JP2000286118A - Manufacture of sintered magnet - Google Patents

Manufacture of sintered magnet

Info

Publication number
JP2000286118A
JP2000286118A JP11093743A JP9374399A JP2000286118A JP 2000286118 A JP2000286118 A JP 2000286118A JP 11093743 A JP11093743 A JP 11093743A JP 9374399 A JP9374399 A JP 9374399A JP 2000286118 A JP2000286118 A JP 2000286118A
Authority
JP
Japan
Prior art keywords
alloy
weight
powder
sintered magnet
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11093743A
Other languages
Japanese (ja)
Other versions
JP2000286118A5 (en
Inventor
Eiji Kato
英治 加藤
Tsutomu Ishizaka
力 石坂
Akira Fukuno
亮 福野
Jun Nakagawa
準 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP11093743A priority Critical patent/JP2000286118A/en
Publication of JP2000286118A publication Critical patent/JP2000286118A/en
Publication of JP2000286118A5 publication Critical patent/JP2000286118A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably provide an Nd2Fe14M sintered magnet having high magnetic characteristics. SOLUTION: A method for manufacturing a sintered magnet, containing R (at least one kind of rare-earth element including Y), T (Fe or Fe and Co), and B includes a process for molding a mixture of the powder of a first alloy, a second alloy, and a third alloy and sintering the molded product. The first alloy contains 26-29 wt.% R, 0.8-1.08 wt.% B, and the balance T and the second alloy contains 28 wt.% or larger R, 1.1-1.5 wt.% B, and the balance T. The third alloy contains 30 wt.% R, 0.5 wt.% B or smaller, and T as the balance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類焼結磁石の
製造方法に関する。
[0001] The present invention relates to a method for producing a rare earth sintered magnet.

【0002】[0002]

【従来の技術】高性能を有する希土類磁石としては、粉
末冶金法によるSm−Co系磁石でエネルギー積32M
GOeのものが量産されている。また、近年Nd2Fe
14B磁石等のR−T−B系磁石(Rは希土類元素、Tは
Fe、またはFeおよびCo)が開発され、特開昭59
−46008号公報には焼結磁石が開示されている。R
−T−B系磁石は、Sm−Co系磁石に比べ原料が安価
である。R−T−B系焼結磁石の製造には、従来のSm
−Co系の粉末冶金プロセス(溶解→母合金鋳造→イン
ゴット粗粉砕→微粉砕→成形→焼結→磁石)を適用する
ことができる。
2. Description of the Related Art A rare earth magnet having a high performance is an Sm-Co magnet manufactured by powder metallurgy and has an energy product of 32M.
GOe is mass-produced. In recent years, Nd 2 Fe
R-T-B magnets (R is a rare earth element, T is Fe, or Fe and Co) such as a 14 B magnet have been developed.
No. 46008 discloses a sintered magnet. R
The raw material of the -TB magnet is less expensive than that of the Sm-Co magnet. For the production of RTB based sintered magnets, conventional Sm
-A Co-based powder metallurgy process (melting → mother alloy casting → ingot coarse grinding → fine grinding → molding → sintering → magnet) can be applied.

【0003】Nd2Fe14B系焼結磁石の保磁力が結晶
粒界のNdリッチ相の存在に依存していることは、様々
な論文などにおいて詳しく報告されている。したがっ
て、Nd2Fe14B相から構成される結晶粒をNdリッ
チ相が均一に被覆するように焼結すること、すなわち、
焼結磁石中においてNdリッチ相を均一に分散させるこ
とが重要となる。磁石中においてNdリッチ相を均一に
分散させるためには、2合金法を用いることが好まし
い。2合金法では、Nd2Fe14Bを中心とする主相用
粉末とNdリッチな粒界相用粉末との混合物を成形し、
焼結する(特開昭63−93841号公報、特開昭63
−278208号公報、特開平5−21219号公報
等)。粒界相用粉末は焼結時に溶融し、Nd2Fe14
主相に対して濡れ性の極めて良好な液相となって流動
し、主相用粉末の周囲を被覆して磁石の粒界相となり、
保磁力を向上させる。
Various reports have reported in detail that the coercive force of an Nd 2 Fe 14 B-based sintered magnet depends on the existence of an Nd-rich phase at a crystal grain boundary. Therefore, sintering so that the Nd-rich phase uniformly covers the crystal grains composed of the Nd 2 Fe 14 B phase,
It is important to uniformly disperse the Nd-rich phase in the sintered magnet. In order to uniformly disperse the Nd-rich phase in the magnet, it is preferable to use the two-alloy method. In the two-alloy method, a mixture of the main phase powder mainly composed of Nd 2 Fe 14 B and the Nd-rich grain boundary phase powder is formed,
Sintering (JP-A-63-93841, JP-A-63-93841)
-278208, JP-A-5-21219). The powder for the grain boundary phase is melted at the time of sintering, and Nd 2 Fe 14 B
It becomes a liquid phase with extremely good wettability to the main phase and flows, and coats the periphery of the main phase powder to become a grain boundary phase of the magnet,
Improve coercive force.

【0004】しかし、合金を粉砕して粉末化する際に
は、希土類元素やボロンが飛散して組成ずれが生じやす
く、2合金法では1種の元素の組成ずれは補償可能であ
るが、2種の元素の組成ずれが生じた場合、補償するこ
とが難しくなる。
However, when pulverizing and pulverizing an alloy, a rare earth element or boron is scattered to easily cause a composition deviation, but the two alloy method can compensate for the composition deviation of one element. It is difficult to compensate for the deviation of the composition of the seed elements.

【0005】また、Nd2Fe14B系焼結磁石では、N
dの酸化による減量分を見込んで、化学量論組成よりも
かなりNdリッチ側の組成とすることが一般的であった
が、Ndリッチ組成ではFeに富む相が析出して高保磁
力が得られない。したがって、Ndの酸化を抑えること
ができる場合には、Nd含有量をより少なく、例えば3
1重量%以下とすることが好ましく、この場合には高保
磁力かつ高残留磁束密度の磁石が実現する。しかし、従
来の2合金法は、Nd含有量の少ない焼結磁石の製造に
は最適化されていなかった。
In the case of Nd 2 Fe 14 B-based sintered magnets,
In consideration of the weight loss due to the oxidation of d, it was general to make the composition considerably more Nd-rich side than the stoichiometric composition. Absent. Therefore, when the oxidation of Nd can be suppressed, the Nd content is reduced to, for example, 3%.
The content is preferably 1% by weight or less. In this case, a magnet having a high coercive force and a high residual magnetic flux density is realized. However, the conventional two-alloy method has not been optimized for producing a sintered magnet having a low Nd content.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、磁気
特性の高いNd2Fe14B系焼結磁石を安定して提供す
ることである。
An object of the present invention is to stably provide an Nd 2 Fe 14 B-based sintered magnet having high magnetic properties.

【0007】[0007]

【課題を解決するための手段】このような目的は、下記
(1)〜(4)の本発明により達成される。 (1) R(Rは、Yを含む希土類元素の少なくとも1
種である)、T(Tは、Fe、またはFeおよびFe以
外の遷移元素である)およびBを含有する焼結磁石を製
造する方法であって、第1合金の粉末と第2合金の粉末
と第3合金の粉末との混合物を成形して焼結する工程を
有し、前記第1合金の組成をR:26〜29重量%、
B:0.8〜1.08重量%、T:残部とし、前記第2
合金の組成をR:28重量%以上、B:1.1〜1.5
重量%、T:残部とし、前記第3合金の組成をR:30
重量%以上、B:0.5重量%以下、T:残部とする焼
結磁石の製造方法。 (2) 前記第3合金がBを含有しない上記(1)の焼
結磁石の製造方法。 (3) 前記混合物の組成をR:28〜31重量%、
B:0.9〜1.1重量%、T:残部とする上記(1)
または(2)の焼結磁石の製造方法。 (4) 前記混合物の組成をR:28〜29.5重量
%、B:0.95〜1.05重量%、T:残部とする上
記(1)または(2)の焼結磁石の製造方法。
This and other objects are achieved by the present invention which is defined below as (1) to (4). (1) R (R is at least one of rare earth elements including Y
A method for producing a sintered magnet containing B, which is a seed), T (T is Fe or a transition element other than Fe and Fe), and B, comprising a powder of a first alloy and a powder of a second alloy. And sintering the mixture of the first alloy and the powder of the third alloy, wherein the composition of the first alloy is R: 26 to 29% by weight,
B: 0.8 to 1.08% by weight, T: the balance,
Alloy composition: R: 28% by weight or more, B: 1.1 to 1.5
% By weight, T: balance, R: 30
% Or more, B: 0.5% by weight or less, T: The balance of the manufacturing method of the sintered magnet. (2) The method for producing a sintered magnet according to (1), wherein the third alloy does not contain B. (3) The composition of the mixture is R: 28 to 31% by weight,
B: 0.9 to 1.1% by weight, T: the balance (1)
Or (2) a method for producing a sintered magnet. (4) The method for producing a sintered magnet according to the above (1) or (2), wherein the composition of the mixture is R: 28 to 29.5 wt%, B: 0.95 to 1.05 wt%, and T: balance. .

【0008】[0008]

【作用および効果】本発明では、上記した3種の合金粉
末からなる混合物を焼結することにより、従来の2合金
法を用いた場合よりも高特性の焼結磁石が得られる。
According to the present invention, by sintering a mixture of the above three kinds of alloy powders, a sintered magnet having higher characteristics than the conventional two alloy method can be obtained.

【0009】本発明では、第1合金の粉末と第2合金の
粉末の一部とが、主相であるR21 4B結晶粒を形成
し、第2合金の粉末の残部と第3合金の粉末とが反応し
て粒界相を形成すると考えられる。したがって、第1合
金の粉末は、R214B相を有していることが好まし
い。また、第2の合金の粉末も、R214B相を有して
いてよい。第2合金の粉末はB含有量が多く、第3合金
の粉末はR含有量が多い。そのため、両粉末が反応する
ことにより、R214B磁石に必要とされる粒界相、す
なわち、Rリッチ相およびBリッチ相を含む粒界相が理
想に近い状態で形成され、その結果、主相となる粉末に
加えRリッチ粉末だけを用いる従来の2合金法に比べ、
より高い特性が実現するものと考えられる。
In the present invention, the first alloy powder and the second alloy powder are mixed.
Part of the powder is the main phase RTwoT1 FourForm B crystal grains
And the remainder of the powder of the second alloy reacts with the powder of the third alloy.
To form a grain boundary phase. Therefore, the first pass
Gold powder is RTwoT14Preferably have phase B
No. The powder of the second alloy is also RTwoT14With phase B
May be. The powder of the second alloy has a high B content and the third alloy
Powder has a high R content. So both powders react
By the way, RTwoT14Grain boundary phase required for B magnet
That is, the grain boundary phase including the R-rich phase and the B-rich phase is logical.
Formed in a state close to the imagination, and as a result,
In addition, compared to the conventional two-alloy method using only R-rich powder,
It is believed that higher characteristics are realized.

【0010】[0010]

【発明の実施の形態】本発明では、R(Rは、Yを含む
希土類元素の少なくとも1種である)、T(Tは、F
e、またはFeおよび他の希土類元素である)およびB
を含有する焼結磁石を製造するに際し、第1合金の粉末
と第2合金の粉末と第3合金の粉末との混合物を成形し
て焼結する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, R (R is at least one kind of rare earth element including Y), T (T is F
e, or Fe and other rare earth elements) and B
In producing a sintered magnet containing, a mixture of the first alloy powder, the second alloy powder, and the third alloy powder is molded and sintered.

【0011】第1合金 第1合金の組成は、R:26〜29重量%、B:0.8
〜1.08重量%、T:残部である。R量の下限は、好
ましくは27.0重量%、より好ましくは27.8重量
%であり、R量の上限は、好ましくは28.5重量%、
より好ましくは28.2重量%である。また、B量の下
限は、好ましくは0.9重量%、より好ましくは0.9
5重量%であり、B量の上限は、好ましくは1.05重
量%である。
[0011] The composition of the first alloy first alloy, R: 26 to 29 wt%, B: 0.8
1.08% by weight, T: balance. The lower limit of the R amount is preferably 27.0% by weight, more preferably 27.8% by weight, and the upper limit of the R amount is preferably 28.5% by weight.
More preferably, it is 28.2% by weight. The lower limit of the B content is preferably 0.9% by weight, more preferably 0.9% by weight.
5% by weight, and the upper limit of the amount of B is preferably 1.05% by weight.

【0012】第1合金においてR量が少なすぎると、第
1合金を鋳造などにより製造する際にα−Fe相が多量
に析出する。α−Fe相を多量に含む第1合金を用いる
と、焼結磁石の保磁力が低くなってしまう。一方、第1
合金においてR量が多すぎると、焼結磁石の組成を好ま
しい範囲内に設定しても、高特性が得られない。
If the amount of R in the first alloy is too small, a large amount of the α-Fe phase precipitates when the first alloy is manufactured by casting or the like. If the first alloy containing a large amount of the α-Fe phase is used, the coercive force of the sintered magnet will be low. Meanwhile, the first
If the amount of R is too large in the alloy, high characteristics cannot be obtained even if the composition of the sintered magnet is set within a preferable range.

【0013】第1合金においてB量が少なすぎると、第
1合金中にR217相が多く析出する。R217相を多量
に含む第1合金を用いると、焼結磁石の保磁力が低くな
ってしまう。一方、第1合金においてB量が多すぎる
と、第1合金中に非磁性のBリッチ相が多く析出する。
Bリッチ相を多量に含む第1合金を用いると、磁気特性
の良好な焼結磁石が得られない。
If the amount of B in the first alloy is too small, a large amount of the R 2 T 17 phase precipitates in the first alloy. If the first alloy containing a large amount of the R 2 T 17 phase is used, the coercive force of the sintered magnet will be low. On the other hand, when the amount of B is too large in the first alloy, a large amount of nonmagnetic B-rich phase precipitates in the first alloy.
If the first alloy containing a large amount of the B-rich phase is used, a sintered magnet having good magnetic properties cannot be obtained.

【0014】第2合金 第2合金の組成は、R:28重量%以上、B:1.1〜
1.5重量%、T:残部である。R量の下限は、好まし
くは28.5重量%、より好ましくは28.8重量%で
あり、R量の上限は、好ましくは31重量%、より好ま
しくは30.0重量%、さらに好ましくは29.2重量
%である。また、B量の下限は、好ましくは1.15重
量%であり、B量の上限は、好ましくは1.4重量%、
より好ましくは1.3重量%である。
[0014] The composition of the second alloy second alloy, R: 28 wt% or more, B: 1.1 to
1.5% by weight, T: balance. The lower limit of the R amount is preferably 28.5% by weight, more preferably 28.8% by weight, and the upper limit of the R amount is preferably 31% by weight, more preferably 30.0% by weight, and further preferably 29% by weight. 0.2% by weight. Further, the lower limit of the B amount is preferably 1.15% by weight, and the upper limit of the B amount is preferably 1.4% by weight.
More preferably, it is 1.3% by weight.

【0015】第2合金においてR量が少なすぎると、第
2合金を鋳造などにより製造する際にα−Fe相がやや
多量に析出し、保磁力の高い焼結磁石を得ることが難し
くなる。一方、第2合金においてR量が多すぎると、焼
結磁石の組成を好ましい範囲内に設定しても、高特性が
得られにくい。
If the amount of R in the second alloy is too small, a relatively large amount of the α-Fe phase precipitates when the second alloy is manufactured by casting or the like, and it becomes difficult to obtain a sintered magnet having a high coercive force. On the other hand, if the amount of R in the second alloy is too large, it is difficult to obtain high characteristics even if the composition of the sintered magnet is set within a preferable range.

【0016】第2合金においてB量が少なすぎると、焼
結磁石の組成を好ましい範囲内に設定しても、高特性が
得られない。これは、粒界相に十分なBリッチ相が形成
されないためと考えられる。一方、第2合金においてB
量が多すぎると、第2合金中に非磁性のBリッチ相が多
く析出する。Bリッチ相を多量に含む第2合金を用いる
と、磁気特性の良好な焼結磁石が得られない。
If the amount of B in the second alloy is too small, high characteristics cannot be obtained even if the composition of the sintered magnet is set within a preferable range. This is considered because a sufficient B-rich phase is not formed in the grain boundary phase. On the other hand, in the second alloy, B
If the amount is too large, a large amount of nonmagnetic B-rich phase will precipitate in the second alloy. If the second alloy containing a large amount of the B-rich phase is used, a sintered magnet having good magnetic properties cannot be obtained.

【0017】第3合金 第3合金の組成は、R:30重量%以上、B:0.5重
量%以下、T:残部である。R量の下限は、好ましくは
32重量%、より好ましくは34重量%であり、R量の
上限は、好ましくは60重量%、より好ましくは50重
量%、さらに好ましくは40重量%である。また、B量
の上限は、好ましくは0.2重量%、より好ましくは
0.1重量%である。
[0017] The composition of the third alloy third alloy, R: 30 wt% or more, B: 0.5 wt% or less, T: the balance. The lower limit of the R amount is preferably 32% by weight, more preferably 34% by weight, and the upper limit of the R amount is preferably 60% by weight, more preferably 50% by weight, and still more preferably 40% by weight. The upper limit of the amount of B is preferably 0.2% by weight, more preferably 0.1% by weight.

【0018】第3合金においてR量が少なすぎると、第
3合金中にR217相が多く析出するので、焼結磁石の
保磁力が低くなってしまう。一方、第3合金においてR
量が多すぎると、焼結磁石の組成を好ましい範囲内に設
定しても、高特性が得られにくい。
If the amount of R in the third alloy is too small, a large amount of R 2 T 17 phase will precipitate in the third alloy, and the coercive force of the sintered magnet will be low. On the other hand, in the third alloy, R
If the amount is too large, it is difficult to obtain high characteristics even if the composition of the sintered magnet is set within a preferable range.

【0019】第3合金においてB量が多すぎると、焼結
磁石の組成を好ましい範囲内に設定しても、高特性が得
られない。なお、第3合金は、Bを含有しなくてもよ
い。
If the amount of B in the third alloy is too large, high characteristics cannot be obtained even if the composition of the sintered magnet is set within a preferable range. Note that the third alloy may not contain B.

【0020】混合 第1合金の粉末と第2合金の粉末と第3合金の粉末との
混合物を得る方法は特に限定されず、各合金のブロック
を混合して粉砕してもよく、各合金の粗粉を混合して粉
砕してもよく、各合金の微粉を混合してもよい。各合金
をブロックまたは粗粉として混合すれば、そのあとの粉
砕工程にひとつのロットとして流せるので効率的であ
り、混合の均一性も良好となる。一方、各合金を微粉で
混合する場合には、それぞれの合金粉末を最適な粒度に
調整しておくことができるので、高特性の磁石を得やす
い。なお、粉砕の際にはR量、B量の組成ずれが生じや
すいが、本発明では3種の合金を混合するため、このよ
うな組成ずれを粉砕条件に応じて補償することが可能で
ある。
The method of obtaining powder of the powder and the second alloy mixing first alloy and a mixture of a powder of the third alloy is not particularly limited, may be pulverized by mixing a block of each alloy, each alloy Coarse powder may be mixed and pulverized, or fine powder of each alloy may be mixed. If each alloy is mixed as a block or coarse powder, it can be flown as one lot in the subsequent pulverization process, so that it is efficient and the uniformity of mixing becomes good. On the other hand, when each alloy is mixed with fine powder, each alloy powder can be adjusted to an optimum particle size, so that a magnet with high characteristics can be easily obtained. In addition, the composition deviation of the R amount and the B amount tends to occur at the time of pulverization. However, in the present invention, since three kinds of alloys are mixed, such a composition deviation can be compensated according to the pulverization conditions. .

【0021】混合物中における各合金粉末の比率は、混
合物の組成が好ましくはR:28〜31重量%、B:
0.9〜1.1重量%、T:残部となり、より好ましく
はR:28〜29.5重量%、B:0.95〜1.05
重量%、T:残部となるように設定する。すなわち、本
発明は、R量が化学量論組成に近いR21 4B系希土類
磁石の製造に好適である。混合物中のR含有量が少なす
ぎると鉄に富む相が析出して高保磁力が得られなくな
り、R含有量が多すぎると高残留磁束密度が得られなく
なる。B含有量が少なすぎると高保磁力が得られなくな
り、B含有量が多すぎると高残留磁束密度が得られなく
なる。
The ratio of each alloy powder in the mixture is
The composition of the compound is preferably R: 28 to 31% by weight, B:
0.9 to 1.1% by weight, T: remaining, more preferably
Is R: 28 to 29.5% by weight, B: 0.95 to 1.05
% By weight, T: set to be the balance. That is, the book
In the invention, the amount of R is close to the stoichiometric composition.TwoT1 FourB type rare earth
It is suitable for manufacturing magnets. Low R content in the mixture
When it breaks, a phase rich in iron precipitates and high coercive force cannot be obtained.
If the R content is too high, a high residual magnetic flux density cannot be obtained.
Become. If the B content is too small, a high coercive force cannot be obtained.
If the B content is too large, a high residual magnetic flux density cannot be obtained.
Become.

【0022】具体的な混合比率は、通常、第2合金と第
3合金との合計10重量部に対し、第1合金を1〜12
0重量部とし、かつ、第2合金と第3合金との合計10
重量部中において第2合金を2〜9.5重量部とすれば
よいが、混合物の組成が上記範囲内となれば、これに限
定されない。
The specific mixing ratio is generally 1 to 12 parts by weight of the first alloy with respect to 10 parts by weight of the second alloy and the third alloy.
0 parts by weight, and a total of 10 of the second alloy and the third alloy
The content of the second alloy may be 2 to 9.5 parts by weight in the weight part, but is not limited to this as long as the composition of the mixture is within the above range.

【0023】本発明においてRは、Nd、Pr、Tbの
うち少なくとも1種、特にNdが好ましく、さらにDy
を含むことが好ましい。また、La、Ce、Gd、E
r、Ho、Eu、Pm、Tm、Yb、Yのうち1種以上
を含んでもよい。希土類元素の原料としては、ミッシュ
メタル等の混合物を用いることもできる。
In the present invention, R is at least one of Nd, Pr, and Tb, particularly preferably Nd.
It is preferable to include Also, La, Ce, Gd, E
One or more of r, Ho, Eu, Pm, Tm, Yb, and Y may be included. As a raw material of the rare earth element, a mixture such as misch metal can also be used.

【0024】Tは、Fe、またはFeおよびFe以外の
遷移元素である。Fe以外の遷移元素としてはCoが好
ましい。T中においてFe以外の遷移元素の含有量は3
0重量%以下とすることが好ましい。なお、Fe以外の
遷移元素としては、Coのほか、例えばAl、Cr、M
n、Mg、Si、Cu、Nb、Sn、W、V、Zr、T
i、Moなどが挙げられる。
T is Fe or a transition element other than Fe and Fe. As a transition element other than Fe, Co is preferable. In T, the content of transition elements other than Fe is 3
The content is preferably 0% by weight or less. The transition elements other than Fe include Co, for example, Al, Cr, M
n, Mg, Si, Cu, Nb, Sn, W, V, Zr, T
i, Mo and the like.

【0025】本発明の製造方法では、成形工程において
磁場配向により異方性化するので、各合金の粉末、特に
第1合金の粉末および第2合金の粉末は、単結晶粒子で
あることが好ましい。各合金粉末の平均粒径は、焼結後
の磁石の結晶粒径が所望の値となるように決定すればよ
く、例えば1〜10μm程度から適宜選択すればよい。
In the production method of the present invention, since the anisotropy is caused by the magnetic field orientation in the molding step, the powder of each alloy, particularly the powder of the first alloy and the powder of the second alloy, are preferably single crystal particles. . The average particle size of each alloy powder may be determined so that the crystal particle size of the magnet after sintering has a desired value, and may be appropriately selected from, for example, about 1 to 10 μm.

【0026】合金を粉末化する方法は特に限定されず、
鋳造や液体急冷法(例えば単ロール法)などにより合金
を製造した後、水素吸蔵法や通常の機械的粉砕法などに
より粉砕してもよく、還元拡散法により合金粉末を製造
してもよい。
The method for pulverizing the alloy is not particularly limited.
After an alloy is manufactured by casting or a liquid quenching method (for example, a single roll method), the alloy may be pulverized by a hydrogen storage method or a normal mechanical pulverization method, or an alloy powder may be manufactured by a reduction diffusion method.

【0027】本発明により製造される磁石は、希土類元
素含有量が比較的少ないので、希土類元素の酸化に対す
るマージンが小さい。したがって、粉砕、混合、成形な
どの各工程を、Ar、N2等の非酸化性雰囲気中で行う
ことが好ましい。
Since the magnet manufactured according to the present invention has a relatively low content of rare earth elements, the margin for oxidation of rare earth elements is small. Therefore, it is preferable that each step such as pulverization, mixing, and molding is performed in a non-oxidizing atmosphere such as Ar or N 2 .

【0028】成形 成形工程では、3種の合金粉末の混合物を磁場中で成形
する。成形圧力は特に限定されないが、一般に0.1t/
cm2以上、好ましくは1t/cm2以上とする。成形時の磁場
強度は、通常、10kOe以上、好ましくは15kOe以上と
する。
[0028] In the molding forming process, forming a mixture of three alloy powders in a magnetic field. The molding pressure is not particularly limited, but is generally 0.1 t /
cm 2 or more, preferably 1 t / cm 2 or more. The magnetic field strength during molding is usually at least 10 kOe, preferably at least 15 kOe.

【0029】焼結 焼結工程では、成形体を加熱して焼結し、磁石化する。
焼結工程における安定温度は900〜1100℃とする
ことが好ましく、安定時間は0.5〜24時間とするこ
とが好ましい。なお、焼結雰囲気は、真空またはArガ
ス等の不活性ガス雰囲気であることが好ましい。
In the sintering and sintering step, the compact is heated and sintered to be magnetized.
The stabilization temperature in the sintering step is preferably 900 to 1100 ° C., and the stabilization time is preferably 0.5 to 24 hours. The sintering atmosphere is preferably a vacuum or an inert gas atmosphere such as Ar gas.

【0030】焼結後、保磁力向上のために時効処理を必
要に応じて施す。
After sintering, aging treatment is performed as needed to improve coercive force.

【0031】焼結磁石の組成は、3種の合金の混合物と
ほぼ同じとなるが、このほか、不可避的不純物あるいは
微量添加物として、例えば炭素や酸素が含有されていて
もよい。焼結磁石は、実質的に正方晶型の結晶構造の主
相を有し、結晶粒界には、R 214BよりもR比率の高
いRリッチ相およびB比率の高いBリッチ相が存在す
る。
The composition of the sintered magnet is a mixture of three alloys and
It is almost the same, except for unavoidable impurities or
Contains trace amounts of additives such as carbon and oxygen
Is also good. Sintered magnets have a substantially tetragonal crystal structure.
Phase, and R TwoT14Higher R ratio than B
R-rich phase and B-rich phase with high B ratio exist
You.

【0032】[0032]

【実施例】表3以降の各表にそれぞれ示す焼結磁石サン
プルを、3種の合金を用いる本発明法、2種の合金を用
いる2合金法または1種の合金を用いる通常の焼結法に
より作製した。
EXAMPLES Sintered magnet samples shown in Tables 3 and thereafter are prepared according to the method of the present invention using three kinds of alloys, the two alloy method using two kinds of alloys, or the normal sintering method using one kind of alloy. Produced by

【0033】原料合金には、表1および表2に示す組成
の粉末を用いた。これら各表には、各合金粉末のNd含
有量およびB含有量を示してある。残部はFeである。
これらの合金粉末は、鋳造した合金インゴットをAr雰
囲気中で粉砕することにより得た。
Powders having the compositions shown in Tables 1 and 2 were used as the raw material alloys. In each of these tables, the Nd content and the B content of each alloy powder are shown. The balance is Fe.
These alloy powders were obtained by grinding a cast alloy ingot in an Ar atmosphere.

【0034】各焼結磁石の製造に用いた合金粉末の組み
合わせ、その混合比率および混合後の組成を、表3以降
の各表に示す。なお、合金粉末の平均粒径は、第1合金
において3.3μm、第2合金において3.2μm、第3
合金において3.0μmとした。合金粉末の混合は、A
r雰囲気中で行った。
The combinations of the alloy powders used in the production of the respective sintered magnets, the mixing ratios and the compositions after the mixing are shown in Tables 3 and thereafter. The average particle size of the alloy powder was 3.3 μm for the first alloy, 3.2 μm for the second alloy, and
The thickness was 3.0 μm in the alloy. Mixing of alloy powder is A
r performed in an atmosphere.

【0035】次いで、合金粉末を10Tのパルス磁場中
で静水圧成形した後、真空中において1050℃で8時
間焼結し、急冷した。さらに、Ar雰囲気中において5
50℃で1時間時効処理を施して、焼結磁石サンプルと
した。各サンプルの密度、残留磁束密度(Br)、保磁
力(HcJ)および最大エネルギー積((BH)max)を、表
3以降の各表に示す。
Next, the alloy powder was subjected to isostatic pressing in a pulse magnetic field of 10 T, sintered in vacuum at 1050 ° C. for 8 hours, and quenched. Further, in an Ar atmosphere, 5
After aging at 50 ° C. for 1 hour, a sintered magnet sample was obtained. The density, residual magnetic flux density (Br), coercive force (HcJ), and maximum energy product ((BH) max) of each sample are shown in Table 3 and subsequent tables.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】上記各表から、本発明の効果が明らかであ
る。すなわち、3種の合金を混合する本発明法では、通
常の焼結法および2合金法のいずれを用いた場合よりも
優れた特性の焼結磁石が得られている。
From the above tables, the effect of the present invention is clear. That is, in the method of the present invention in which three kinds of alloys are mixed, a sintered magnet having characteristics superior to those obtained by using either the normal sintering method or the two-alloy method is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福野 亮 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 中川 準 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 4K018 AA27 KA45 5E040 AA04 BD01 CA01 HB05 NN01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Ryo Fukuno, Inventor TDK Corporation, 1-13-1 Nihonbashi, Chuo-ku, Tokyo (72) Inventor Jun Nakagawa 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Incorporated F term (reference) 4K018 AA27 KA45 5E040 AA04 BD01 CA01 HB05 NN01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 R(Rは、Yを含む希土類元素の少なく
とも1種である)、T(Tは、Fe、またはFeおよび
Fe以外の遷移元素である)およびBを含有する焼結磁
石を製造する方法であって、 第1合金の粉末と第2合金の粉末と第3合金の粉末との
混合物を成形して焼結する工程を有し、 前記第1合金の組成を R:26〜29重量%、 B:0.8〜1.08重量%、 T:残部 とし、 前記第2合金の組成を R:28重量%以上、 B:1.1〜1.5重量%、 T:残部 とし、 前記第3合金の組成を R:30重量%以上、 B:0.5重量%以下、 T:残部 とする焼結磁石の製造方法。
1. A sintered magnet containing R (R is at least one kind of rare earth element including Y), T (T is Fe, or a transition element other than Fe and Fe) and B. A method of manufacturing, comprising a step of molding and sintering a mixture of a powder of a first alloy, a powder of a second alloy, and a powder of a third alloy, wherein the composition of the first alloy is R: 26 to 29% by weight, B: 0.8 to 1.08% by weight, T: balance, the composition of the second alloy is R: 28% by weight or more, B: 1.1 to 1.5% by weight, T: balance Wherein the composition of the third alloy is 30% by weight or more, R: 0.5% by weight or less, and T: the balance.
【請求項2】 前記第3合金がBを含有しない請求項1
の焼結磁石の製造方法。
2. The method according to claim 1, wherein the third alloy does not contain B.
Of manufacturing sintered magnets.
【請求項3】 前記混合物の組成を R:28〜31重量%、 B:0.9〜1.1重量%、 T:残部 とする請求項1または2の焼結磁石の製造方法。3. The method for producing a sintered magnet according to claim 1, wherein the composition of the mixture is R: 28 to 31% by weight, B: 0.9 to 1.1% by weight, and T: balance. 【請求項4】 前記混合物の組成を R:28〜29.5重量%、 B:0.95〜1.05重量%、 T:残部 とする請求項1または2の焼結磁石の製造方法。4. The method for producing a sintered magnet according to claim 1, wherein the composition of the mixture is R: 28 to 29.5% by weight, B: 0.95 to 1.05% by weight, and T: balance.
JP11093743A 1999-03-31 1999-03-31 Manufacture of sintered magnet Pending JP2000286118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11093743A JP2000286118A (en) 1999-03-31 1999-03-31 Manufacture of sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11093743A JP2000286118A (en) 1999-03-31 1999-03-31 Manufacture of sintered magnet

Publications (2)

Publication Number Publication Date
JP2000286118A true JP2000286118A (en) 2000-10-13
JP2000286118A5 JP2000286118A5 (en) 2005-07-28

Family

ID=14090911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11093743A Pending JP2000286118A (en) 1999-03-31 1999-03-31 Manufacture of sintered magnet

Country Status (1)

Country Link
JP (1) JP2000286118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107362A1 (en) * 2002-06-13 2003-12-24 住友特殊金属株式会社 Rare earth sintered magnet and method for production thereof
CN110534331A (en) * 2019-09-23 2019-12-03 广西科技大学 A kind of preparation method of high energy product, high-coercive force Sintered NdFeB magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107362A1 (en) * 2002-06-13 2003-12-24 住友特殊金属株式会社 Rare earth sintered magnet and method for production thereof
EP1494250A1 (en) * 2002-06-13 2005-01-05 Neomax Co., Ltd. Rare earth sintered magnet and method for production thereof
CN1320564C (en) * 2002-06-13 2007-06-06 株式会社新王磁材 Rare earth sintered magnet and its mfg. method
EP1494250A4 (en) * 2002-06-13 2008-08-20 Hitachi Metals Ltd Rare earth sintered magnet and method for production thereof
CN110534331A (en) * 2019-09-23 2019-12-03 广西科技大学 A kind of preparation method of high energy product, high-coercive force Sintered NdFeB magnet

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JP7418598B2 (en) Heavy rare earth alloys, neodymium iron boron permanent magnet materials, raw materials and manufacturing methods
JP2782024B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP3121824B2 (en) Sintered permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JPH0316761B2 (en)
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4870274B2 (en) Rare earth permanent magnet manufacturing method
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JPH06231926A (en) Rare earth permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2000286118A (en) Manufacture of sintered magnet
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP2006100434A (en) Method of manufacturing r-t-b based rare earth permanent magnet
JPH05171323A (en) Permanent magnet material
JPH05182813A (en) Manufacture of rare earth permanent magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP2005286173A (en) R-t-b based sintered magnet
JP3422490B1 (en) Rare earth permanent magnet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090708