび不可避不純物からなる成分組成を有し、
かつ、前記鋼製外皮は、外皮全質量に対する質量%で、
C :0.002〜0.2%、
Si:0.005〜1%、
Mn:0.1〜2.5%、
P :0.02%以下、
S :0.01%以下、
Al:0.001〜0.1%、
N :0.001〜0.015%、
Mo:2%以下(0%を含む。)、
W :2%以下(0%を含む。)、
Nb:0.1%以下(0%を含む。)、
V :0.5%以下(0%を含む。)、
Ta:0.5%以下(0%を含む。)、
Ti:0.2%以下(0%を含む。)
を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、
前記充填フラックスは、ワイヤ全質量に対する質量%で、
CaF2: 5%以下(0%を含む。)、
TiO2:15%以下(0%を含む。)、
SiO2: 2%以下(0%を含む。)、
ZrO2: 2%以下(0%を含む。)、
Al23:2%以下(0%を含む。)
を含有し、さらに、上記、CaF2、TiO2、SiO2、ZrO2、Al23の含有量の合計が、0.5〜20%であり、残部が金属粉および不可避不純物からなる成分組成を有することを特徴とする、耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤ。
Nbeq.=Nb%+V%/5+Mo%/10+W%/10+Ta%/5
+Ti%/5 ・・・・・・・・・・(1)
ただし、Nb%、Mo%、W%、Ta%、Ti%は、それぞれ、溶接ワイヤ中に含有する各成分の質量%を示す。
In a flux-cored welding wire for gas shielded arc welding of refractory steel with a steel outer shell filled with flux,
As a whole welding wire,
C: 0.002 to 0.2%,
Si: 0.005 to 1% (excluding SiO 2 in the filling flux),
Mn: 0.1 to 2.5%
P: 0.02% or less,
S: 0.01% or less,
Al: 0.001 to 0.2% (excluding Al 2 O 3 in the filling flux),
N: 0.001 to 0.015%
In addition,
Mo: 0.01-2%
W: 0.01-2%
Nb: 0.005 to 0.1%,
V: 0.005-0.5%
Ta: 0.005 to 0.5%,
Ti: 0.005 to 0.5% (excluding TiO 2 in the filling flux)
And a component composition comprising Nb equivalent (Nbeq.) Of 0.05 to 0.2% represented by the following formula (1) and the balance of Fe and inevitable impurities: Have
And the steel outer shell is a mass% with respect to the total mass of the outer skin,
C: 0.002 to 0.2%,
Si: 0.005 to 1%
Mn: 0.1 to 2.5%
P: 0.02% or less,
S: 0.01% or less,
Al: 0.001 to 0.1%,
N: 0.001 to 0.015%,
Mo: 2% or less (including 0%),
W: 2% or less (including 0%),
Nb: 0.1% or less (including 0%),
V: 0.5% or less (including 0%),
Ta: 0.5% or less (including 0%),
Ti: 0.2% or less (including 0%)
And the balance has a component composition consisting of Fe and inevitable impurities,
The filling flux is the mass% with respect to the total mass of the wire,
CaF 2 : 5% or less (including 0%),
TiO 2 : 15% or less (including 0%),
SiO 2 : 2% or less (including 0%),
ZrO 2 : 2% or less (including 0%),
Al 2 O 3 : 2% or less (including 0%)
In addition, the total content of CaF 2 , TiO 2 , SiO 2 , ZrO 2 , and Al 2 O 3 is 0.5 to 20%, and the balance is composed of metal powder and inevitable impurities. A flux-cored welding wire for gas shielded arc welding of refractory steel, characterized by having a composition.
Nbeq. = Nb% + V% / 5 + Mo% / 10 + W% / 10 + Ta% / 5
+ Ti% / 5 (1)
However, Nb%, Mo%, W%, Ta%, and Ti% respectively represent mass% of each component contained in the welding wire.
さらに、ワイヤ全体として、質量%で、
Cr:0.01〜3%、
Ni:0.01〜3%、
Cu:0.01〜1.5%、
Co:0.01〜6%、
B :0.0005〜0.015%
の1種または2種以上を、鋼製外皮と充填フラックスの一方または両方に含有することを特徴とする、請求項1に記載の耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤ。
Furthermore, as a whole wire,
Cr: 0.01 to 3%,
Ni: 0.01 to 3%,
Cu: 0.01 to 1.5%,
Co: 0.01 to 6%
B: 0.0005 to 0.015%
The flux-cored welding wire for gas shielded arc welding of refractory steel according to claim 1, characterized in that one or more of these are contained in one or both of the steel outer shell and the filling flux.
さらに、ワイヤ全体として、質量%で、
Ca:0.0002〜0.1%(充填フラックス中のCaF2を除く。)、
Mg:0.0002〜1%、
REM:0.0002〜1%
の1種または2種以上を、鋼製外皮と充填フラックスの一方または両方に含有することを特徴とする、請求項1または2に記載の耐火鋼のガスシールドアーク溶接用フラックス入り溶接ワイヤ。
Furthermore, as a whole wire,
Ca: 0.0002 to 0.1% (excluding CaF 2 in the filling flux),
Mg: 0.0002 to 1%,
REM: 0.0002 to 1%
The flux-cored welding wire for gas shielded arc welding of refractory steel according to claim 1 or 2, wherein one or more of these are contained in one or both of the steel outer shell and the filling flux.
JP2007180941A 2007-07-10 2007-07-10 Flux-cored welding wire for gas shielded arc welding of refractory steel Expired - Fee Related JP5194593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180941A JP5194593B2 (en) 2007-07-10 2007-07-10 Flux-cored welding wire for gas shielded arc welding of refractory steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180941A JP5194593B2 (en) 2007-07-10 2007-07-10 Flux-cored welding wire for gas shielded arc welding of refractory steel

Publications (2)

Publication Number Publication Date
JP2009018316A true JP2009018316A (en) 2009-01-29
JP5194593B2 JP5194593B2 (en) 2013-05-08

Family

ID=40358414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180941A Expired - Fee Related JP5194593B2 (en) 2007-07-10 2007-07-10 Flux-cored welding wire for gas shielded arc welding of refractory steel

Country Status (1)

Country Link
JP (1) JP5194593B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131870A (en) * 2007-11-30 2009-06-18 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for submerged arc welding of low-temperature steel, and welding method using the same
JP2011025271A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Flux-cored wire
JP2011156565A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Flux-cored wire
CN102785003A (en) * 2012-07-26 2012-11-21 江苏大学 Method for overlaying iron-based surface composite material
JP2014193472A (en) * 2013-03-28 2014-10-09 Kobe Steel Ltd Flux-cored wire for gas shield arc welding
KR101510562B1 (en) 2013-12-06 2015-04-08 주식회사 포스코 Flux cored arc welding materials in order to develop corrosion resistance
WO2015083877A1 (en) * 2013-12-06 2015-06-11 주식회사 포스코 High corrosion resistance welded joint and welding material therefor
JP2015199106A (en) * 2014-04-10 2015-11-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding
JP2016078121A (en) * 2014-10-15 2016-05-16 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
CN105772983A (en) * 2016-01-18 2016-07-20 威县亚泰密封件有限公司 Flux-cored wire matched with high-strength bridge steel Q500qE and preparation method thereof
CN105817746A (en) * 2016-05-30 2016-08-03 安徽昌永得机械有限公司 900 MPa level high-strength steel gas shield welding process
KR101760828B1 (en) 2015-08-18 2017-07-24 현대종합금속 주식회사 Ni-BASE FLUX CORED WIRE WELDING CONSUMABLE
WO2018047879A1 (en) * 2016-09-06 2018-03-15 株式会社神戸製鋼所 Flux cored wire for gas shield arc welding and welding metal
CN108857140A (en) * 2018-07-26 2018-11-23 钢铁研究总院 Antidetonation is anti-corrosion 460MPa grades of welding wire for submerged-arc welding of fire-resistive construction structural steel
CN109048117A (en) * 2018-07-26 2018-12-21 钢铁研究总院 Antidetonation is anti-corrosion 690MPa grades of welding wire for submerged-arc welding of fire-resistive construction structural steel
JP2019058938A (en) * 2017-09-27 2019-04-18 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding, and manufacturing method of weld joint
JP2019058939A (en) * 2017-09-27 2019-04-18 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding, and manufacturing method of weld joint
JP2019104026A (en) * 2017-12-12 2019-06-27 日本製鉄株式会社 Flux-cored wire for gas shielded arc welding, and method for producing weld joint
CN111629859A (en) * 2018-01-16 2020-09-04 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding
CN111886110A (en) * 2018-03-29 2020-11-03 株式会社神户制钢所 Flux-cored wire
CN114346513A (en) * 2021-12-29 2022-04-15 西安理工大学 Copper-vanadium-based gas shielded welding wire for titanium steel composite structure transition layer and preparation method thereof
JP7406101B2 (en) 2020-04-27 2023-12-27 日本製鉄株式会社 Method of manufacturing thermal spray material and perforated plug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205298A (en) * 1989-02-01 1990-08-15 Nippon Steel Corp Flux cored wire for gas shielded arc welding of refractory steel
JPH02217195A (en) * 1989-02-18 1990-08-29 Nippon Steel Corp Flux cored wire for gas shielded arc welding for heat resistant steel
JP2003019595A (en) * 2001-07-06 2003-01-21 Kobe Steel Ltd Flux cored wire for gas-shielded arc welding for low alloy heat resistant steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205298A (en) * 1989-02-01 1990-08-15 Nippon Steel Corp Flux cored wire for gas shielded arc welding of refractory steel
JPH02217195A (en) * 1989-02-18 1990-08-29 Nippon Steel Corp Flux cored wire for gas shielded arc welding for heat resistant steel
JP2003019595A (en) * 2001-07-06 2003-01-21 Kobe Steel Ltd Flux cored wire for gas-shielded arc welding for low alloy heat resistant steel

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131870A (en) * 2007-11-30 2009-06-18 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for submerged arc welding of low-temperature steel, and welding method using the same
JP4558780B2 (en) * 2007-11-30 2010-10-06 日鐵住金溶接工業株式会社 Flux-cored wire for submerged arc welding of low-temperature steel
JP2011025271A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Flux-cored wire
JP2011156565A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Flux-cored wire
CN102785003A (en) * 2012-07-26 2012-11-21 江苏大学 Method for overlaying iron-based surface composite material
CN102785003B (en) * 2012-07-26 2015-07-08 江苏大学 Method for overlaying iron-based surface composite material
JP2014193472A (en) * 2013-03-28 2014-10-09 Kobe Steel Ltd Flux-cored wire for gas shield arc welding
KR101510562B1 (en) 2013-12-06 2015-04-08 주식회사 포스코 Flux cored arc welding materials in order to develop corrosion resistance
WO2015083877A1 (en) * 2013-12-06 2015-06-11 주식회사 포스코 High corrosion resistance welded joint and welding material therefor
JP2015199106A (en) * 2014-04-10 2015-11-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding
CN106794559A (en) * 2014-10-15 2017-05-31 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding
KR20170045352A (en) * 2014-10-15 2017-04-26 가부시키가이샤 고베 세이코쇼 Flux-cored wire for gas-shielded arc welding
JP2016078121A (en) * 2014-10-15 2016-05-16 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
US10569369B2 (en) 2014-10-15 2020-02-25 Kobe Steel, Ltd. Wire containing flux for gas shield arc welding
CN106794559B (en) * 2014-10-15 2019-12-20 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding
KR101962050B1 (en) 2014-10-15 2019-03-25 가부시키가이샤 고베 세이코쇼 Flux-cored wire for gas-shielded arc welding
KR101760828B1 (en) 2015-08-18 2017-07-24 현대종합금속 주식회사 Ni-BASE FLUX CORED WIRE WELDING CONSUMABLE
CN105772983A (en) * 2016-01-18 2016-07-20 威县亚泰密封件有限公司 Flux-cored wire matched with high-strength bridge steel Q500qE and preparation method thereof
CN105817746A (en) * 2016-05-30 2016-08-03 安徽昌永得机械有限公司 900 MPa level high-strength steel gas shield welding process
WO2018047879A1 (en) * 2016-09-06 2018-03-15 株式会社神戸製鋼所 Flux cored wire for gas shield arc welding and welding metal
CN109641326A (en) * 2016-09-06 2019-04-16 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding and welding metal
JP2019058938A (en) * 2017-09-27 2019-04-18 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding, and manufacturing method of weld joint
JP2019058939A (en) * 2017-09-27 2019-04-18 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding, and manufacturing method of weld joint
JP2019104026A (en) * 2017-12-12 2019-06-27 日本製鉄株式会社 Flux-cored wire for gas shielded arc welding, and method for producing weld joint
JP7027859B2 (en) 2017-12-12 2022-03-02 日本製鉄株式会社 Gas shield arc Welding flux-cored wire and welding joint manufacturing method
CN111629859A (en) * 2018-01-16 2020-09-04 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding
CN111886110A (en) * 2018-03-29 2020-11-03 株式会社神户制钢所 Flux-cored wire
CN109048117A (en) * 2018-07-26 2018-12-21 钢铁研究总院 Antidetonation is anti-corrosion 690MPa grades of welding wire for submerged-arc welding of fire-resistive construction structural steel
CN108857140A (en) * 2018-07-26 2018-11-23 钢铁研究总院 Antidetonation is anti-corrosion 460MPa grades of welding wire for submerged-arc welding of fire-resistive construction structural steel
JP7406101B2 (en) 2020-04-27 2023-12-27 日本製鉄株式会社 Method of manufacturing thermal spray material and perforated plug
CN114346513A (en) * 2021-12-29 2022-04-15 西安理工大学 Copper-vanadium-based gas shielded welding wire for titanium steel composite structure transition layer and preparation method thereof

Also Published As

Publication number Publication date
JP5194593B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5194593B2 (en) Flux-cored welding wire for gas shielded arc welding of refractory steel
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
JP5644984B1 (en) Flux-cored wire, welding method using flux-cored wire, manufacturing method of welded joint using flux-cored wire, and welded joint
JP4478059B2 (en) Gas shielded arc welding wire for refractory structural steel.
JP4638956B2 (en) Refractory steel material excellent in reheat embrittlement resistance and toughness of welded joint and method for producing the same
JP6252104B2 (en) Box pillar manufacturing method
JP6322093B2 (en) Flux-cored wire for gas shielded arc welding
WO2012108517A1 (en) Weld metal with excellent creep characteristics
US20160040274A1 (en) Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP2014147970A (en) Coated electrode
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP4571915B2 (en) Refractory thick steel plate and manufacturing method thereof
JP4495060B2 (en) Welded joints for refractory structures with excellent high-temperature strength and toughness
JP4082464B2 (en) Manufacturing method of high strength and high toughness large diameter welded steel pipe
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
WO2016009903A1 (en) Single submerged arc welding method for high chromium csef steel
JP2017047472A (en) Wire for submerged arc welding
JP6221628B2 (en) Box pillar manufacturing method
JP2006334637A (en) Submerged arc welding method for steel for fireproof construction
JP5726017B2 (en) Bond flux and welding method for submerged arc welding
JPH11147196A (en) Shielded metal arc welding method for high tensile strength steel
JP2007054878A (en) Coated arc welding rod for steel for fire-resisting construction
JP2007224404A (en) High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate
JP4424484B2 (en) Welded joints with excellent cold cracking resistance and steel for welding materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5194593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees