JP2000302411A - Production of monogermane - Google Patents

Production of monogermane

Info

Publication number
JP2000302411A
JP2000302411A JP11113373A JP11337399A JP2000302411A JP 2000302411 A JP2000302411 A JP 2000302411A JP 11113373 A JP11113373 A JP 11113373A JP 11337399 A JP11337399 A JP 11337399A JP 2000302411 A JP2000302411 A JP 2000302411A
Authority
JP
Japan
Prior art keywords
acid
aqueous solution
monogermane
germanium dioxide
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11113373A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
博行 井上
Isao Harada
功 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP11113373A priority Critical patent/JP2000302411A/en
Publication of JP2000302411A publication Critical patent/JP2000302411A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the production of both a digermane and impurities derived from an acid and produce a high-purity product in high yield by using the acid which is a solid in an anhydrous state at normal temperatures and soluble in water when reacting germanium dioxide and a hydrogenating agent with the acid. SOLUTION: A hydrogenating agent is preferably an alkali metal borohydride, especially sodium borohydride, potassium borohydride or the like and boric acid, oxalic acid, citric acid, ascorbic acid, erythorbic acid, succinic acid, glutamic acid and nicotinic acid are preferred as an acid to be used. A 20-50 wt.% aqueous solution is preferred as the form of use in order to improve the mixing of the acid with an aqueous solution of a reactional raw material and stably produce a monogermane. The concentration of the germanium dioxide in the aqueous solution of the reactional raw material is preferably <=0.5 mol/L and the amount of the alkali metal borohydride is >=4 mol based on 1 mol of the germanium dioxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はモノゲルマンガスの
製造方法に関する。より詳しくは、揮発成分のない酸を
用いることで不純物の生成を低く抑えつつ、モノゲルマ
ンを純度よくかつ安価に製造する方法に関する。
[0001] The present invention relates to a method for producing monogerman gas. More specifically, the present invention relates to a method for producing monogermane with high purity and low cost while suppressing generation of impurities by using an acid having no volatile component.

【0002】[0002]

【従来の技術】モノゲルマンは主としてアモルファスシ
リコンゲルマニウム薄膜の原料として使用されている。
これはアモルファスシリコン薄膜より長波長側の光の吸
収効率が高いという特性があるため、今後長波長光の変
換効率の高い太陽電池や長波長光感度の高い感光ドラム
の開発が進むにつれ、モノゲルマンの需要も著しく伸び
てくるものと期待されている。このため、アモルファス
シリコンゲルマニウム薄膜の原料として使用できるよう
な高純度のモノゲルマンを工業的に安定に、またいうま
でもなく安価に製造する技術が求められている。
2. Description of the Related Art Monogermane is mainly used as a raw material for amorphous silicon germanium thin films.
This has the property that the absorption efficiency of light on the long wavelength side is higher than that of amorphous silicon thin films.Therefore, as the development of solar cells with high conversion efficiency for long wavelength light and photosensitive drums with high long wavelength light sensitivity progresses, Monogerman The demand for is expected to increase significantly. For this reason, there is a need for a technique for industrially stably producing high-purity monogermane, which can be used as a raw material of an amorphous silicon germanium thin film, and needless to say, at a low cost.

【0003】ゲルマンの製造は、古くは1900年代の
初頭にその報告があるが、本格的に研究が始まったのは
1920年代以降である。なかでもモノゲルマン生成反
応として代表的なものに、ゲルマニウム源としては安定
な二酸化ゲルマニウム(GeO2)と、水素化剤として
は大気中でも水溶液としても取扱いのできるアルカリ金
属ボロハイドライドを原料とし、酸水溶液を用いてモノ
ゲルマンを得る方法がよく知られている。また、二酸化
ゲルマニウム自体が極めて高価であるため、高収率でモ
ノゲルマンを製造することが望ましい。ここでいう高収
率とは、原料の転化率が高く、またジゲルマンやトリゲ
ルマンのような高次ゲルマンの副生が少ないことを意味
する。
The production of germane was reported in the early 1900's, but full-scale research began in the 1920's. Among them, a typical example of a monogermane formation reaction includes a stable germanium dioxide (GeO 2 ) as a germanium source and an alkali metal borohydride as a hydrogenating agent which can be handled as an aqueous solution even in the air, and an acid aqueous solution. A method for obtaining monogermane using is well known. Since germanium dioxide itself is extremely expensive, it is desirable to produce monogermane in high yield. The term “high yield” as used herein means that the conversion rate of the raw material is high and that high-order germane by-products such as digermane and trigermane are less produced.

【0004】二酸化ゲルマニウムとアルカリ金属ボロハ
イドライドから製造した例としては例えば、Pipe
r、Wilsonの報告がある[J.Inorg.Nu
cl.Chem.;vol.4,P22(195
7)]。彼らは、水素化剤にナトリウムボロハイドライ
ドを用い、臭化水素酸に溶解した二酸化ゲルマニウムを
水素化する方法で、最適条件下に於いて収率73%を得
たと報告している。
[0004] As an example of the production from germanium dioxide and alkali metal borohydride, for example, Pipe
r, Wilson [J. Inorg. Nu
cl. Chem. Vol. 4, P22 (195
7)]. They report that using sodium borohydride as a hydrogenating agent and hydrogenating germanium dioxide dissolved in hydrobromic acid gave a yield of 73% under optimal conditions.

【0005】また、Drake、Jollyらの報告
[J.Chem.Soc.;2807(1962)]
は、二酸化ゲルマニウムとカリウムボロハイドライドを
溶解したアルカリ水溶液と酸とを接触させる方法であ
り、酸として酢酸を用いた場合の最適条件下に於いて収
率73%を得たと報告している。
A report by Drake, Jolly et al. [J. Chem. Soc. 2807 (1962)].
Is a method in which an alkali aqueous solution in which germanium dioxide and potassium borohydride are dissolved is brought into contact with an acid, and it is reported that a yield of 73% was obtained under optimal conditions when acetic acid was used as the acid.

【0006】これらは安定な原料を用いているため反応
操作は複雑なものではないが、何れも最適条件下でも収
率70%台と低く、未反応分の回収を行わないとロスが
大きいため、工業的には不利である。
[0006] Since these use stable raw materials, the reaction operation is not complicated, but the yield is as low as 70% even under the optimum conditions, and the loss is large unless the unreacted components are collected. Industrially disadvantageous.

【0007】これに対し、同様の原料で高収率でモノゲ
ルマンを得ることができる方法を開示したものとして、
USP 4,668,502号公報(1987)が挙げ
られる。該公報に開示された方法は二酸化ゲルマニウム
とアルカリ水溶液(第一溶液)にアルカリ金属ボロハイ
ドライドを添加してなる水溶液(第二溶液)を硫酸水溶
液と接触せしめ、モノゲルマンを得る方法であり、第一
溶液中の二酸化ゲルマニウム濃度、アルカリ/二酸化ゲ
ルマニウム比、第一溶液に添加するアルカリ金属ボロハ
イドライド量、酸濃度、反応温度等の諸条件を特定の範
囲とすることにより78%以上、実施例によれば90%
以上の収率でモノゲルマンを得る方法である。
[0007] On the other hand, a method capable of obtaining monogermane in high yield from similar raw materials is disclosed as follows.
USP 4,668,502 (1987). The method disclosed in this publication is a method in which an aqueous solution (second solution) obtained by adding an alkali metal borohydride to germanium dioxide and an aqueous alkali solution (first solution) is brought into contact with an aqueous sulfuric acid solution to obtain monogermane. 78% or more by adjusting the conditions such as the concentration of germanium dioxide in one solution, the ratio of alkali / germanium dioxide, the amount of alkali metal borohydride added to the first solution, the acid concentration and the reaction temperature to specific ranges. According to 90%
This is a method for obtaining monogermane with the above yield.

【0008】[0008]

【発明が解決しようとする課題】本発明者らもUSP
4,668,502号公報の実施例に従って条件を整
え、モノゲルマン生成実験を行って、原料として使用し
た二酸化ゲルマニウムの90%前後が転化しており、高
収率でモノゲルマンを得る方法であることを実験的に確
認した。
SUMMARY OF THE INVENTION
No. 4,668,502, the conditions are adjusted and monogermane production experiments are carried out, and about 90% of the germanium dioxide used as the raw material is converted, so that monogermane is obtained in high yield. This was confirmed experimentally.

【0009】しかしながら、この方法ではジゲルマンの
生成量が多く、条件によっては反応溶液中に黄色の高次
ゲルマンの沈殿物が生成するためモノゲルマンの収率が
低下すること、また揮発性の酸を用いているため、ゲル
マンガス中に酸由来の不純物が多く生成し純度が低下す
る。そのため、工業的に高収率で純度よくモノゲルマン
を製造するため前述の状況は致命的ともいえる問題点で
ある。
However, according to this method, a large amount of digermane is produced, and depending on the conditions, a yellow higher-order germane precipitate is formed in the reaction solution, so that the yield of monogermane is reduced. Since it is used, many impurities derived from acid are generated in the germane gas, and the purity is reduced. Therefore, the above situation is a problem that can be said to be fatal in order to industrially produce monogermane with high yield in high yield.

【0010】[0010]

【課題を解決するための手段】本発明者らは、二酸化ゲ
ルマニウムと水素化剤及び酸との反応でモノゲルマンを
得る方法を前提に、ジゲルマンを含む高次ゲルマン及び
酸由来の不純物の生成を最小限に抑制し、高収率で高純
度のモノゲルマンを安価にまた工業的に安定に製造する
方法について鋭意検討を行った。
SUMMARY OF THE INVENTION The present inventors presuppose a method for obtaining monogermane by reacting germanium dioxide with a hydrogenating agent and an acid, and to produce higher-order germanes including digermane and impurities derived from acids. We studied diligently how to produce monogermane with high yield and high purity at low cost and industrially stably.

【0011】この結果、反応の型式はUSP 4,66
8,502号公報に一例を記載の如く、二酸化ゲルマニ
ウムとアルカリ金属ボロハイドライドを含むアルカリ水
溶液(以下反応原料水溶液と記す)を予め調整し、これ
を無水の状態で常温で固体でありかつ水に可溶な酸と反
応させる方法が最も容易であることを見出し本発明を完
成するに至った。
As a result, the type of reaction is USP 4,66
As described in JP-A-8,502, as an example, an alkaline aqueous solution containing germanium dioxide and an alkali metal borohydride (hereinafter, referred to as an aqueous solution of a reaction raw material) is prepared in advance, which is a solid at room temperature in an anhydrous state and is dissolved in water. The inventors found that the method of reacting with a soluble acid was the easiest, and completed the present invention.

【0012】即ち、本発明は二酸化ゲルマニウムと水素
化剤に酸を反応させ、モノゲルマンを製造する方法に於
いて、使用する酸が無水の状態で常温で固体であり、か
つ水に可溶な酸であることを特徴とするモノゲルマンの
製造方法に関する。
That is, the present invention relates to a method for producing monogermane by reacting an acid with germanium dioxide and a hydrogenating agent, wherein the acid used is a solid at room temperature in an anhydrous state and is soluble in water. The present invention relates to a method for producing monogermane, which is an acid.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いる水素化剤には、アルカリ金属ボロハイド
ライド、ナトリウムボロハイドライド、カリウムボロハ
イドライド等が好ましい物質として挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
Preferred examples of the hydrogenating agent used in the present invention include alkali metal borohydride, sodium borohydride, potassium borohydride and the like.

【0014】本発明で使用する酸は、この反応に於いて
ジゲルマンの生成を抑制する効果を発揮するものであ
る。これらの酸は、無水の状態で常温で固体であり、か
つ水に可溶な酸である。例えば硼酸、蓚酸、クエン酸、
アスコルビン酸、エリソルビン酸、コハク酸、グルタミ
ン酸、ニコチン酸等が使用できる。中でも、硼酸、クエ
ン酸は毒性が低く取り扱いが容易であり、比較的安価で
好ましい。反応に使用する酸は、固体のまま添加しても
良いが反応原料水溶液との混合を良くするため、また安
定にモノゲルマンを生成させるため20〜50重量%の
水溶液が好ましい。
The acid used in the present invention has an effect of suppressing the formation of digermane in this reaction. These acids are solids at room temperature in an anhydrous state and soluble in water. For example, boric acid, oxalic acid, citric acid,
Ascorbic acid, erythorbic acid, succinic acid, glutamic acid, nicotinic acid and the like can be used. Above all, boric acid and citric acid are preferable because they have low toxicity and are easy to handle, and are relatively inexpensive. The acid used in the reaction may be added as it is in a solid state, but is preferably an aqueous solution of 20 to 50% by weight in order to improve the mixing with the aqueous solution of the reaction raw material and stably generate monogermane.

【0015】本発明に於ける反応は、先にも述べたよう
に二酸化ゲルマニウムと水素化剤を含むアルカリ水溶液
(前出、反応原料水溶液)と酸との反応である。二酸化
ゲルマニウムと水素化剤とを混合してもアルカリ水溶液
中では何の反応も進行しないため、反応原料水溶液の調
製方法に特に限定はない。USP 4,668,502
号公報に記された如く、所定比率の二酸化ゲルマニウム
の金属水酸化物水溶液に粉末のアルカリ金属ボロハイド
ライド粉末を添加してもよいし、予め所定濃度のアルカ
リ水溶液を調製しておいて、これに二酸化ゲルマニウム
粉末及びアルカリ金属ボロハイドライド粉末を添加して
もよい。金属水酸化物には、水酸化ナトリウム、水酸化
カリウム、水酸化カルシウム等が用いられる。
The reaction in the present invention is, as described above, a reaction between germanium dioxide, an alkaline aqueous solution containing a hydrogenating agent (described above, an aqueous solution of a reaction raw material), and an acid. Even if germanium dioxide and the hydrogenating agent are mixed, no reaction proceeds in the alkaline aqueous solution, and thus the method for preparing the reaction raw material aqueous solution is not particularly limited. USP 4,668,502
As described in the publication, an alkali metal borohydride powder as a powder may be added to a predetermined ratio of an aqueous solution of germanium dioxide metal hydroxide, or a predetermined concentration of an aqueous alkali solution may be prepared in advance. Germanium dioxide powder and alkali metal borohydride powder may be added. Sodium hydroxide, potassium hydroxide, calcium hydroxide and the like are used as the metal hydroxide.

【0016】本発明では反応原料水溶液中の二酸化ゲル
マニウムの濃度は好ましくは0.5mol/L以下、よ
り好ましくは0.3mol/L以下で、また金属水酸化
物は、二酸化ゲルマニウム1モルに対して2化学当量以
上、アルカリ金属ボロハイドライドは、二酸化ゲルマニ
ウム1モルに対して4モル以上の範囲であることが好ま
しい。この領域を外れると、二酸化ゲルマニウムの転化
率が低下するため高収率で、即ち安価にモノゲルマンを
製造することができなくなる。
In the present invention, the concentration of germanium dioxide in the reaction raw material aqueous solution is preferably 0.5 mol / L or less, more preferably 0.3 mol / L or less, and the metal hydroxide is contained in 1 mol of germanium dioxide. It is preferable that the alkali metal borohydride is in a range of 4 moles or more with respect to 1 mole of germanium dioxide. Outside this range, the conversion of germanium dioxide is reduced, so that monogermane cannot be produced in high yield, that is, at low cost.

【0017】ここで金属水酸化物の化学当量とは、酸と
して作用する1当量の水素を含む酸を中和する塩基の量
と定義し、例えば水酸化ナトリウムのようなアルカリ金
属水酸化物なら2化学当量は2モル、水酸化カルシウム
のようなアルカリ土類金属水酸化物なら2化学当量は1
モルである。
Here, the chemical equivalent of the metal hydroxide is defined as the amount of a base that neutralizes an acid containing one equivalent of hydrogen acting as an acid. For example, in the case of an alkali metal hydroxide such as sodium hydroxide, 2 chemical equivalents are 2 moles, 2 equivalents for alkaline earth metal hydroxides such as calcium hydroxide
Is a mole.

【0018】二酸化ゲルマニウムや金属水酸化物、水素
化剤の純度に関しては特に制限はないが、モノゲルマン
は取扱いが難しく、精製工程を簡略化することが望まし
いため、不純物の生成を極力抑制するという意味で原料
は比較的純度の高いものを使用することが好ましい。
The purity of germanium dioxide, metal hydroxide, and hydrogenating agent is not particularly limited, but monogermane is difficult to handle and it is desirable to simplify the purification process. In this sense, it is preferable to use a raw material having a relatively high purity.

【0019】反応原料水溶液は、酸と反応せしめモノゲ
ルマンを生成させる。更に、反応温度は0〜50℃で行
うのが好ましい。反応温度が0℃未満では二酸化ゲルマ
ニウムの転化率が低下するので好ましくない。また、5
0℃を超えるとジゲルマンを含む高次ゲルマンの生成量
が多くなるため好ましくない。反応原料水溶液と酸と反
応せしめる方式は、所定量の酸の中に反応原料水溶液を
供給してもよいし、連続的に酸と反応原料水溶液を接触
させてもよい。本発明は安価な原料から高収率で純度の
高いモノゲルマンを工業的に安定に製造する方法であ
り、回分操作でも連続操作でも対応しうる。
The reaction raw material aqueous solution is reacted with an acid to form monogermane. Further, the reaction is preferably performed at a temperature of 0 to 50 ° C. If the reaction temperature is lower than 0 ° C., the conversion of germanium dioxide decreases, which is not preferable. Also, 5
If the temperature exceeds 0 ° C., the amount of higher-order germane including digermane increases, which is not preferable. As a method of reacting the reaction raw material aqueous solution with the acid, the reaction raw material aqueous solution may be supplied into a predetermined amount of the acid, or the acid and the reaction raw material aqueous solution may be continuously contacted. The present invention is a method for industrially and stably producing monogelmane of high purity and high yield from inexpensive raw materials, and can be used in batch operation or continuous operation.

【0020】以上の如く、純度の高いモノゲルマンを工
業的に安定にかつ安全に製造するためには、反応で使用
する酸が無水の状態で常温で固体でありかつ水に可溶な
酸でなければならない。
As described above, in order to produce monogermane of high purity in an industrially stable and safe manner, the acid used in the reaction must be an acid which is solid at room temperature in an anhydrous state and soluble in water. There must be.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお二酸化ゲルマニウムは(株)ジェムコ製の試
薬、ナトリウムボロハイドライド、水酸化カリウム、硼
酸、蓚酸、クエン酸、硫酸、燐酸、酢酸はすべて和光純
薬工業社製の試薬を、水はイオン交換水を使用した。ま
た、%は特記しない限り重量基準を表す。 実施例1 容量1Lのガラス製三角フラスコに2.8%水酸化カリ
ウム水溶液532gを調製し、これに二酸化ゲルマニウ
ム粉末7.2gとナトリウムボロハイドライド粉末1
5.6gを添加、攪拌、溶解して反応原料水溶液を調製
した。この条件で、二酸化ゲルマニウム濃度は0.13
mol/L、水酸化カリウム濃度0.5mol/L、水
酸化カリウム/二酸化ゲルマニウム≒3.8、ナトリウ
ムボロハイドライド/二酸化ゲルマニウム≒6となる。
また、他の1Lガラス製三角フラスコに硼酸30gとイ
オン交換水120gを添加、撹拌し20%過飽和硼酸水
溶液(3.20mol/L)を調製した。
The present invention will be described below in detail with reference to examples. Germanium dioxide is a reagent manufactured by Gemco Co., Ltd., sodium borohydride, potassium hydroxide, boric acid, oxalic acid, citric acid, sulfuric acid, phosphoric acid and acetic acid are all reagents manufactured by Wako Pure Chemical Industries, and water is ion-exchanged water. used. The percentages are based on weight unless otherwise specified. Example 1 532 g of a 2.8% aqueous potassium hydroxide solution was prepared in a 1 L glass Erlenmeyer flask, and 7.2 g of germanium dioxide powder and sodium borohydride powder 1 were added thereto.
5.6 g was added, stirred and dissolved to prepare a reaction raw material aqueous solution. Under these conditions, the germanium dioxide concentration is 0.13
mol / L, potassium hydroxide concentration 0.5 mol / L, potassium hydroxide / germanium dioxide ≒ 3.8, sodium borohydride / germanium dioxide ≒ 6.
Further, 30 g of boric acid and 120 g of ion-exchanged water were added to another 1-L glass Erlenmeyer flask and stirred to prepare a 20% supersaturated boric acid aqueous solution (3.20 mol / L).

【0022】容量1Lで密閉のできる蓋付のテフロン製
反応器に20%過飽和硼酸水溶液150gを仕込んで蓋
を閉め、反応原料水溶液供給ライン、温度計、キャリヤ
ヘリウム、発生ガス出口ラインを接続した。反応器はス
ターラーで攪拌ができるようにし、また容器ごと温浴に
浸して、反応温度を25〜35℃に調節した。この反応
器に反応原料水溶液をプランジャポンプを用いて2.7
cc/minの速度で、またガスのキャリヤとしてヘリ
ウムを30cc/minで定量的に供給した。モノゲル
マンは反応原料水溶液の供給開始と共に発生しテフロン
製反応器出口ガスを、熱伝導形検出器(TCD)を備え
た昇温分析型ガスクロマトグラフィー(島津製 GC−
8APT)分離カラムはPorapak−Pで分析した
ところ、モノゲルマンと水素を主成分とするもので、表
1に示すようにジゲルマンの生成及び、酸由来の不純物
が殆ど生成していないことを確認した。なお、モノゲル
マンの収率は97.3%であった。反応は約3時間、反
応原料水溶液を約500g供給したところで停止した
が、反応原料水溶液の供給停止後、数秒でガスの生成も
停止することを確認した。また、反応期間中ガスの生成
速度は160〜170L/minで安定していた。
A 1-liter Teflon reactor having a lid capable of sealing was charged with 150 g of a 20% supersaturated boric acid aqueous solution, and the lid was closed. The reactor was allowed to stir with a stirrer, and the reactor was immersed in a warm bath to adjust the reaction temperature to 25 to 35 ° C. An aqueous solution of the reaction raw material is supplied to this reactor using a plunger pump, and is 2.7.
Helium was supplied quantitatively at a rate of 30 cc / min at a rate of cc / min and as a gas carrier. Monogerman is generated at the start of the supply of the aqueous solution of the reaction raw material, and the outlet gas of the Teflon-made reactor is analyzed by a temperature rising analysis type gas chromatography (GC-made by Shimadzu) equipped with a heat conduction type detector (TCD).
8APT) The separation column was analyzed by Porapak-P, and it was confirmed that monogermane and hydrogen were the main components, and as shown in Table 1, generation of digermane and almost no impurity derived from acid were generated. . The yield of monogermane was 97.3%. The reaction was stopped when about 500 g of the aqueous solution of the reaction raw material was supplied for about 3 hours, but it was confirmed that the generation of gas was stopped within a few seconds after the supply of the aqueous solution of the reaction raw material was stopped. The gas generation rate was stable at 160 to 170 L / min during the reaction period.

【0023】実施例2 反応原料水溶液に添加する酸を蓚酸に変更し、1Lガラ
ス製三角フラスコに蓚酸30gとイオン交換水120g
を添加、撹拌し20%過飽和蓚酸水溶液(2.22mo
l/L)を調整し、容量1Lで密閉のできる蓋付のテフ
ロン製反応器に20%過飽和蓚酸水溶液150gを仕込
んだ以外は、実施例1と同様の方法で反応を行った。ガ
スクロ分析結果を表1に示す。
Example 2 The acid added to the aqueous solution of the reaction raw material was changed to oxalic acid, and 30 g of oxalic acid and 120 g of ion-exchanged water were placed in a 1-L glass Erlenmeyer flask.
Was added and stirred, and a 20% aqueous solution of supersaturated oxalic acid (2.22 mol) was added.
1 / L), and the reaction was carried out in the same manner as in Example 1 except that 150 g of a 20% supersaturated oxalic acid aqueous solution was charged into a Teflon-made reactor having a capacity of 1 L and capable of being sealed. Table 1 shows the results of gas chromatography analysis.

【0024】実施例3 反応原料水溶液に添加する酸をクエン酸に変更し、1L
ガラス製三角フラスコにクエン酸45gとイオン交換水
105gを添加、撹拌し30%過飽和クエン酸水溶液
(1.56mol/L)を調整し、容量1Lで密閉ので
きる蓋付のテフロン製反応器に30%過飽和クエン酸水
溶液150gを仕込んだ以外は、実施例1と同様の方法
で反応を行った。ガスクロ分析結果を表1に示す。
Example 3 The acid to be added to the aqueous solution of the reaction raw material was changed to citric acid, and 1 L
45 g of citric acid and 105 g of ion-exchanged water were added to a glass Erlenmeyer flask, and stirred to prepare a 30% aqueous solution of supersaturated citric acid (1.56 mol / L). The reaction was carried out in the same manner as in Example 1 except that 150 g of a 30% aqueous solution of supersaturated citric acid was charged. Table 1 shows the results of gas chromatography analysis.

【0025】比較例1 反応原料水溶液に添加する酸を硫酸に変更し、容量1L
で密閉のできる蓋付のテフロン製反応器に40%硫酸1
50g(4.10mol/L)を仕込んだ以外は、実施
例1と同様の方法で反応を行った。反応原料水溶液の供
給と共にガスが発生し、ガスクロ分析結果は表1に示
す。また、ジゲルマンの生成量及び、酸由来の不純物が
大幅に増加していることが判った。
COMPARATIVE EXAMPLE 1 The acid added to the reaction raw material aqueous solution was changed to sulfuric acid, and the volume was 1 L.
40% sulfuric acid in a Teflon reactor with a lid
The reaction was carried out in the same manner as in Example 1 except that 50 g (4.10 mol / L) was charged. Gas was generated along with the supply of the reaction raw material aqueous solution, and the results of gas chromatography analysis are shown in Table 1. It was also found that the amount of digermane produced and the impurities derived from the acid were significantly increased.

【0026】比較例2 反応原料水溶液に添加する酸を燐酸に変更し、容量1L
で密閉のできる蓋付のテフロン製反応器に25%燐酸1
50g(2.55mol/L)を仕込んだ以外は、実施
例1と同様の方法で反応を行った。反応原料水溶液の供
給と共にガスが発生し、ガスクロ分析結果は表1に示
す。また、ジゲルマンの生成量及び、酸由来の不純物が
増加していることが判った。
Comparative Example 2 The acid added to the aqueous solution of the reaction raw material was changed to phosphoric acid, and the volume was 1 L.
25% phosphoric acid in a Teflon reactor with a lid
The reaction was carried out in the same manner as in Example 1 except that 50 g (2.55 mol / L) was charged. Gas was generated along with the supply of the reaction raw material aqueous solution, and the results of gas chromatography analysis are shown in Table 1. It was also found that the amount of digermane produced and the impurities derived from the acid increased.

【0027】比較例3 反応原料水溶液に添加する酸を酢酸に変更し、容量1L
で密閉のできる蓋付のテフロン製反応器に30%酢酸1
50g(5.00mol/L)を仕込んだ以外は、実施
例1と同様の方法で反応を行った。反応原料水溶液の供
給と共にガスが発生し、ガスクロ分析結果は表1に示
す。また、酸由来の不純物が増加していることが判っ
た。
Comparative Example 3 The acid added to the aqueous solution of the reaction raw material was changed to acetic acid, and the volume was 1 L.
30% acetic acid in a Teflon reactor with a lid
The reaction was carried out in the same manner as in Example 1 except that 50 g (5.00 mol / L) was charged. Gas was generated along with the supply of the reaction raw material aqueous solution, and the results of gas chromatography analysis are shown in Table 1. Further, it was found that impurities derived from the acid increased.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明は、二酸化ゲルマニウムと水素化
剤と酸を反応させモノゲルマンを製造する於いて、該反
応で使用する酸に無水の状態で常温で固体でありかつ水
に可溶な酸を使用することを特徴とするモノゲルマンの
製造方法である。この方法はこれまで述べた如く、ジゲ
ルマンの生成及び酸由来の不純物の生成を抑制すること
ができ純度の高いモノゲルマンを高収率でかつ安全に製
造することができる。従って、精製工程を簡略化するこ
とができるため、結果として安価にモノゲルマンを得る
ことができる。以上を総合して考えると、本発明の効果
は大きいと考える。
Industrial Applicability The present invention relates to a method for producing monogermane by reacting germanium dioxide with a hydrogenating agent and an acid. The monogermane is solid at room temperature in an anhydrous state in an acid used in the reaction and is soluble in water. A method for producing monogermane, characterized by using an acid. As described above, this method can suppress the formation of digermane and the formation of impurities derived from acids, and can safely produce monogermane with high purity in high yield. Therefore, the purification step can be simplified, and as a result, monogermane can be obtained at low cost. Considering all the above, the effect of the present invention is considered to be great.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 二酸化ゲルマニウムと水素化剤に酸を
反応させ、モノゲルマンを製造する方法に於いて、使用
する酸が無水の状態で常温で固体であり、かつ水に可溶
な酸であることを特徴とするモノゲルマンの製造方法。
1. A method for producing monogermane by reacting an acid with germanium dioxide and a hydrogenating agent, wherein the acid used is an acid-free solid at room temperature and soluble in water. A method for producing monogermane, comprising:
【請求項2】 水素化剤が、アルカリ金属ボロハイド
ライドである請求項1記載の製造方法。
2. The method according to claim 1, wherein the hydrogenating agent is an alkali metal borohydride.
【請求項3】 無水の状態で常温で固体であり、かつ
水に可溶な酸が、硼酸、蓚酸、クエン酸、アスコルビン
酸、エリソルビン酸、コハク酸、グルタミン酸及びニコ
チン酸である請求項1記載の製造方法。
3. The water-soluble acid which is solid at room temperature in an anhydrous state and soluble in water is boric acid, oxalic acid, citric acid, ascorbic acid, erythorbic acid, succinic acid, glutamic acid and nicotinic acid. Manufacturing method.
【請求項4】 二酸化ゲルマニウムと水素化剤に酸を
反応させる温度が、0〜50℃の範囲である請求項1記
載の製造方法。
4. The method according to claim 1, wherein the temperature at which the acid is reacted with the germanium dioxide and the hydrogenating agent is in the range of 0 to 50 ° C.
【請求項5】 モノゲルマンの収率が少なくとも90
重量%以上である請求項1記載の製造方法。
5. The monogermane yield of at least 90.
2. The production method according to claim 1, wherein the amount is not less than% by weight.
JP11113373A 1999-04-21 1999-04-21 Production of monogermane Pending JP2000302411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11113373A JP2000302411A (en) 1999-04-21 1999-04-21 Production of monogermane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11113373A JP2000302411A (en) 1999-04-21 1999-04-21 Production of monogermane

Publications (1)

Publication Number Publication Date
JP2000302411A true JP2000302411A (en) 2000-10-31

Family

ID=14610654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11113373A Pending JP2000302411A (en) 1999-04-21 1999-04-21 Production of monogermane

Country Status (1)

Country Link
JP (1) JP2000302411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030909A1 (en) * 2012-08-20 2014-02-27 오씨아이머티리얼즈 주식회사 Apparatus for preparing germane gas, and method for preparing mono-germane gas by using same
CN114524413A (en) * 2022-03-02 2022-05-24 沧州华宇特种气体科技有限公司 System and method for preparing germane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030909A1 (en) * 2012-08-20 2014-02-27 오씨아이머티리얼즈 주식회사 Apparatus for preparing germane gas, and method for preparing mono-germane gas by using same
WO2014030885A1 (en) * 2012-08-20 2014-02-27 Oci Materials Co., Ltd. Method for preparing monogermane gas in high yield
CN104619644A (en) * 2012-08-20 2015-05-13 奥瑟亚新材料股份有限公司 Apparatus for preparing germane gas, and method for preparing mono-germane gas by using same
JP2015526378A (en) * 2012-08-20 2015-09-10 オーシーアイ・マテリアルズ・カンパニー・リミテッドOCI Materials Co., Ltd. Germanium gas production apparatus and monogermane gas production method using the same
CN104619644B (en) * 2012-08-20 2016-12-14 爱思开新材料有限公司 Germane gas preparation facilities and the method utilizing the single Germane gas of its preparation
US9586820B2 (en) 2012-08-20 2017-03-07 Sk-Materials Co., Ltd. Apparatus for preparing germane gas and method for preparing monogermane gas using same
CN114524413A (en) * 2022-03-02 2022-05-24 沧州华宇特种气体科技有限公司 System and method for preparing germane

Similar Documents

Publication Publication Date Title
KR102300703B1 (en) Solvent-free alkane sulfonation
CN113135888B (en) Preparation method of fluoroethylene carbonate
JP2000302411A (en) Production of monogermane
US3965178A (en) Method for preparing tetrabutylammonium bromide
JP3865455B2 (en) Method for producing germane
WO2012026360A1 (en) Bis(fluorosulfonyl)imide manufacturing method
US20130165689A1 (en) Process for preparing one or more complexing agents selected from methylglycinediacetic acid, glutamic acid diacetic acid and salts thereof
JP4796776B2 (en) Method for producing 4,4&#39;-dicarboxy-2,2&#39;-bipyridine
US5895823A (en) Process for the preparation of aqueous solutions of betaine
JP4302322B2 (en) Chemical process for preparing 2-hydroxy-6-trifluoromethylpyridine
JP4360866B2 (en) Method for producing iodic acid
JP2011016782A (en) Method for producing glycolic acid, and glycolic acid-containing composition
EP1919863A1 (en) Process for the production of bicalutamide
JP3855570B2 (en) Process for producing 4-acetyltetrahydropyran
JP3998747B2 (en) Process for producing hydroxyiminodisuccinic acid alkali metal salt
JPS5826733B2 (en) Ensocaldehydono Seizouhouhou
CA2299782A1 (en) Preparation of solutions of betane
JP3952630B2 (en) Method for producing cobalt sulfate
JP2627443B2 (en) Process for producing 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone
CA2380856A1 (en) Process for preparing betaines
JP3572407B2 (en) Method for synthesizing sodium 2-chloroethanesulfonate
JPS6356219B2 (en)
JPH1180096A (en) Production of dimethyl carbonate
CN117247347A (en) Preparation method of N-Boc-4-aminopiperidine
JPH0222070B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605