JPH05285691A - Submerged arc welding method for high-cr ferritic heat resisting steel - Google Patents

Submerged arc welding method for high-cr ferritic heat resisting steel

Info

Publication number
JPH05285691A
JPH05285691A JP9537992A JP9537992A JPH05285691A JP H05285691 A JPH05285691 A JP H05285691A JP 9537992 A JP9537992 A JP 9537992A JP 9537992 A JP9537992 A JP 9537992A JP H05285691 A JPH05285691 A JP H05285691A
Authority
JP
Japan
Prior art keywords
flux
wire
welding
toughness
exceeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9537992A
Other languages
Japanese (ja)
Other versions
JP2600043B2 (en
Inventor
Masahito Ogata
雅人 緒方
Hiroyuki Koike
弘之 小池
Satoyuki Miyake
聰之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4095379A priority Critical patent/JP2600043B2/en
Publication of JPH05285691A publication Critical patent/JPH05285691A/en
Application granted granted Critical
Publication of JP2600043B2 publication Critical patent/JP2600043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve the creep rupture strength and toughness of a weld metal by specifying the relation between the Co or Cu in a welding wire or flux and the contents of Mo, W, and Ni. CONSTITUTION:The compsn. of the wire is formed, by weight, of 0.03 to O.12% C, <=0.3% Si, 0.3 to 1.5% Mn, 8 to 13% Cr, 0.01 to 0.15% Nb, 0.03 to 0.40% V, 0.01 to 0.08% N, and the balance Fe and unavoidable impurities. The compsn. of the flux is formed of 10 to 30% CaF2, 10 to 40% either or both of CaO and MgO, 10 to 40% Al2O3 and 5 to 25% SiO2. The wire and the flux are so combined as to contain 0.3 to 1.6% Mo, 0.5 to 3.5% W, 0.05 to 1.2% Ni and 1.0 to 5.0% Co or Cu. Further, the wire and the flux are so combined as to contain Mo, W, Ni, Co or Cu in the relation of (Mo+W)/(Ni+Co or Cu) <=2.0. High-Cr ferritic heat resisting steels are submerged arc welded by the combination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い靱性を有する高強度
耐熱鋼の溶接材料に関するものであり、さらに詳しくは
高温におけるクリープ特性、靱性、耐割れ性に優れた溶
接金属を与える潜弧溶接用方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding material for high-strength heat-resistant steel having high toughness, and more specifically, for latent arc welding which provides a weld metal having excellent creep characteristics, toughness, and crack resistance at high temperatures. It is related to the method.

【0002】[0002]

【従来の技術】高温高能率型のエネルギープラント用鋼
材として、クリープ強度が極めて優れ且つオーステナイ
ト系ステンレス鋼に見られるような応力腐食割れの心配
が少ないフェライト系耐熱鋼の要望が強く、この種の材
料が使用され始めている。フェライト系耐熱鋼用に開発
されている溶接材料として、例えば特開昭60−257
991号公報に開示されている9Cr−Mo系鋼用溶接
ワイヤの如く溶接ワイヤ中のC,Si,Mn,Cr,M
o,Ni量を限定し、さらにNb,Vの1種または2種
を添加して(Nb+V)で0.3%以下とする溶接ワイ
ヤが提案されている。また、特開平2−280993号
公報では8〜12Cr系溶接材料の如くC,Si,M
n,Cr,Ni,Mo,W,V,Nb,Al,N,添加
量を限定しCr当量:13%以下とする溶接材料が提案
されている。しかしながらこれらの従来技術は大幅なク
リープ強度を向上しようとするものではなく、組織的に
はマルテンサイト相中にδフェライトを晶出することが
あり、この晶出したδフェライトは基地中マルテンサイ
トより著しく軟らかい相であり、このような軟らかい第
二相が硬い基地中に分散する場合、全体の衝撃特性は著
しく低下する。潜弧溶接のように大入熱で溶接する場合
は特にδフェライトを生成しやすく、そのために溶接金
属の靱性を低下させるという欠点を有している。
2. Description of the Related Art As a steel material for high temperature and high efficiency type energy plants, there is a strong demand for a ferritic heat resistant steel having excellent creep strength and less fear of stress corrosion cracking as seen in austenitic stainless steel. The material is starting to be used. As a welding material developed for ferritic heat-resistant steel, for example, JP-A-60-257 is used.
C, Si, Mn, Cr, M in a welding wire such as the 9Cr-Mo steel welding wire disclosed in Japanese Patent No. 991.
A welding wire has been proposed in which the amount of o and Ni is limited and one or two of Nb and V are added to make the content (Nb + V) 0.3% or less. Further, in Japanese Unexamined Patent Publication No. 2-280993, C, Si, M as in 8-12Cr-based welding materials is used.
A welding material has been proposed in which the addition amount of n, Cr, Ni, Mo, W, V, Nb, Al, N is limited and the Cr equivalent is 13% or less. However, these conventional techniques do not attempt to significantly improve the creep strength, and may structurally cause δ-ferrite to crystallize in the martensite phase. If it is a remarkably soft phase and such a soft second phase is dispersed in a hard matrix, the overall impact properties are significantly reduced. In the case of welding with a large heat input, such as latent arc welding, δ ferrite is particularly likely to be formed, which has the drawback of lowering the toughness of the weld metal.

【0003】[0003]

【発明が解決しようとする課題】本発明は大入熱で溶接
する潜弧溶接において、得られる溶接金属のマルテンサ
イト中に晶出するδフェライトの生成を抑制し、溶接金
属のクリーブ破断強度と靱性を改善するものである。
DISCLOSURE OF THE INVENTION The present invention suppresses the formation of δ ferrite crystallized in the martensite of the obtained weld metal in the latent arc welding for welding with a large heat input, and improves the cleave rupture strength of the weld metal. It improves toughness.

【0004】[0004]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量比で、C:0.03〜0.12%、Si:
0.3%以下、Mn:0.3〜1.5%、Cr:8〜1
3%、Nb:0.01〜0.15%、V:0.03〜
0.40%、N:0.01〜0.08%を含有し残部が
Fe及び不可避的不純物からなるワイヤと重量比で、C
aF2;10〜30%、CaO及びMgOの一方又は両
方;10〜40%、Al23;10〜40%、Si
2;5〜25%を含有するフラックスとを(M=ワイ
ヤ中のM+0.7×フラックス中のM)の式により重量
比でMo:0.3〜1.6%、W:0.5〜3.5%、
Ni:0.05〜1.2%、Co又は:Cu;1.0〜
5.0%を含有するように組み合わせ、更にMo,W,
Ni,Co又はCu量の間に(Mo+W)/(Ni+C
u又はCo)≦2.0なる関係が成立したことを特徴と
する高Crフェライト系耐熱鋼用潜弧溶接方法にある。
The gist of the present invention is that C: 0.03 to 0.12% by weight and Si:
0.3% or less, Mn: 0.3 to 1.5%, Cr: 8 to 1
3%, Nb: 0.01 to 0.15%, V: 0.03 to
0.40%, N: 0.01 to 0.08%, with the balance being Fe and unavoidable impurities, and a weight ratio of C,
aF 2 ; 10 to 30%, one or both of CaO and MgO; 10 to 40%, Al 2 O 3 ; 10 to 40%, Si
O 2 ; a flux containing 5 to 25% by weight of the formula (M = M in wire + M × 0.7 in flux) Mo: 0.3 to 1.6%, W: 0.5 ~ 3.5%,
Ni: 0.05 to 1.2%, Co or: Cu; 1.0 to
Combined so as to contain 5.0%, Mo, W,
(Mo + W) / (Ni + C) between Ni, Co or Cu
u or Co) ≦ 2.0, which is a latent arc welding method for high Cr ferritic heat-resistant steel.

【0005】[0005]

【作用】本発明の最大の特徴は溶接ワイヤ又はフラック
ス中にCo又はCuを添加し、且つMo,W,Ni,C
o又はCu量との間に(Mo+W)/(Ni+Co又は
Cu)≦2.0なる関係で限定共存させたところにあ
り、溶接して得られる溶接金属のδフェライトの生成を
抑制し、クリープ破断強度と靱性を格段に高めたところ
にある。以下に本発明の各成分の限定理由について先
ず、ワイヤから述べる。
The greatest feature of the present invention is that Co or Cu is added to the welding wire or flux, and Mo, W, Ni, C is added.
o or Cu content and (Mo + W) / (Ni + Co or Cu) ≦ 2.0 coexist for a limited time, which suppresses the formation of δ ferrite in the weld metal obtained by welding and suppresses creep rupture. This is where the strength and toughness have been remarkably enhanced. The reasons for limiting each component of the present invention will be described first from the wire.

【0006】C:0.03〜0.12% Cは焼き入れ性と強度確保のため0.03%以上必要で
あるが、0.12%を超えると耐割れ性が劣化する。従
ってCを0.03〜0.12%に制限する。 Si:0.3%以下 Siは脱酸剤として添加するものであるが、また耐酸化
性を向上させる元素でもある。しかし0.3%を超える
と靱性が劣化する。従ってSiを0.3%以下に制限す
る。 Mn:0.3〜1.5% Mnは脱酸のためのみでなく、強度保持上も必要な成分
である。0.3%以下では効果がなく1.5%を超える
と靱性が劣化する。従ってMnを0.3〜1.5%に制
限する。
C: 0.03 to 0.12% C is required to be 0.03% or more in order to secure hardenability and strength, but if it exceeds 0.12%, crack resistance deteriorates. Therefore, C is limited to 0.03 to 0.12%. Si: 0.3% or less Although Si is added as a deoxidizer, it is also an element that improves oxidation resistance. However, if it exceeds 0.3%, the toughness deteriorates. Therefore, Si is limited to 0.3% or less. Mn: 0.3 to 1.5% Mn is a component required not only for deoxidation but also for strength retention. If it is less than 0.3%, there is no effect, and if it exceeds 1.5%, the toughness deteriorates. Therefore, Mn is limited to 0.3 to 1.5%.

【0007】Cr:8〜13% Crは耐酸化性と焼き入れ性を確保する上で非常に重要
な元素であり最低8%必要である。13%を超えると耐
割れ性を損なうと同時にδフェライトを晶出させ靱性の
劣化が著しくなる。従ってCrを8〜13%に制限す
る。 Nb:0.01〜0.15% NbはVと同様に炭窒化物として析出して強度を確保す
るほか、結晶粒を微細化して靱性を与える元素としても
重要である。0.01%以下ではその効果がなく、0.
15%を超えるとその効果は飽和してしまうだけでなく
靱性及び溶接性の低下も招く。従ってNbを0.01%
〜0.15%に制限する。
Cr: 8 to 13% Cr is a very important element for ensuring the oxidation resistance and the hardenability, and at least 8% is required. If it exceeds 13%, the crack resistance is impaired and, at the same time, δ ferrite is crystallized and the toughness is significantly deteriorated. Therefore, Cr is limited to 8 to 13%. Nb: 0.01 to 0.15% Similar to V, Nb precipitates as a carbonitride to secure the strength, and is also important as an element that gives toughness by refining crystal grains. If it is 0.01% or less, the effect is not obtained and
If it exceeds 15%, not only the effect is saturated but also the toughness and weldability are deteriorated. Therefore, Nb is 0.01%
Limit to ~ 0.15%.

【0008】V:0.03〜0.40% Vは炭窒化物として析出させて強度の確保に効果があ
る。0.03%以下では効果がなく、0.40%を超え
るとかえって強度低下を生じる。従ってVを0.03%
〜0.40%に制限する。 N:0.01〜0.08% Nは基地中に固溶しても、また窒化物として析出しても
著しいクリープ抵抗として寄与する。0.01%以下で
はその効果がなく、0.08%を超えると窒化物が多量
に析出して、逆に靱性が劣化し、ブローホールが発生す
る。従ってNを0.01〜0.08%に制限する。
V: 0.03 to 0.40% V is deposited as carbonitride and is effective in securing strength. If it is less than 0.03%, there is no effect, and if it exceeds 0.40%, the strength is rather lowered. Therefore, V is 0.03%
Limit to ~ 0.40%. N: 0.01 to 0.08% N contributes as a remarkable creep resistance even if it forms a solid solution in the matrix or precipitates as a nitride. If it is less than 0.01%, there is no effect, and if it exceeds 0.08%, a large amount of nitride is deposited, conversely the toughness deteriorates, and blowholes occur. Therefore, N is limited to 0.01 to 0.08%.

【0009】次にフラックス成分の限定理由について述
べる。 CaF2;10〜30% CaF2はスラグの塩基度を上げ、溶接金属中のOを著
しく低減し靱性を良好にする効果がある。又、スラグの
溶融点を低下させ溶け込みを浅くしスラグの剥離性を良
好にするとともにビード形状、外観を良好にする。10
%未満ではその効果がなく、30%を超えるとスラグの
流動性が過大となりビード形状、外観が劣化する。従っ
てCaF2を10〜30%に制限する。 CaOおよびMgOの1方又は両方;10〜40% CaO及びMgOはいずれも強塩基性成分でCaF2
共に溶接金属中のO低減に有効である。又、CaO、M
gOは耐火性の大きい成分であり、融点の低いCaF2
を含有するフラックスの溶融特性を調整し、ビード形状
を整えるのに有効である。10%未満ではその効果がな
く、40%を超えるとフラックスが溶け難くビード表面
が平滑さを失い、又、アンダーカット等の溶接欠陥が発
生する。従ってCaO及びMgOの1方又は両方を10
〜40%に制限する。
Next, the reasons for limiting the flux components will be described. CaF 2 ; 10 to 30% CaF 2 has the effect of increasing the basicity of the slag, remarkably reducing O in the weld metal, and improving toughness. In addition, the melting point of the slag is lowered to make the penetration shallow, and the slag releasability is improved, and the bead shape and appearance are improved. 10
If it is less than 30%, the effect is not obtained, and if it exceeds 30%, the fluidity of the slag becomes excessive and the bead shape and appearance deteriorate. Thus limiting the CaF 2 10 to 30%. One or both of CaO and MgO; 10-40% CaO and MgO are both strongly basic components and are effective for reducing O in the weld metal together with CaF 2 . Also, CaO, M
gO is a component with high fire resistance and has a low melting point of CaF 2
It is effective for adjusting the melting characteristics of the flux containing a and adjusting the bead shape. If it is less than 10%, there is no effect, and if it exceeds 40%, the flux is difficult to melt, the bead surface loses smoothness, and welding defects such as undercut occur. Therefore, one or both of CaO and MgO should be 10
Limit to ~ 40%.

【0010】Al23:10〜40% Al23は融点が高く、スラグの流動性を調整し、ビー
ド形状を整えるのに有効である。この効果は特に多層盛
溶接に用いる時に重要でありビードどうしのなじみが良
好となり、スラグ巻き込み、アンダーカット等の欠陥の
発生を防止する。10%未満では効果がなく、40%を
超えるとスラグ巻き込みや、アンダーカットが生じやす
くなる。従ってAl23を10〜40%に制限する。 SiO2;5%〜25% SiO2はスラグの粘性を調整し、ビード外観を改善す
るのに有効であるが、5%未満では効果がなく、25%
を超えると粘性が大きくなりスラグ巻き込みが発生す
る。従ってSiO2を5〜25%に制限する。
Al 2 O 3 : 10 to 40% Al 2 O 3 has a high melting point and is effective in adjusting the fluidity of the slag and adjusting the bead shape. This effect is particularly important when it is used for multi-pass welding, and the bead-to-beads are well-known to each other, and defects such as slag entrainment and undercut are prevented. If it is less than 10%, there is no effect, and if it exceeds 40%, slag entrapment and undercutting tend to occur. Therefore, Al 2 O 3 is limited to 10 to 40%. SiO 2 ; 5% to 25% SiO 2 is effective for adjusting the viscosity of the slag and improving the bead appearance, but if it is less than 5%, it has no effect, and 25%.
If it exceeds, viscosity increases and slag entrapment occurs. Therefore, SiO 2 is limited to 5 to 25%.

【0011】原料は単独物質と共に上記成分を含有する
化合物、鉱石あるいは溶融形フラックス等で添加するこ
とが出来る。例えば用いる原料として、CaF2;蛍
石、溶融形フラックス等、CaO;炭酸石灰、溶融形フ
ラックス等、MgO;マグネシアクリンカー、溶融形フ
ラックス等、Al23;アルミナ、溶融形フラックス等
である。又、必須成分のほかに酸化消耗する成分を調整
するために金属粉、合金粉等や脱酸剤等を配合すること
が出来る。
The raw materials can be added as a single substance together with a compound containing the above-mentioned components, ore, molten flux or the like. For example, as raw materials to be used, CaF 2 ; fluorite, molten flux, etc., CaO; lime carbonate, molten flux, etc., MgO; magnesia clinker, molten flux, etc., Al 2 O 3 ; alumina, molten flux, etc. Further, in addition to the essential components, metal powder, alloy powder, etc., deoxidizing agent, etc. can be added in order to adjust the components that are consumed by oxidation.

【0012】更にワイヤとフラックスの組み合わせで添
加する成分の限定理由について述べる。 Mo:0.3〜1.6% Moは固溶体強化により、高温強度を顕著に高める元素
であり使用温度、圧力を上昇させる目的で添加する。W
との共存において、高温強度、特に高温長時間側でのク
リープ破断強度の向上に効果がある。0.3%以下では
その効果がなく1.6%を超えるとδフェライトを晶出
させるため靱性が劣化する。従ってMoを0.3%〜
1.6%に制限する。 W:0.5〜3.5% Wはフェライト系溶接金属のクリープ強度に寄与する固
溶体強化元素としても最も優れた元素である。特に高温
長時間側でのクリープ破断強度向上の効果は極めて大き
い。0.5%以下ではMoとの共存において効果は発揮
できず3.5%を超えるとδフェライトを晶出させ溶接
金属の靱性が低下する。従ってWを0.5〜3.5%に
制限する。
Further, the reasons for limiting the components added in the combination of the wire and the flux will be described. Mo: 0.3 to 1.6% Mo is an element that remarkably enhances high temperature strength by solid solution strengthening, and is added for the purpose of raising the operating temperature and pressure. W
Coexistence with is effective in improving high-temperature strength, especially creep rupture strength at high temperature for a long time. If it is less than 0.3%, the effect is not obtained, and if it exceeds 1.6%, δ ferrite is crystallized and the toughness is deteriorated. Therefore, Mo is 0.3%
Limit to 1.6%. W: 0.5 to 3.5% W is the most excellent element as a solid solution strengthening element that contributes to the creep strength of the ferritic weld metal. In particular, the effect of improving creep rupture strength at high temperature for a long time is extremely large. If it is less than 0.5%, the effect cannot be exhibited in the coexistence with Mo, and if it exceeds 3.5%, δ ferrite is crystallized to lower the toughness of the weld metal. Therefore, W is limited to 0.5 to 3.5%.

【0013】Ni:0.05〜1.2% Niはフェライトの生成を抑制し、使用中の脆化軽減に
有効な元素であり、高温で長時間使用される本発明溶接
材料のような用途に対しては必須の元素である。0.0
5%以下ではその効果はなく1.2%を超えると高温ク
リープ特性を劣化させる。従ってNiを0.05〜1.
2%に制限する。 Co:1.0〜5.0% CoはNiと同様にMo,W添加によって生じるδフェ
ライトの晶出という問題点を相殺する重要な元素であ
り、最低1.0%以上を必要とする。しかし5.0%を
超えるとAcl点を下げ、高温焼戻しが不可能となり組
織の安定化処理ができなくなる。従ってCoを1.0〜
5.0%に制限する。
Ni: 0.05 to 1.2% Ni is an element which suppresses the formation of ferrite and is effective in reducing embrittlement during use, and is used for a long time at high temperature such as the welding material of the present invention. Is an essential element for. 0.0
If it is 5% or less, the effect is not obtained, and if it exceeds 1.2%, the high temperature creep property is deteriorated. Therefore, Ni is 0.05 to 1.
Limit to 2%. Co: 1.0 to 5.0% Like Ni, Co is an important element that cancels out the problem of crystallization of δ ferrite caused by the addition of Mo and W, and requires at least 1.0%. However, if it exceeds 5.0%, the Acl point is lowered, and high temperature tempering becomes impossible, so that the structure cannot be stabilized. Therefore, Co is 1.0 to
Limit to 5.0%.

【0014】Cu;1.0〜5.0% CuはCoやNiと同様にMo,W添加によって生じる
δフェライトの晶出という問題点を相殺する重要な元素
であり、最低1.0%以上を必要とする。しかし5.0
%を超えるとAcl点を下げ、高温焼戻しが不可能とな
り組織の安定化処理ができなくなる。従ってCuを1.
0〜5.0%に制限する。 (Mo+W)/(Ni+Co又はCu)≦2.0 (Mo+W)/(Ni+Co又はCu)≦2.0は本合
金系において高温強度と靱性とのバランスをとる上で非
常に重要である。Mo及びWは溶接金属の高温強度の向
上に有効な元素であるが、δフェライトを晶出させ靱性
を劣化させる。NiやCo及びCuはフェライトの生成
を抑制し、靱性を改善する元素である。これらの元素の
共存効果において溶接金属の高温強度と良好な靱性が得
られる。(Mo+W)/(Ni+Co又はCu)が2.
0を超えるとδフェライトが晶出し靱性が劣化する。従
って(Mo+W)/(Ni+Co又はCu)≦2.0に
制限する。以下に本発明溶接方法の効果を実施例により
説明する。
Cu: 1.0 to 5.0% Like Co and Ni, Cu is an important element that offsets the problem of crystallization of δ ferrite caused by the addition of Mo and W, and is at least 1.0% or more. Need. But 5.0
If it exceeds%, the Acl point is lowered and high temperature tempering becomes impossible, so that the structure cannot be stabilized. Therefore, Cu is 1.
Limit to 0-5.0%. (Mo + W) / (Ni + Co or Cu) ≦ 2.0 (Mo + W) / (Ni + Co or Cu) ≦ 2.0 is very important in balancing the high temperature strength and toughness in the present alloy system. Mo and W are effective elements for improving the high temperature strength of the weld metal, but they crystallize δ ferrite and deteriorate the toughness. Ni, Co and Cu are elements that suppress the formation of ferrite and improve toughness. Due to the coexistence effect of these elements, the high temperature strength and good toughness of the weld metal can be obtained. (Mo + W) / (Ni + Co or Cu) is 2.
If it exceeds 0, δ ferrite is crystallized and the toughness deteriorates. Therefore, it is limited to (Mo + W) / (Ni + Co or Cu) ≦ 2.0. The effects of the welding method of the present invention will be described below with reference to examples.

【0015】[0015]

【実施例】実験に供したワイヤは真空溶解炉にて溶解
し、鍛造、圧延及び線引きを行って3.2mmφに作製
した。ワイヤの組成を表1に示すが、W1〜W6は本発
明に用いたワイヤ、W7〜W12は比較例に用いたワイ
ヤである。実験に供したボンドフラックスは通常のフラ
ックス原料として用いられる鉱石粉、複合化合物等を混
合、攪はん後、水ガラスを用いて造粒し、400℃で約
2時間焼成して作製した。フラックスの組成を表2に示
すが、F1〜F5は本発明に用いたフラックス、F6〜
F10は比較例に用いたものである。表1のワイヤと表
2のフラックスとを組み合わせ、表3に示す供試母材を
用い、図1に示すような開先(厚さT=20mm,開先
角度θ=30°,ルートギャップ=12mm)を形成し
て表4に示す溶接条件で潜弧溶接を実施した。得られた
溶接金属を740℃−4時間の後熱処理をした後、60
0℃,20kgf/mm2の応力でクリープ破断試験及
び試験温度0℃での2mmVノッチ衝撃試験を行った。
表5及び表6にワイヤとフラックスとの組み合わせ及び
その確性試験結果を示す。溶接作業性試験については各
パスの溶接後に判定を行った。
Example The wire used in the experiment was melted in a vacuum melting furnace, forged, rolled and drawn to obtain 3.2 mmφ. The composition of the wire is shown in Table 1. W1 to W6 are the wires used in the present invention, and W7 to W12 are the wires used in the comparative example. The bond flux used in the experiment was prepared by mixing ore powder, a complex compound, and the like, which are commonly used as a flux raw material, stirred, granulated using water glass, and fired at 400 ° C. for about 2 hours. The composition of the flux is shown in Table 2. F1 to F5 are the fluxes used in the present invention, and F6 to
F10 is used in the comparative example. The wire shown in Table 1 and the flux shown in Table 2 are combined and the test base metal shown in Table 3 is used to form a groove (thickness T = 20 mm, groove angle θ = 30 °, root gap =) as shown in FIG. 12 mm) was formed and latent arc welding was performed under the welding conditions shown in Table 4. After the post-heat treatment of the obtained weld metal at 740 ° C. for 4 hours, 60
A creep rupture test and a 2 mmV notch impact test at a test temperature of 0 ° C. were carried out at a stress of 0 ° C. and 20 kgf / mm 2 .
Tables 5 and 6 show the combinations of the wire and the flux and the results of their accuracy tests. Regarding the welding workability test, the judgment was made after welding of each pass.

【0016】本発明例のNo.1〜No.13は優れた
溶接作業性、溶接金属が得られたがNo.14はワイヤ
中のC,Cr,N不足、ワイヤとフラックスの組み合わ
せによるMo,W、Co不足及びNi過多、No.15
はワイヤ中のC,Cr,N不足、ワイヤとフラックスの
組み合わせによるCo又はCu不足及びNi過多、N
o.16はワイヤ中のSi,N過多及びNb不足、ワイ
ヤとフラックスの組み合わせによるMo不足及びW過
多、(Mo+W)/(Ni+Co)が2.0を超えてい
る、No.17はワイヤ中のC,Si,Cr過多で、ワ
イヤとフラックスの組み合わせによるNi,Cu不足、
(Mo+W)/(Ni+Co)が2.0を超えている、
No.18はワイヤ中のMn,V不足、(Mo+W)/
(Ni+Co)が2.0を超えている、No.18はワ
イヤ中のNb,N過多、ワイヤとフラックスの組み合わ
せによるW不足及びNi過多、No.20はワイヤ中の
Mn,V過多、ワイヤとフラックスの組み合わせによる
Mo過多、No.21、No.22はフラックス中のA
23不足及びCaO過多、No.23はフラックス中
のCaOとMgOとの和が過多及びSiO2不足、ワイ
ヤとフラックスの組み合せによるMo過多、No.24
はフラックス中のCaF2不足、SiO2過多、ワイヤと
フラックスの組み合わせによるMo,W過多、(Mo+
W)/(Ni+Co)が2.0を超えている。
No. 1 of the present invention example. 1-No. No. 13 was excellent in weldability and weld metal, but was No. No. 14 is C, Cr, N deficiency in the wire, Mo, W, Co deficiency due to the combination of the wire and flux, and excessive Ni, No. 15
Is C, Cr, N deficiency in the wire, Co or Cu deficiency due to the combination of wire and flux, and Ni excess, N
o. No. 16 is Si, N excess and Nb deficiency in the wire, Mo deficiency and W excess due to the combination of the wire and the flux, and (Mo + W) / (Ni + Co) exceeds 2.0. 17 is an excessive amount of C, Si and Cr in the wire, and lack of Ni and Cu due to the combination of the wire and the flux.
(Mo + W) / (Ni + Co) exceeds 2.0,
No. 18 is Mn, V deficiency in the wire, (Mo + W) /
(Ni + Co) exceeds 2.0, No. No. 18 is Nb and N excessive in the wire, W is insufficient and Ni is excessive due to the combination of the wire and the flux, and No. No. 20 is excessive Mn and V in the wire, excessive Mo due to the combination of the wire and the flux, and No. 20. 21, No. 22 is A in the flux
L 2 O 3 shortage and CaO excess, No. No. 23 was excessive in the sum of CaO and MgO in the flux and was insufficient in SiO 2 , and was excessive in Mo due to the combination of the wire and the flux. 24
Is insufficient CaF 2 in the flux, excessive SiO 2 , Mo and W excessive due to the combination of wire and flux, (Mo +
W) / (Ni + Co) exceeds 2.0.

【0017】No.25はフラックス中のCaOとMg
Oとの和不足及びAl23過多、ワイヤとフラックスの
組み合わせによるMo,Cu過多、No.26はフラッ
クス中のCaF2過多及びCaOとMgOとの和不足、
ワイヤとフラックスの組み合わせによるCo過多、N
o.27はワイヤとフラックスの組み合わせによるCu
過多、No.28はワイヤとフラックスの組み合わせに
よるCo過多、No.29はワイヤ中のC,Cr,N不
足、フラックス中のAl23不足及びCaF2過多、ワ
イヤとフラックスの組み合わせによるMo,Cu又はC
o不足及びNi過多、No.30はワイヤ中のMn、V
過多、フラックス中のCaF2不足及びSiO2過多、ワ
イヤとフラックスの組み合わせによるMo過多、(Mo
+W)/(Ni+Co)が2.0を超えているというそ
の個々の理由により溶接作業性不良、機械的性質の劣
化、割れやブローホールの発生等の問題点が認められ
た。
No. 25 is CaO and Mg in the flux
Insufficient sum with O and Al 2 O 3 excess, Mo and Cu excess due to combination of wire and flux, No. 26 is excessive CaF 2 in the flux and insufficient sum of CaO and MgO,
Excessive Co due to combination of wire and flux, N
o. 27 is Cu by the combination of wire and flux
Excessive, No. No. 28 is excessive Co due to the combination of wire and flux, No. 28 29 is C, Cr, N deficiency in the wire, Al 2 O 3 deficiency in the flux and CaF 2 excess, Mo, Cu or C depending on the combination of the wire and the flux.
o Shortage and excessive Ni, No. 30 is Mn and V in the wire
Excessive, CaF 2 shortage in flux and SiO 2 excessive, Mo excess due to combination of wire and flux, (Mo
Due to the individual reasons that + W) / (Ni + Co) exceeds 2.0, problems such as poor workability in welding, deterioration of mechanical properties, and generation of cracks and blowholes were recognized.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【発明の効果】本発明溶接材料は従来の9%〜12%C
r鋼用溶接材料と比較して、高温でのクリープ強度を著
しく高めたものであり、靱性および溶接性などの特性に
も優れている。表4に示したように溶接材料の組み合わ
せが本発明の要件を満たすものは、本発明の要件を満た
さないもの(比較例)と較べて高温クリープ特性だけで
なく、靱性および溶接性に優れていることは明らかであ
る。各種発電ボイラ、化学圧力容器などに使用される9
〜12%Cr系鋼を溶接する場合に本発明に係わる溶接
材料を使用することにより、溶接継手の信頼性を大幅に
向上することができる。
EFFECTS OF THE INVENTION The welding material according to the present invention has a conventional content of 9% to 12% C.
Compared with the welding material for r steel, the creep strength at high temperature is remarkably increased, and it is also excellent in characteristics such as toughness and weldability. As shown in Table 4, when the combination of welding materials satisfies the requirements of the present invention, not only the high temperature creep properties but also the toughness and weldability are superior to those that do not meet the requirements of the present invention (Comparative Example). It is clear that Used in various power generation boilers, chemical pressure vessels, etc. 9
By using the welding material according to the present invention when welding ~ 12% Cr steel, the reliability of the welded joint can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に用いた溶接部の開先形状を示す断面図
である。
FIG. 1 is a cross-sectional view showing a groove shape of a welded portion used in an example.

【符号の説明】[Explanation of symbols]

1 被溶接材 2 裏当材。 1 Welded material 2 Backing material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C:0.03〜0.12% Si:0.3%以下 Mn:0.3〜1.5% Cr:8〜13% Nb:0.01〜0.15% V:0.03〜0.40% N:0.01〜0.08% を含有し、残部がFe及び不可避的不純物からなるワイ
ヤと重量比で CaF2;10〜30% CaO及びMgOの一方または両方;10〜40% Al23;10〜40% SiO2;5〜25% を含有するフラックスとを下式により重量比で Mo:0.3〜1.6% W:0.5〜3.5% Ni:0.05〜1.2% Co:1.0〜5.0% を含有するように組み合わせ、更にMo,W,Ni,C
o量の間に (Mo+W)/(Ni+Co)≦2.0 なる関係が成立したことを特徴とする高Crフェライト
系耐熱鋼用潜弧溶接方法。 (M=ワイヤ中のM+0.7×フラックス中のM
1. By weight ratio, C: 0.03 to 0.12% Si: 0.3% or less Mn: 0.3 to 1.5% Cr: 8 to 13% Nb: 0.01 to 0.15 % V: 0.03 to 0.40% N: 0.01 to 0.08%, with the balance being Fe and inevitable impurities in the weight ratio to CaF 2 ; 10 to 30% CaO and MgO One or both; a flux containing 10 to 40% Al 2 O 3 ; 10 to 40% SiO 2 ; 5 to 25% in a weight ratio of Mo: 0.3 to 1.6% W: 0. 5 to 3.5% Ni: 0.05 to 1.2% Co: 1.0 to 5.0% in combination so as to further contain Mo, W, Ni, C
A latent arc welding method for high Cr ferritic heat-resistant steel, characterized in that a relationship of (Mo + W) / (Ni + Co) ≦ 2.0 is established between the amounts of o. (M = M in wire + 0.7 x M in flux
【請求項2】 重量比で C:0.03〜0.12% Si:0.3%以下 Mn:0.3〜1.5% Cr:8〜13% Nb:0.01〜0.15% V:0.03〜0.40% N:0.01〜0.08% を含有し、残部がFe及び不可避的不純物からなるワイ
ヤと重量比で CaF2;10〜30% CaO及びMgOの一方または両方;10〜40% Al23;10〜40% SiO2;5〜25% を含有するフラックスとを下式により重量比で Mo:0.3〜1.6% W:0.5〜3.5% Ni:0.05〜1.2% Cu:1.0〜5.0% を含有するように組み合わせ、更にMo,W,Ni,C
u量の間に (Mo+W)/(Ni+Cu)≦2.0 なる関係が成立したことを特徴とする高Crフェライト
系耐熱鋼用潜弧溶接方法。 (M=ワイヤ中のM+0.7×フラックス中のM)……
2. By weight ratio, C: 0.03 to 0.12% Si: 0.3% or less Mn: 0.3 to 1.5% Cr: 8 to 13% Nb: 0.01 to 0.15 % V: 0.03 to 0.40% N: 0.01 to 0.08%, with the balance being Fe and inevitable impurities in the weight ratio to CaF 2 ; 10 to 30% CaO and MgO One or both; a flux containing 10 to 40% Al 2 O 3 ; 10 to 40% SiO 2 ; 5 to 25% in a weight ratio of Mo: 0.3 to 1.6% W: 0. 5 to 3.5% Ni: 0.05 to 1.2% Cu: 1.0 to 5.0% in combination so as to further contain Mo, W, Ni, C
A latent arc welding method for high Cr ferritic heat-resistant steel, characterized in that a relationship of (Mo + W) / (Ni + Cu) ≦ 2.0 is established between u amounts. (M = M in wire + 0.7 x M in flux)
formula
JP4095379A 1992-04-15 1992-04-15 Submerged arc welding method for high Cr ferritic heat resistant steel Expired - Fee Related JP2600043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4095379A JP2600043B2 (en) 1992-04-15 1992-04-15 Submerged arc welding method for high Cr ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4095379A JP2600043B2 (en) 1992-04-15 1992-04-15 Submerged arc welding method for high Cr ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JPH05285691A true JPH05285691A (en) 1993-11-02
JP2600043B2 JP2600043B2 (en) 1997-04-16

Family

ID=14136018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4095379A Expired - Fee Related JP2600043B2 (en) 1992-04-15 1992-04-15 Submerged arc welding method for high Cr ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JP2600043B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356371B1 (en) * 2000-03-21 2002-10-19 재단법인 포항산업과학연구원 Flux for electoslag welding
EP2153932A1 (en) * 2008-07-25 2010-02-17 Nippon Steel & Sumikin Welding Co., Ltd. Melt flux for submerged arc welding and method for submerged arc welding of steel for low temperature service
CN103240542A (en) * 2012-02-02 2013-08-14 东方电气集团东方锅炉股份有限公司 Ultralow-hydrogen high-toughness low-carbon tungsten-adding heat-resistant steel welding rod
WO2016010121A1 (en) * 2014-07-18 2016-01-21 株式会社神戸製鋼所 SINGLE SUBMERGED ARC WELDING METHOD FOR HIGH-Cr CSEF STEEL

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376789A (en) * 1986-09-19 1988-04-07 Nippon Steel Corp Submerged arc welding wire for 9cr-mo steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376789A (en) * 1986-09-19 1988-04-07 Nippon Steel Corp Submerged arc welding wire for 9cr-mo steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356371B1 (en) * 2000-03-21 2002-10-19 재단법인 포항산업과학연구원 Flux for electoslag welding
EP2153932A1 (en) * 2008-07-25 2010-02-17 Nippon Steel & Sumikin Welding Co., Ltd. Melt flux for submerged arc welding and method for submerged arc welding of steel for low temperature service
CN103240542A (en) * 2012-02-02 2013-08-14 东方电气集团东方锅炉股份有限公司 Ultralow-hydrogen high-toughness low-carbon tungsten-adding heat-resistant steel welding rod
WO2016010121A1 (en) * 2014-07-18 2016-01-21 株式会社神戸製鋼所 SINGLE SUBMERGED ARC WELDING METHOD FOR HIGH-Cr CSEF STEEL
JP2016022501A (en) * 2014-07-18 2016-02-08 株式会社神戸製鋼所 SINGLE SUBMERGED ARC WELDING METHOD OF HIGH Cr SYSTEM CSEF STEEL
CN106470796A (en) * 2014-07-18 2017-03-01 株式会社神户制钢所 The monofilament submerged arc soldering method of high Cr system CSEF steel
EP3170616A4 (en) * 2014-07-18 2018-04-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) SINGLE SUBMERGED ARC WELDING METHOD FOR HIGH-Cr CSEF STEEL
CN106470796B (en) * 2014-07-18 2020-02-07 株式会社神户制钢所 Single-wire submerged-arc welding method for high Cr CSEF steel

Also Published As

Publication number Publication date
JP2600043B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US20080099455A1 (en) Flux-cored wire for gas shielded arc welding for creep-resisting steels
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP4025171B2 (en) Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
JPH09277084A (en) Submerged arc welding method for high-chromium ferritic heat resisting steel
JPH08193240A (en) Steel material excellent in temper embrittlement resistance and its production
JP2593614B2 (en) Submerged arc welding method for high Cr ferritic heat resistant steel
JPH11291086A (en) Submerged arc welding method for high cr ferritic heat resistant steel
JP2600043B2 (en) Submerged arc welding method for high Cr ferritic heat resistant steel
JP7156585B1 (en) submerged arc welded fittings
JPS62252695A (en) Submerged arc welding method for low temperature steel
JPH08150478A (en) Submerged arc welding method for high strength cr-mo steel and weld metal
JP3083703B2 (en) Submerged arc welding method for high Cr ferritic heat resistant steel
KR20020008681A (en) Flux cored wire for co2 gas shielded arc welding
JPH06277879A (en) Submerged arc welding method for high-cr ferritic heat resisting steel
JPS628504B2 (en)
JP3702124B2 (en) Submerged arc welding method for HT590 grade refractory steel
JPH10291090A (en) Submerged arc welding method for high cr ferritic heat resistant steel
JPH08164481A (en) Welding method of high cr ferritic heat resistant steel
JPH09122972A (en) Coated electrode for high-cr ferrite heat resisting steel
JP3217567B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JP3617369B2 (en) Submerged arc welding method for ultra-low carbon steel sheet
JPS628499B2 (en)
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
WO2017038975A1 (en) Wire for submerged arc welding
JPH07268562A (en) Coated rod for arc welding used for high cr ferritic heat resistant steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees