JP2600043B2 - Submerged arc welding method for high Cr ferritic heat resistant steel - Google Patents

Submerged arc welding method for high Cr ferritic heat resistant steel

Info

Publication number
JP2600043B2
JP2600043B2 JP4095379A JP9537992A JP2600043B2 JP 2600043 B2 JP2600043 B2 JP 2600043B2 JP 4095379 A JP4095379 A JP 4095379A JP 9537992 A JP9537992 A JP 9537992A JP 2600043 B2 JP2600043 B2 JP 2600043B2
Authority
JP
Japan
Prior art keywords
flux
wire
welding
resistant steel
ferritic heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4095379A
Other languages
Japanese (ja)
Other versions
JPH05285691A (en
Inventor
雅人 緒方
弘之 小池
聰之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4095379A priority Critical patent/JP2600043B2/en
Publication of JPH05285691A publication Critical patent/JPH05285691A/en
Application granted granted Critical
Publication of JP2600043B2 publication Critical patent/JP2600043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高い靱性を有する高強度
耐熱鋼の溶接材料に関するものであり、さらに詳しくは
高温におけるクリープ特性、靱性、耐割れ性に優れた溶
接金属を与える潜弧溶接用方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding material for a high-strength heat-resistant steel having a high toughness, and more particularly to a latent-arc welding for providing a weld metal having excellent creep characteristics, toughness and crack resistance at high temperatures. It concerns the method.

【0002】[0002]

【従来の技術】高温高能率型のエネルギープラント用鋼
材として、クリープ強度が極めて優れ且つオーステナイ
ト系ステンレス鋼に見られるような応力腐食割れの心配
が少ないフェライト系耐熱鋼の要望が強く、この種の材
料が使用され始めている。フェライト系耐熱鋼用に開発
されている溶接材料として、例えば特開昭60−257
991号公報に開示されている9Cr−Mo系鋼用溶接
ワイヤの如く溶接ワイヤ中のC,Si,Mn,Cr,M
o,Ni量を限定し、さらにNb,Vの1種または2種
を添加して(Nb+V)で0.3%以下とする溶接ワイ
ヤが提案されている。また、特開平2−280993号
公報では8〜12Cr系溶接材料の如くC,Si,M
n,Cr,Ni,Mo,W,V,Nb,Al,N,添加
量を限定しCr当量:13%以下とする溶接材料が提案
されている。しかしながらこれらの従来技術は大幅なク
リープ強度を向上しようとするものではなく、組織的に
はマルテンサイト相中にδフェライトを晶出することが
あり、この晶出したδフェライトは基地中マルテンサイ
トより著しく軟らかい相であり、このような軟らかい第
二相が硬い基地中に分散する場合、全体の衝撃特性は著
しく低下する。潜弧溶接のように大入熱で溶接する場合
は特にδフェライトを生成しやすく、そのために溶接金
属の靱性を低下させるという欠点を有している。
2. Description of the Related Art As a steel material for an energy plant of a high temperature and high efficiency type, there is a strong demand for a ferritic heat-resistant steel which has extremely excellent creep strength and has little fear of stress corrosion cracking as seen in austenitic stainless steel. Materials are starting to be used. As a welding material developed for ferritic heat-resistant steel, for example, Japanese Patent Application Laid-Open No. 60-257
No. 991, the C, Si, Mn, Cr, M in a welding wire such as the welding wire for 9Cr-Mo steel.
There has been proposed a welding wire in which the amounts of o and Ni are limited, and one or two of Nb and V are added to make (Nb + V) 0.3% or less. Further, Japanese Patent Application Laid-Open No. Hei 2-280993 discloses that C, Si, M
Welding materials have been proposed in which the amounts of n, Cr, Ni, Mo, W, V, Nb, Al, N, and the amount of Cr added are limited to 13% or less. However, these prior arts do not attempt to significantly improve the creep strength, and may systematically crystallize δ ferrite in the martensite phase. It is a very soft phase and if such a soft second phase disperses in a hard matrix, the overall impact properties are significantly reduced. In the case of welding with a large heat input, such as latent arc welding, δ ferrite is particularly likely to be generated, which has the disadvantage of reducing the toughness of the weld metal.

【0003】[0003]

【発明が解決しようとする課題】本発明は大入熱で溶接
する潜弧溶接において、得られる溶接金属のマルテンサ
イト中に晶出するδフェライトの生成を抑制し、溶接金
属のクリーブ破断強度と靱性を改善するものである。
SUMMARY OF THE INVENTION The present invention suppresses the formation of δ-ferrite crystallized in martensite of the obtained weld metal in latent arc welding in which welding is performed with a large heat input, and reduces the cleave rupture strength of the weld metal. It improves toughness.

【0004】[0004]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量比で、C:0.03〜0.12%、Si:
0.3%以下、Mn:0.3〜1.5%、Cr:8〜1
3%、Nb:0.01〜0.15%、V:0.03〜
0.40%、N:0.01〜0.08%を含有し、残部
がFe及び不可避的不純物からなるワイヤと重量比で、
CaF:10〜30%、CaO及びMgOの一方また
は両方:10〜40%、Al:10〜40%、S
iO:5〜25%を含有するフラックスとを組み合わ
せて用いる高Crフェライト系耐熱鋼用潜弧溶接方法に
おいて、前記ワイヤと該フラックス中にそれぞれ、また
はそのいずれか一方のみに、Mo,W,Ni,Co又は
Cuを含有させ、かつ下記式によって求めたこの4成分
のそれぞれにおける含有量Mが、重量比で、Mo:0.
3〜1.6%、W:0.5〜3.5%、Ni:0.05
〜1.2%、Co又はCu:1.0〜5.0%の範囲内
にあり、しかも、(Mo+W)/(Ni+Co又はC
u)≦2.0を満足するように各成分の含有量を調整し
て潜弧溶接することを特徴とする高Crフェライト系耐
熱鋼用潜弧溶接方法にある。 M=ワイヤ中のM+0.7×フラックス中のM … 式 (但し、Mはそれぞれの元素(Mo,W,Ni,Co又
はCu)の含有量)
The gist of the present invention is that C: 0.03 to 0.12% by weight, Si:
0.3% or less, Mn: 0.3 to 1.5%, Cr: 8 to 1
3%, Nb: 0.01 to 0.15%, V: 0.03 to
0.40%, N: 0.01 to 0.08%, the balance being the weight ratio to the wire composed of Fe and unavoidable impurities,
CaF 2: One or both of 10 to 30%, CaO and MgO: 10~40%, Al 2 O 3: 10~40%, S
iO 2 : combined with a flux containing 5 to 25%
Arc welding method for high Cr ferritic heat resistant steel
In the wire and the flux, respectively.
Is Mo, W, Ni, Co or
These four components containing Cu and determined by the following formula
Is in weight ratio, Mo: 0.
3 to 1.6%, W: 0.5 to 3.5%, Ni: 0.05
To 1.2%, Co or Cu: 1.0 to 5.0% in the range
And (Mo + W) / (Ni + Co or C
u) Adjust the content of each component so as to satisfy ≦ 2.0.
And a sub- arc welding method for high Cr ferritic heat-resistant steel. M = M in the wire + 0.7 × M in the flux formula (where M is each element (Mo, W, Ni, Co or
Is the content of Cu)

【0005】[0005]

【作用】本発明の最大の特徴は溶接ワイヤ又はフラック
ス中にCo又はCuを添加し、且つMo,W,Ni,C
o又はCu量との間に(Mo+W)/(Ni+Co又は
Cu)≦2.0なる関係で限定共存させたところにあ
り、溶接して得られる溶接金属のδフェライトの生成を
抑制し、クリープ破断強度と靱性を格段に高めたところ
にある。以下に本発明の各成分の限定理由について先
ず、ワイヤから述べる。
The most important feature of the present invention is that Co or Cu is added to a welding wire or a flux and Mo, W, Ni, C
(Mo + W) / (Ni + Co or Cu) ≦ 2.0, which is limited coexistence with the amount of o or Cu, suppresses the formation of δ ferrite in the weld metal obtained by welding, and causes creep rupture. The strength and toughness have been significantly improved. Hereinafter, the reasons for limiting each component of the present invention will be described first with reference to wires.

【0006】C:0.03〜0.12% Cは焼き入れ性と強度確保のため0.03%以上必要で
あるが、0.12%を超えると耐割れ性が劣化する。従
ってCを0.03〜0.12%に制限する。 Si:0.3%以下 Siは脱酸剤として添加するものであるが、また耐酸化
性を向上させる元素でもある。しかし0.3%を超える
と靱性が劣化する。従ってSiを0.3%以下に制限す
る。 Mn:0.3〜1.5% Mnは脱酸のためのみでなく、強度保持上も必要な成分
である。0.3%以下では効果がなく1.5%を超える
と靱性が劣化する。従ってMnを0.3〜1.5%に制
限する。
C: 0.03% to 0.12% C is required to be 0.03% or more in order to secure hardenability and strength, but if it exceeds 0.12%, crack resistance deteriorates. Therefore, C is limited to 0.03 to 0.12%. Si: 0.3% or less Si is added as a deoxidizing agent, but is also an element for improving oxidation resistance. However, if it exceeds 0.3%, toughness deteriorates. Therefore, Si is limited to 0.3% or less. Mn: 0.3-1.5% Mn is a component necessary not only for deoxidation but also for maintaining strength. If it is less than 0.3%, there is no effect, and if it exceeds 1.5%, toughness deteriorates. Therefore, Mn is limited to 0.3 to 1.5%.

【0007】Cr:8〜13% Crは耐酸化性と焼き入れ性を確保する上で非常に重要
な元素であり最低8%必要である。13%を超えると耐
割れ性を損なうと同時にδフェライトを晶出させ靱性の
劣化が著しくなる。従ってCrを8〜13%に制限す
る。 Nb:0.01〜0.15% NbはVと同様に炭窒化物として析出して強度を確保す
るほか、結晶粒を微細化して靱性を与える元素としても
重要である。0.01%以下ではその効果がなく、0.
15%を超えるとその効果は飽和してしまうだけでなく
靱性及び溶接性の低下も招く。従ってNbを0.01%
〜0.15%に制限する。
Cr: 8 to 13% Cr is a very important element for securing oxidation resistance and hardenability, and at least 8% is necessary. If it exceeds 13%, the crack resistance is impaired, and at the same time, δ ferrite is crystallized and the toughness is significantly deteriorated. Therefore, Cr is limited to 8 to 13%. Nb: 0.01 to 0.15% Nb precipitates as a carbonitride similarly to V to secure strength, and is also important as an element that refines crystal grains and gives toughness. When the content is 0.01% or less, the effect is not obtained.
If it exceeds 15%, the effect is not only saturated, but also the toughness and the weldability are reduced. Therefore, Nb is 0.01%
Limit to ~ 0.15%.

【0008】V:0.03〜0.40% Vは炭窒化物として析出させて強度の確保に効果があ
る。0.03%以下では効果がなく、0.40%を超え
るとかえって強度低下を生じる。従ってVを0.03%
〜0.40%に制限する。 N:0.01〜0.08% Nは基地中に固溶しても、また窒化物として析出しても
著しいクリープ抵抗として寄与する。0.01%以下で
はその効果がなく、0.08%を超えると窒化物が多量
に析出して、逆に靱性が劣化し、ブローホールが発生す
る。従ってNを0.01〜0.08%に制限する。
V: 0.03 to 0.40% V is precipitated as carbonitride and is effective in securing the strength. If the content is less than 0.03%, there is no effect, and if it exceeds 0.40%, the strength is rather reduced. Therefore, V is 0.03%
Limit to ~ 0.40%. N: 0.01 to 0.08% N contributes as remarkable creep resistance even if it is dissolved in the matrix or precipitates as nitride. If the content is less than 0.01%, the effect is not obtained. If the content is more than 0.08%, a large amount of nitride precipitates, conversely, the toughness is deteriorated, and blow holes are generated. Therefore, N is limited to 0.01 to 0.08%.

【0009】次にフラックス成分の限定理由について述
べる。 CaF2;10〜30% CaF2はスラグの塩基度を上げ、溶接金属中のOを著
しく低減し靱性を良好にする効果がある。又、スラグの
溶融点を低下させ溶け込みを浅くしスラグの剥離性を良
好にするとともにビード形状、外観を良好にする。10
%未満ではその効果がなく、30%を超えるとスラグの
流動性が過大となりビード形状、外観が劣化する。従っ
てCaF2を10〜30%に制限する。 CaOおよびMgOの1方又は両方;10〜40% CaO及びMgOはいずれも強塩基性成分でCaF2
共に溶接金属中のO低減に有効である。又、CaO、M
gOは耐火性の大きい成分であり、融点の低いCaF2
を含有するフラックスの溶融特性を調整し、ビード形状
を整えるのに有効である。10%未満ではその効果がな
く、40%を超えるとフラックスが溶け難くビード表面
が平滑さを失い、又、アンダーカット等の溶接欠陥が発
生する。従ってCaO及びMgOの1方又は両方を10
〜40%に制限する。
Next, the reasons for limiting the flux components will be described. CaF 2 ; 10 to 30% CaF 2 has the effect of increasing the basicity of slag, significantly reducing O in the weld metal, and improving the toughness. In addition, the melting point of the slag is lowered, the penetration is made shallower, the removability of the slag is improved, and the bead shape and appearance are improved. 10
If it is less than 30%, the effect is not obtained, and if it exceeds 30%, the fluidity of the slag becomes excessive and the bead shape and appearance deteriorate. Therefore, CaF 2 is limited to 10 to 30%. One or both of CaO and MgO; 10 to 40% Both CaO and MgO are strong basic components and are effective in reducing O in the weld metal together with CaF 2 . Also, CaO, M
gO is a component having high fire resistance, and CaF 2 having a low melting point.
It is effective in adjusting the melting characteristics of the flux containing, and adjusting the bead shape. If it is less than 10%, the effect is not obtained. If it exceeds 40%, the flux is hardly melted, the bead surface loses smoothness, and welding defects such as undercut occur. Therefore, one or both of CaO and MgO are
Limit to ~ 40%.

【0010】Al23:10〜40% Al23は融点が高く、スラグの流動性を調整し、ビー
ド形状を整えるのに有効である。この効果は特に多層盛
溶接に用いる時に重要でありビードどうしのなじみが良
好となり、スラグ巻き込み、アンダーカット等の欠陥の
発生を防止する。10%未満では効果がなく、40%を
超えるとスラグ巻き込みや、アンダーカットが生じやす
くなる。従ってAl23を10〜40%に制限する。 SiO2;5%〜25% SiO2はスラグの粘性を調整し、ビード外観を改善す
るのに有効であるが、5%未満では効果がなく、25%
を超えると粘性が大きくなりスラグ巻き込みが発生す
る。従ってSiO2を5〜25%に制限する。
Al 2 O 3 : 10 to 40% Al 2 O 3 has a high melting point and is effective in adjusting the fluidity of the slag and adjusting the bead shape. This effect is particularly important when used in multi-pass welding, and the bead can be used well, and slag entrainment and undercuts can be prevented. If it is less than 10%, there is no effect, and if it exceeds 40%, slag entrainment and undercut tend to occur. Thus limiting the Al 2 O 3 10 to 40%. SiO 2 ; 5% to 25% SiO 2 is effective in adjusting the viscosity of slag and improving the bead appearance, but is less effective when less than 5%, and 25%
If it exceeds, the viscosity increases and slag entrainment occurs. Thus limiting the SiO 2 5 to 25%.

【0011】原料は単独物質と共に上記成分を含有する
化合物、鉱石あるいは溶融形フラックス等で添加するこ
とが出来る。例えば用いる原料として、CaF2;蛍
石、溶融形フラックス等、CaO;炭酸石灰、溶融形フ
ラックス等、MgO;マグネシアクリンカー、溶融形フ
ラックス等、Al23;アルミナ、溶融形フラックス等
である。又、必須成分のほかに酸化消耗する成分を調整
するために金属粉、合金粉等や脱酸剤等を配合すること
が出来る。
The raw materials can be added together with the single substance in the form of a compound containing the above-mentioned components, ore or a molten flux. For example, the raw materials used include CaF 2 ; fluorite, molten flux, etc., CaO; carbonated lime, molten flux, etc., MgO; magnesia clinker, molten flux, etc., Al 2 O 3 ; alumina, molten flux, etc. In addition to the essential components, a metal powder, an alloy powder, a deoxidizing agent, and the like can be blended to adjust components that are oxidized and consumed.

【0012】更にワイヤとフラックスの組み合わせで添
加する成分の限定理由について述べる。 Mo:0.3〜1.6% Moは固溶体強化により、高温強度を顕著に高める元素
であり使用温度、圧力を上昇させる目的で添加する。W
との共存において、高温強度、特に高温長時間側でのク
リープ破断強度の向上に効果がある。0.3%以下では
その効果がなく1.6%を超えるとδフェライトを晶出
させるため靱性が劣化する。従ってMoを0.3%〜
1.6%に制限する。 W:0.5〜3.5% Wはフェライト系溶接金属のクリープ強度に寄与する固
溶体強化元素としても最も優れた元素である。特に高温
長時間側でのクリープ破断強度向上の効果は極めて大き
い。0.5%以下ではMoとの共存において効果は発揮
できず3.5%を超えるとδフェライトを晶出させ溶接
金属の靱性が低下する。従ってWを0.5〜3.5%に
制限する。
Further, the reasons for limiting the components to be added in combination of the wire and the flux will be described. Mo: 0.3 to 1.6% Mo is an element that remarkably enhances the high-temperature strength by solid solution strengthening, and is added for the purpose of increasing the use temperature and pressure. W
Coexistence is effective for improving the high-temperature strength, particularly the creep rupture strength on the high-temperature long-time side. If it is less than 0.3%, the effect is not obtained, and if it exceeds 1.6%, δ ferrite is crystallized, so that the toughness is deteriorated. Therefore, Mo is 0.3% ~
Limit to 1.6%. W: 0.5 to 3.5% W is the most excellent element as a solid solution strengthening element that contributes to the creep strength of a ferritic weld metal. Particularly, the effect of improving the creep rupture strength on the high temperature and long time side is extremely large. If it is less than 0.5%, the effect cannot be exhibited in coexistence with Mo, and if it exceeds 3.5%, δ ferrite is crystallized and the toughness of the weld metal is reduced. Therefore, W is limited to 0.5 to 3.5%.

【0013】Ni:0.05〜1.2% Niはフェライトの生成を抑制し、使用中の脆化軽減に
有効な元素であり、高温で長時間使用される本発明溶接
材料のような用途に対しては必須の元素である。0.0
5%以下ではその効果はなく1.2%を超えると高温ク
リープ特性を劣化させる。従ってNiを0.05〜1.
2%に制限する。 Co:1.0〜5.0% CoはNiと同様にMo,W添加によって生じるδフェ
ライトの晶出という問題点を相殺する重要な元素であ
り、最低1.0%以上を必要とする。しかし5.0%を
超えるとAcl点を下げ、高温焼戻しが不可能となり組
織の安定化処理ができなくなる。従ってCoを1.0〜
5.0%に制限する。
Ni: 0.05 to 1.2% Ni is an element that suppresses the formation of ferrite and is effective in reducing embrittlement during use, and is used for a long time at a high temperature, such as the welding material of the present invention. Is an indispensable element. 0.0
If it is less than 5%, the effect is not obtained, and if it exceeds 1.2%, the high-temperature creep characteristics are deteriorated. Therefore, Ni is 0.05-1.
Limit to 2%. Co: 1.0 to 5.0% Co is an important element that, like Ni, cancels the problem of crystallization of δ ferrite caused by the addition of Mo and W, and requires at least 1.0% or more. However, if it exceeds 5.0%, the Acl point is lowered, high-temperature tempering becomes impossible, and the structure cannot be stabilized. Therefore, Co
Limit to 5.0%.

【0014】Cu;1.0〜5.0% CuはCoやNiと同様にMo,W添加によって生じる
δフェライトの晶出という問題点を相殺する重要な元素
であり、最低1.0%以上を必要とする。しかし5.0
%を超えるとAcl点を下げ、高温焼戻しが不可能とな
り組織の安定化処理ができなくなる。従ってCuを1.
0〜5.0%に制限する。 (Mo+W)/(Ni+Co又はCu)≦2.0 (Mo+W)/(Ni+Co又はCu)≦2.0は本合
金系において高温強度と靱性とのバランスをとる上で非
常に重要である。Mo及びWは溶接金属の高温強度の向
上に有効な元素であるが、δフェライトを晶出させ靱性
を劣化させる。NiやCo及びCuはフェライトの生成
を抑制し、靱性を改善する元素である。これらの元素の
共存効果において溶接金属の高温強度と良好な靱性が得
られる。(Mo+W)/(Ni+Co又はCu)が2.
0を超えるとδフェライトが晶出し靱性が劣化する。従
って(Mo+W)/(Ni+Co又はCu)≦2.0に
制限する。以下に本発明溶接方法の効果を実施例により
説明する。
Cu: 1.0 to 5.0% Cu, like Co and Ni, is an important element for canceling the problem of crystallization of δ ferrite caused by the addition of Mo and W, and at least 1.0% or more. Need. But 5.0
%, The Acl point is lowered, high temperature tempering becomes impossible, and the structure cannot be stabilized. Therefore, Cu is 1.
Limit to 0-5.0%. (Mo + W) / (Ni + Co or Cu) ≦ 2.0 (Mo + W) / (Ni + Co or Cu) ≦ 2.0 is very important in balancing the high temperature strength and the toughness in the present alloy system. Mo and W are effective elements for improving the high-temperature strength of the weld metal, but crystallize δ ferrite and deteriorate the toughness. Ni, Co, and Cu are elements that suppress the formation of ferrite and improve toughness. High temperature strength and good toughness of the weld metal can be obtained by the coexistence effect of these elements. (Mo + W) / (Ni + Co or Cu) is 2.
If it exceeds 0, δ ferrite is crystallized and toughness deteriorates. Therefore, it is limited to (Mo + W) / (Ni + Co or Cu) ≦ 2.0. Hereinafter, effects of the welding method of the present invention will be described with reference to examples.

【0015】[0015]

【実施例】実験に供したワイヤは真空溶解炉にて溶解
し、鍛造、圧延及び線引きを行って3.2mmφに作製
した。ワイヤの組成を表1に示すが、W1〜W6は本発
明に用いたワイヤ、W7〜W12は比較例に用いたワイ
ヤである。実験に供したボンドフラックスは通常のフラ
ックス原料として用いられる鉱石粉、複合化合物等を混
合、攪はん後、水ガラスを用いて造粒し、400℃で約
2時間焼成して作製した。フラックスの組成を表2に示
すが、F1〜F5は本発明に用いたフラックス、F6〜
F10は比較例に用いたものである。表1のワイヤと表
2のフラックスとを組み合わせ、表3に示す供試母材を
用い、図1に示すような開先(厚さT=20mm,開先
角度θ=30°,ルートギャップ=12mm)を形成し
て表4に示す溶接条件で潜弧溶接を実施した。得られた
溶接金属を740℃−4時間の後熱処理をした後、60
0℃,20kgf/mm2の応力でクリープ破断試験及
び試験温度0℃での2mmVノッチ衝撃試験を行った。
表5及び表6にワイヤとフラックスとの組み合わせ及び
その確性試験結果を示す。溶接作業性試験については各
パスの溶接後に判定を行った。
EXAMPLES The wires used in the experiments were melted in a vacuum melting furnace, forged, rolled, and drawn to produce 3.2 mmφ. The composition of the wire is shown in Table 1, where W1 to W6 are wires used in the present invention, and W7 to W12 are wires used in comparative examples. The bond flux used in the experiment was prepared by mixing ore ore powder, a composite compound, and the like used as ordinary flux raw materials, stirring, granulating using water glass, and firing at 400 ° C. for about 2 hours. The composition of the flux is shown in Table 2, where F1 to F5 are the flux used in the present invention and F6 to F6.
F10 is used in the comparative example. The wire shown in Table 1 and the flux shown in Table 2 were combined, and the test base material shown in Table 3 was used to obtain a groove (thickness T = 20 mm, groove angle θ = 30 °, root gap = 12 mm), and the arc welding was performed under the welding conditions shown in Table 4. After the obtained weld metal was post-heat treated at 740 ° C. for 4 hours,
A creep rupture test and a 2 mm V notch impact test at a test temperature of 0 ° C. were performed at 0 ° C. and a stress of 20 kgf / mm 2 .
Tables 5 and 6 show the combinations of the wire and the flux and the results of the accuracy test. Regarding the welding workability test, the judgment was made after each pass welding.

【0016】本発明例のNo.1〜No.13は優れた
溶接作業性、溶接金属が得られたがNo.14はワイヤ
中のC,Cr,N不足、ワイヤとフラックスの組み合わ
せによるMo,W、Co不足及びNi過多、No.15
はワイヤ中のC,Cr,N不足、ワイヤとフラックスの
組み合わせによるCo又はCu不足及びNi過多、N
o.16はワイヤ中のSi,N過多及びNb不足、ワイ
ヤとフラックスの組み合わせによるMo不足及びW過
多、(Mo+W)/(Ni+Co)が2.0を超えてい
る、No.17はワイヤ中のC,Si,Cr過多で、ワ
イヤとフラックスの組み合わせによるNi,Cu不足、
(Mo+W)/(Ni+Co)が2.0を超えている、
No.18はワイヤ中のMn,V不足、(Mo+W)/
(Ni+Co)が2.0を超えている、No.18はワ
イヤ中のNb,N過多、ワイヤとフラックスの組み合わ
せによるW不足及びNi過多、No.20はワイヤ中の
Mn,V過多、ワイヤとフラックスの組み合わせによる
Mo過多、No.21、No.22はフラックス中のA
23不足及びCaO過多、No.23はフラックス中
のCaOとMgOとの和が過多及びSiO2不足、ワイ
ヤとフラックスの組み合せによるMo過多、No.24
はフラックス中のCaF2不足、SiO2過多、ワイヤと
フラックスの組み合わせによるMo,W過多、(Mo+
W)/(Ni+Co)が2.0を超えている。
In the example of the present invention, 1 to No. In No. 13, excellent welding workability and weld metal were obtained. No. 14 is C, Cr, N deficiency in the wire, Mo, W, Co deficiency and Ni excess due to the combination of wire and flux. Fifteen
Indicates insufficient C, Cr, N in the wire, insufficient Co or Cu due to the combination of wire and flux, and excessive Ni, N
o. No. 16 has excess Si, N and Nb in the wire, insufficient Mo and excess W due to the combination of wire and flux, and (Mo + W) / (Ni + Co) exceeds 2.0. Reference numeral 17 denotes excess C, Si, and Cr in the wire, and Ni and Cu deficiencies due to the combination of wire and flux;
(Mo + W) / (Ni + Co) exceeds 2.0,
No. 18 is Mn, V deficiency in the wire, (Mo + W) /
(Ni + Co) exceeds 2.0, No. 18 is excessive in Nb and N in the wire, insufficient W and excessive Ni due to the combination of the wire and the flux. No. 20 is excessive in Mn and V in the wire, excess Mo due to the combination of wire and flux, 21, no. 22 is A in the flux
l 2 O 3 deficiency and excess CaO, no. No. 23 has an excessive amount of CaO and MgO in the flux and an insufficient amount of SiO 2 , excessive Mo due to the combination of the wire and the flux, 24
Are CaF 2 deficiency in flux, SiO 2 excess, Mo and W excess due to combination of wire and flux, (Mo +
W) / (Ni + Co) exceeds 2.0.

【0017】No.25はフラックス中のCaOとMg
Oとの和不足及びAl23過多、ワイヤとフラックスの
組み合わせによるMo,Cu過多、No.26はフラッ
クス中のCaF2過多及びCaOとMgOとの和不足、
ワイヤとフラックスの組み合わせによるCo過多、N
o.27はワイヤとフラックスの組み合わせによるCu
過多、No.28はワイヤとフラックスの組み合わせに
よるCo過多、No.29はワイヤ中のC,Cr,N不
足、フラックス中のAl23不足及びCaF2過多、ワ
イヤとフラックスの組み合わせによるMo,Cu又はC
o不足及びNi過多、No.30はワイヤ中のMn、V
過多、フラックス中のCaF2不足及びSiO2過多、ワ
イヤとフラックスの組み合わせによるMo過多、(Mo
+W)/(Ni+Co)が2.0を超えているというそ
の個々の理由により溶接作業性不良、機械的性質の劣
化、割れやブローホールの発生等の問題点が認められ
た。
No. 25 is CaO and Mg in flux
Insufficient sum with O, excess Al 2 O 3, excess Mo, Cu due to combination of wire and flux, no. 26 is excess CaF 2 in the flux and insufficient sum of CaO and MgO,
Excessive Co due to combination of wire and flux, N
o. 27 is Cu by the combination of wire and flux
Excess, No. No. 28 is excessive Co due to the combination of wire and flux. Reference numeral 29 denotes C, Cr, N deficiency in the wire, Al 2 O 3 deficiency and CaF 2 in the flux, Mo, Cu or C due to the combination of the wire and the flux.
o lack and excessive Ni, 30 is Mn, V in the wire
Excess, CaF 2 deficiency in flux and SiO 2 excess, Mo excess due to combination of wire and flux, (Mo
+ W) / (Ni + Co) exceeded 2.0, and problems such as poor welding workability, deterioration of mechanical properties, generation of cracks and blowholes were recognized.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【発明の効果】本発明溶接材料は従来の9%〜12%C
r鋼用溶接材料と比較して、高温でのクリープ強度を著
しく高めたものであり、靱性および溶接性などの特性に
も優れている。表4に示したように溶接材料の組み合わ
せが本発明の要件を満たすものは、本発明の要件を満た
さないもの(比較例)と較べて高温クリープ特性だけで
なく、靱性および溶接性に優れていることは明らかであ
る。各種発電ボイラ、化学圧力容器などに使用される9
〜12%Cr系鋼を溶接する場合に本発明に係わる溶接
材料を使用することにより、溶接継手の信頼性を大幅に
向上することができる。
The welding material of the present invention has a conventional 9% to 12% C
Compared with r-steel welding material, it has significantly increased creep strength at high temperatures, and has excellent properties such as toughness and weldability. As shown in Table 4, the combination of the welding materials satisfying the requirements of the present invention is superior not only in the high-temperature creep characteristics but also in the toughness and weldability as compared with those not satisfying the requirements of the present invention (Comparative Example). It is clear that Used for various power generation boilers, chemical pressure vessels, etc. 9
By using the welding material according to the present invention when welding 系 12% Cr-based steel, the reliability of the welded joint can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に用いた溶接部の開先形状を示す断面図
である。
FIG. 1 is a sectional view showing a groove shape of a welded portion used in an example.

【符号の説明】[Explanation of symbols]

1 被溶接材 2 裏当材。 1 Material to be welded 2 Backing material.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で を含有し、残部がFe及び不可避的不純物からなるワイ
ヤと重量比で を含有するフラックスとを組み合わせて用いる高Crフ
ェライト系耐熱鋼用潜弧溶接方法において、前記ワイヤ
と該フラックス中にそれぞれ、またはそのいずれか一方
のみに、Mo,W,Ni,Coを含有させ、かつ下記式
によって求めたこの4成分のそれぞれにおける含有量M
が、重量比で、 の範囲内にあり、しかも、 (Mo+W)/(Ni+Co)≦2.0を満足するよう
に各成分の含有量を調整して潜弧溶接することを特徴と
する高Crフェライト系耐熱鋼用潜弧溶接方法。 M=ワイヤ中のM+0.7×フラックス中のM … 式(但し、Mはそれぞれの元素(Mo,W,Ni,Co)
の含有量)
1. In weight ratio Containing the balance of Fe and inevitable impurities in weight ratio High Cr Cr used in combination with a flux containing
In the method for welding submerged arc for ferritic heat-resistant steel,
And / or in the flux
Only Mo, W, Ni, Co, and the following formula
Content M in each of these four components determined by
But, by weight ratio, , And satisfy (Mo + W) / (Ni + Co) ≦ 2.0.
And a sub-arc welding method for high Cr ferritic heat-resistant steel , wherein the content of each component is adjusted . M = M in the wire + 0.7 × M in the flux ... where M is each element (Mo, W, Ni, Co)
Content)
【請求項2】 重量比で を含有し、残部がFe及び不可避的不純物からなるワイ
ヤと重量比で を含有するフラックスとを組み合わせて用いる高Crフ
ェライト系耐熱鋼用潜弧溶接方法において、前記ワイヤ
と該フラックス中にそれぞれ、またはそのいずれか一方
のみに、Mo,W,Ni,Cuを含有させ、かつ下記式
によって求めたこの4成分のそれぞれにおける含有量M
が、重量比で、 の範囲内にあり、しかも、 (Mo+W)/(Ni+Cu)≦2.0を満足するよう
に各成分の含有量を調整して潜弧溶接することを特徴と
する高Crフェライト系耐熱鋼用潜弧溶接方法。 M=ワイヤ中のM+0.7×フラックス中のM … 式(但し、Mはそれぞれの元素(Mo,W,Ni,Cu)
の含有量)
2. In weight ratio Containing the balance of Fe and inevitable impurities in weight ratio High Cr Cr used in combination with a flux containing
In the method for welding submerged arc for ferritic heat-resistant steel,
And / or in the flux
Only Mo, W, Ni, Cu, and the following formula
Content M in each of these four components determined by
But, by weight ratio, , And satisfy (Mo + W) / (Ni + Cu) ≦ 2.0.
And a sub-arc welding method for high Cr ferritic heat-resistant steel , wherein the content of each component is adjusted . M = M in the wire + 0.7 × M in the flux ... where M is each element (Mo, W, Ni, Cu)
Content)
JP4095379A 1992-04-15 1992-04-15 Submerged arc welding method for high Cr ferritic heat resistant steel Expired - Fee Related JP2600043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4095379A JP2600043B2 (en) 1992-04-15 1992-04-15 Submerged arc welding method for high Cr ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4095379A JP2600043B2 (en) 1992-04-15 1992-04-15 Submerged arc welding method for high Cr ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JPH05285691A JPH05285691A (en) 1993-11-02
JP2600043B2 true JP2600043B2 (en) 1997-04-16

Family

ID=14136018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4095379A Expired - Fee Related JP2600043B2 (en) 1992-04-15 1992-04-15 Submerged arc welding method for high Cr ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JP2600043B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356371B1 (en) * 2000-03-21 2002-10-19 재단법인 포항산업과학연구원 Flux for electoslag welding
JP5340014B2 (en) * 2008-07-25 2013-11-13 日鐵住金溶接工業株式会社 Submerged arc welding method for low temperature steel
CN103240542B (en) * 2012-02-02 2015-04-08 东方电气集团东方锅炉股份有限公司 Ultralow-hydrogen high-toughness low-carbon tungsten-adding heat-resistant steel welding rod
JP6282190B2 (en) * 2014-07-18 2018-02-21 株式会社神戸製鋼所 Single submerged arc welding method for high Cr system CSEF steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636996B2 (en) * 1986-09-19 1994-05-18 新日本製鐵株式会社 Submerged arc welding wire for 9Cr-Mo steel

Also Published As

Publication number Publication date
JPH05285691A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP2007051321A (en) 490 MPa CLASS THICK HIGH-TENSILE STRENGTH FIRE-RESISTANT STEEL FOR WELDED STRUCTURE HAVING EXCELLENT WELDABILITY AND GAS CUTTING PROPERTY, AND ITS MANUFACTURING METHOD
JPH09277084A (en) Submerged arc welding method for high-chromium ferritic heat resisting steel
JPH11291086A (en) Submerged arc welding method for high cr ferritic heat resistant steel
JP2593614B2 (en) Submerged arc welding method for high Cr ferritic heat resistant steel
JP2600043B2 (en) Submerged arc welding method for high Cr ferritic heat resistant steel
JP2000158183A (en) Welding material of martensite system stainless steel, welding joint, and manufacture thereof
JPS62252695A (en) Submerged arc welding method for low temperature steel
JP3879607B2 (en) Welded structural steel with excellent low temperature toughness
JP3083703B2 (en) Submerged arc welding method for high Cr ferritic heat resistant steel
JP2004114053A (en) Large heat input electroslag welding method
JPH10291090A (en) Submerged arc welding method for high cr ferritic heat resistant steel
JPH06277879A (en) Submerged arc welding method for high-cr ferritic heat resisting steel
JP3217567B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JPH09122972A (en) Coated electrode for high-cr ferrite heat resisting steel
JP3567603B2 (en) High chromium ferritic steel with excellent toughness, weld joint creep characteristics and hot workability after PWHT
JPH07268562A (en) Coated rod for arc welding used for high cr ferritic heat resistant steel
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JP4701619B2 (en) Large heat input electroslag welding method
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
WO2017038975A1 (en) Wire for submerged arc welding
JPH08164481A (en) Welding method of high cr ferritic heat resistant steel
EP4365326A1 (en) Submerged arc welding method
JPS6268694A (en) Production of heat-treated steel pipe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees