JP2000268630A - Copper powder for conductive paste - Google Patents

Copper powder for conductive paste

Info

Publication number
JP2000268630A
JP2000268630A JP11076348A JP7634899A JP2000268630A JP 2000268630 A JP2000268630 A JP 2000268630A JP 11076348 A JP11076348 A JP 11076348A JP 7634899 A JP7634899 A JP 7634899A JP 2000268630 A JP2000268630 A JP 2000268630A
Authority
JP
Japan
Prior art keywords
copper powder
conductive paste
copper
viscosity
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11076348A
Other languages
Japanese (ja)
Other versions
JP3932336B2 (en
Inventor
Kazuji Sano
和司 佐野
Yoshihiro Okada
美洋 岡田
Hiromasa Miyoshi
宏昌 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP07634899A priority Critical patent/JP3932336B2/en
Publication of JP2000268630A publication Critical patent/JP2000268630A/en
Application granted granted Critical
Publication of JP3932336B2 publication Critical patent/JP3932336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain conductive paste lowered in viscosity by smoothing a particle surface without changing a particle diameter, particle size distribution and specific surface area so much by mechanically colliding copper powder with one another for copper powder obtained by a wet reduction method. SOLUTION: Copper hydroxide is taken primary reduction to cuprous oxide by adding reducing agent to suspension suspended in water. By adding reducing agent in aqueous suspension of this cuprous oxide, the cuprous oxide is taken secondary reduction to metal copper. This copper powder is suitable as one for conductive paste in particle diameter and particle shape and has an average particle diameter of about 0.1 to 10 μm, but particle surfaces are in rugged states and hinder lowering of viscosity of conductive paste. This copper powder is charged into a cylindrical type high speed agitator fluidizing the particles, momentum is imparted to each particle, particles with one another are collided and angular parts on particle surfaces are smoothed. Also when a plane smoothing processing is performed for copper powder obtained by a wet reduction method after copper powder is coated with inorganic or organic materials, copper powder for conductive paste of low viscosity can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,高い充填率でも低
粘性の導電ペーストが得られる銅粉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper powder capable of obtaining a low-viscosity conductive paste even at a high filling rate.

【0002】[0002]

【従来の技術】従来より,絶縁基板上に導電ペーストを
スクリーン印刷して厚膜回路基板を作製する場合,該導
電ペーストとしては銀系ペーストが主に使用されてきた
が,銅ペーストも使用される傾向にある。銅ペーストは
銀系ペーストに比べて次のような利点があるからであ
る。
2. Description of the Related Art Conventionally, when a thick film circuit board is manufactured by screen-printing a conductive paste on an insulating substrate, a silver-based paste has been mainly used as the conductive paste, but a copper paste is also used. Tend to be. This is because copper paste has the following advantages over silver-based paste.

【0003】(1) マイグレーションが起き難いのでショ
ートし難い。 (2) 導体抵抗および高周波損失が小さいので回路の微細
化が可能である。 (3) 耐半田性に優れるので信頼性が高い。 (4) 低コスト化が可能である。
(1) It is difficult to cause a short circuit because migration hardly occurs. (2) Since the conductor resistance and high-frequency loss are small, the circuit can be miniaturized. (3) High reliability due to excellent solder resistance. (4) Cost reduction is possible.

【0004】このような利点をもつ銅ペーストは,粒径
が0.1〜10μm程度の銅粉をビヒクル(樹脂)中に
分散させることによって得られる。
[0004] A copper paste having such advantages can be obtained by dispersing copper powder having a particle size of about 0.1 to 10 µm in a vehicle (resin).

【0005】銅粉の製造法としては,機械的粉砕法,溶
融銅を噴霧するアトマイズ法,陰極への電解析出法,蒸
発蒸着法,湿式還元法等が知られている。これらはそれ
ぞれ得失があるが,湿式還元法はペースト用に適する粒
径の微細粉を比較的容易に得ることができるので,導電
ペースト用銅粉を製造する場合の主流となっており,例
えば特開平4−116109号公報,特開平2−197
012号公報および特開昭62−99406号公報には
湿式還元法による銅粉の製造法が記載されている。
As a method for producing copper powder, there are known a mechanical pulverizing method, an atomizing method in which molten copper is sprayed, an electrolytic deposition method on a cathode, an evaporation deposition method, a wet reduction method, and the like. Although each of these has its advantages and disadvantages, the wet reduction method is a main stream in the production of copper powder for conductive paste, since fine powder having a particle size suitable for paste can be obtained relatively easily. JP-A-4-116109, JP-A-2-197
No. 012 and Japanese Unexamined Patent Publication No. 62-99406 describe a method for producing copper powder by a wet reduction method.

【0006】湿式還元法による銅粉の製法は,水中で析
出させた水酸化銅を亜酸化銅に一次還元し,次いでこの
亜酸化銅を金属銅に二次還元することを要旨とするもの
であり,一次還元剤としてはブドウ糖,二次還元剤とし
て抱水ヒドラジン等が使用される。そのさい,水酸化銅
の析出工程,一次還元工程および二次還元工程の条件設
定により,得られる銅粉の粒径や粒子形状を制御するこ
とができ,導電ペースト用に適する粒径のものを安定し
て製造できる利点がある。本発明者らは先に特願平10
−323866号において,一次還元工程と二次還元工
程の間で,酸素含有ガス吹込みによる酸化処理を行う方
法を提案した。この酸化処理により粒径の揃った銅粉を
得ることができ,一層,粒径制御と粒子形状制御が精密
化できるようになった。
[0006] The method of producing copper powder by the wet reduction method is based on the concept that copper hydroxide precipitated in water is primarily reduced to cuprous oxide, and then this cuprous oxide is secondarily reduced to metallic copper. In addition, glucose is used as a primary reducing agent, and hydrazine hydrate is used as a secondary reducing agent. At this time, the particle size and particle shape of the obtained copper powder can be controlled by setting the conditions of the copper hydroxide precipitation step, the primary reduction step, and the secondary reduction step. There is an advantage that it can be manufactured stably. The present inventors have previously described Japanese Patent Application No.
No. 323866 proposes a method of performing an oxidation treatment by blowing oxygen-containing gas between the primary reduction step and the secondary reduction step. By this oxidation treatment, a copper powder having a uniform particle size can be obtained, and the control of the particle size and the control of the particle shape can be further refined.

【0007】[0007]

【発明が解決しようとする課題】湿式還元法では導電ペ
ーストに適した粒径の銅粉が製造できるとしても,その
銅粉は,適正な粘性をもつ導電ペーストを得ようとする
場合には問題があった。導電ペーストの粘性は,使用す
る樹脂自身の粘性,銅粉の充填率(フイラー値)および
銅粉の粒度分布等が関与するが,湿式還元法による銅粉
では,導電ペーストの粘性が高くなる傾向がある。すな
わち,湿式還元法による銅粉では,粒径が適正に制御で
きても,それだけでは導電ペーストの粘性を低下させる
ことには限界があることがわかった。
Although the wet reduction method can produce copper powder having a particle size suitable for a conductive paste, the copper powder has a problem in obtaining a conductive paste having an appropriate viscosity. was there. The viscosity of the conductive paste depends on the viscosity of the resin used, the filling rate (filler value) of the copper powder, the particle size distribution of the copper powder, and the like. There is. In other words, it was found that there is a limit in reducing the viscosity of the conductive paste by the wet reduction method even if the particle size can be properly controlled.

【0008】したがって,本発明はこのような問題を解
決し,湿式還元法による銅粉を用いた場合でも,導電ペ
ーストにとって必要な粘性を確保できる銅粉を得ること
を課題としたものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such a problem and to obtain a copper powder capable of securing a viscosity required for a conductive paste even when a copper powder obtained by a wet reduction method is used.

【0009】[0009]

【課題を解決するための手段】前記の課題を解決すべく
本発明者らは鋭意研究を重ねたところ,湿式還元法で得
られた銅粉に対して銅粉同士を機械的に衝突させる処理
を施し,粒径や粒度分布および比表面積はそれほど変化
させないで,粒子表面を平滑化させると,導電ペースト
の粘性を著しく低下させることができることを見い出し
た。すなわち,粒子表面に存在する凸凹や角張った部分
を,粒径や粒度分布を実質上変化させないで,粒子同士
の衝突により滑らかにするのであり,この処理は,粒子
を機械的に流動化させることができる装置を用いて行う
ことができる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems. As a result, the copper powder obtained by the wet reduction method is mechanically collided with the copper powder. It has been found that the viscosity of the conductive paste can be significantly reduced by smoothing the particle surface without changing the particle size, particle size distribution and specific surface area so much. In other words, the irregularities and angular portions existing on the particle surface are smoothed by the collision of the particles without substantially changing the particle size or the particle size distribution. This process involves mechanically fluidizing the particles. It can be performed using a device capable of performing the above.

【0010】したがって本発明は,湿式還元法で製造さ
れた銅粉に,粒子同士を機械的に衝突させる表面平滑化
処理が施された導電ペースト用銅粉を提供するものであ
る。本発明の銅粉は平均粒径が0.1〜10μmであ
り,また,ダイマー酸をグリシジルエステル化したエポ
キシ当量が446で且つ25℃での粘度730cpsの
エポキシ樹脂8重量%に,本発明の銅粉92重量%を混
練し,この混練物の粘度をE型粘度計を用いて10rp
mで測定したとき,300Pa・sec以下の粘度を示
す。
[0010] Accordingly, the present invention provides a copper powder for a conductive paste obtained by subjecting a copper powder produced by a wet reduction method to a surface smoothing treatment for causing particles to mechanically collide with each other. The copper powder of the present invention has an average particle size of 0.1 to 10 μm, and has an epoxy equivalent of glycidyl esterified dimer acid of 446 and an epoxy resin having a viscosity of 730 cps at 25 ° C. of 8% by weight. 92% by weight of copper powder was kneaded, and the viscosity of the kneaded material was measured at 10 rpm using an E-type viscometer.
It shows a viscosity of 300 Pa · sec or less when measured in m.

【0011】[0011]

【発明の実施の形態】前述のように,水酸化銅を水に懸
濁させた懸濁液に還元剤を添加して亜酸化銅に一次還元
し,この亜酸化銅を水に懸濁させた懸濁液に還元剤を添
加して金属銅に二次還元するいわゆる湿式還元法で製造
される銅粉は,粒径や粒子形状も導電ペースト用として
適したものが得られる。例えば,平均粒径が0.1〜1
0μm好ましくは3〜10μm更に好ましくは4〜8μ
mで,比表面積(BET法で測定して)が0.1〜10
2/g 好ましくは0.1〜1.0m2/g のものが安定し
て得られる。しかし,その粒子はたとえ球状に近い形状
を有していても,実際には平らな結晶面が多面的に露出
した多面体形状を有しており,このために結晶面の辺で
は角張りがあり,全体としては粒子表面は凸凹した状態
となっている。このような角張りのある表面状態は,ア
トマイズ粉のように溶融処理されたものとは基本的に相
違している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, a reducing agent is added to a suspension of copper hydroxide in water to perform primary reduction to cuprous oxide, and the cuprous oxide is suspended in water. The copper powder produced by the so-called wet reduction method in which a reducing agent is added to the suspension to perform secondary reduction to metallic copper has a particle size and a particle shape suitable for a conductive paste. For example, when the average particle size is 0.1 to 1
0 μm, preferably 3 to 10 μm, more preferably 4 to 8 μm
m, the specific surface area (measured by the BET method) is 0.1 to 10
m 2 / g preferably those of 0.1~1.0m 2 / g can be stably obtained. However, even if the particles have a shape close to a sphere, they actually have a polyhedral shape with flat crystal faces exposed polyhedrally. As a whole, the particle surface is in an uneven state. Such a squared surface state is fundamentally different from a melt-processed surface such as atomized powder.

【0012】そして,このような角張り(凹凸)がある
ことが,導電ペーストの粘性を下げるのに支障となるこ
とがわかった。すなわち湿式還元法で得られた銅粉が,
導電ペーストの粘性を下げることのできない理由はここ
にある。本発明者らは,該銅粉に対して粒径や比表面積
等は変化させないで,該角張り部分を滑らかな曲面にす
ると,導電ペーストの粘性を著しく下げることができる
ことを見い出した。すなわち,樹脂に分散させる前に,
粒子同士を機械的に衝突させるような前処理を行ない,
角張り部分を減らして滑らかな曲面をもつ粒子としてか
ら,樹脂に分散させると,処理前のものに比べて著しく
粘性を低下させることができることがわかった。
It has been found that the presence of such squareness (unevenness) hinders the lowering of the viscosity of the conductive paste. That is, the copper powder obtained by the wet reduction method is
This is why the viscosity of the conductive paste cannot be reduced. The present inventors have found that the viscosity of the conductive paste can be significantly reduced by making the squared portion a smooth curved surface without changing the particle size or specific surface area of the copper powder. That is, before dispersing in the resin,
A pretreatment is performed to mechanically collide the particles,
It was found that the viscosity can be significantly reduced when the particles are dispersed in resin after reducing the squared portions to form particles with smooth curved surfaces, compared to those before treatment.

【0013】この処理は粉体の流動化によって行うこと
ができ,この流動化は機械的に粉体を流動化させる装
置,例えば筒型高速攪拌機(流動ミキサー)によるのが
便利である。すなわち,各粒子に運動量を与え,その運
動する粒子同士を互いに衝突させることにより,粒子表
面の角張り部分を平滑化する処法によれば,粒径と比表
面積は殆んど変化させずに,各粒子の表面を滑らかにす
ることができる。筒型高速攪拌機は,筒状の密閉容器
(軸を垂直方向にした円筒型容器)の内部下方に設けた
回転羽根によって粉体に遠心力と浮揚力を与えることが
でき,これにより容器内を粉体が流動するので,この流
動の間に表面が平滑化される。
This treatment can be carried out by fluidizing the powder, and the fluidization is conveniently carried out by a device for mechanically fluidizing the powder, for example, a cylindrical high-speed stirrer (fluid mixer). In other words, according to the method of imparting momentum to each particle and causing the moving particles to collide with each other to smooth the angular portion of the particle surface, the particle size and specific surface area are hardly changed. , The surface of each particle can be smoothed. The cylindrical high-speed stirrer can apply centrifugal force and buoyancy to the powder by rotating blades provided below the inside of a cylindrical closed container (a cylindrical container whose axis is perpendicular to the axis). As the powder flows, the surface is smoothed during this flow.

【0014】湿式還元法の最終段階では,液中で生成し
た金属銅の微粉を液から分離し,分離された固形分から
水分が除去されるが,この乾燥処理された状態ではいわ
ゆるケーキ状となっているので,これを解砕機で解砕処
理し,粒子同士をばらばらに単離することが必要であ
る。解砕機では付着している粒子に衝撃を付与して互い
に解離させるが,解離した粒子は最終還元された状態の
粒子形状にほぼ復元しており,この解砕処理では粒子表
面の凹凸が除去されて表面が平滑になることはあまり期
待できない。このため,銅粉ケーキを解砕して得た銅粉
ままでは,樹脂に分散させたときに高い粘性を示すよう
になる。例えば,後記の実施例に示すように,ダイマー
酸をグリシジルエステル化したエポキシ当量が446g/
eqで且つ25℃粘度が730cpsのエポキシ樹脂8重
量%に対し,この解砕した銅粉92重量%を混練し,E
型粘度計を用いてこの混練物の粘度を10rpmで測定
した場合,通常は400Pa・sec以上の粘度を示す
ようになり,300Pa・sec以下,場合によっては
200Pa・sec以下と言った低粘度は到底望めな
い。
In the final stage of the wet reduction method, fine metallic copper powder generated in the liquid is separated from the liquid, and water is removed from the separated solid content. Therefore, it is necessary to disintegrate the particles with a disintegrator and separate the particles from each other. In the disintegrator, the attached particles are impacted to dissociate from each other, but the dissociated particles are almost restored to the final reduced particle shape. In this disintegration process, the irregularities on the particle surface are removed. It cannot be expected that the surface will be smooth. For this reason, the copper powder obtained by crushing the copper powder cake has a high viscosity when dispersed in a resin. For example, as shown in the examples below, the glycidyl esterified dimer acid has an epoxy equivalent of 446 g /
The crushed copper powder (92% by weight) was kneaded with 8% by weight of an epoxy resin having a viscosity of 730 cps at 25 ° C.
When the viscosity of this kneaded material is measured at 10 rpm using a mold viscometer, the kneaded product usually shows a viscosity of 400 Pa · sec or more, and a low viscosity of 300 Pa · sec or less, and in some cases, 200 Pa · sec or less. I can not hope at all.

【0015】これに対し,前記のように粒子同士を機械
的に衝突させて表面平滑化処理を施した銅粉の場合に
は,同じ湿式還元法で得られたものであるにしても,前
記同様ダイマー酸をグリシジルエステル化したエポキシ
当量が446g/eqで且つ25℃粘度が730cpsのエ
ポキシ樹脂8重量%に対し,この表面平滑化処理した銅
粉92重量%を混練し,E型粘度計を用いてこの混練物
の粘度を10rpmで測定した場合,通常は300Pa
・sec以下,さらには250Pa・sec以下,場合
によってはさらに200Pa・sec以下と言った低粘
性を示すことがわかった。
On the other hand, in the case of copper powder which has been subjected to surface smoothing treatment by mechanically colliding particles with each other as described above, even if it is obtained by the same wet reduction method, Similarly, 92% by weight of this surface-smoothed copper powder was kneaded with 8% by weight of epoxy resin having an epoxy equivalent of 446 g / eq and a viscosity of 730 cps at 25 ° C. obtained by dimer acid glycidyl esterification. When the viscosity of the kneaded material is measured at 10 rpm using
Sec or less, more preferably 250 Pa · sec or less, and in some cases even 200 Pa · sec or less.

【0016】また,湿式還元法で製造された銅粉に,無
機物または有機物を被覆したうえ,粒子同士を機械的に
衝突させる表面平滑化処理を施した場合にも,同様に低
粘性を示すことがわかった。導電ペースト用銅粉におい
ては,導電率をさらに向上させるために銀等の金属で銅
粉表面を被覆したり,表面酸化を防止するためにカルボ
ン酸例えばステアリン酸等の有機化合物で被覆すること
も有利であり,このような被覆処理は,湿式還元法によ
る銅粉の製造の場合にはその最終的な段階で行うことが
できる。そして,この被覆処理を施した銅粉に対して,
前記同様に粒子同士を機械的に衝突させて表面平滑化処
理を行なった場合には,被覆された部分を損傷すること
なく表面を平滑化することができ,したがって,被覆し
たことによる特性を具備したまま,低粘性の導電ペース
トが得られることがわかった。
[0016] Further, when copper powder produced by the wet reduction method is coated with an inorganic or organic substance and then subjected to a surface smoothing treatment for causing particles to collide with each other mechanically, the copper powder also exhibits low viscosity. I understood. In the case of copper powder for conductive paste, the surface of the copper powder may be coated with a metal such as silver to further improve the electrical conductivity, or may be coated with an organic compound such as carboxylic acid such as stearic acid to prevent surface oxidation. Advantageously, such a coating treatment can be performed at the final stage in the case of the production of copper powder by the wet reduction method. And, for this coated copper powder,
When the surface is smoothed by mechanically colliding particles with each other in the same manner as described above, the surface can be smoothed without damaging the coated portion, and therefore, the characteristics due to the coating are provided. As a result, it was found that a low-viscosity conductive paste was obtained.

【0017】[0017]

【実施例】硫酸銅水溶液と苛性ソーダ水溶液を,銅1モ
ルに対し苛性ソーダ1.25モルの当量比で混合し,水
酸化銅が析出した懸濁液を得る。この懸濁液にブドウ糖
液を当量以上添加し,添加後30分間で液の温度を70
℃まで昇温したあと,15分間保持し水酸化銅を亜酸化
銅に一次還元する。ここまでの処理操作は全て窒素雰囲
気下で行う。この液中に空気をバブリングさせて酸化処
理したあと,窒素雰囲気中で2日間静置後に上澄液を除
去して沈殿をほぼ全量採取し,この沈殿物に純水を追加
し,得られた懸濁液に抱水ヒドラジンを当量以上添加し
て金属銅にまで二次還元する。反応終了後の懸濁液を固
液分離し,固形分を120℃の窒素雰囲気中で乾燥し,
銅粉ケーキを得る。
EXAMPLE A copper sulfate aqueous solution and a caustic soda aqueous solution are mixed at an equivalent ratio of 1.25 mol of caustic soda to 1 mol of copper to obtain a suspension in which copper hydroxide is precipitated. A glucose solution is added to the suspension in an equivalent amount or more, and the temperature of the solution is increased to 70 in 30 minutes after the addition.
After the temperature was raised to ℃, the mixture was maintained for 15 minutes to primarily reduce copper hydroxide to cuprous oxide. All the processing operations so far are performed in a nitrogen atmosphere. After oxidizing by bubbling air into the solution, the solution was allowed to stand in a nitrogen atmosphere for 2 days, the supernatant was removed, almost all of the precipitate was collected, and pure water was added to the precipitate. Hydrazine hydrate is added to the suspension in an equivalent amount or more for secondary reduction to copper metal. After completion of the reaction, the suspension was subjected to solid-liquid separation, and the solid content was dried in a nitrogen atmosphere at 120 ° C.
Obtain a copper powder cake.

【0018】以上の湿式還元法による銅粉の製法におい
て,空気バブリングの酸化処理の時間だけを変えて,
A,BおよびCの3種類の銅粉ケーキを得た。得られた
各ケーキをいずれも二分し,一方は解砕機に装入し,窒
素雰囲気中で解砕処理して銅粉A1,B1およびC1を
得た。他方は,筒型高速攪拌機に装入し,窒素雰囲気中
で流動化処理して銅粉A2,B2およびC2を得た。
In the above-mentioned method for producing copper powder by the wet reduction method, only the time for the oxidation treatment of air bubbling is changed.
Three types of copper powder cakes A, B and C were obtained. Each of the obtained cakes was bisected, and one was charged into a crusher and crushed in a nitrogen atmosphere to obtain copper powders A1, B1 and C1. The other was charged into a cylindrical high-speed stirrer and fluidized in a nitrogen atmosphere to obtain copper powders A2, B2 and C2.

【0019】解砕処理に用いた解砕機は,スイングする
ハンマーを内装した衝撃式粉砕機であり,凝集乾燥した
銅粉ケーキを湿式還元法の最終工程で得られた微細粒子
に解砕するが,粒子表面を平滑化する機能は殆んど有し
ない。流動化処理に用いた筒型高速攪拌機は,軸を垂直
にした円筒容器の底部に2枚の回転羽根をもつミキサー
であり,該羽根の回転により遠心力を付与された粉体は
上方向に流動し,この流動の間に粒子同士が衝突を繰り
返すことにより,粒子表面の凹凸が平滑化される。
The crusher used in the crushing process is an impact crusher equipped with a swinging hammer, and crushes the coagulated and dried copper powder cake into fine particles obtained in the final step of the wet reduction method. Has almost no function of smoothing the particle surface. The cylindrical high-speed stirrer used in the fluidization treatment is a mixer having two rotating blades at the bottom of a cylindrical container with a vertical axis, and the powder given centrifugal force by the rotation of the blades moves upward. The particles flow and the particles repeatedly collide with each other during this flow, so that the irregularities on the particle surface are smoothed.

【0020】銅粉ケーキAを解砕処理した銅粉A1と,
流動化処理した銅粉A2の電子顕微鏡SEM像(aは2
000倍,bは5000倍)を図1と図2に示した。同
じく銅粉ケーキBおよびCを解砕処理した銅粉B1およ
びC1と,流動化処理した銅粉B2およびC2の電子顕
微鏡SEM像(aは2000倍,bは5000倍)を図
3〜4および図5〜6に示した。また,これらのSEM
像から各銅粉の平均粒径を調査すると共に,BET法に
よる比表面積,かさ密度およびTAP密度を測定し,そ
れらの結果を表1に示した。
A copper powder A1 obtained by crushing a copper powder cake A;
Electron microscope SEM image of fluidized copper powder A2 (a is 2
000 times and b is 5000 times) are shown in FIG. 1 and FIG. FIGS. 3 to 4 show electron microscope SEM images (a is 2000 times, b is 5000 times) of copper powders B1 and C1 obtained by crushing copper powder cakes B and C, and copper powders B2 and C2 obtained by fluidization. This is shown in FIGS. In addition, these SEM
The average particle size of each copper powder was investigated from the images, and the specific surface area, bulk density, and TAP density were measured by the BET method, and the results are shown in Table 1.

【0021】また,各銅粉8重量%をエポキシ樹脂92
重量%に振動型ミキサーで混練し,得られたペーストの
粘度を測定した。エポキシ樹脂としては,ダイマー酸を
グリシジルエステル化したエポキシ当量が446g/eqで
且つ25℃粘度が730cpsのエポキシ樹脂を使用
し,混練条件も各銅粉について一定とし, 各ペーストの
粘度はE型粘度計を用いて回転速度10rpm のもとで2
5℃で測定した。その結果も表1に併記した。
Further, 8% by weight of each copper powder is mixed with an epoxy resin 92
The resulting paste was kneaded with a vibrating mixer to measure the viscosity of the obtained paste. As the epoxy resin, an epoxy resin obtained by dimer acid glycidyl esterification and having an epoxy equivalent of 446 g / eq and a viscosity of 730 cps at 25 ° C. was used. The kneading conditions were constant for each copper powder, and the viscosity of each paste was E-type viscosity. Using a meter at a rotation speed of 10 rpm
It was measured at 5 ° C. The results are also shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の結果から,流動化処理した銅粉A
2,B2およびC2は,流動化処理しない銅粉A1,B
1およびC1に比べて,平均粒径,比表面積,かさ密度
およびTAP密度はそれほど変わらないが,樹脂と混練
したときのペーストの粘度は著しく低下していることが
わかる。粒径や比表面積がそれほど変化しないのにペー
ストの粘度が低下したのは,図1と図2,図3と図4お
よび図5と図6の比較から明らかなように,流動化処理
したものは粒子表面の角張りが除去されて滑らかな曲面
となったからであると見てよい。
From the results shown in Table 1, the fluidized copper powder A
2, B2 and C2 are copper powders A1, B which are not fluidized
It can be seen that the average particle size, specific surface area, bulk density and TAP density are not so different from those of Nos. 1 and C1, but the viscosity of the paste when kneaded with the resin is significantly reduced. The decrease in the viscosity of the paste although the particle size and specific surface area did not change so much was apparent from the comparison between FIGS. 1 and 2, FIGS. 3 and 4, and FIGS. Can be considered to be due to the fact that the squareness of the particle surface was removed to form a smooth curved surface.

【0024】[0024]

【発明の効果】以上説明したように,本発明によると,
高い充填率で樹脂に混練しても粘度の低いペーストにす
ることができる銅粉を湿式還元法で製造することがで
き,その結果,高品質の銅ペーストを安定して得ること
ができる。
As described above, according to the present invention,
A copper powder that can be converted into a paste having a low viscosity even when kneaded with a resin at a high filling rate can be produced by a wet reduction method, and as a result, a high-quality copper paste can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】銅粉ケーキAを解砕処理して得た銅粉A1の電
子顕微鏡SEM像であり,図1の(a)は2000倍,
図1の(b)は5000倍のものである。
FIG. 1 is an electron microscopic SEM image of copper powder A1 obtained by crushing copper powder cake A. FIG.
(B) of FIG. 1 is 5000 times.

【図2】銅粉ケーキAを流動化処理して得た銅粉A2の
電子顕微鏡SEM像であり,図2の(a)は2000
倍,図2の(b)は5000倍のものである。
FIG. 2 is an electron microscope SEM image of copper powder A2 obtained by fluidizing copper powder cake A, and FIG.
2 (b) is 5000 times.

【図3】銅粉ケーキBを解砕処理して得た銅粉B1の電
子顕微鏡SEM像であり,図3の(a)は2000倍,
図3の(b)は5000倍のものである。
FIG. 3 is an electron microscope SEM image of copper powder B1 obtained by crushing copper powder cake B. FIG.
(B) of FIG. 3 is 5000 times.

【図4】銅粉ケーキBを流動化処理して得た銅粉B2の
電子顕微鏡SEM像であり,図4の(a)は2000
倍,図4の(b)は5000倍のものである。
FIG. 4 is an SEM image of copper powder B2 obtained by fluidizing copper powder cake B, and FIG.
4 (b) is 5000 times.

【図5】銅粉ケーキCを解砕処理して得た銅粉C1の電
子顕微鏡SEM像であり,図5の(a)は2000倍,
図5の(b)は5000倍のものである。
5 is a scanning electron microscope (SEM) image of copper powder C1 obtained by crushing copper powder cake C. FIG.
(B) of FIG. 5 is 5000 times.

【図6】銅粉ケーキCを流動化処理して得た銅粉C2の
電子顕微鏡SEM像であり,図6の(a)は2000
倍,図6の(b)は5000倍のものである。
6 is a scanning electron microscope (SEM) image of copper powder C2 obtained by fluidizing copper powder cake C. FIG.
6 (b) is 5000 times.

【手続補正書】[Procedure amendment]

【提出日】平成11年12月15日(1999.12.
15)
[Submission date] December 15, 1999 (1999.12.
15)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】 また,各銅粉92重量%をエポキシ樹脂
重量%に振動型ミキサーで混練し,得られたペースト
の粘度を測定した。エポキシ樹脂としては,ダイマー酸
をグリシジルエステル化したエポキシ当量が446g/eq
で且つ25℃粘度が730cpsのエポキシ樹脂を使用
し,混練条件も各銅粉について一定とし, 各ペーストの
粘度はE型粘度計を用いて回転速度10rpm のもとで2
5℃で測定した。その結果も表1に併記した。
Further, 92 % by weight of each copper powder is made of an epoxy resin.
The mixture was kneaded to 8 % by weight with a vibration mixer, and the viscosity of the obtained paste was measured. The epoxy equivalent of glycidyl ester of dimer acid is 446g / eq.
And an epoxy resin having a viscosity of 730 cps at 25 ° C., and the kneading conditions were fixed for each copper powder.
It was measured at 5 ° C. The results are also shown in Table 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/22 H01B 1/22 A 13/00 503 13/00 503C (72)発明者 三好 宏昌 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4K017 AA01 BA05 CA07 DA01 DA09 EA03 EA13 EH03 EH16 4K018 BA02 BB04 BC08 BC09 BC28 BC29 BD04 5G301 DA06 DA57 DD01 DE03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 1/22 H01B 1/22 A 13/00 503 13/00 503C (72) Inventor Hiromasa Miyoshi Chiyoda, Tokyo 1-8-2, Marunouchi-ku F-term in Dowa Mining Co., Ltd. (Reference) 4K017 AA01 BA05 CA07 DA01 DA09 EA03 EA13 EH03 EH16 4K018 BA02 BB04 BC08 BC09 BC28 BC29 BD04 5G301 DA06 DA57 DD01 DE03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 湿式還元法で製造された銅粉に,粒子同
士を機械的に衝突させる表面平滑化処理が施された導電
ペースト用銅粉。
1. A copper powder for a conductive paste obtained by subjecting a copper powder produced by a wet reduction method to a surface smoothing treatment for causing particles to mechanically collide with each other.
【請求項2】 平均粒径が0.1〜10μmである請求
項1に記載の導電ペースト用銅粉。
2. The copper powder for a conductive paste according to claim 1, having an average particle size of 0.1 to 10 μm.
【請求項3】 湿式還元法は,水酸化銅を水に懸濁させ
た懸濁液に還元剤を添加して亜酸化銅に一次還元し,こ
の亜酸化銅を水に懸濁させた懸濁液に還元剤を添加して
金属銅に二次還元する方法である請求項1または2に記
載の導電ペースト用銅粉。
3. In the wet reduction method, a reducing agent is added to a suspension in which copper hydroxide is suspended in water to perform primary reduction to cuprous oxide, and the suspension is prepared by suspending the cuprous oxide in water. The copper powder for a conductive paste according to claim 1 or 2, wherein the method is a method in which a reducing agent is added to the suspension to perform a secondary reduction to metallic copper.
【請求項4】 一次還元処理と二次還元処理の間に酸化
処理を有する請求項3に記載の導電ペースト用銅粉。
4. The copper powder for a conductive paste according to claim 3, wherein an oxidation treatment is provided between the first reduction treatment and the second reduction treatment.
【請求項5】 湿式還元法で製造された銅粉に,無機物
または有機物を被覆したうえ,粒子同士を機械的に衝突
させる表面平滑化処理を施した導電ペースト用銅粉。
5. A copper powder for a conductive paste obtained by coating a copper powder produced by a wet reduction method with an inorganic or organic substance and subjecting the particles to mechanical collision with each other.
【請求項6】 ダイマー酸をグリシジルエステル化した
エポキシ当量が446g/eqで且つ25℃粘度が730c
psのエポキシ樹脂8重量%に,対象銅粉92重量%を
混練し,この混練物の粘度をE型粘度計を用いて10r
pmで測定したとき,300Pa・sec以下の粘度を
示す導電ペースト用銅粉。
6. The glycidyl esterified dimer acid has an epoxy equivalent of 446 g / eq and a viscosity of 730 c at 25 ° C.
92% by weight of the target copper powder is kneaded with 8% by weight of a ps epoxy resin, and the viscosity of the kneaded material is measured at 10 r using an E-type viscometer.
Copper powder for conductive paste having a viscosity of 300 Pa · sec or less when measured in pm.
JP07634899A 1999-03-19 1999-03-19 Method for producing copper powder for conductive paste Expired - Lifetime JP3932336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07634899A JP3932336B2 (en) 1999-03-19 1999-03-19 Method for producing copper powder for conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07634899A JP3932336B2 (en) 1999-03-19 1999-03-19 Method for producing copper powder for conductive paste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007001531A Division JP4524477B2 (en) 2007-01-09 2007-01-09 Copper powder for conductive paste

Publications (2)

Publication Number Publication Date
JP2000268630A true JP2000268630A (en) 2000-09-29
JP3932336B2 JP3932336B2 (en) 2007-06-20

Family

ID=13602863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07634899A Expired - Lifetime JP3932336B2 (en) 1999-03-19 1999-03-19 Method for producing copper powder for conductive paste

Country Status (1)

Country Link
JP (1) JP3932336B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002245849A (en) * 2001-02-13 2002-08-30 Dowa Mining Co Ltd Conductive filter for conductive paste and manufacturing method of the same
JP2003027102A (en) * 2001-07-06 2003-01-29 Mitsui Mining & Smelting Co Ltd Silver-coated metal powder, method for manufacturing the same, conductive paste using the same, and printed wiring board containing conductor formed by using the conductive paste
JP2004169056A (en) * 2002-11-15 2004-06-17 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, conductive paste, and method for manufacturing copper powder for conductive paste
WO2009097835A1 (en) * 2008-02-06 2009-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal powder and metal powder produced by this method
CN113165065A (en) * 2018-12-04 2021-07-23 Mec株式会社 Copper powder for laminated molding, method for producing laminated molded article, and laminated molded article
JP2021134423A (en) * 2020-02-28 2021-09-13 三菱マテリアル株式会社 Copper alloy powder for laminated molding, and manufacturing method thereof
CN114464815A (en) * 2022-03-11 2022-05-10 广汽埃安新能源汽车有限公司 Metal foil, preparation method thereof and metal current collector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002245849A (en) * 2001-02-13 2002-08-30 Dowa Mining Co Ltd Conductive filter for conductive paste and manufacturing method of the same
JP2003027102A (en) * 2001-07-06 2003-01-29 Mitsui Mining & Smelting Co Ltd Silver-coated metal powder, method for manufacturing the same, conductive paste using the same, and printed wiring board containing conductor formed by using the conductive paste
JP2004169056A (en) * 2002-11-15 2004-06-17 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, conductive paste, and method for manufacturing copper powder for conductive paste
WO2009097835A1 (en) * 2008-02-06 2009-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal powder and metal powder produced by this method
CN113165065A (en) * 2018-12-04 2021-07-23 Mec株式会社 Copper powder for laminated molding, method for producing laminated molded article, and laminated molded article
JP2021134423A (en) * 2020-02-28 2021-09-13 三菱マテリアル株式会社 Copper alloy powder for laminated molding, and manufacturing method thereof
JP7424108B2 (en) 2020-02-28 2024-01-30 三菱マテリアル株式会社 Heat-treated unsintered copper alloy powder for additive manufacturing and its manufacturing method
CN114464815A (en) * 2022-03-11 2022-05-10 广汽埃安新能源汽车有限公司 Metal foil, preparation method thereof and metal current collector
CN114464815B (en) * 2022-03-11 2024-03-26 广汽埃安新能源汽车有限公司 Metal foil, preparation method thereof and metal current collector

Also Published As

Publication number Publication date
JP3932336B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4145127B2 (en) Flake copper powder, method for producing the flake copper powder, and conductive paste using the flake copper powder
US7235119B2 (en) Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
WO2007034810A1 (en) Process for producing flaky silver powder and flaky silver powder produced by the process
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
CN112605394B (en) Preparation method of silver powder for conductive paste
JP7288133B1 (en) Silver powder, method for producing silver powder, and conductive paste
JP2000268630A (en) Copper powder for conductive paste
JP4779134B2 (en) Conductive filler for conductive paste and method for producing the same
JP4342746B2 (en) Method for producing copper powder for conductive paste
US6881240B2 (en) Copper powder for electrically conductive paste
JP4569727B2 (en) Silver powder and method for producing the same
CN112264629A (en) Preparation method and application of low-cost high-dispersion silver powder
JP2012115861A (en) Method for manufacturing solder powder and solder powder obtained by the same
JP4524477B2 (en) Copper powder for conductive paste
JP2012115860A (en) Method for manufacturing solder powder and solder powder obtained by the same
JP2004169056A (en) Copper powder for conductive paste, conductive paste, and method for manufacturing copper powder for conductive paste
JP4197110B2 (en) Mixed copper powder, method for producing the mixed copper powder, copper paste using the mixed copper powder, and printed wiring board using the copper paste
KR100786544B1 (en) Copper powder for electrically conductive paste
JP2000080409A (en) Flat shaped fine copper powder and its production
KR20070089669A (en) Copper powder for electrically conductive paste
JP2002237214A (en) Conductive coating material composition
JP2002115001A (en) Fine copper powder for forming circuit
JPH02182809A (en) Production of fine granular copper powder
WO2023210663A1 (en) Spherical silver powder, method for producing spherical silver powder, apparatus for producing spherical silver powder, and conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term