JP2000277726A - High breakdown strength semiconductor element - Google Patents

High breakdown strength semiconductor element

Info

Publication number
JP2000277726A
JP2000277726A JP11077198A JP7719899A JP2000277726A JP 2000277726 A JP2000277726 A JP 2000277726A JP 11077198 A JP11077198 A JP 11077198A JP 7719899 A JP7719899 A JP 7719899A JP 2000277726 A JP2000277726 A JP 2000277726A
Authority
JP
Japan
Prior art keywords
type semiconductor
conductivity
semiconductor layer
conductivity type
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11077198A
Other languages
Japanese (ja)
Other versions
JP3751463B2 (en
Inventor
Satoshi Urano
聡 浦野
Akihiro Hachiman
彰博 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07719899A priority Critical patent/JP3751463B2/en
Publication of JP2000277726A publication Critical patent/JP2000277726A/en
Application granted granted Critical
Publication of JP3751463B2 publication Critical patent/JP3751463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a terminal structure suitable for a vertical superjunction structure, and to realize a high breakdown strength superjunction. SOLUTION: Stripe-shaped p-type layers 1 and n-type layers 2 constituting a vertical superjunction structure are formed alternately, and the number is set odd-numbered. Also the integrated values of the carrier density in the layer thickness direction of the p-type layers except the two p-type layers 1 arranged at the outermost sides and the n-type layers 2 are set so as to be substantially the same, and the integrated value of the carrier density in the layer thickness direction of the two p-type layers 1 arranged at the outermost sides is set to be almost half that of the other p-type layers 1 and the n-type layers 2. Then the upper edge of the stripe-shaped p-type layers 1 and n-type layers 2 is brought into contact with a p-type layer 3 with high density, and this p-type layer 3 is surrounded by a p-type layer (reserve layer 4) of low concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高耐圧半導体素子に
係わり、終端構造と縦型スーパージャンクションを持つ
高耐圧半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high breakdown voltage semiconductor device, and more particularly to a high breakdown voltage semiconductor device having a termination structure and a vertical super junction.

【0002】[0002]

【従来の技術】近年のパワーエレクトロニクス分野にお
ける電源機器の小型化、高性能化への要求を受けて、パ
ワー半導体素子では、高耐圧・大電流化とともに、低損
失化、高速化、高破壊耐量化に対する性能改善が注力さ
れている。その中で、ストライプ状のp型半導体層とn
型半導体層が交互に繰り返して存在する、いわゆるスー
パージャンクション構造が考案されている。
2. Description of the Related Art In response to recent demands for miniaturization and high performance of power supply devices in the field of power electronics, power semiconductor devices have high withstand voltage and large current, as well as low loss, high speed, and high breakdown resistance. Focus is on improving performance against quantification. Among them, a striped p-type semiconductor layer and n
A so-called super junction structure in which the type semiconductor layers are alternately repeated has been devised.

【0003】このスーパージャンクション構造は、ダイ
オードやMOSFET等のパワー半導体素子に用いられ
た場合、オン状態において非常にオン抵抗が低くなると
ともに、オフ状態で容易に空乏化することから高耐圧特
性を示すという利点を持つ。
[0003] When used in a power semiconductor device such as a diode or MOSFET, the super junction structure exhibits a high withstand voltage characteristic because it has a very low on resistance in an on state and is easily depleted in an off state. With the advantage that.

【0004】例えば、特開平7−7154において示さ
れるように、パワーMOSFETの内部領域にスーパー
ジャンクション構造に相当する補助領域を形成すること
が述べている。しかしながら、かかる補助領域では逆電
圧が印加された際にその電荷キャリアが空にされること
が開示されているのみであり、実際にスーパージャンク
ション構造を有する素子を実用化するに際して重要な終
端構造については具体的な開示はない。
For example, as disclosed in Japanese Patent Application Laid-Open No. 7-7154, it is described that an auxiliary region corresponding to a super junction structure is formed in an internal region of a power MOSFET. However, it is only disclosed that the charge carriers are emptied when a reverse voltage is applied in such an auxiliary region, and a termination structure that is important in actually putting a device having a super junction structure into practical use is disclosed. Has no specific disclosure.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、スーパ
ージャンクション構造を有する素子を実用化する場合
に、スーパージャンクション構造の最外部、特に終端構
造において、高耐圧化が不十分であり、これにより素子
の破壊が起こることを見出した。
SUMMARY OF THE INVENTION The inventors of the present invention have found that when a device having a super junction structure is put into practical use, the withstand voltage is not sufficiently increased at the outermost portion of the super junction structure, particularly at the termination structure. It was found that destruction of the device occurred due to.

【0006】本発明は、かかる実情に鑑みてなされたも
のであり、スーパージャンクション構造の高耐圧化を図
り素子破壊を防止する終端構造を提供することを目的と
するものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a termination structure that increases the breakdown voltage of a super junction structure and prevents element destruction.

【0007】[0007]

【課題を解決するための手段】前述した課題を解決する
ために、本発明の第1は、第1導電型半導体領域と、こ
の第1導電型半導体領域に接して形成された第1導電型
半導体層と、前記第1導電型半導体領域及び前記第1導
電型半導体層に接して形成された第2導電型半導体層
と、前記第1導電型半導体層及び前記第2導電型半導体
層に接して形成された第2導電型半導体領域とを備え、
前記第1導電型半導体層及び前記第2導電型半導体層は
交互に繰り返して配置されており、その最外部の第1導
電型半導体層又は前記第2導電型半導体層の層厚み方向
のキャリア濃度の積分値が、その内部に配置された前記
第1導電型半導体層及び前記第2導電型半導体層の層厚
み方向のキャリア濃度の積分値の概略半分であることを
特徴とする高耐圧半導体素子を提供する。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a first conductive type semiconductor region and a first conductive type semiconductor region formed in contact with the first conductive type semiconductor region. A semiconductor layer, a second conductivity type semiconductor layer formed in contact with the first conductivity type semiconductor region and the first conductivity type semiconductor layer, and a semiconductor layer in contact with the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. A second conductivity type semiconductor region formed by
The first conductivity type semiconductor layer and the second conductivity type semiconductor layer are alternately and repeatedly arranged, and a carrier concentration in a thickness direction of the outermost first conductivity type semiconductor layer or the second conductivity type semiconductor layer is arranged. Is approximately half the integral value of the carrier concentration in the thickness direction of the first conductive type semiconductor layer and the second conductive type semiconductor layer disposed therein. I will provide a.

【0008】また、本発明の第2は、第1導電型半導体
領域と、第2導電型半導体領域と、これらの第1導電型
半導体領域と第2導電型半導体領域との間に挟まれて形
成され、交互に繰り返して配置された第1導電型半導体
層及び第2導電型半導体層とを備え、この第1導電型半
導体層及び第2導電型半導体層の繰り返し配置方向は、
前記第1導電型半導体領域と前記第2導電型半導体領域
とを結ぶ方向に対して概略垂直であるとともに、前記第
1導電型半導体層はオン状態でドリフト電流を流すとと
もにオフ状態で空乏化し、前記第2導電型半導体層はオ
フ状態で空乏化し、かつ最外部の第1導電型半導体層又
は前記第2導電型半導体層の層厚み方向のキャリア濃度
の積分値が、その内部に配置された前記第1導電型半導
体層及び前記第2導電型半導体層の層厚み方向のキャリ
ア濃度の積分値の概略半分であることを特徴とする高耐
圧半導体素子を提供する。
A second aspect of the present invention is a first conductivity type semiconductor region, a second conductivity type semiconductor region, and a semiconductor device sandwiched between the first conductivity type semiconductor region and the second conductivity type semiconductor region. A first conductivity type semiconductor layer and a second conductivity type semiconductor layer which are formed and arranged alternately and repeatedly. The direction in which the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are repeatedly arranged is:
While being substantially perpendicular to the direction connecting the first conductivity type semiconductor region and the second conductivity type semiconductor region, the first conductivity type semiconductor layer flows a drift current in an on state and is depleted in an off state, The second conductivity type semiconductor layer is depleted in the off state, and the integrated value of the carrier concentration in the outermost first conductivity type semiconductor layer or the layer thickness direction of the second conductivity type semiconductor layer is disposed therein. A high-breakdown-voltage semiconductor element is provided, wherein the integrated value is approximately half the integral value of the carrier concentration in the thickness direction of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer.

【0009】また、本発明の第3は、高濃度第1導電型
半導体領域と、この高濃度第1導電型半導体領域に接し
て形成された第1導電型半導体層と、前記高濃度第1導
電型半導体領域及び前記第1導電型半導体層に接して形
成された第2導電型半導体層と、前記第1導電型半導体
層及び前記第2導電型半導体層に接して形成された高濃
度第2導電型半導体領域と、前記第1導電型半導体層及
び前記第2導電型半導体層を取り囲んで形成された低濃
度第1導電型半導体領域と、この低濃度第1導電型半導
体領域及び前記高濃度第2導電型半導体領域に接して形
成され、前記高濃度第2導電型半導体領域より低濃度の
低濃度第2導電型半導体領域とを備え、前記第1導電型
半導体層及び前記第2導電型半導体層は交互に繰り返し
て配置されており、その最外部の第1導電型半導体層又
は前記第2導電型半導体層の層厚み方向のキャリア濃度
の積分値が、その内部に配置された前記第1導電型半導
体層及び前記第2導電型半導体層の層厚み方向のキャリ
ア濃度の積分値の概略半分であることを特徴とする高耐
圧半導体素子を提供する。
A third aspect of the present invention is a high-concentration first-conductivity-type semiconductor region, a first-conductivity-type semiconductor layer formed in contact with the high-concentration first-conductivity-type semiconductor region, A second conductive type semiconductor layer formed in contact with the conductive type semiconductor region and the first conductive type semiconductor layer; and a high concentration semiconductor layer formed in contact with the first conductive type semiconductor layer and the second conductive type semiconductor layer. A two-conductivity-type semiconductor region; a low-concentration first-conductivity-type semiconductor region formed surrounding the first and second-conductivity-type semiconductor layers; A low-concentration second-conductivity-type semiconductor region formed in contact with the second-concentration second-conductivity-type semiconductor region and having a lower concentration than the high-concentration second-conductivity-type semiconductor region; Type semiconductor layers are arranged alternately and repeatedly. The outermost first conductivity type semiconductor layer or the second conductivity type semiconductor layer has an integrated value of a carrier concentration in a thickness direction of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. Provided is a high withstand voltage semiconductor device, wherein the integrated value is approximately half of the integral value of the carrier concentration in the layer thickness direction of the layer.

【0010】また、本発明の第4は、高濃度第1導電型
半導体領域と、高濃度第2導電型半導体領域と、これら
の高濃度第1導電型半導体領域と高濃度第2導電型半導
体領域との間に挟まれて形成され、交互に繰り返して配
置された第1導電型半導体層及び第2導電型半導体層
と、これらの第1導電型半導体層及び第2導電型半導体
層を取り囲んで形成された低濃度第1導電型半導体領域
と、この低濃度第1導電型半導体領域及び前記高濃度第
2導電型半導体領域に接して形成され、前記高濃度第2
導電型半導体領域より低濃度の低濃度第2導電型半導体
領域とを備え、前記第1導電型半導体層及び第2導電型
半導体層の繰り返し配置方向は、前記高濃度第1導電型
半導体領域と前記高濃度第2導電型半導体領域とを結ぶ
方向に対して概略垂直であるとともに、前記第1導電型
半導体層はオン状態でドリフト電流を流すとともにオフ
状態で空乏化し、前記第2導電型半導体層はオフ状態で
空乏化し、かつ最外部の第1導電型半導体層又は前記第
2導電型半導体層の層厚み方向のキャリア濃度の積分値
が、その内部に配置された前記第1導電型半導体層及び
前記第2導電型半導体層の層厚み方向のキャリア濃度の
積分値の概略半分であることを特徴とする高耐圧半導体
素子を提供する。
A fourth aspect of the present invention is a high-concentration first-conductivity-type semiconductor region, a high-concentration second-conductivity-type semiconductor region, and a high-concentration first-conductivity-type semiconductor region and a high-concentration second-conductivity-type semiconductor region. A first conductivity type semiconductor layer and a second conductivity type semiconductor layer which are formed and alternately and repeatedly arranged between the first and second conductivity type semiconductor layers; and surround the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. The low-concentration first conductivity type semiconductor region formed by the above, and the low-concentration first conductivity-type semiconductor region and the high-concentration second conductivity-type semiconductor region are formed in contact with the low-concentration second conductivity-type semiconductor region.
A low-concentration second conductivity-type semiconductor region having a lower concentration than the conductivity-type semiconductor region; and the first and second conductivity-type semiconductor layers are repeatedly arranged in the same direction as the high-concentration first conductivity-type semiconductor region. The second conductivity type semiconductor layer is substantially perpendicular to a direction connecting the high concentration second conductivity type semiconductor region, and the first conductivity type semiconductor layer flows a drift current in an on state and is depleted in an off state. The layer is depleted in the off state, and the integrated value of the carrier concentration in the thickness direction of the outermost first conductivity type semiconductor layer or the second conductivity type semiconductor layer is the first conductivity type semiconductor layer disposed therein. A high withstand voltage semiconductor device characterized in that the integrated value of the carrier concentration in the layer thickness direction of the layer and the second conductivity type semiconductor layer is approximately half.

【0011】また、本発明の第5は、高濃度第1導電型
半導体領域と、この高濃度第1導電型半導体領域に接し
て形成された第1導電型半導体層と、前記高濃度第1導
電型半導体領域及び前記第1導電型半導体層に接して形
成された第2導電型半導体層と、前記第1導電型半導体
層及び前記第2導電型半導体層に接して形成された高濃
度第2導電型半導体領域と、前記第1導電型半導体層及
び前記第2導電型半導体層を取り囲んで形成された低濃
度第1導電型半導体領域と、この低濃度第1導電型半導
体領域に接して形成され、前記高濃度第2導電型半導体
領域を取り囲むように当該領域から離間して設けられた
リング状の第2導電型半導体領域層とを備え、前記第1
導電型半導体層及び前記第2導電型半導体層は交互に繰
り返して配置されており、その最外部の第1導電型半導
体層又は前記第2導電型半導体層の層厚み方向のキャリ
ア濃度の積分値が、その内部に配置された前記第1導電
型半導体層及び前記第2導電型半導体層の層厚み方向の
キャリア濃度の積分値の概略半分であることを特徴とす
る高耐圧半導体素子を提供する。
A fifth aspect of the present invention is a high-concentration first-conductivity-type semiconductor region, a first-conductivity-type semiconductor layer formed in contact with the high-concentration first-conductivity-type semiconductor region, A second conductive type semiconductor layer formed in contact with the conductive type semiconductor region and the first conductive type semiconductor layer; and a high concentration semiconductor layer formed in contact with the first conductive type semiconductor layer and the second conductive type semiconductor layer. A two-conductivity-type semiconductor region; a low-concentration first-conductivity-type semiconductor region formed surrounding the first and second-conductivity-type semiconductor layers; A ring-shaped second conductivity type semiconductor region layer formed so as to surround the high concentration second conductivity type semiconductor region and spaced apart from the region.
The conductive semiconductor layer and the second conductive semiconductor layer are alternately and repeatedly arranged, and the integral value of the carrier concentration in the thickness direction of the outermost first conductive semiconductor layer or the second conductive semiconductor layer is arranged. Is approximately half the integrated value of the carrier concentration in the thickness direction of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer disposed therein. .

【0012】さらにまた、本発明の第6は、高濃度第1
導電型半導体領域と、高濃度第2導電型半導体領域と、
これらの高濃度第1導電型半導体電極層と高濃度第2導
電型半導体電極層との間に挟まれて形成され、交互に繰
り返して配置された第1導電型半導体層及び第2導電型
半導体層と、これらの第1導電型半導体層及び第2導電
型を取り囲んで形成された低濃度第1導電型半導体領域
と、この低濃度第1導電型半導体領域に接して形成さ
れ、前記高濃度第2導電型半導体領域を取り囲むように
当該領域から離間して設けられたリング状の第2導電型
半導体領域層とを備え、前記第1導電型半導体層及び第
2導電型半導体層の繰り返し配置方向は、前記高濃度第
1導電型半導体領域と前記高濃度第2導電型半導体領域
とを結ぶ方向に対して概略垂直であるとともに、前記第
1導電型半導体層はオン状態でドリフト電流を流すとと
もにオフ状態で空乏化し、前記第2導電型半導体層はオ
フ状態で空乏化し、かつ最外部の第1導電型半導体層又
は前記第2導電型半導体層の層厚み方向のキャリア濃度
の積分値が、その内部に配置された前記第1導電型半導
体層及び前記第2導電型半導体層の層厚み方向のキャリ
ア濃度の積分値の概略半分であることを特徴とする高耐
圧半導体素子を提供する。
Further, a sixth aspect of the present invention is a high-concentration first
A conductive semiconductor region, a high-concentration second conductive semiconductor region,
The first conductivity type semiconductor layer and the second conductivity type semiconductor are formed between the high concentration first conductivity type semiconductor electrode layer and the high concentration second conductivity type semiconductor electrode layer, and are alternately and repeatedly arranged. A low-concentration first-conductivity-type semiconductor region formed surrounding the first-conductivity-type semiconductor layer and the second-conductivity-type semiconductor layer; A ring-shaped second conductivity type semiconductor region layer provided separately from the second conductivity type semiconductor region so as to surround the second conductivity type semiconductor region, and the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are repeatedly arranged. A direction is substantially perpendicular to a direction connecting the high-concentration first conductivity type semiconductor region and the high-concentration second conductivity type semiconductor region, and the first conductivity type semiconductor layer allows a drift current to flow in an on state. Depleted with off The second conductivity type semiconductor layer is depleted in the off state, and the integrated value of the carrier concentration in the outermost first conductivity type semiconductor layer or the layer thickness direction of the second conductivity type semiconductor layer is disposed therein. A high breakdown voltage semiconductor element, wherein the integrated value of the carrier concentration in the thickness direction of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer is approximately half.

【0013】上述した本発明の第3、4においては、前
記第2導電型半導体領域はオフ状態で空乏化し、その空
乏領域は前記第1導電型半導体層及び前記第2導電型半
導体層において空乏化により生ずる空乏領域と接するこ
とが好ましい。
In the third and fourth aspects of the present invention, the second conductivity type semiconductor region is depleted in an off state, and the depletion region is depleted in the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. It is preferable to contact with a depletion region generated by the formation.

【0014】また、上述した本発明の第5、6において
は、前記リング状の第2導電型半導体領域層に接する低
濃度第1導電型半導体領域はオフ状態で空乏化し、その
空乏領域は前記第1導電型半導体層及び前記第2導電型
半導体層において空乏化により生ずる空乏領域と接する
ことが好ましい。
In the fifth and sixth aspects of the present invention described above, the low-concentration first-conductivity-type semiconductor region in contact with the ring-shaped second-conductivity-type semiconductor region layer is depleted in an off state, and the depletion region is in the depletion region. It is preferable that the first conductive type semiconductor layer and the second conductive type semiconductor layer are in contact with a depletion region generated by depletion.

【0015】また、上述した各発明において、前記第1
導電型半導体層及び前記第2導電型半導体層は、お互い
に平行なストライプ状の層であることが好ましい。さら
に、前記第1導電型半導体層及び前記第2導電型半導体
層は、奇数個存在することが好ましい。さらにまた、前
記高耐圧半導体素子は縦型の構造を有するものであるこ
とが好ましい。
In each of the above-mentioned inventions,
The conductive semiconductor layer and the second conductive semiconductor layer are preferably striped layers parallel to each other. Further, it is preferable that an odd number of the first conductive type semiconductor layers and the second conductive type semiconductor layers exist. Furthermore, it is preferable that the high withstand voltage semiconductor element has a vertical structure.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照しつつ詳細に説明する。 (第1の実施形態)図1は、本発明の第1の実施形態に
係る高耐圧半導体素子の構造を示す上面図である。図2
は、図1の点線AA´を通る断面における断面図であ
る。この断面図では図1の素子構造の半分のみを示して
いる。
Embodiments of the present invention will be described below in detail with reference to the drawings. (First Embodiment) FIG. 1 is a top view showing the structure of a high breakdown voltage semiconductor device according to a first embodiment of the present invention. FIG.
FIG. 2 is a cross-sectional view taken along a dotted line AA ′ in FIG. This cross-sectional view shows only half of the element structure of FIG.

【0017】図1、図2に示される高耐圧半導体素子は
縦型のダイオードに係るものである。これらの図に示す
ように、本実施形態の縦型のダイオードは、低濃度のn
型層5の一方の面に高濃度のn型層10が形成され、ま
た他方の面には高濃度のp型層3が選択的に形成されて
おり、これらのn型層10とp型層3との間にはスーパ
ージャンクション構造が設けられている。このスーパー
ジャンクション構造は、ストライプ状のp型層1とn型
層2が交互に繰り返して設けられており、その数は奇数
個である。素子上面から見た場合、かかるストライプ状
のp型層1とn型層2の存在領域は高濃度のp型層3の
存在領域の中に含まれた形となっている。本来ならばス
トライプ状のp型層1とn型層2とは高濃度のp型層3
の下に隠れていて見えない筈であるが、分かりやすくす
るためにここでは電極等を省略してスーパージャンクシ
ョン構造を示した。
The high breakdown voltage semiconductor device shown in FIGS. 1 and 2 relates to a vertical diode. As shown in these figures, the vertical diode of the present embodiment has a low concentration of n.
A high concentration n-type layer 10 is formed on one surface of the mold layer 5 and a high concentration p-type layer 3 is selectively formed on the other surface. A super junction structure is provided between the layer 3. In this super junction structure, stripe-shaped p-type layers 1 and n-type layers 2 are provided alternately and repeatedly, and the number thereof is an odd number. When viewed from the upper surface of the element, the existence region of the striped p-type layer 1 and the n-type layer 2 is included in the existence region of the high-concentration p-type layer 3. Originally, the p-type layer 1 and the n-type layer 2 in the form of stripes are composed of the high-concentration p-type layer 3.
Although it should not be visible because it is hidden underneath, the electrodes and the like are omitted here for simplicity, and the super junction structure is shown.

【0018】その最外部のp型層1の層厚み方向のキャ
リア濃度の積分値は、一番外側を除いた残りの内部に配
置されたp型層1とn型層2の層厚み方向のキャリア濃
度の積分値の概略半分となっている。これらの一番外側
を除いた残りのp型層1とn型層2の層厚み方向のキャ
リア濃度の積分値は一定となっている。ここでは一番外
側のストライプ状の層をp型層1としたが、n型層2で
あっても上記キャリア濃度積分値の条件を満たせば効果
は同様である。
The integrated value of the carrier concentration in the layer thickness direction of the outermost p-type layer 1 is calculated by calculating the integrated value of the p-type layer 1 and the n-type layer 2 disposed inside except for the outermost layer. It is approximately half of the integral value of the carrier concentration. The integral value of the carrier concentration in the layer thickness direction of the remaining p-type layer 1 and n-type layer 2 excluding the outermost layer is constant. Here, the outermost stripe-shaped layer is the p-type layer 1, but the same effect can be obtained with the n-type layer 2 as long as the above-described condition of the carrier concentration integral value is satisfied.

【0019】例えば、一番外側のp型層1の濃度及び厚
みを1×1015cm-3、3.5μm、或いは5×1014
cm-3、7.0μm、一番外側を除いた残りの内部に配
置されたp型層1とn型層2の濃度及び厚みを、それぞ
れ1×1015cm-3、7.0μmとすることが可能であ
り、かかる条件の下で上記キャリア濃度積分値の条件を
満足する。したがって、例えば逆電圧4000Vを印加
する条件下では、OFF状態において上記スーパージャ
ンクション構造はその最外周部分においても完全空乏化
し高耐圧特性を示すようになる。
For example, the concentration and thickness of the outermost p-type layer 1 are 1 × 10 15 cm −3 , 3.5 μm, or 5 × 10 14
cm -3, 7.0 .mu.m, most outside the remaining layer 1 and the n-type layer 2 p-type which is disposed within the concentration and thickness excluding each 1 × 10 15 cm -3, and 7.0 .mu.m It is possible to satisfy the above-mentioned condition of the carrier concentration integrated value under such conditions. Therefore, for example, under the condition that a reverse voltage of 4000 V is applied, in the OFF state, the super junction structure is completely depleted even in the outermost peripheral portion, and exhibits a high breakdown voltage characteristic.

【0020】ストライプ状のp型層1とn型層2と接す
る高濃度のp型層3は、低濃度のp型層4(例えば、濃
度は1×1013cm-3。後述する実施形態も同様。)で
囲まれており、この層がリサーフ層として電界を緩和す
る働きをする。例えば、p型層3の深さは6.0μm、
濃度は2×1017cm-3であり、また、p型層4の深さ
は5.0μm、濃度は3×1015cm-3である。
The high-concentration p-type layer 3 in contact with the striped p-type layer 1 and the n-type layer 2 is a low-concentration p-type layer 4 (for example, the concentration is 1 × 10 13 cm −3 . This layer also functions as a RESURF layer to reduce the electric field. For example, the depth of the p-type layer 3 is 6.0 μm,
The concentration is 2 × 10 17 cm −3 , the depth of the p-type layer 4 is 5.0 μm, and the concentration is 3 × 10 15 cm −3 .

【0021】かかる条件の下では、p型層4とn型ベー
ス層5とのpn接合から伸びる空乏層は上記スーパージ
ャンクション構造において形成される空乏層と完全に接
続され、この終端部分における耐圧を十分に確保するこ
とが可能である。例えば逆電圧4000Vを印加する条
件下では、OFF状態において上記スーパージャンクシ
ョン構造の終端部分は完全空乏化し高耐圧特性を示すよ
うになる。
Under these conditions, the depletion layer extending from the pn junction between the p-type layer 4 and the n-type base layer 5 is completely connected to the depletion layer formed in the super junction structure. It is possible to secure enough. For example, under the condition that a reverse voltage of 4000 V is applied, the terminal portion of the super junction structure is completely depleted in the OFF state and exhibits high withstand voltage characteristics.

【0022】なお、図1、図2において、6は高濃度の
n型ストッパー層であり、リサーフ層であるp型層4か
ら伸びる空乏層が基板エッジ部分にまで到達することを
防止して耐圧を確保するために設けられる。また、7は
絶縁膜、8はアノード電極、9はストッパー電極、11
はカソード電極である。
In FIGS. 1 and 2, reference numeral 6 denotes a high-concentration n-type stopper layer which prevents a depletion layer extending from the p-type layer 4 which is a RESURF layer from reaching the edge of the substrate. Is provided to ensure 7 is an insulating film, 8 is an anode electrode, 9 is a stopper electrode, 11
Is a cathode electrode.

【0023】以上述べた構造による縦型のスーパージャ
ンクション構造を有するダイオードによれば、OFF状
態においてスーパージャンクション構造はその最外周部
分においても完全空乏化し高耐圧特性を示すようにな
る。また、OFF状態においてスーパージャンクション
構造の終端部分において完全空乏化を図り高耐圧特性を
確保することが可能である。
According to the diode having the vertical super junction structure having the above-described structure, the super junction structure is completely depleted even in the outermost peripheral portion in the OFF state, and exhibits a high breakdown voltage characteristic. Further, in the OFF state, complete depletion can be achieved at the terminal portion of the super junction structure, and high breakdown voltage characteristics can be secured.

【0024】図3は、図1に示す本実施形態に係る縦形
のダイオードの漏れ電流特性を示す特性図である。横軸
は印加電圧、縦軸は漏れ電流を示している。図3に示さ
れるように本実施形態に係る縦形のダイオードは440
0V程度の耐圧を持っていることがわかる。また、かか
るダイオードのオン抵抗は0.03Ωcm2 であり、非
常に低いオン抵抗を示した。
FIG. 3 is a characteristic diagram showing leakage current characteristics of the vertical diode according to the present embodiment shown in FIG. The horizontal axis shows the applied voltage, and the vertical axis shows the leakage current. As shown in FIG. 3, the vertical diode according to this embodiment is 440
It turns out that it has a withstand voltage of about 0V. In addition, the on-resistance of such a diode was 0.03 Ωcm 2 , indicating a very low on-resistance.

【0025】(第2の実施形態)図4は、本発明の第2
の実施形態に係る高耐圧半導体素子の構造を示す上面図
である。図5は、図4の点線BB´を通る断面における
断面図である。この断面図では図4の素子構造の半分の
みを示している。なお、図1と同一部分には同一符号を
付して示し詳細な説明は省略する。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention.
FIG. 4 is a top view showing the structure of the high breakdown voltage semiconductor element according to the embodiment. FIG. 5 is a cross-sectional view of a cross section taken along a dotted line BB ′ in FIG. This cross-sectional view shows only half of the element structure of FIG. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted.

【0026】本実施形態の高耐圧半導体素子も縦型のダ
イオードに係るものである。図4、図5に示すように、
本実施形態の縦型のダイオードが第1の実施形態のダイ
オードと異なる点は、ストライプ状のp型層1とn型層
2と接する高濃度のp型層3を囲む低濃度のp型層(リ
サーフ層)4の代わりに、複数の同心円状の高濃度のp
型層(ガードリング層)12が設けられている点であ
る。かかるp型層(ガードリング層)12はp型層3の
周囲を取り囲むように設けられており、このp型層12
がリサーフ層と同様に電界を緩和する働きをする。例え
ば、p型層3の深さは6.0μm、濃度は2×1017
-3であり、また、p型層12の深さは6.0μm、幅
は10.0μm、濃度は5×1018cm-3、p型層3か
らの距離は10.0μm、お互いの間隔は10.0〜4
0.0μmである。
The high breakdown voltage semiconductor device of the present embodiment also relates to a vertical diode. As shown in FIGS. 4 and 5,
The vertical diode of the present embodiment is different from the diode of the first embodiment in that a low-concentration p-type layer surrounding a high-concentration p-type layer 3 in contact with a striped p-type layer 1 and n-type layer 2. (Resurf layer) Instead of 4, a plurality of concentric high concentration p
The point is that a mold layer (guard ring layer) 12 is provided. The p-type layer (guard ring layer) 12 is provided so as to surround the periphery of the p-type layer 3.
Acts to alleviate the electric field similarly to the RESURF layer. For example, the depth of the p-type layer 3 is 6.0 μm and the concentration is 2 × 10 17 c
m −3 , the depth of the p-type layer 12 is 6.0 μm, the width is 10.0 μm, the concentration is 5 × 10 18 cm −3 , the distance from the p-type layer 3 is 10.0 μm, The interval is 10.0-4
0.0 μm.

【0027】かかる条件の下では、上記スーパージャン
クション構造において第1の実施形態と同様に完全空乏
化が達成されるとともに、p型層12とn型ベース層5
とのpn接合から伸びる空乏層は上記スーパージャンク
ション構造の空乏層と完全に接続され、この終端部分に
おける耐圧を十分に確保することが可能である。例えば
逆電圧4000Vを印加する条件下では、OFF状態に
おいて上記スーパージャンクション構造の終端部分は完
全空乏化し図3と同様な高耐圧特性を示すことがわかっ
た。また、かかるダイオードのオン抵抗は0.03Ωc
2 であり、非常に低いオン抵抗を示した。
Under these conditions, complete depletion is achieved in the super junction structure as in the first embodiment, and the p-type layer 12 and the n-type base layer 5 are formed.
A depletion layer extending from the pn junction with the depletion layer is completely connected to the depletion layer of the super junction structure, and it is possible to secure a sufficient withstand voltage at the terminal portion. For example, it was found that under the condition of applying a reverse voltage of 4000 V, in the OFF state, the terminal portion of the super junction structure was completely depleted, and exhibited high breakdown voltage characteristics similar to FIG. The on-resistance of such a diode is 0.03Ωc
m 2 , indicating a very low on-resistance.

【0028】(第3の実施形態)図6は、本発明の第3
の実施形態に係る高耐圧半導体素子の構造を示す断面斜
視図である。図1と同一部分には同一符号を付して示し
詳細な説明は省略する。
(Third Embodiment) FIG. 6 shows a third embodiment of the present invention.
FIG. 4 is a cross-sectional perspective view showing a structure of a high breakdown voltage semiconductor element according to the embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted.

【0029】図6に示すように、本実施形態の高耐圧半
導体素子は縦型のプレーナ型MOS構造を有する素子
(例えばMOSFET)である。低濃度のn型層(ベー
ス層)5の一方の面には高濃度のn型ドレイン層15が
形成され、また他方の面にはp型ベース層13が選択的
に形成されており、これらのn型ドレイン層15とp型
ベース層13との間には第1の実施形態と同様のスーパ
ージャンクション構造(p型層1とn型層2)が設けら
れている。
As shown in FIG. 6, the high breakdown voltage semiconductor device of this embodiment is a device (for example, MOSFET) having a vertical planar MOS structure. On one surface of the low-concentration n-type layer (base layer) 5, a high-concentration n-type drain layer 15 is formed, and on the other surface, a p-type base layer 13 is selectively formed. A super junction structure (p-type layer 1 and n-type layer 2) similar to that of the first embodiment is provided between the n-type drain layer 15 and the p-type base layer 13.

【0030】p型ベース層13の表面には選択的にn型
ソース層14が形成され、スーパージャンクション構造
(p型層1とn型層2)、n型ソース層14、及びp型
ベース層13の表面上には、ゲート絶縁膜(シリコン酸
化膜等)16を介してゲート電極17が設けられてい
る。この実施形態の場合には、ゲート絶縁膜16及びゲ
ート電極17はスーパージャンクション構造(p型層1
とn型層2)の部分まで延在している。これにより、効
率よくスーパージャンクション構造に電子を注入するこ
とが可能である。
An n-type source layer 14 is selectively formed on the surface of the p-type base layer 13, and has a super junction structure (p-type layer 1 and n-type layer 2), an n-type source layer 14, and a p-type base layer. On the surface of 13, a gate electrode 17 is provided via a gate insulating film (such as a silicon oxide film) 16. In this embodiment, the gate insulating film 16 and the gate electrode 17 have a super junction structure (p-type layer 1).
And the n-type layer 2). As a result, electrons can be efficiently injected into the super junction structure.

【0031】本実施形態に係るMOS構造を有する素子
も、OFF状態においてスーパージャンクション構造は
その最外周部分においても完全空乏化し高耐圧特性を示
すようになる。また、OFF状態において、p型層4と
n型層5とのpn接合から伸びる空乏層は上記スーパー
ジャンクション構造において形成される空乏層と完全に
接続され、この終端部分における耐圧を十分に確保する
ことが可能である。本実施形態では、終端構造としてリ
サーフ層(p型層4)を示したが、図4、図5に示した
ガードリング層(p型層12)を用いても高耐圧を得る
ことができた。また、終端構造がリサーフ層であって
も、ガードリング層であっても、オン抵抗は非常に低か
った。
In the device having the MOS structure according to the present embodiment, the super junction structure in the OFF state is also completely depleted even in the outermost peripheral portion, and exhibits a high breakdown voltage characteristic. In the OFF state, the depletion layer extending from the pn junction between the p-type layer 4 and the n-type layer 5 is completely connected to the depletion layer formed in the super junction structure, and ensures a sufficient breakdown voltage at the terminal portion. It is possible. In this embodiment, the RESURF layer (p-type layer 4) is shown as the termination structure. However, a high breakdown voltage can be obtained even by using the guard ring layer (p-type layer 12) shown in FIGS. . Also, whether the termination structure was a RESURF layer or a guard ring layer, the ON resistance was very low.

【0032】(第4の実施形態)図7は、本発明の第4
の実施形態に係る高耐圧半導体素子の構造を示す断面斜
視図である。図6と同一部分には同一符号を付して示し
詳細な説明は省略する。
(Fourth Embodiment) FIG. 7 shows a fourth embodiment of the present invention.
FIG. 4 is a cross-sectional perspective view showing a structure of a high breakdown voltage semiconductor element according to the embodiment. The same parts as those in FIG. 6 are denoted by the same reference numerals, and detailed description will be omitted.

【0033】図7に示すように、本実施形態の高耐圧半
導体素子は縦型のトレンチ型MOS構造を有する素子
(例えばMOSFET)である。p型ベース層23が低
濃度のn型層(ベース層)5の一方の面に選択的に形成
されており、このp型ベース層23とn型ドレイン層1
5との間には第1の実施形態と同様のスーパージャンク
ション構造(p型層1とn型層2)が設けられている。
As shown in FIG. 7, the high breakdown voltage semiconductor device of this embodiment is a device (for example, a MOSFET) having a vertical trench MOS structure. The p-type base layer 23 is selectively formed on one surface of the low-concentration n-type layer (base layer) 5, and the p-type base layer 23 and the n-type drain layer 1 are formed.
5, a super junction structure (p-type layer 1 and n-type layer 2) similar to that of the first embodiment is provided.

【0034】p型ベース層23の表面には選択的にn型
ソース層24が形成され、これらのn型ソース層24及
びp型ベース層23を貫通してトレンチ28が設けられ
ている。このトレンチ28はスーパージャンクション構
造(p型層1とn型層2)が設けられたn型層5に到達
するように形成されている。トレンチ28の内部にはゲ
ート絶縁膜(シリコン酸化膜等)26を介してゲート電
極27が設けられている。
An n-type source layer 24 is selectively formed on the surface of the p-type base layer 23, and a trench 28 is provided through the n-type source layer 24 and the p-type base layer 23. The trench 28 is formed so as to reach the n-type layer 5 provided with the super junction structure (the p-type layer 1 and the n-type layer 2). A gate electrode 27 is provided inside the trench 28 via a gate insulating film (such as a silicon oxide film) 26.

【0035】本実施形態に係るMOS構造を有する素子
も、OFF状態においてスーパージャンクション構造は
その最外周部分においても完全空乏化し高耐圧特性を示
すようになる。また、OFF状態において、p型層4と
n型層5とのpn接合から伸びる空乏層は上記スーパー
ジャンクション構造において形成される空乏層と完全に
接続され、この終端部分における耐圧を十分に確保する
ことが可能である。本実施形態では、終端構造としてリ
サーフ層(p型層4)を示したが、図4、図5に示した
ガードリング層(p型層12)を用いても高耐圧を得る
ことができた。また、終端構造がリサーフ層であって
も、ガードリング層であっても、オン抵抗は非常に低か
った。
In the element having the MOS structure according to the present embodiment, the super junction structure in the OFF state is also completely depleted even in the outermost peripheral portion, and exhibits a high breakdown voltage characteristic. In the OFF state, the depletion layer extending from the pn junction between the p-type layer 4 and the n-type layer 5 is completely connected to the depletion layer formed in the super junction structure, and ensures a sufficient breakdown voltage at the terminal portion. It is possible. In this embodiment, the RESURF layer (p-type layer 4) is shown as the termination structure. However, a high breakdown voltage can be obtained even by using the guard ring layer (p-type layer 12) shown in FIGS. . Also, whether the termination structure was a RESURF layer or a guard ring layer, the ON resistance was very low.

【0036】なお、本発明は上記実施形態に限定される
ことはない。例えば、縦型の高耐圧半導体素子に限ら
ず、横型の高耐圧半導体素子等の様々な型の高耐圧半導
体素子に対して本発明を適用することも可能である。ま
た、スーパージャンクション構造におけるp型層1とn
型層2とを入れ換えて配置しても良く、この場合にもO
FF状態においてスーパージャンクション構造はその最
外周部分においても完全空乏化し高耐圧特性を示すよう
になる。その他、本発明の趣旨を逸脱しない範囲で種々
変形して実施することが可能である。
The present invention is not limited to the above embodiment. For example, the present invention can be applied to various types of high-breakdown-voltage semiconductor elements such as horizontal high-breakdown-voltage semiconductor elements as well as vertical high-breakdown-voltage semiconductor elements. Also, the p-type layer 1 and n in the super junction structure
The mold layer 2 may be replaced and arranged.
In the FF state, the super junction structure is completely depleted even in the outermost peripheral portion, and exhibits a high breakdown voltage characteristic. In addition, various modifications can be made without departing from the spirit of the present invention.

【0037】[0037]

【発明の効果】本発明により、スーパージャンクション
構造を有する半導体素子の高耐圧化を実現することが可
能である。
According to the present invention, it is possible to realize a high breakdown voltage of a semiconductor element having a super junction structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係るスーパージャ
ンクション構造を有する縦型ダイオードの構造を示す上
面図。
FIG. 1 is a top view showing a structure of a vertical diode having a super junction structure according to a first embodiment of the present invention.

【図2】 図1の破線AA´に沿った面における断面
図。
FIG. 2 is a sectional view of a plane along a broken line AA ′ in FIG. 1;

【図3】 図1に示す縦型ダイオードの漏れ電流特性を
示す特性図。
FIG. 3 is a characteristic diagram showing leakage current characteristics of the vertical diode shown in FIG.

【図4】 本発明の第2の実施形態に係るスーパージャ
ンクション構造を有する縦型ダイオードの構造を示す上
面図。
FIG. 4 is a top view showing the structure of a vertical diode having a super junction structure according to a second embodiment of the present invention.

【図5】 図4の破線BB´に沿った面における断面
図。
FIG. 5 is a sectional view of a plane along a broken line BB ′ in FIG. 4;

【図6】 本発明の第3の実施形態に係るスーパージャ
ンクション構造を有する縦型のプレーナ型MOS構造素
子を示す断面斜視図。
FIG. 6 is a sectional perspective view showing a vertical planar MOS structure element having a super junction structure according to a third embodiment of the present invention.

【図7】 本発明の第4の実施形態に係るスーパージャ
ンクション構造を有する縦型のトレンチ型MOS構造素
子を示す断面斜視図。
FIG. 7 is a sectional perspective view showing a vertical trench type MOS structure element having a super junction structure according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ストライプ状のp型層 2…ストライプ状のn型層 3…高濃度のp型層 4…低濃度のp型層(リサーフ層) 5…低濃度のn型層 6…高濃度のn型ストッパー層 7…絶縁膜 8…アノード電極 9…ストッパー電極 10…高濃度のn型層 11…カソード電極 12…高濃度のp型層(ガードリング層) 13、23…p型ベース層 14、24…n型ソース層 15…n型ドレイン層 16、26…ゲート絶縁膜 17、27…ゲート電極 28…トレンチ DESCRIPTION OF SYMBOLS 1 ... Striped p-type layer 2 ... Striped n-type layer 3 ... High-concentration p-type layer 4 ... Low-concentration p-type layer (Resurf layer) 5 ... Low-concentration n-type layer 6 ... High-concentration n Mold stopper layer 7 insulating film 8 anode electrode 9 stopper electrode 10 high-concentration n-type layer 11 cathode electrode 12 high-concentration p-type layer (guard ring layer) 13, 23 p-type base layer 14, 24 n-type source layer 15 n-type drain layer 16, 26 gate insulating film 17, 27 gate electrode 28 trench

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型半導体領域と、この第1導電
型半導体領域に接して形成された第1導電型半導体層
と、前記第1導電型半導体領域及び前記第1導電型半導
体層に接して形成された第2導電型半導体層と、前記第
1導電型半導体層及び前記第2導電型半導体層に接して
形成された第2導電型半導体領域とを備え、前記第1導
電型半導体層及び前記第2導電型半導体層は交互に繰り
返して配置されており、その最外部の第1導電型半導体
層又は前記第2導電型半導体層の層厚み方向のキャリア
濃度の積分値が、その内部に配置された前記第1導電型
半導体層及び前記第2導電型半導体層の層厚み方向のキ
ャリア濃度の積分値の概略半分であることを特徴とする
高耐圧半導体素子。
A first conductive type semiconductor region; a first conductive type semiconductor layer formed in contact with the first conductive type semiconductor region; and a first conductive type semiconductor region and the first conductive type semiconductor layer. A second conductivity type semiconductor layer formed in contact with the first conductivity type semiconductor layer, and a second conductivity type semiconductor region formed in contact with the first conductivity type semiconductor layer and the second conductivity type semiconductor layer; The layer and the second conductivity type semiconductor layer are alternately and repeatedly arranged, and the outermost first conductivity type semiconductor layer or the integral value of the carrier concentration in the layer thickness direction of the second conductivity type semiconductor layer is the same. A high withstand voltage semiconductor element, wherein the integrated value is approximately half of an integral value of a carrier concentration in a thickness direction of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer disposed inside.
【請求項2】 第1導電型半導体領域と、第2導電型半
導体領域と、これらの第1導電型半導体領域と第2導電
型半導体領域との間に挟まれて形成され、交互に繰り返
して配置された第1導電型半導体層及び第2導電型半導
体層とを備え、この第1導電型半導体層及び第2導電型
半導体層の繰り返し配置方向は、前記第1導電型半導体
領域と前記第2導電型半導体領域とを結ぶ方向に対して
概略垂直であるとともに、前記第1導電型半導体層はオ
ン状態でドリフト電流を流すとともにオフ状態で空乏化
し、前記第2導電型半導体層はオフ状態で空乏化し、か
つ最外部の第1導電型半導体層又は前記第2導電型半導
体層の層厚み方向のキャリア濃度の積分値が、その内部
に配置された前記第1導電型半導体層及び前記第2導電
型半導体層の層厚み方向のキャリア濃度の積分値の概略
半分であることを特徴とする高耐圧半導体素子。
2. A first conductivity type semiconductor region, a second conductivity type semiconductor region, and formed between the first conductivity type semiconductor region and the second conductivity type semiconductor region, and are alternately repeated. A first conductivity type semiconductor layer and a second conductivity type semiconductor layer, wherein the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are repeatedly arranged in the first conductivity type semiconductor region and the second conductivity type semiconductor layer. The first conductivity type semiconductor layer is substantially perpendicular to a direction connecting the two conductivity type semiconductor regions, and the first conductivity type semiconductor layer flows a drift current in an on state and is depleted in an off state, and the second conductivity type semiconductor layer is in an off state. And the integrated value of the carrier concentration in the thickness direction of the outermost first conductivity type semiconductor layer or the second conductivity type semiconductor layer is the first conductivity type semiconductor layer and the second conductivity type semiconductor layer disposed therein. Layer thickness of two conductivity type semiconductor layer A high withstand voltage semiconductor element characterized by being approximately half the integral value of the carrier concentration in the direction.
【請求項3】 高濃度第1導電型半導体領域と、この高
濃度第1導電型半導体領域に接して形成された第1導電
型半導体層と、前記高濃度第1導電型半導体領域及び前
記第1導電型半導体層に接して形成された第2導電型半
導体層と、前記第1導電型半導体層及び前記第2導電型
半導体層に接して形成された高濃度第2導電型半導体領
域と、前記第1導電型半導体層及び前記第2導電型半導
体層を取り囲んで形成された低濃度第1導電型半導体領
域と、この低濃度第1導電型半導体領域及び前記高濃度
第2導電型半導体領域に接して形成され、前記高濃度第
2導電型半導体領域より低濃度の低濃度第2導電型半導
体領域とを備え、前記第1導電型半導体層及び前記第2
導電型半導体層は交互に繰り返して配置されており、そ
の最外部の第1導電型半導体層又は前記第2導電型半導
体層の層厚み方向のキャリア濃度の積分値が、その内部
に配置された前記第1導電型半導体層及び前記第2導電
型半導体層の層厚み方向のキャリア濃度の積分値の概略
半分であることを特徴とする高耐圧半導体素子。
3. A high-concentration first-conductivity-type semiconductor region, a first-conductivity-type semiconductor layer formed in contact with the high-concentration first-conductivity-type semiconductor region, A second conductivity type semiconductor layer formed in contact with the one conductivity type semiconductor layer, a high concentration second conductivity type semiconductor region formed in contact with the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, A low-concentration first-conductivity-type semiconductor region formed surrounding the first-conductivity-type semiconductor layer and the second-conductivity-type semiconductor layer; a low-concentration first-conductivity-type semiconductor region and the high-concentration second-conductivity-type semiconductor region; And a low-concentration second-conductivity-type semiconductor region having a lower concentration than the high-concentration second-conductivity-type semiconductor region.
The conductivity type semiconductor layers are alternately and repeatedly arranged, and the integral value of the carrier concentration in the layer thickness direction of the outermost first conductivity type semiconductor layer or the second conductivity type semiconductor layer is arranged therein. A high breakdown voltage semiconductor device, wherein the integrated value is approximately half of an integrated value of a carrier concentration in a thickness direction of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer.
【請求項4】 高濃度第1導電型半導体領域と、高濃度
第2導電型半導体領域と、これらの高濃度第1導電型半
導体領域と高濃度第2導電型半導体領域との間に挟まれ
て形成され、交互に繰り返して配置された第1導電型半
導体層及び第2導電型半導体層と、これらの第1導電型
半導体層及び第2導電型半導体層を取り囲んで形成され
た低濃度第1導電型半導体領域と、この低濃度第1導電
型半導体領域及び前記高濃度第2導電型半導体領域に接
して形成され、前記高濃度第2導電型半導体領域より低
濃度の低濃度第2導電型半導体領域とを備え、前記第1
導電型半導体層及び第2導電型半導体層の繰り返し配置
方向は、前記高濃度第1導電型半導体領域と前記高濃度
第2導電型半導体領域とを結ぶ方向に対して概略垂直で
あるとともに、前記第1導電型半導体層はオン状態でド
リフト電流を流すとともにオフ状態で空乏化し、前記第
2導電型半導体層はオフ状態で空乏化し、かつ最外部の
第1導電型半導体層又は前記第2導電型半導体層の層厚
み方向のキャリア濃度の積分値が、その内部に配置され
た前記第1導電型半導体層及び前記第2導電型半導体層
の層厚み方向のキャリア濃度の積分値の概略半分である
ことを特徴とする高耐圧半導体素子。
4. A high-concentration first-conductivity-type semiconductor region, a high-concentration second-conductivity-type semiconductor region, and sandwiched between the high-concentration first-conductivity-type semiconductor region and the high-concentration second-conductivity-type semiconductor region. A first conductivity type semiconductor layer and a second conductivity type semiconductor layer, which are alternately and repeatedly arranged, and a low-concentration semiconductor layer formed by surrounding the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. A low-concentration second conductivity type semiconductor region formed in contact with the one-conductivity-type semiconductor region and the low-concentration first-conductivity-type semiconductor region and the high-concentration second-conductivity-type semiconductor region; The first semiconductor region.
The repeated arrangement direction of the conductive semiconductor layer and the second conductive semiconductor layer is substantially perpendicular to a direction connecting the high-concentration first conductive semiconductor region and the high-concentration second conductive semiconductor region, and The first conductivity type semiconductor layer causes a drift current to flow in the on state and is depleted in the off state, the second conductivity type semiconductor layer is depleted in the off state, and an outermost first conductivity type semiconductor layer or the second conductivity type. The integral value of the carrier concentration in the layer thickness direction of the type semiconductor layer is approximately half of the integral value of the carrier concentration in the layer thickness direction of the first conductive type semiconductor layer and the second conductive type semiconductor layer disposed therein. A high-breakdown-voltage semiconductor element characterized by the following.
【請求項5】 高濃度第1導電型半導体領域と、この高
濃度第1導電型半導体領域に接して形成された第1導電
型半導体層と、前記高濃度第1導電型半導体領域及び前
記第1導電型半導体層に接して形成された第2導電型半
導体層と、前記第1導電型半導体層及び前記第2導電型
半導体層に接して形成された高濃度第2導電型半導体領
域と、前記第1導電型半導体層及び前記第2導電型半導
体層を取り囲んで形成された低濃度第1導電型半導体領
域と、この低濃度第1導電型半導体領域に接して形成さ
れ、前記高濃度第2導電型半導体領域を取り囲むように
当該領域から離間して設けられたリング状の第2導電型
半導体領域層とを備え、前記第1導電型半導体層及び前
記第2導電型半導体層は交互に繰り返して配置されてお
り、その最外部の第1導電型半導体層又は前記第2導電
型半導体層の層厚み方向のキャリア濃度の積分値が、そ
の内部に配置された前記第1導電型半導体層及び前記第
2導電型半導体層の層厚み方向のキャリア濃度の積分値
の概略半分であることを特徴とする高耐圧半導体素子。
5. A high-concentration first-conductivity-type semiconductor region, a first-conductivity-type semiconductor layer formed in contact with the high-concentration first-conductivity-type semiconductor region; A second conductivity type semiconductor layer formed in contact with the one conductivity type semiconductor layer, a high concentration second conductivity type semiconductor region formed in contact with the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, A low-concentration first-conductivity-type semiconductor region formed surrounding the first-conductivity-type semiconductor layer and the second-conductivity-type semiconductor layer; and a low-concentration first-conductivity-type semiconductor region formed in contact with the low-concentration first-conductivity-type semiconductor region. A ring-shaped second conductivity type semiconductor region layer provided separately from the two conductivity type semiconductor regions so as to surround the two conductivity type semiconductor regions, wherein the first conductivity type semiconductor layers and the second conductivity type semiconductor layers are alternately arranged. It is arranged repeatedly and its outermost The integral value of the carrier concentration in the layer thickness direction of the one conductivity type semiconductor layer or the second conductivity type semiconductor layer is determined by the thickness direction of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer disposed therein. A high withstand voltage semiconductor device, wherein the integrated value is approximately half of the integrated value of the carrier concentration.
【請求項6】 高濃度第1導電型半導体領域と、高濃度
第2導電型半導体領域と、これらの高濃度第1導電型半
導体電極層と高濃度第2導電型半導体電極層との間に挟
まれて形成され、交互に繰り返して配置された第1導電
型半導体層及び第2導電型半導体層と、これらの第1導
電型半導体層及び第2導電型を取り囲んで形成された低
濃度第1導電型半導体領域と、この低濃度第1導電型半
導体領域に接して形成され、前記高濃度第2導電型半導
体領域を取り囲むように当該領域から離間して設けられ
たリング状の第2導電型半導体領域層とを備え、前記第
1導電型半導体層及び第2導電型半導体層の繰り返し配
置方向は、前記高濃度第1導電型半導体領域と前記高濃
度第2導電型半導体領域とを結ぶ方向に対して概略垂直
であるとともに、前記第1導電型半導体層はオン状態で
ドリフト電流を流すとともにオフ状態で空乏化し、前記
第2導電型半導体層はオフ状態で空乏化し、かつ最外部
の第1導電型半導体層又は前記第2導電型半導体層の層
厚み方向のキャリア濃度の積分値が、その内部に配置さ
れた前記第1導電型半導体層及び前記第2導電型半導体
層の層厚み方向のキャリア濃度の積分値の概略半分であ
ることを特徴とする高耐圧半導体素子。
6. A high-concentration first-conductivity-type semiconductor region, a high-concentration second-conductivity-type semiconductor region, and a portion between the high-concentration first-conductivity-type semiconductor electrode layer and the high-concentration second-conductivity-type semiconductor electrode layer. A first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed so as to be sandwiched and alternately repeated, and a low-concentration semiconductor layer formed surrounding the first conductivity type semiconductor layer and the second conductivity type; A ring-shaped second conductive layer formed in contact with the one-conductivity-type semiconductor region and the low-concentration first-conductivity-type semiconductor region and spaced apart from the high-concentration second-conductivity-type semiconductor region; A first semiconductor layer and a second conductivity type semiconductor layer, wherein the repeated arrangement direction of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer connects the high concentration first conductivity type semiconductor region and the high concentration second conductivity type semiconductor region. Approximately perpendicular to the direction and forward The first conductivity type semiconductor layer flows a drift current in an on state and is depleted in an off state, the second conductivity type semiconductor layer is depleted in an off state, and the outermost first conductivity type semiconductor layer or the second The integrated value of the carrier concentration in the layer thickness direction of the conductive type semiconductor layer is approximately half the integrated value of the carrier concentration in the layer thickness direction of the first conductive type semiconductor layer and the second conductive type semiconductor layer disposed therein. A high breakdown voltage semiconductor device characterized by the following.
【請求項7】 前記第1導電型半導体層及び前記第2導
電型半導体層は、お互いに平行なストライプ状の層であ
ることを特徴とする請求項1乃至6記載の高耐圧半導体
素子。
7. The high breakdown voltage semiconductor device according to claim 1, wherein the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are striped layers parallel to each other.
【請求項8】 前記第1導電型半導体層及び前記第2導
電型半導体層は、奇数個存在することを特徴とする請求
項1乃至7記載の高耐圧半導体素子。
8. The high breakdown voltage semiconductor device according to claim 1, wherein an odd number of said first conductive type semiconductor layers and said second conductive type semiconductor layers are present.
【請求項9】 前記低濃度第2導電型半導体領域はオフ
状態で空乏化し、その空乏領域は前記第1導電型半導体
層及び前記第2導電型半導体層において空乏化により生
ずる空乏領域と接することを特徴とする請求項3、4、
7、又は8記載の高耐圧半導体素子。
9. The low-concentration second conductivity type semiconductor region is depleted in an off state, and the depletion region is in contact with a depletion region generated by depletion in the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. Claims 3 and 4, characterized in that:
7. The high withstand voltage semiconductor device according to 7 or 8.
【請求項10】 前記リング状の第2導電型半導体領域
層に接する低濃度第1導電型半導体領域はオフ状態で空
乏化し、その空乏領域は前記第1導電型半導体層及び前
記第2導電型半導体層において空乏化により生ずる空乏
領域と接することを特徴とする請求項5乃至8記載の高
耐圧半導体素子。
10. The low-concentration first-conductivity-type semiconductor region in contact with the ring-shaped second-conductivity-type semiconductor region layer is depleted in an off state, and the depletion region is the first-conductivity-type semiconductor layer and the second-conductivity-type. 9. The high breakdown voltage semiconductor device according to claim 5, wherein the semiconductor layer is in contact with a depletion region generated by depletion in the semiconductor layer.
【請求項11】 前記高耐圧半導体素子は縦型の構造を
有するものであることを特徴とする請求項1乃至9記載
の高耐圧半導体素子。
11. The high breakdown voltage semiconductor device according to claim 1, wherein the high breakdown voltage semiconductor device has a vertical structure.
JP07719899A 1999-03-23 1999-03-23 High voltage semiconductor element Expired - Fee Related JP3751463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07719899A JP3751463B2 (en) 1999-03-23 1999-03-23 High voltage semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07719899A JP3751463B2 (en) 1999-03-23 1999-03-23 High voltage semiconductor element

Publications (2)

Publication Number Publication Date
JP2000277726A true JP2000277726A (en) 2000-10-06
JP3751463B2 JP3751463B2 (en) 2006-03-01

Family

ID=13627137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07719899A Expired - Fee Related JP3751463B2 (en) 1999-03-23 1999-03-23 High voltage semiconductor element

Country Status (1)

Country Link
JP (1) JP3751463B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067333A1 (en) 2001-02-21 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JP2002280555A (en) * 2001-03-15 2002-09-27 Fuji Electric Co Ltd Semiconductor device
WO2003065459A1 (en) * 2002-01-28 2003-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6639260B2 (en) 2000-12-18 2003-10-28 Denso Corporation Semiconductor device having a vertical semiconductor element
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US6844592B2 (en) 2002-03-18 2005-01-18 Kabushiki Kaisha Toshiba Semiconductor device with super junction region
US6849900B2 (en) 2003-04-16 2005-02-01 Kabushiki Kaisha Toshiba Semiconductor device
JP2006005275A (en) * 2004-06-21 2006-01-05 Toshiba Corp Semiconductor device for electric power
JP2006073615A (en) * 2004-08-31 2006-03-16 Toyota Central Res & Dev Lab Inc Semiconductor device and manufacturing method thereof
JP2006202837A (en) * 2005-01-18 2006-08-03 Toshiba Corp Semiconductor device for electric power and its manufacturing method
JP2007266505A (en) * 2006-03-29 2007-10-11 Toshiba Corp Semiconductor element for power
JP2008004643A (en) * 2006-06-20 2008-01-10 Toshiba Corp Semiconductor device
US7622771B2 (en) 2007-05-24 2009-11-24 Kabushiki Kaisha Toshiba Semiconductor apparatus
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US7713822B2 (en) 2006-03-24 2010-05-11 Fairchild Semiconductor Corporation Method of forming high density trench FET with integrated Schottky diode
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US7737469B2 (en) 2006-05-16 2010-06-15 Kabushiki Kaisha Toshiba Semiconductor device having superjunction structure formed of p-type and n-type pillar regions
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7799636B2 (en) 2003-05-20 2010-09-21 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US7812392B2 (en) 2007-06-21 2010-10-12 Kabushiki Kaisha Toshiba Semiconductor device
US7859047B2 (en) 2006-06-19 2010-12-28 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
JP2011029231A (en) * 2009-07-21 2011-02-10 Toyota Central R&D Labs Inc Semiconductor device and manufacturing method of the same
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
CN102332470A (en) * 2010-07-12 2012-01-25 株式会社电装 Semiconductor device and manufacturing method of the same
US8198677B2 (en) 2002-10-03 2012-06-12 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
CN102496624A (en) * 2011-12-27 2012-06-13 上海先进半导体制造股份有限公司 Integrated floating basin isolation structure in high voltage BCD technology
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8373247B2 (en) 2010-03-03 2013-02-12 Kabushiki Kaisha Toshiba Semiconductor device
JP2013077854A (en) * 2003-01-16 2013-04-25 Fuji Electric Co Ltd Semiconductor element
US8482028B2 (en) 2011-03-23 2013-07-09 Kabushiki Kaisha Toshiba Semiconductor device
US8564088B2 (en) * 2008-08-19 2013-10-22 Infineon Technologies Austria Ag Semiconductor device having variably laterally doped zone with decreasing concentration formed in an edge region
CN103493207A (en) * 2011-07-14 2014-01-01 富士电机株式会社 High-voltage semiconductor device
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
WO2018029951A1 (en) * 2016-08-08 2018-02-15 三菱電機株式会社 Semiconductor device

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101484B2 (en) 2000-08-16 2012-01-24 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US8710584B2 (en) 2000-08-16 2014-04-29 Fairchild Semiconductor Corporation FET device having ultra-low on-resistance and low gate charge
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6639260B2 (en) 2000-12-18 2003-10-28 Denso Corporation Semiconductor device having a vertical semiconductor element
US6982459B2 (en) 2000-12-18 2006-01-03 Denso Corporation Semiconductor device having a vertical type semiconductor element
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US9368587B2 (en) 2001-01-30 2016-06-14 Fairchild Semiconductor Corporation Accumulation-mode field effect transistor with improved current capability
US8829641B2 (en) 2001-01-30 2014-09-09 Fairchild Semiconductor Corporation Method of forming a dual-trench field effect transistor
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
EP1363332A1 (en) * 2001-02-21 2003-11-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6821824B2 (en) 2001-02-21 2004-11-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JPWO2002067333A1 (en) * 2001-02-21 2004-06-24 三菱電機株式会社 Semiconductor device and manufacturing method thereof
WO2002067333A1 (en) 2001-02-21 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
KR100485297B1 (en) * 2001-02-21 2005-04-27 미쓰비시덴키 가부시키가이샤 Semiconductor device and method of manufacturing the same
JP4785335B2 (en) * 2001-02-21 2011-10-05 三菱電機株式会社 Semiconductor device and manufacturing method thereof
US7105387B2 (en) 2001-02-21 2006-09-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method for the same
EP1363332A4 (en) * 2001-02-21 2006-08-16 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2002280555A (en) * 2001-03-15 2002-09-27 Fuji Electric Co Ltd Semiconductor device
US6696728B2 (en) 2001-03-15 2004-02-24 Fuji Electric Co., Ltd. Super-junction semiconductor device
US6949798B2 (en) 2002-01-28 2005-09-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
WO2003065459A1 (en) * 2002-01-28 2003-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
USRE47641E1 (en) 2002-03-18 2019-10-08 Kabushiki Kaisha Toshiba Semiconductor device with super junction region
US6844592B2 (en) 2002-03-18 2005-01-18 Kabushiki Kaisha Toshiba Semiconductor device with super junction region
US7977744B2 (en) 2002-07-18 2011-07-12 Fairchild Semiconductor Corporation Field effect transistor with trench filled with insulating material and strips of semi-insulating material along trench sidewalls
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US8198677B2 (en) 2002-10-03 2012-06-12 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
JP2013077854A (en) * 2003-01-16 2013-04-25 Fuji Electric Co Ltd Semiconductor element
JP2013102213A (en) * 2003-01-16 2013-05-23 Fuji Electric Co Ltd Semiconductor element
US6849900B2 (en) 2003-04-16 2005-02-01 Kabushiki Kaisha Toshiba Semiconductor device
US8889511B2 (en) 2003-05-20 2014-11-18 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with trenched shielded split gate transistor
US8936985B2 (en) 2003-05-20 2015-01-20 Fairchild Semiconductor Corporation Methods related to power semiconductor devices with thick bottom oxide layers
US8786045B2 (en) 2003-05-20 2014-07-22 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures
US8143124B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of making power semiconductor devices with thick bottom oxide layer
US8034682B2 (en) 2003-05-20 2011-10-11 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US7799636B2 (en) 2003-05-20 2010-09-21 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7855415B2 (en) 2003-05-20 2010-12-21 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures and methods of manufacture
US8350317B2 (en) 2003-05-20 2013-01-08 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US8129245B2 (en) 2003-05-20 2012-03-06 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with shield and gate contacts
US8716783B2 (en) 2003-05-20 2014-05-06 Fairchild Semiconductor Corporation Power device with self-aligned source regions
US8143123B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of forming inter-poly dielectric (IPD) layers in power semiconductor devices
US7982265B2 (en) 2003-05-20 2011-07-19 Fairchild Semiconductor Corporation Trenched shield gate power semiconductor devices and methods of manufacture
US8013387B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with shield and gate contacts and methods of manufacture
US8013391B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with trenched shielded split gate transistor and methods of manufacture
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8518777B2 (en) 2003-12-30 2013-08-27 Fairchild Semiconductor Corporation Method for forming accumulation-mode field effect transistor with improved current capability
US7317225B2 (en) 2004-06-21 2008-01-08 Kabushiki Kaisha Toshiba Power semiconductor device
US7161209B2 (en) 2004-06-21 2007-01-09 Kabushiki Kaisha Toshiba Power semiconductor device
JP2006005275A (en) * 2004-06-21 2006-01-05 Toshiba Corp Semiconductor device for electric power
US8026558B2 (en) 2004-08-03 2011-09-27 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US8148233B2 (en) 2004-08-03 2012-04-03 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
JP2006073615A (en) * 2004-08-31 2006-03-16 Toyota Central Res & Dev Lab Inc Semiconductor device and manufacturing method thereof
JP2006202837A (en) * 2005-01-18 2006-08-03 Toshiba Corp Semiconductor device for electric power and its manufacturing method
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
US8680611B2 (en) 2005-04-06 2014-03-25 Fairchild Semiconductor Corporation Field effect transistor and schottky diode structures
US7713822B2 (en) 2006-03-24 2010-05-11 Fairchild Semiconductor Corporation Method of forming high density trench FET with integrated Schottky diode
US7759732B2 (en) 2006-03-29 2010-07-20 Kabushiki Kaisha Toshiba Power semiconductor device
JP2007266505A (en) * 2006-03-29 2007-10-11 Toshiba Corp Semiconductor element for power
US8907420B2 (en) 2006-03-29 2014-12-09 Kabushiki Kaisha Toshiba Power semiconductor device
US7737469B2 (en) 2006-05-16 2010-06-15 Kabushiki Kaisha Toshiba Semiconductor device having superjunction structure formed of p-type and n-type pillar regions
US8013360B2 (en) 2006-05-16 2011-09-06 Kabushiki Kaisha Toshiba Semiconductor device having a junction of P type pillar region and N type pillar region
US7859047B2 (en) 2006-06-19 2010-12-28 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
JP2008004643A (en) * 2006-06-20 2008-01-10 Toshiba Corp Semiconductor device
US7622771B2 (en) 2007-05-24 2009-11-24 Kabushiki Kaisha Toshiba Semiconductor apparatus
US7812392B2 (en) 2007-06-21 2010-10-12 Kabushiki Kaisha Toshiba Semiconductor device
US9595596B2 (en) 2007-09-21 2017-03-14 Fairchild Semiconductor Corporation Superjunction structures for power devices
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9224853B2 (en) 2007-12-26 2015-12-29 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US8564088B2 (en) * 2008-08-19 2013-10-22 Infineon Technologies Austria Ag Semiconductor device having variably laterally doped zone with decreasing concentration formed in an edge region
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP2011029231A (en) * 2009-07-21 2011-02-10 Toyota Central R&D Labs Inc Semiconductor device and manufacturing method of the same
US8373247B2 (en) 2010-03-03 2013-02-12 Kabushiki Kaisha Toshiba Semiconductor device
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
CN102332470A (en) * 2010-07-12 2012-01-25 株式会社电装 Semiconductor device and manufacturing method of the same
US8482028B2 (en) 2011-03-23 2013-07-09 Kabushiki Kaisha Toshiba Semiconductor device
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8748982B2 (en) 2011-07-14 2014-06-10 Fuji Electric Co., Ltd. High breakdown voltage semiconductor device
CN103493207A (en) * 2011-07-14 2014-01-01 富士电机株式会社 High-voltage semiconductor device
CN102496624A (en) * 2011-12-27 2012-06-13 上海先进半导体制造股份有限公司 Integrated floating basin isolation structure in high voltage BCD technology
WO2018029951A1 (en) * 2016-08-08 2018-02-15 三菱電機株式会社 Semiconductor device
JP6345378B1 (en) * 2016-08-08 2018-06-20 三菱電機株式会社 Semiconductor device
CN109564932A (en) * 2016-08-08 2019-04-02 三菱电机株式会社 Semiconductor device
US10529799B2 (en) 2016-08-08 2020-01-07 Mitsubishi Electric Corporation Semiconductor device

Also Published As

Publication number Publication date
JP3751463B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JP3751463B2 (en) High voltage semiconductor element
JP5900503B2 (en) Semiconductor device
JP4945594B2 (en) Power semiconductor device
US8604544B2 (en) Semiconductor device
TWI453919B (en) Diode structures with controlled injection efficiency for fast switching
US10109725B2 (en) Reverse-conducting semiconductor device
JP5196766B2 (en) Semiconductor device
JP5298488B2 (en) Semiconductor device
JP2008117826A (en) Power semiconductor element
JP6356803B2 (en) Insulated gate bipolar transistor
JP2011129622A (en) High breakdown voltage semiconductor device
JPH09283754A (en) High withstand voltage semiconductor device
JPH08306937A (en) High-breakdown strength semiconductor device
JP2007324539A (en) Trench type insulating gate semiconductor device
JP2000049360A (en) Semiconductor device
JP2012124464A (en) Diode
JP2014509453A (en) Power semiconductor devices
RU2407107C2 (en) Insulated gate semiconductor device
US7535075B2 (en) Semiconductor device
JP2013145903A (en) Semiconductor device
JP2012182391A (en) Semiconductor device
JP5238866B2 (en) Power semiconductor device
JPH11204789A (en) Insulating gate type transistor
JP2003031821A (en) Semiconductor device
JPH08293618A (en) High breakdown strength semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051207

R151 Written notification of patent or utility model registration

Ref document number: 3751463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees