JP2000271695A - 成形品の製造方法 - Google Patents

成形品の製造方法

Info

Publication number
JP2000271695A
JP2000271695A JP8426699A JP8426699A JP2000271695A JP 2000271695 A JP2000271695 A JP 2000271695A JP 8426699 A JP8426699 A JP 8426699A JP 8426699 A JP8426699 A JP 8426699A JP 2000271695 A JP2000271695 A JP 2000271695A
Authority
JP
Japan
Prior art keywords
molded article
alloy
strain
alloy material
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8426699A
Other languages
English (en)
Inventor
Masataka Kawazoe
正孝 川添
Takashi Hashimoto
貴史 橋本
Jiyunichi Nagahora
純一 永洞
Kenji Azuma
健司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP8426699A priority Critical patent/JP2000271695A/ja
Publication of JP2000271695A publication Critical patent/JP2000271695A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Abstract

(57)【要約】 【課題】 機械的特性に優れ、成形において割れが発生
せず、また成形型内のガスによるポロシティ、ブリスタ
などが発生しないことにより、成形不良等が生じにくい
成形品を製造する方法を提供する。 【解決手段】 合金素材に220%以上の伸びに相当す
る塑性変形(歪)を与え、平均結晶粒径を10μm以
下、金属間化合物の平均粒子径を1μm以下に微細化
し、得られた材料を固相状態のまま成形型内に押圧し、
塑性流動させることにより成形品を製造することであ
る。具体的には、図1に示すように合金素材に、その押
出方向を途中で内角180°未満の側方に変化させて剪
断変形を与える方法あるいは合金素材に対して圧力方向
を変化させ断面形状を変化させて加圧変形を与える方法
がある。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高強度、高靭性の
機械的特性に優れた成形品の製造方法に関する。
【0002】
【従来の技術】一般に金属又は合金の延性は、高温にな
ればなる程大きくなり、成形加工し易くなる。しかしな
がら、金属又は合金が高温にさらされると、その機械的
特性(強度、硬度等)が低下するという問題がある。一
方、機械的特性(強度、硬度等)が低下しない温度は、
変形能が100%以下と小さくなり、成形加工し難くな
る。通常、金属又は合金の場合、溶融状態からの鋳造
法、半溶融状態からの射出成形法などが多く用いられて
いる。鋳造法の場合は、材料を融点以上の温度まで高く
するため、上述のように機械的特性の点で特に問題があ
り、半溶融状態からの射出成形法は金属又は合金からな
る原料チップをホッパから投入して、半溶融状態の材料
をシリンダで成形型内へ射出して行うが、この場合投入
される原料の機械的特性は融溶する場合に比べて維持し
やすいが、多少の低下はまぬがれない。また、溶融ある
いは半溶融状態からの鋳造あるいは射出成形法の場合、
成形型内及び装置内に混入される残留ガスのガス抜き
を、きびしく制御することがポロシティ、ブリスタなど
の成形不良をなくすために必要である。
【0003】
【発明が解決しようとする課題】本発明は上述の問題を
解決すべくなされたものであり、機械的特性に優れ、成
形において、割れ(クラック)等が発生せず、また成形
型内のガスによるポロシティ、ブリスタなどが発生しな
いことにより成形不良等が生じにくい成形品の製造方法
を提供することを目的とする。
【0004】
【課題を解決するための手段】本発明は、合金素材に2
20%以上の伸びに相当する塑性変形(歪)を与え、平
均結晶粒径を10μm以下、金属間化合物の平均粒子径
を1μm以下に微細化し、得られた材料を固相状態のま
ま成形型内に押圧し、塑性流動させることにより成形品
を製造することを特徴とする成形品の製造方法である。
【0005】本発明に適用される合金素材としては、M
g−Al−Zn系(AZ系)合金、Mg−Zn−Zr系
(ZK系)などのマグネシウム合金、Al−Mg−Si
(A6063)合金、Al−Mg(A5056)合金な
どのアルミニウム合金、亜鉛合金、チタン合金などが適
用でき、特にMg合金及びAl合金については有用であ
り、さらにこれらのMg合金、Al合金にSc,Zr,
Ti,Cr,Mn,Si,Caの少なくとも1種の元素
を5wt%以下の範囲内で含んでいることが好ましい。
【0006】本発明においては、事前に熱間塑性加工を
行うことが、次工程の塑性変形、成形の際に割れ(クラ
ック)を生じさせることなく、また、合金素材の結晶粒
及び金属化合物の大きさを微細化するためにも有用であ
り、その具体的な加工としては、押出、鍛造などが適用
でき、具体的な加工温度としてはMg合金の場合200
〜360℃、Al合金の場合、350〜500℃で行う
ことが好ましい。特に鋳造法にて作製された素材に対し
ては、その鋳造組織を破壊する上で重要である。また、
熱間塑性加工を施すに際して事前に前記押出温度より高
い温度で溶体化処理を施こしても良い。
【0007】さらに、本発明において、220%以上の
相当伸びに相当する歪量の大きな変形を加えるが、これ
らの具体的な方法としては、第1に合金素材に、その素
材の持つ断面積を変化させずに、その押出方向を途中で
内角180°未満の側方に変化させて剪断応力を与える
ことによって、220%以上の相当伸びに相当する大き
な歪を加え、ミクロ組織の平均結晶粒径を10μm以
下、金属間化合物の平均粒子径を1μm以下に微細化す
る請求項1記載の成形品の製造方法の手法があり、第2
に合金素材に、その素材に対して圧力方向を変化させ断
面形状を変化させて加圧変形を与えることによって、2
20%以上の相当伸びに相当する大きな歪を加え、ミク
ロ組織の平均結晶粒径を10μm以下、金属間化合物の
平均粒子径を1μm以下に微細化する請求項1記載の成
形品の製造方法の手法がある。
【0008】第1の手法は、側方押出法であって、生産
性、経済性等の点で最も好ましい。本発明による側方押
出法は、図1に示すように、内面で同一断面積を持つ2
つの押出しコンテナー、又はコンテナー1とダイ2を1
80°未満の適当な角度(2ψ)で接合し、一方のコン
テナー1に合金素材Sを挿入し、ラム3によって次のコ
ンテナー又はダイ2に向けて押出しすることによって、
材料に側方方向の剪断変形を加える方法であり、好まし
くはこの工程を複数回行う。この方法を合金素材に適用
することにより、非常に単純な工程で、しかも断面積を
減少させずに、結晶粒が1ミクロン以下に微細化され、
しかも従来の加工硬化による強度を上回る強化が出来る
と同時に、靭性を大きく改善できる。また、そのプロセ
スは、鋳造組織、合金成分のマクロ、ミクロ的な偏析の
破壊、均質化にも効果を持っており、合金素材では一般
に行われている高温・長時間の均質化熱処理を省略する
こともできる。さらに、たとえダイ2において断面減少
をともなっても、その効果は変わらない。
【0009】本発明の側方押出法で合金素材に加えられ
る剪断変形量は、2つのコンテナーまたはコンテナーと
ダイの接合角度によって異なる。一般に、この様な剪断
変形による押出し1回当たりの歪量△εiは、下記式
(1)で与えられる。
【0010】
【数1】
【0011】(但し、△εiは歪量、ψは接合内角の1
/2、ERRは加工前後の面積比、Aoは加工前の断面
積、Aは加工後の断面積、EARは加工前後の相当断面
減少率、EEは相当歪(伸びと同義)を表わす。) 即ち、2つのコンテナー又はコンテナとダイの接合の内
角が直角(90°)の場合、1回の側方押出で歪量は
1.15(相当伸び:220%)、120°の場合、歪
量は0.67(相当伸び:95%)で与えられる。断面
積を同一のまま直角に側方押出しすることによって、圧
延による圧下率(断面減少率)69%に相当する加工を
加えることが出来る。
【0012】上記プロセスを繰り返すことによって、材
料の断面積を変えずに材料中に無限に歪を蓄積すること
が出来る。その繰り返しによって材料に与える積算歪量
εtは、下記式(5)で与えられる。
【0013】
【数2】
【0014】(但し、εtは積算歪量、Nは押出回数を
表わす。) この繰り返し回数(N)は、理論的には多いほど良い
が、実際には合金によってある回数でその効果に飽和状
態が見られる。一般の展伸用合金素材では、繰り返し数
4回(接合内角が直角の場合、積算歪量:4.6、相当
伸び:10000%)で十分な効果を得ることが出来
る。圧延によっても無限に歪を蓄積することが出来る
が、その場合、断面積は無限に小さくなり、この点にお
いて側方押出法とは対照的である。
【0015】本発明による側方押出しは、出来るだけ低
温で行うことが好ましい。しかしながら、合金の変形抵
抗は低温になるほど高く、変形能は低温ほど小さくなる
傾向がある。押出し用工具の強度の関係及び健全な押出
材を得るために、通常は合金によって異なる適切な温度
で行われる。一般的には、300℃以下、好ましくは合
金の再結晶温度以下、さらに好ましくは回復温度以下で
行われる。しかし、この再結晶温度、回復温度は、材料
に加えられる加工度によって変化する。押出温度は、押
出角度によっても異なり、角度が大きくなるほど低温で
可能となる。これは、押出力(剪断変形に要するエネル
ギー)が小さくなることと、材料の変形能による制約が
緩くなるからである。
【0016】第2の手法は、図2に示すように、逐次圧
縮(押圧)方向を変えて鍛造を行う手法であって、例え
ばX軸方向両側から押圧し圧縮させることにより断面形
状を変化させ素材に変形を加え、次にY軸方向両側か
ら、さらにはZ軸方向両側からといったように逐次圧縮
変形を与える。この際素材の断面積は変化させない方が
より好ましい。この手法においても前述の側方押出法と
同様に220%あるいはそれ以上の相当伸びに相当する
歪量を与えることができるととも結晶粒及び金属間化合
物の微細化が行える。また、鍛造の際の温度も上述の押
出温度と同様に適用できる。
【0017】これらの手法により平均結晶粒径が10μ
m以下、金属間化合物の平均粒子径を1μm以下とする
ことができ、このような合金素材材は、温度100〜3
50℃、歪速度10-5〜100-1の成形加工条件で種
々の形状に成形できる。また、成形に際しては150%
以上の伸びを示すことから、粒界すべりによる変形と粒
内(塑性)変形とにより材料が変形し、超塑性的な変形
が生じる。また、微細な金属間化合物が存在しているこ
とにより、成形の際に上記のように加熱を行っても、結
晶粒の粗大化が抑制され、機械的な特性の低下が生じに
くい。なお、超塑性的な成形及び機械的特性を考慮した
場合、平均結晶粒径は3μm以下であることが好ましく
より好ましくは1μm以下である。
【0018】また、本発明においては前述の220%以
上の伸びに相当する塑性変形を与えた材料を固相状態の
まま成形型内に押圧し、材料を塑性流動させることによ
り成形型内に充填し、成形品を作製するが、固相状態の
まま成形することにより、材料は熱的な影響を受けにく
く機械的な特性を維持しやすくなり、少なくとも前工程
における材料特性を備えた成形品を作製することができ
る。さらに固相状態で成形を行うことにより成形型内及
び装置内の残留ガスは、材料内にまき込まれにくく、ガ
ス抜き口を通して円滑に排出がなされ、ポロシティ及び
ブリスタの発生が生じにくくなる。また、材料の塑性流
動は前述したように超塑性的な変形が可能であることに
より、成形型内へ円滑に充填できる。
【0019】以下、具体的な成形品の成形型及び成形方
法を図3をもとに説明する。
【0020】成形型4は上型5と下型6とから構成さ
れ、これらの対向面には、それぞれ成形部7が形成され
ている。図3において成形部7は断面略H字状に形成さ
れている。また、上型5中央部には成形部中央に向っ
て、材料を供給するための供給部8が形成され、その上
方には材料を供給部8から成形部7に向って押圧するた
めの押圧手段(ステム)9が設けられている。また、図
示されていないが、成形型には成形型の温度をコントロ
ールするための加熱、冷却手段及び温度検知手段等が設
けられている。供給部に配された成形材料Sは、ステム
9により押圧され、略直角方向に流動方向を変えられ、
また断面積を減少させて、成形部7内に充填される。こ
こで供給された成形材料Sは塑性流動の際にも歪みを与
えられ、成形品の成形が行われる。このように成形の際
も歪を与えることにより供給された材料よりもさらに機
械的な特性の向上が行える。このような歪の与え方とし
ては供給部8と成形部7とが角度を持って連結させるあ
るいは供給部8と成形部7との間で断面積を減少させる
ことなどによって行える。具体的な成形条件は、温度1
00〜450℃、歪速度10-5〜100-1で行える。
【0021】
【発明の実施の形態】以下、実施例にもとづき、本発明
を具体的に説明する。
【0022】実施例1 適用合金として表1に示す組成範囲内のZK60合金を
選び、鋳造によって直径80mmの丸棒とし、得られた
丸棒を499℃で2時間熱処理後、水中で急冷し、その
後、熱間押出し(300℃、押出比10)によって直径
25mmの丸棒とし、供試材とした。一方、直径25m
mに鋳造し、比較材とした。この供試材は直角(ψ=4
5°)に連結した2つのコンテナー(何れも直径25m
m)の一方に挿入し、180℃で8回の側方押出しを行
い、直径25mmの処理材を得た。これによって、前述
の式によれば積算歪量(εt)9.4(相当伸び100
0000%)の加工を受けたマグネシウム合金材料が得
られたことになる。
【0023】180℃での側方押出し後の材料の透過電
子顕微鏡(TEM)像(倍率:3万倍)にて組織観察を
行った結果、側方押出し後には結晶粒は0.5ミクロン
程度に微細化していることが分った。
【0024】このようにして作製した側方押出材から、
平行部長さ5mm、直径2.5mmの引張試験片を作製
し、温度325℃一定、歪速度1×10-3、5×1
-3、1×10-2、1×10-1-1の各条件で引張試験
を行った。その結果を図4に示す。
【0025】図4から明らかなように、歪速度とともに
破断伸びは増加し、1×10-2-1で最大の540%と
なり、それ以上では減少した。破断伸び200%以上の
領域では、前記微細組織がZr等の析出物によって熱的
に安定、かつ粒内塑性変形と粒界滑りをともなっている
ので、高い変形能を示すのである。
【0026】上記材料を用いて成形実験(射出実験)装
置を行った。使用した金型の概要を図3に示す。穴の直
径は25mmである。成形部の形状は円形(直径100
mm、高さ5mm)で外周部に上下に伸びた突起(各々
の高さ5mm)がついている。側方押出材は金型温度3
25℃、鋳造材は600℃、速度はともに20mm/s
で成形した。成形後、鋳造材のみT5処理(149℃、
48時間)を行った。これらの成形品の円形部から、平
行部長さ15mm、平行部幅3mm、平行部厚さ2mm
の引張試験片を作製し、室温、歪速度1×10-3-1
条件で引張試験を行った。又、目視により表面状態を観
察した。その結果を表2に示す。
【0027】表2より、降伏応力は鋳造材で成形した成
形品(以下鋳造材)で230MPaであるのに対して側
方押出を行い成形した成形品(以下側方押出材)は29
0MPaであり、側方押出材の方が優れている。また、
伸びは鋳造材で5%であるのに対して側方押出材は18
%であり、側方押出材は3倍以上の改善が見られる。表
面状態は鋳造材でブリスターとポロシティーが観察され
たのに対して側方押出材はブリスターもポロシティーも
なく、側方押出材は品質の改善が見られる。以上のこと
から、0.5ミクロン程度に微細化された材料を使用す
ることによって、高いレベルで強度と靭性を兼ね備えた
成形品が作製できることが分かる。
【0028】
【表1】
【0029】
【表2】
【0030】実施例2 適用合金としてAl−4Cu−2Mg−0.5Sc−
0.15Zrを選び、鋳造によって直径80mmの丸棒
とし、得られた丸棒を500℃で10時間熱処理後、水
中で急冷し、その後、熱間押出し(450℃、押出比1
0)によって直径25mmの丸棒とし、供試材とした。
比較材としては、上記合金の水焼き入れ材(結晶粒径:
25ミクロン)と、実用合金のA6063合金とA20
24合金の水焼き入れ材を用いた。この供試材は直角
(ψ=45°)に連結した2つのコンテナー(何れも直
径25mm)の一方に挿入し、150℃で4回の側方押
出しを行い、直径25mmの処理材を得た。これによっ
て、前述の式によれば積算歪量(εt)4.6(相当伸
び10000%)の加工を受けたアルミニウム合金材料
が得られたことになる。
【0031】150℃での側方押出し後の材料の透過電
子顕微鏡(TEM)像(倍率:3万倍)にて組織観察を
行った結果、側方押出し後には結晶粒は0.5ミクロン
程度に微細化していることが分った。
【0032】このようにして作製した側方押出材から、
平行部長さ5mm、直径2.5mmの引張試験片を作製
し、温度400℃一定、歪速度5×10-3、1×1
-2、1×10-1、1×100-1の各条件で引張試験
を行った。その結果を図5に示す。
【0033】図5から明らかなように、歪速度とともに
伸びは増加し、1×10-2-1で最大の1100%とな
り、それ以上では減少した。このように破断伸び200
%以上の高い変形能を示すのは、前記組織がAl3Sc
とAlaZrの微細な析出物によって熱的に安定、かつ
粒内塑性変形と粒界滑りをともなうからである。上記材
料を用いて成形実験(鍛造実験)を行った。使用した金
型は実施例1と同じである。金型温度は400℃、速度
は20mm/sの条件で成形した。
【0034】これらの成形品の円形部から、平行部長さ
15mm、平行部幅3mm、平行部厚さ2mmの引張試
験片を作製し、室温、歪速度1×10-3-1の条件で引
張試験を行った。この結果と成形時の面圧を表3に示
す。
【0035】Al−4Cu−2Mg−0.5Sc−0.
15ZrとA2024合金の水焼き入れ材を成形した成
形品(以下水焼入れ材)は面圧が1000MPaを越え
るため最後まで成形できなかった。Al−4Cu−2M
g−0.5Sc−0.15Zrの側方押出材を成形した
成形品(以下側方押出材)の面圧はA6063合金の水
焼き入れ材より高かったが、同合金の水焼き入れ材より
低かった。
【0036】降伏応力はAl−4Cu−2Mg−0.5
Sc−0.15Zrの側方押出材で400MPaである
のに対してA6063合金の水焼き入れ材は150MP
aであり、側方押出材の方が優れている。以上のことか
ら、0.5ミクロン程度に微細化された材料を使用する
ことによって、高強度な成形品が作製できることが分か
る。
【0037】
【表3】
【0038】
【発明の効果】本発明によれば、成形品のミクロ組織を
微細化し、機械的特性に優れ、成形において割れが発生
せず、また成形型内のガスによるポロシティ、ブリスタ
などが発生しないことにより、成形不良等が生じにくい
成形品の製造方法が提供される。
【図面の簡単な説明】
【図1】本発明に用いる側方押出法の説明図である。
【図2】本発明に用いる逐次圧縮方向を変えて鍛造する
方法の説明図である。
【図3】本発明の具体的な成形品の成形型及び成形方法
の説明図である。
【図4】実施例1の引張試験結果を示すグラフである。
【図5】実施例2の引張試験結果を示すグラフである。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 永洞 純一 宮城県仙台市泉区將監11丁目12−12 (72)発明者 東 健司 大阪府富田林市寺池台3−4−9 Fターム(参考) 4E087 AA01 AA05 AA10 BA03 BA04 BA06 BA24 CA27 CB01 CB04 DB12 DB23 DB24 EC17 EC18

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 合金素材に220%以上の伸びに相当す
    る塑性変形(歪)を与え、平均結晶粒径を10μm以
    下、金属間化合物の平均粒子径を1μm以下に微細化
    し、得られた材料を固相状態のまま成形型内に押圧し、
    塑性流動させることにより成形品を製造することを特徴
    とする成形品の製造方法。
  2. 【請求項2】 合金素材は鋳造材に熱間塑性加工を施し
    たものである請求項1記載の成形品の製造方法。
  3. 【請求項3】 合金素材に、その押出方向を途中で内角
    180°未満の側方に変化させて剪断変形を与えること
    によって、220%以上の伸びに相当する大きな歪を加
    え、ミクロ組織を微細化する請求項1記載の成形品の製
    造方法。
  4. 【請求項4】 合金素材に、その素材に対して圧力方向
    を変化させ断面形状を変化させて加圧変形を与えること
    によって、220%以上の伸びに相当する大きな歪を加
    え、ミクロ組織を微細化する請求項1記載の成形品の製
    造方法。
  5. 【請求項5】 塑性流動の際にも歪を与え成形品を製造
    する請求項1記載の成形品の製造方法。
  6. 【請求項6】 合金素材が配される供給部と、成形型内
    に形成された成形部とが連通しており、供給部と成形部
    とが角度をもって連結されている請求項5記載の成形品
    の製造方法。
  7. 【請求項7】 成形型内での成形を、温度100〜45
    0℃、歪速度10-5〜100-1の成形条件で行う請求
    項1記載の成形品の製造方法。
JP8426699A 1999-03-26 1999-03-26 成形品の製造方法 Pending JP2000271695A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8426699A JP2000271695A (ja) 1999-03-26 1999-03-26 成形品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8426699A JP2000271695A (ja) 1999-03-26 1999-03-26 成形品の製造方法

Publications (1)

Publication Number Publication Date
JP2000271695A true JP2000271695A (ja) 2000-10-03

Family

ID=13825662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8426699A Pending JP2000271695A (ja) 1999-03-26 1999-03-26 成形品の製造方法

Country Status (1)

Country Link
JP (1) JP2000271695A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192297A (ja) * 2000-12-21 2002-07-10 Maruman Golf Corp ゴルフクラブヘッドとその成形方法
WO2004085692A1 (ja) * 2003-03-26 2004-10-07 Campus Create Co., Ltd. Mg合金の加工方法およびMg合金
WO2005007317A1 (ja) * 2003-07-22 2005-01-27 Katsuaki Nakamura 金属成型方法及び金属成型機及び金属成型体
WO2008016150A1 (fr) * 2006-08-03 2008-02-07 National Institute For Materials Science Alliage de magnésium et son procédé de fabrication
CN102199741A (zh) * 2010-03-25 2011-09-28 宝山钢铁股份有限公司 一种大塑性变形细化晶粒方法
JP2020501021A (ja) * 2016-12-02 2020-01-16 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 高強度アルミニウム合金のためのecae材料
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192297A (ja) * 2000-12-21 2002-07-10 Maruman Golf Corp ゴルフクラブヘッドとその成形方法
WO2004085692A1 (ja) * 2003-03-26 2004-10-07 Campus Create Co., Ltd. Mg合金の加工方法およびMg合金
JP4616173B2 (ja) * 2003-07-22 2011-01-19 有限会社リナシメタリ 筒状金属の成型方法及び筒状金属の成型機及び筒状金属成型体
JPWO2005007317A1 (ja) * 2003-07-22 2006-11-24 有限会社リナシメタリ 金属成型方法及び金属成型機及び金属成型体
US7389668B2 (en) 2003-07-22 2008-06-24 Rinascimetalli Ltd. Metal molding method and machine, and metal molded body
WO2005007317A1 (ja) * 2003-07-22 2005-01-27 Katsuaki Nakamura 金属成型方法及び金属成型機及び金属成型体
KR101125674B1 (ko) * 2003-07-22 2012-03-27 유겐가이샤 리나시메타리 통형 금속의 성형 방법, 통형 금속의 성형기 및 통형 금속 성형체
WO2008016150A1 (fr) * 2006-08-03 2008-02-07 National Institute For Materials Science Alliage de magnésium et son procédé de fabrication
JP5429702B2 (ja) * 2006-08-03 2014-02-26 独立行政法人物質・材料研究機構 マグネシウム合金とその製造方法
CN102199741A (zh) * 2010-03-25 2011-09-28 宝山钢铁股份有限公司 一种大塑性变形细化晶粒方法
CN102199741B (zh) * 2010-03-25 2012-11-14 宝山钢铁股份有限公司 一种大塑性变形细化晶粒方法
JP2020501021A (ja) * 2016-12-02 2020-01-16 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 高強度アルミニウム合金のためのecae材料
JP2020501016A (ja) * 2016-12-02 2020-01-16 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 高強度アルミニウム合金用ecae材料
US11421311B2 (en) 2016-12-02 2022-08-23 Honeywell International Inc. ECAE materials for high strength aluminum alloys
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys

Similar Documents

Publication Publication Date Title
EP2324137B1 (en) Process for forming aluminium alloy sheet components
JP3654466B2 (ja) アルミニウム合金の押出加工法及びそれにより得られる高強度、高靭性のアルミニウム合金材料
JP3873021B2 (ja) 物品を作る方法および冷間成形方法
CN1009741B (zh) 镍基超耐热合金的制品及制造方法
JPS58213840A (ja) 半固体半液体状態の形成に適した金属組成物の製造方法
CN106756330B (zh) 一种汽车车身用的铝合金型材及制造方法
JPH07179974A (ja) アルミニウム合金およびその製造方法
JP2009507133A (ja) 6020アルミニウム合金のプレスクエンチング方法
KR101636117B1 (ko) 고강도 마그네슘 합금 선재 및 그 제조 방법, 고강도 마그네슘 합금 부품, 및 고강도 마그네슘 합금 스프링
Yuan et al. Improved microstructures and mechanical properties of 2024 aluminum alloy produced by a reciprocating extrusion method
JP2002241912A (ja) 被加工金属材料の強化処理方法及び同方法を適用される金属素材
JP2000271695A (ja) 成形品の製造方法
Balasubramanian et al. Influence of processing route on bonding of AA6082 and MgAZ31B by severe plastic deformation process
KR101659199B1 (ko) 마그네슘 합금 부재 및 그 제조 방법
JP2000271693A (ja) マグネシウム合金材の製造方法
JP2000271631A (ja) 押出成形材及び成形品の製造方法
JPH11114618A (ja) アルミニウム合金板材の製造方法
Yeh et al. Microstructures and tensile properties of an A1-12 wt pct Si alloy produced by reciprocating extrusion
Liu et al. Microstructural analysis and mechanical properties of AZ31 magnesium alloy prepared by alternate extrusion (AE)
Mansoor et al. Microstructure and porosity in thixomolded Mg alloys and minimizing adverse effects on formability
Bass Validating the Arcam EBM process as an alternative fabrication method for titanium-6Al-4V alloys
JPH10258334A (ja) アルミニウム合金成形品の製造方法
JP2005329459A (ja) 鋳造用結晶粒微細化剤及びその製造方法
JP3097476B2 (ja) 熱間塑性加工方法
Rassa et al. Effects of Equal Channel Angular Pressing (ECAP) Process with an Additional Expansion-Extrusion Stage on Microstructure and Mechanical Properties of Mg–9Al–1Zn

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050729

A02 Decision of refusal

Effective date: 20051117

Free format text: JAPANESE INTERMEDIATE CODE: A02