JP2002115001A - Fine copper powder for forming circuit - Google Patents

Fine copper powder for forming circuit

Info

Publication number
JP2002115001A
JP2002115001A JP2000309531A JP2000309531A JP2002115001A JP 2002115001 A JP2002115001 A JP 2002115001A JP 2000309531 A JP2000309531 A JP 2000309531A JP 2000309531 A JP2000309531 A JP 2000309531A JP 2002115001 A JP2002115001 A JP 2002115001A
Authority
JP
Japan
Prior art keywords
fine powder
copper fine
copper
conductive paste
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000309531A
Other languages
Japanese (ja)
Other versions
JP3934869B2 (en
Inventor
Takahiko Sakagami
貴彦 坂上
Yoshiaki Uwazumi
義明 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000309531A priority Critical patent/JP3934869B2/en
Publication of JP2002115001A publication Critical patent/JP2002115001A/en
Application granted granted Critical
Publication of JP3934869B2 publication Critical patent/JP3934869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide circuit-forming fine copper powders having sharp particle- size distribution as well as an excellent filling property in conductive paste, by using the conductive paste of which a coated film having high film density can be formed and resultantly sintered density can be increased by sintering, a fine pattern can be formed and wiring density can be increased. SOLUTION: The fine copper powder for forming circuit satisfies the following conditions: when the average particle size by SEM observation and the standard deviation of particle size are represented by x (μm) and σ, respectively, the tap density (g/cm3) and the average particle size x satisfy inequality (tap density)>=4.83-1.99exp(-0.29x) and also the coefficient of variation CV determined by equation CV(%)=(σ/x)×100 becomes <=40%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回路形成用銅微粉末
に関し、より詳しくは、導電ペースト中での充填性が優
れており且つ粒度分布がシャープである銅微粉末であっ
て、そのような銅微粉末を含有する導電ペーストを用い
ることにより膜密度の高い塗膜を形成することができ、
回路を形成するのに適している導電銅ペースト用の銅微
粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine copper powder for forming a circuit, and more particularly, to a fine copper powder having an excellent filling property in a conductive paste and a sharp particle size distribution. By using a conductive paste containing copper fine powder, it is possible to form a coating film having a high film density,
The present invention relates to a copper fine powder for a conductive copper paste suitable for forming a circuit.

【0002】[0002]

【従来の技術】従来、配線板、電子部品用の電気回路
(配線導体)等を形成する方法として、金、銀、パラジ
ウム、銅、アルミニウム等の導電性金属粉末と、樹脂、
溶剤等からなるビヒクルと、任意成分のガラスフリット
等とを混合してペースト状にした導電ペーストを絶縁基
板表面に塗布又は印刷し、焼成して厚膜形成を行う、い
わゆる焼成型ペースト法、並びにそれらの導電性金属粉
末と樹脂及び硬化剤とを混合してペースト状にした無溶
剤型熱硬化導電性ペーストを絶縁基板表面に塗布又は印
刷し、或いはバイアホールに充填し、加熱硬化させる熱
硬化型ペースト法が一般的に知られている。
2. Description of the Related Art Conventionally, as a method of forming an electric circuit (wiring conductor) for a wiring board or an electronic component, a conductive metal powder such as gold, silver, palladium, copper, or aluminum, a resin,
A so-called firing type paste method, in which a vehicle made of a solvent or the like, and a conductive paste formed by mixing an arbitrary component glass frit or the like into a paste form are applied or printed on the insulating substrate surface and fired to form a thick film, and Solvent-free thermosetting conductive paste made by mixing those conductive metal powders with resin and curing agent is applied or printed on the surface of the insulating substrate, or filled into via holes and heat-cured by heating and curing. The mold paste method is generally known.

【0003】銅粉末は比較的低価格であって、導電性、
耐マイグレーション性等に優れているという利点を有す
ることから、近年、金、銀、パラジウム等の貴金属粉末
に代わって導電ペースト用の材料として多用されるよう
になってきた。導電ペースト用の銅粉末に要求される要
件としては、粒子径の揃った銅微粒子で構成されてお
り、凝集体を含まないか又は低凝集度(高分散性)であ
って導電ペースト中での充填性に優れていること等が挙
げられる。
[0003] Copper powder is relatively inexpensive;
In recent years, it has been widely used as a material for conductive pastes in place of noble metal powders such as gold, silver, and palladium because of the advantage of having excellent migration resistance and the like. The requirement for copper powder for conductive paste is that it is composed of copper fine particles having a uniform particle size, does not contain agglomerates or has low agglomeration degree (high dispersibility), And the like.

【0004】このような銅粉末としては、一般的には、
粒子径10μm以下の銅微粒子で構成される銅微粉末が
要求されており、最近では電子機器の小型化や高配線密
度化への対応として、粒子径1μm以下の更に微細な銅
微粒子で構成される銅微粉末の要求が強くなってきてい
る。
[0004] As such copper powder, generally,
Copper fine powder composed of copper fine particles having a particle diameter of 10 μm or less has been demanded. Recently, in order to cope with miniaturization of electronic equipment and high wiring density, it is composed of finer copper fine particles having a particle diameter of 1 μm or less. Demand for copper fine powder is increasing.

【0005】従来から、銅微粉末の製造方法として、銅
塩等の水溶液をヒドラジン等の還元剤で処理して銅塩等
を還元する方法、銅塩や銅酸化物を還元性雰囲気中で加
熱還元する方法、銅の塩化物蒸気を還元性ガスで処理し
て銅の塩化物を還元する方法等が知られている。これら
の方法のうち、ヒドラジンによる還元法は、大気圧下で
処理できる等の点で非常に生産性に優れた方法である。
[0005] Conventionally, as a method for producing fine copper powder, a method of treating an aqueous solution of a copper salt or the like with a reducing agent such as hydrazine to reduce the copper salt or the like, or a method of heating a copper salt or a copper oxide in a reducing atmosphere. A reduction method, a method in which copper chloride vapor is treated with a reducing gas to reduce copper chloride, and the like are known. Among these methods, the reduction method using hydrazine is a method excellent in productivity in that it can be processed under atmospheric pressure.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の従来技
術により得られる銅微粉末については、粒子径のバラツ
キが大きかったり、粒子径のバラツキが小さくても、導
電ペーストを調製する際に導電ペースト中での銅微粉末
の充填性が低い等の欠点があり、導電ペースト用の銅微
粉末に要求される要件に対して十分に満足できるもので
はなかった。また、従来技術による銅微粉末において
は、平均粒子径が小さくなるにつれてタップ密度は低く
なり、従って、導電ペースト中での充填性が低くなり、
高配線密度化に対応する上で、微粉末は使用しにくいと
いう問題を抱えていた。
However, with respect to the copper fine powder obtained by the above-mentioned prior art, even if the dispersion of the particle diameter is large or the dispersion of the particle diameter is small, the conductive paste is not used when preparing the conductive paste. However, there are drawbacks such as low fillability of the copper fine powder therein, and the requirements for copper fine powder for conductive pastes have not been sufficiently satisfied. Further, in the copper fine powder according to the prior art, as the average particle diameter becomes smaller, the tap density becomes lower, and therefore, the filling property in the conductive paste becomes lower,
In order to cope with higher wiring density, there is a problem that it is difficult to use fine powder.

【0007】上記で説明したように、配線板、電子部品
用の電気回路(配線導体)等を形成するための、いわゆ
る導電ペースト等の原料となり得る回路形成用銅微粉末
においては、導電ペースト中での銅微粉末の充填性が高
く、且つシャープな粒度分布を有することが重要であ
る。本発明は、上記のような導電ペースト中での充填性
に優れ、且つシャープな粒度分布を有する回路形成用銅
微粉末を提供することを課題としている。
As described above, in the case of copper fine powder for circuit formation which can be used as a raw material such as a so-called conductive paste for forming an electric circuit (wiring conductor) for a wiring board or an electronic component, etc. It is important that the copper fine powder has a high filling property and a sharp particle size distribution. An object of the present invention is to provide a circuit-forming copper fine powder having excellent filling properties in a conductive paste as described above and having a sharp particle size distribution.

【0008】[0008]

【課題を解決するための手段】本発明者等は上記の課題
を達成する為に種々の試験データを解析し、鋭意検討し
た結果、平均粒子径に比較してタップ密度が相対的に高
く、特定の粒度分布を有する特定の銅微粉末であれば、
前記課題を解決できることを知見し、本発明を完成し
た。
Means for Solving the Problems The present inventors have analyzed various test data in order to achieve the above-mentioned object, and as a result of diligent examination, the tap density is relatively higher than the average particle diameter. If it is a specific copper fine powder having a specific particle size distribution,
The inventors have found that the above-mentioned problems can be solved, and have completed the present invention.

【0009】即ち、本発明の回路形成用銅微粉末は、S
EM観察による平均粒子径をx(μm)とし、粒子径の
標準偏差をσとするとき、タップ密度(g/cm3 )と
平均粒子径xとは下記の式(1)を満足しており、且つ
下記の式(2)により求められる変動係数CVが40%
以下であることを特徴とする。 (タップ密度)≧4.83−1.99exp(−0.29x) ‥‥(1) CV(%)=(σ/x)×100‥‥(2)
That is, the copper fine powder for forming a circuit of the present invention is
When the average particle diameter by EM observation is x (μm) and the standard deviation of the particle diameter is σ, the tap density (g / cm 3 ) and the average particle diameter x satisfy the following expression (1). And the coefficient of variation CV obtained by the following equation (2) is 40%
It is characterized by the following. (Tap density) ≧ 4.83-1.99 exp (−0.29x) {(1) CV (%) = (σ / x) × 100} (2)

【0010】[0010]

【発明の実施の形態】本発明の回路形成用銅微粉末にお
いては、タップ密度と平均粒子径xとは下記の式(1)
を満足していることが必要である。 (タップ密度)≧4.83−1.99exp(−0.29x) ‥‥(1) タップ密度が右辺の式により計算した値よりも小さい場
合には、銅微粉末は平均粒子径に比較してタップ密度が
相対的に低く、凝集度が相対的に高い(分散性が相対的
に低い)ために導電ペースト中での充填性に劣り、かか
る銅微粉末を含有する導電ペーストを使用すると膜密度
の相対的に低い塗膜が形成され、その結果として焼成時
の焼成密度が相対的に低くなり、回路形成上不都合であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the copper fine powder for circuit formation of the present invention, the tap density and the average particle diameter x are expressed by the following formula (1).
Needs to be satisfied. (Tap density) ≧ 4.83-1.99 exp (−0.29x) ‥‥ (1) When the tap density is smaller than the value calculated by the formula on the right side, the copper fine powder is compared with the average particle diameter. The tap density is relatively low, the cohesion is relatively high (the dispersibility is relatively low), and the filling property in the conductive paste is inferior. A coating film having a relatively low density is formed, and as a result, the sintering density during sintering becomes relatively low, which is inconvenient for forming a circuit.

【0011】逆にいえば、タップ密度が右辺の式により
計算した値よりも高いか等しい場合には、銅微粉末は平
均粒子径に比較してタップ密度が相対的に高く、凝集度
が相対的に低い(分散性が相対的に高い)ために導電ペ
ースト中での充填性に優れ、かかる銅微粉末を含有する
導電ペーストを使用すると膜密度の相対的に高い塗膜が
形成され、その結果として焼成時の焼成密度が相対的に
高くなり、回路形成上好都合である。
Conversely, when the tap density is higher than or equal to the value calculated by the equation on the right side, the copper fine powder has a relatively higher tap density and a lower cohesion degree than the average particle diameter. It is excellent in the filling property in the conductive paste because it is low (the dispersibility is relatively high). When the conductive paste containing such copper fine powder is used, a coating film having a relatively high film density is formed. As a result, the firing density during firing is relatively high, which is convenient for circuit formation.

【0012】上記のように本発明の銅微粉末は凝集度が
相対的に低い(分散性が相対的に高い)ので導電ペース
ト中での充填性が優れており、その結果として導電ペー
ストとした時の粘度が低い。即ち、本発明の銅微粉末は
従来の銅微粉末と比較して、銅微粉末の充填濃度を同一
とした時には導電ペーストの粘度が低くなり、逆に導電
ペーストの粘度が同一である時には銅微粉末の充填濃度
を高くすることができる。このように粘度の低い導電ペ
ーストはバイアホールへの充填性に優れているので、特
に多層プリント配線板用樹脂基板のバイアホールの形成
に適しており、また充填濃度の高い導電ペーストは非焼
成により回路を形成する場合に特に有用である。なお、
本発明の回路形成用銅微粉末においては、タップ密度と
平均粒子径xとは下記の式(3)を満足することが好ま
しい。 (タップ密度)≧4.81−1.60exp(−0.49x) ‥‥(3)
As described above, the copper fine powder of the present invention has a relatively low agglomeration degree (has a relatively high dispersibility) and therefore has excellent filling properties in a conductive paste. Low viscosity at the time. That is, the copper fine powder of the present invention has a lower viscosity of the conductive paste when the filling concentration of the copper fine powder is the same as compared with the conventional copper fine powder, and conversely, when the viscosity of the conductive paste is the same, The filling concentration of the fine powder can be increased. Since the conductive paste having a low viscosity has excellent filling properties into via holes, it is particularly suitable for forming via holes in a resin substrate for a multilayer printed wiring board. This is particularly useful when forming a circuit. In addition,
In the copper fine powder for circuit formation of the present invention, the tap density and the average particle diameter x preferably satisfy the following expression (3). (Tap density) ≧ 4.81-1.60exp (−0.49x) ‥‥ (3)

【0013】また、本発明の回路形成用銅微粉末におい
ては、SEM観察による平均粒子径をx(μm)とし、
粒子径の標準偏差をσとするとき、下記の式(2)によ
り求められる変動係数CVが40%以下であることが必
要である。 CV(%)=(σ/x)×100 ……………(2) このCVが40%を超える場合には、粒度分布がよりブ
ロードで、粒度にバラツキがあることから、かかる銅微
粉末を含有する導電ペーストはファインパターンの形
成、高配線密度化には適さない。
In the fine copper powder for circuit formation according to the present invention, the average particle diameter by SEM observation is x (μm),
When the standard deviation of the particle diameter is σ, it is necessary that the coefficient of variation CV determined by the following equation (2) is 40% or less. CV (%) = (σ / x) × 100 (2) When the CV exceeds 40%, the copper fine powder is broad because the particle size distribution is broader and the particle size varies. Is not suitable for forming fine patterns and increasing the wiring density.

【0014】逆にいえば、このCVが40%以下である
場合には、粒度分布がよりシャープで、粒度のバラツキ
が小さいことから、かかる銅微粉末を含有する導電ペー
ストはファインパターンの形成、高配線密度化に好適で
ある。このCVが小さい程粒度分布がシャープであり、
35%以下であることが好ましく、30%以下であるこ
とが一層好ましい。
Conversely, when the CV is 40% or less, the conductive paste containing such fine copper powder can form fine patterns because the particle size distribution is sharper and the variation in particle size is small. It is suitable for increasing the wiring density. The smaller the CV, the sharper the particle size distribution,
It is preferably at most 35%, more preferably at most 30%.

【0015】また、本発明の回路形成用銅微粉末におい
ては、SEM観察による平均粒子径が0.1〜10μm
であることが好ましく、0.3〜7μmであることが一
層好ましく、このような銅微粉末を含有する導電ペース
トは回路形成用導電ペーストとして特に適している。
The copper fine powder for circuit formation of the present invention has an average particle diameter of 0.1 to 10 μm by SEM observation.
The conductive paste containing such fine copper powder is particularly suitable as a conductive paste for forming a circuit.

【0016】また、本発明の回路形成用銅微粉末におい
ては、粒子表面が有機化合物で被覆されていることが好
ましい。この被覆に用いられる有機化合物としては、飽
和脂肪酸、不飽和脂肪酸、ベンゾトリアゾール及びその
誘導体、高分子量ポリエステル酸のアマイドアミン塩や
アミン塩、リン酸エステル系界面活性剤、ポリエーテル
リン酸エステルのアミン塩等が挙げられる。
Further, in the copper fine powder for circuit formation of the present invention, it is preferable that the particle surface is coated with an organic compound. Examples of the organic compound used for this coating include saturated fatty acids, unsaturated fatty acids, benzotriazole and derivatives thereof, amide amine salts and amine salts of high molecular weight polyester acids, phosphate surfactants, and amines of polyether phosphate. And the like.

【0017】このように粒子表面が有機化合物で被覆さ
れている銅微粉末においては、有機化合物の被覆量が増
加するにつれて、そのような被覆された銅微粉末のタッ
プ密度が相対的に高くなり、導電ペースト中での銅微粉
末の充填性が相対的に高まると共に銅微粉末の酸化が防
止され、導電ペーストを調製する際の銅微粉末とビヒク
ル等とのなじみが改善される。また、そのように被覆さ
れた銅微粉末を含有する導電ペーストを用いることによ
り膜密度の相対的に高い塗膜を形成することができ、そ
の結果として焼成により焼成密度を相対的に高くするこ
とができ、またファインパターンを形成し、高配線密度
化することが容易になる。
As described above, in the copper fine powder whose particle surface is coated with an organic compound, the tap density of such coated copper fine powder becomes relatively high as the amount of the organic compound coated increases. In addition, the filling property of the copper fine powder in the conductive paste is relatively increased, the oxidation of the copper fine powder is prevented, and the compatibility between the copper fine powder and the vehicle when preparing the conductive paste is improved. In addition, a coating film having a relatively high film density can be formed by using the conductive paste containing the copper fine powder coated as described above, and as a result, the firing density can be relatively increased by firing. It is easy to form a fine pattern and increase the wiring density.

【0018】上記のような追加の効果は、有機化合物の
被覆量が銅の質量基準で0.01質量%以上となった時
に明確に現れ、0.05質量%以上になった時に顕著に
現れる。しかし、有機化合物の被覆量を更に多くしてい
き、そのように有機化合物の被覆量を増大させた銅微粉
末を用いてペーストを調製すると、銅微粉末の分散性が
阻害され、ペーストの粘度が増大するので好ましくな
い。従って、有機化合物の被覆量が銅の質量基準で0.
01〜5質量%であることが好ましく、0.05〜1質
量%であることが一層好ましい。
The additional effects as described above are clearly exhibited when the coating amount of the organic compound is 0.01% by mass or more based on the mass of copper, and is remarkably exhibited when the coating amount is 0.05% by mass or more. . However, when the coating amount of the organic compound is further increased, and the paste is prepared using the copper fine powder having the increased coating amount of the organic compound, the dispersibility of the copper fine powder is hindered, and the viscosity of the paste is reduced. Undesirably increases. Therefore, the coating amount of the organic compound is not more than 0.1 based on the mass of copper.
It is preferably from 0.01 to 5% by mass, and more preferably from 0.05 to 1% by mass.

【0019】次に、本発明の回路形成用銅微粉末の好ま
しい製造方法について述べる。本発明の回路形成用銅微
粉末は、銅塩水溶液に水酸化アルカリを加えて酸化第二
銅を生成させ、次いで還元糖を加えて酸化第一銅を析出
させてスラリーとし、このスラリーから酸化第一銅を濾
過し、洗浄した後、水に分散させて再度スラリーとし、
このスラリーにヒドラジン系還元剤を加えて銅微粉末を
生成させ、得られた銅微粉末に特定の解粒処理装置で解
粒処理を施すことにより製造することができる。
Next, a preferred method for producing the copper fine powder for circuit formation of the present invention will be described. The copper fine powder for circuit formation of the present invention is obtained by adding an alkali hydroxide to a copper salt aqueous solution to generate cupric oxide, and then adding a reducing sugar to precipitate cuprous oxide to form a slurry. After filtering and washing the cuprous copper, it is dispersed in water to make a slurry again,
A hydrazine-based reducing agent is added to this slurry to generate copper fine powder, and the obtained copper fine powder is subjected to a pulverization treatment by a specific pulverization treatment apparatus.

【0020】本発明の回路形成用銅微粉末の製造方法に
おいては、解粒処理を施す銅微粉末として湿式反応で得
た銅微粉末を用いることが重要である。一般的には、銅
微粉末の製造方法としては、銅塩や銅酸化物を還元性雰
囲気中で加熱還元する方法、銅の塩化物蒸気を還元性ガ
スで処理して銅の塩化物を還元する方法等に代表される
乾式反応法もあるが、乾式反応で得られる銅微粉末は粒
度分布がブロードであるため、そのような粒度分布がブ
ロードな銅微粉末に解粒処理を施しても本発明の銅微粉
末を得ることは極めて困難である。
In the method for producing a fine copper powder for forming a circuit according to the present invention, it is important to use a fine copper powder obtained by a wet reaction as the fine copper powder to be subjected to the crushing treatment. Generally, copper fine powder is produced by heat reducing copper salts or copper oxide in a reducing atmosphere, or by treating copper chloride vapor with a reducing gas to reduce copper chloride. There is also a dry reaction method typified by such a method, etc., since the copper fine powder obtained by the dry reaction has a broad particle size distribution, even if such a particle size distribution is subjected to a pulverization treatment to a broad copper fine powder. It is extremely difficult to obtain the copper fine powder of the present invention.

【0021】また、上記の好ましい製造方法において
は、工程途中の酸化第一銅スラリーから酸化第一銅を濾
過し、洗浄した後、水に分散させてスラリーとする操作
は重要であり、この操作により酸化第一銅粒子の凝集を
少なくし、ヒドラジン系還元剤での還元時の凝集を抑制
でき、その結果として、銅微粉末の低凝集度(分散性)
を一層改善することができる。なお、銅微粉末の粒子径
制御については、銅塩水溶液の濃度や、酸化第一銅生成
時の還元糖の添加速度や、還元反応時のヒドラジン系還
元剤の添加速度を適宜調整することにより行うことがで
きる。
In the above preferred production method, it is important to filter and wash cuprous oxide from the cuprous oxide slurry in the middle of the process, and then disperse the slurry in water to form a slurry. Reduces the agglomeration of cuprous oxide particles and suppresses agglomeration during reduction with a hydrazine-based reducing agent. As a result, the low agglomeration degree (dispersibility) of the copper fine powder
Can be further improved. The particle size of the copper fine powder is controlled by appropriately adjusting the concentration of the aqueous copper salt solution, the rate of addition of the reducing sugar during the production of cuprous oxide, and the rate of addition of the hydrazine-based reducing agent during the reduction reaction. It can be carried out.

【0022】また、本発明の回路形成用銅微粉末の製造
方法においては、特定の解粒処理装置で解粒処理を施す
ことが重要である。この特定の解粒処理装置で解粒処理
を施すことにより、凝集粒子の凝集度を減少させること
ができると同時に、導電ペースト中での銅微粉末の充填
性を改善することができる。
In the method for producing a fine copper powder for forming a circuit according to the present invention, it is important to carry out a pulverization treatment by a specific pulverization treatment apparatus. By performing the pulverization treatment with this specific pulverization treatment apparatus, the degree of aggregation of the aggregated particles can be reduced, and at the same time, the filling property of the copper fine powder in the conductive paste can be improved.

【0023】上記の特定の解粒処理装置での解粒処理と
しては、銅微粉末を高速で回転している回転部に衝突さ
せて粉砕させる高速回転式衝突粉砕処理、銅微粉末を含
むスラリーをビーズ等と共に攪拌して粉砕させるメディ
ア攪拌式粉砕処理、銅微粉末を含むスラリーを高水圧で
2方向から衝突させて粉砕させる高水圧式粉砕処理、噴
流衝合処理等を挙げることができる。分類としては、高
速動体衝突式気流型粉砕機、衝撃式粉砕機、ケージミ
ル、媒体攪拌形ミル、軸流ミル、噴流衝合装置等を使用
することができる。具体的には、スーパーハイブリッド
ミル(石川島播磨重工製)、ジェットミル(セイシン企
業製)、スーパーマスコロイダー(増幸産業製)、ビー
ズミル(入江商会製)、アルティマイザー(スギノマシ
ン製)、NCミル(石井粉砕機械制作所製)、ディスイ
ンテグレータ(大塚鉄工製)、ACMパルベライザ(ホ
ソカワミクロン製)、ターボミル(マツボー製)、スー
パーミクロン(ホソカワミクロン製)、マイクロス(奈
良機械製)、ニューコスモスマイザー(奈良機械製)、
ファインビクトルミル(ホソカワミクロン製)、エコブ
レックス(ホソカワミクロン製)、CFミル(宇部興産
製)、ハイブリタイザ(奈良機械製)、ビンミル(アル
ピネー製)、圧力ホモジナイザ(日本精機製作所製)、
ハレルホモジナイザ(国産精工製)、メカノフュージョ
ンシステム(ホソカワミクロン製)等が挙げられる。
As the pulverization processing in the above specific pulverization processing apparatus, high-speed rotary collision pulverization processing in which copper fine powder is caused to collide with a rotating part rotating at high speed and pulverized, slurry containing copper fine powder Media stirring type pulverization process in which the slurry is stirred with beads or the like, a high water pressure type pulverization process in which a slurry containing copper fine powder is crushed by colliding from two directions with high water pressure, and a jet abutment process. As a classification, a high-speed moving body collision type air flow type pulverizer, an impact type pulverizer, a cage mill, a medium agitation type mill, an axial flow mill, a jet abutment device and the like can be used. Specifically, a super hybrid mill (manufactured by Ishikawajima-Harima Heavy Industries), a jet mill (manufactured by Seishin Enterprise), a supermass colloider (manufactured by Masuko Sangyo), a bead mill (manufactured by Irie Shokai), an optimizer (manufactured by Sugino Machine), an NC mill ( Ishii Pulverizer Co., Ltd., Disintegrator (Otsuka Iron Works), ACM Pulverizer (Hosokawa Micron), Turbo Mill (Matsubo), Supermicron (Hosokawa Micron), Micros (Nara Machinery), New Cosmo Smizer (Nara Machinery) Made),
Fine Victor Mill (manufactured by Hosokawa Micron), Ecobrex (manufactured by Hosokawa Micron), CF Mill (manufactured by Ube Industries), Hybridizer (manufactured by Nara Machinery), Bin Mill (manufactured by Alpinay), Pressure Homogenizer (manufactured by Nippon Seiki Seisakusho),
Harel homogenizer (manufactured by Domestic Seiko), Mechanofusion system (manufactured by Hosokawa Micron) and the like.

【0024】[0024]

【実施例】以下に実施例及び比較例に基づいて本発明を
具体的に説明する。 実施例1 硫酸銅(五水塩)100Kgを温水に溶解して200L
の水溶液とし、これを60℃に維持した。この水溶液に
25質量%水酸化ナトリウム水溶液125Lを添加し、
60℃に維持しながら1時間攪拌し、反応させて酸化第
二銅を生成させた。
The present invention will be specifically described below based on examples and comparative examples. Example 1 Dissolving 100 kg of copper sulfate (pentahydrate) in warm water to prepare 200 L
And maintained at 60 ° C. 125 L of a 25% by weight aqueous sodium hydroxide solution is added to this aqueous solution,
The mixture was stirred for 1 hour while maintaining the temperature at 60 ° C., and reacted to produce cupric oxide.

【0025】上記の反応物を60℃に維持しながら、こ
れに濃度450g/Lのグルコース水溶液80Lを20
分間にわたって定量的に添加して酸化第一銅スラリーを
生成させた。このスラリーを濾過し、洗浄した後、温水
を加えて再度スラリー化し、320Lのスラリーとし
た。このスラリーにアミノ酢酸1.5Kg及びアラビア
ゴム0.7Kgを添加し、攪拌し、温度を50℃に保持
した。このスラリーに20%水加ヒドラジン50Lを1
時間にわたって定量的に添加して銅微粉末を生成させ
た。得られた銅微粉末スラリーを濾過し、純水で充分に
洗浄し、濾過し、乾燥して銅微粉末を得た。なお、グル
コース水溶液の添加時間、スラリー洗浄の有無、ヒドラ
ジンの添加時間、解粒処理の有無、及び有機化合物被覆
の有無を第1表にまとめて示す。
While maintaining the above reaction product at 60 ° C., 80 L of an aqueous glucose solution having a concentration of 450 g / L was added thereto for 20 hours.
Added quantitatively over a period of one minute to produce a cuprous oxide slurry. After the slurry was filtered and washed, warm water was added to re-slurry to obtain a 320 L slurry. 1.5 kg of aminoacetic acid and 0.7 kg of gum arabic were added to the slurry, stirred, and the temperature was maintained at 50 ° C. To this slurry was added 50 L of 20% hydrazine hydrate.
It was added quantitatively over time to produce a fine copper powder. The obtained copper fine powder slurry was filtered, sufficiently washed with pure water, filtered, and dried to obtain a copper fine powder. Table 1 shows the addition time of the aqueous glucose solution, the presence / absence of slurry washing, the addition time of hydrazine, the presence / absence of crushing treatment, and the presence / absence of organic compound coating.

【0026】このようにして得られた銅微粉末を、ナイ
フ型ハンマを装備したパルベライザAP−1SH型(ホ
ソカワミクロン製)に投入し、2500rpmで15分
間解粒処理して銅微粉末を得た。このようにして得られ
た銅微粉末について、下記の方法に従って諸特性を評価
した。その結果は第2表に示す通りであった。
The copper fine powder thus obtained was put into a pulverizer AP-1SH type (manufactured by Hosokawa Micron) equipped with a knife-type hammer, and was subjected to granulation at 2500 rpm for 15 minutes to obtain a copper fine powder. Various properties of the copper fine powder thus obtained were evaluated according to the following methods. The results were as shown in Table 2.

【0027】(1)SEM観察による平均粒子径 試料を2000倍のSEMによって観察し、無作為に選
んだ3視野の合計で500個の粒子のフェレ径をそれぞ
れ測定し、その平均値を求めた。 (2)タップ密度 試料200gを用い、パウダーテスターPT−E型(ホ
ソカワミクロン製)により測定した。
(1) Average Particle Size Observed by SEM Observation The sample was observed with a 2000-times SEM, and the Feret diameters of 500 particles in a total of three randomly selected visual fields were measured, and the average value was determined. . (2) Tap Density Using a 200 g sample, powder density was measured with a powder tester PT-E type (manufactured by Hosokawa Micron).

【0028】(3)CV 上記のSEM観察による平均粒子径xと、500個の粒
子径データより求めた標準偏差σとを用いて、下記の式
(2)によって算出した。 CV(%)=(σ/x)×100 ……………(2)
(3) CV Using the average particle diameter x obtained by the above SEM observation and the standard deviation σ obtained from 500 particle diameter data, the CV was calculated by the following equation (2). CV (%) = (σ / x) × 100 (2)

【0029】上記の銅微粉末50質量部に、エチルセル
ロース3.5質量部及びテルピネオール46.5質量部
からなるビヒクルを加え、これらを混合した後、ロール
ミルで混練して導電ペーストを調製した。調製した導電
ペーストを380メッシュのテトロン製スクリーンマス
クを用いてポリイミド(PI)フィルム(宇部興産製ユ
ーピレックス:125μm)に印刷した(印刷パターン
は4cm×4cm)。印刷したPIフィルムを室温で1
5分間レベリングした後、60℃に設定した熱風循環式
恒温乾燥機中で30分間仮乾燥を行った。さらに120
℃に設定した熱風循環式恒温乾燥機に移して60分間本
硬化を行った。乾燥機から取り出し、室温まで放冷した
後、膜密度(g/cm3 )を測定した。その結果は第2
表に示す通りであった。
A vehicle consisting of 3.5 parts by mass of ethylcellulose and 46.5 parts by mass of terpineol was added to 50 parts by mass of the above-mentioned copper fine powder, and these were mixed and kneaded with a roll mill to prepare a conductive paste. The prepared conductive paste was printed on a polyimide (PI) film (UPILEX manufactured by Ube Industries, Ltd .: 125 μm) using a 380 mesh screen mask made of Tetron (printing pattern: 4 cm × 4 cm). Print the PI film at room temperature
After leveling for 5 minutes, temporary drying was performed for 30 minutes in a hot air circulation type constant temperature dryer set at 60 ° C. Further 120
It was transferred to a hot-air circulation type constant temperature dryer set to ° C., and main curing was performed for 60 minutes. After being taken out of the dryer and allowed to cool to room temperature, the film density (g / cm 3 ) was measured. The result is the second
As shown in the table.

【0030】また、上記の銅微粉末50質量部に、エチ
ルセルロース3.5質量部及びテルピネオール46.5
質量部からなるビヒクルを加え、これらを混合した後、
ロールミルで混練して導電ペーストを調製した。調製し
た導電ペーストについて、JIS K 5400に準拠
し、0−25μmつぶゲージを用い、密集したつぶが現
れ始めた箇所を目分量で読み取ることによって、導電ペ
ースト中の銅微粉末の分散度(銅微粒子の凝集度)を測
定した。その結果は第2表に示す通りであった。
Further, 3.5 parts by mass of ethyl cellulose and 46.5 parts by weight of terpineol were added to 50 parts by mass of the copper fine powder.
After adding a vehicle consisting of parts by mass and mixing them,
The conductive paste was prepared by kneading with a roll mill. The degree of dispersion of the copper fine powder in the conductive paste (copper fine particles) was determined for the prepared conductive paste in accordance with JIS K 5400 by using a 0-25 μm crush gauge and reading a portion where dense crushes began to appear by a granularity. Was measured. The results were as shown in Table 2.

【0031】実施例2〜6 グルコース水溶液の添加時間、スラリー洗浄の有無、ヒ
ドラジンの添加時間、解粒処理の有無、及び/又は有機
化合物被覆の有無を第1表に示すように変更した以外は
実施例1と同様の方法で銅微粉末を得た。
Examples 2 to 6 Except that the addition time of an aqueous glucose solution, the presence or absence of slurry washing, the addition time of hydrazine, the presence or absence of a granulation treatment, and / or the presence or absence of an organic compound coating were changed as shown in Table 1. Copper fine powder was obtained in the same manner as in Example 1.

【0032】得られた銅微粉末について、実施例1で記
載した方法に従って諸特性を評価した。また、それらの
銅微粉末を含有する導電ペーストを用いて形成された膜
密度及び導電ペースト中の銅微粉末の分散度(銅微粒子
の凝集度)を測定した。それらの結果は第2表に示す通
りであった。
Various properties of the obtained copper fine powder were evaluated in accordance with the method described in Example 1. Further, the film density formed using the conductive paste containing the copper fine powder and the degree of dispersion of the copper fine powder in the conductive paste (cohesion of copper fine particles) were measured. The results were as shown in Table 2.

【0033】実施例7 実施例2で得た銅微粉末25kgを、オレイン酸0.0
25kgを溶解させたメタノール25L中に投入し、充
分に攪拌し、その後、吸引濾過により過剰の溶液を除去
し、70℃で5時間乾燥させて、粒子表面がオレイン酸
で被覆されている有機化合物被覆銅微粉末を得た。
Example 7 25 kg of the copper fine powder obtained in Example 2 was
25 kg of methanol in which 25 kg is dissolved is poured, and the mixture is sufficiently stirred. Then, the excess solution is removed by suction filtration, dried at 70 ° C. for 5 hours, and the organic compound whose particle surface is coated with oleic acid A coated copper fine powder was obtained.

【0034】このようにして得られた有機化合物被覆銅
微粉末について、実施例1で記載した方法に従って諸特
性を評価した。また、それらの銅微粉末を含有する導電
ペーストを用いて形成された膜密度及び導電ペースト中
の銅微粉末の分散度(銅微粒子の凝集度)を測定した。
それらの結果は第2表に示す通りであった。
With respect to the organic compound-coated copper fine powder thus obtained, various characteristics were evaluated in accordance with the method described in Example 1. Further, the film density formed using the conductive paste containing the copper fine powder and the degree of dispersion of the copper fine powder in the conductive paste (cohesion of copper fine particles) were measured.
The results were as shown in Table 2.

【0035】実施例8 実施例5で得た銅微粉末を用いた以外は、実施例7と同
様の方法で有機化合物被覆銅微粉末を得た。このように
して得られた有機化合物被覆銅微粉末について、実施例
1で記載した方法に従って諸特性を評価した。また、そ
れらの銅微粉末を含有する導電ペーストを用いて形成さ
れた膜密度及び導電ペースト中の銅微粉末の分散度(銅
微粒子の凝集度)を測定した。それらの結果は第2表に
示す通りであった。
Example 8 An organic compound-coated copper fine powder was obtained in the same manner as in Example 7, except that the copper fine powder obtained in Example 5 was used. Various characteristics of the thus obtained organic compound-coated copper fine powder were evaluated in accordance with the method described in Example 1. Further, the film density formed using the conductive paste containing the copper fine powder and the degree of dispersion of the copper fine powder in the conductive paste (cohesion of copper fine particles) were measured. The results were as shown in Table 2.

【0036】比較例1 日本アトマイズ加工(株)製の銅微粉末SFR−Cu
3.5ミクロン品について、実施例1で記載した方法に
従って諸特性を評価した。また、それらの銅微粉末を含
有する導電ペーストを用いて形成された膜密度及び導電
ペースト中の銅微粉末の分散度(銅微粒子の凝集度)を
測定した。それらの結果は第2表に示す通りであった。
Comparative Example 1 Copper fine powder SFR-Cu manufactured by Nippon Atomize Processing Co., Ltd.
Various properties of the 3.5 micron product were evaluated according to the method described in Example 1. Further, the film density formed using the conductive paste containing the copper fine powder and the degree of dispersion of the copper fine powder in the conductive paste (cohesion of copper fine particles) were measured. The results were as shown in Table 2.

【0037】比較例2 実施例1で実施した「酸化第一銅スラリーを濾過し、洗
浄した後、温水を加えて再度スラリー化する」工程及び
解粒処理を実施しなかった以外は、実施例1と同様の方
法で銅微粉末を得た。
COMPARATIVE EXAMPLE 2 The procedure of Example 1 was repeated except that the step of filtering and washing the cuprous oxide slurry, adding hot water and re-slurrying the slurry, and not carrying out the pulverization treatment were performed. A copper fine powder was obtained in the same manner as in Example 1.

【0038】このようにして得られた銅微粉末につい
て、実施例1で記載した方法に従って諸特性を評価し
た。また、それらの銅微粉末を含有する導電ペーストを
用いて形成された膜密度及び導電ペースト中の銅微粉末
の分散度(銅微粒子の凝集度)を測定した。それらの結
果は第2表に示す通りであった。
The copper fine powder thus obtained was evaluated for various properties according to the method described in Example 1. Further, the film density formed using the conductive paste containing the copper fine powder and the degree of dispersion of the copper fine powder in the conductive paste (cohesion of copper fine particles) were measured. The results were as shown in Table 2.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】第2表のデータから明らかなように、実施
例1〜8の本発明の銅微粉末は、平均粒子径の小ささに
係わらずタップ密度が高く、導電ペースト中での充填性
に優れていることが分かる。取分け、実施例1や実施例
4の銅微粉末は、平均粒子径がかなり小さいにもかかわ
らず、タップ密度が相対的に高く、実際に導電ペースト
化して塗膜を形成した場合の膜密度も高く、高配線密度
化に対応可能な回路形成用銅微粉末として好適である。
また、CVが小さいことから、粒度分布がシャープであ
り、導電ペースト中での分散度(低凝集度)も充分であ
り、ファインパターン形成に好適である。
As is evident from the data in Table 2, the copper fine powders of the present invention of Examples 1 to 8 have a high tap density irrespective of the small average particle diameter, and have poor filling properties in the conductive paste. It turns out that it is excellent. In particular, the copper fine powders of Examples 1 and 4 have relatively high tap densities despite the fact that the average particle diameter is considerably small, and the film density when a coating film is formed by actually forming a conductive paste is also high. It is high and is suitable as a fine copper powder for circuit formation capable of coping with high wiring density.
Further, since the CV is small, the particle size distribution is sharp and the degree of dispersion (low agglomeration degree) in the conductive paste is sufficient, which is suitable for forming a fine pattern.

【0042】一方、比較例1の市販の銅微粉末は変動係
数CVが大きすぎるために、導電ペースト中の銅微粉末
の分散度(銅微粒子の凝集度)の劣ったものであった。
また比較例2の銅微粉末は式 (タップ密度)≧4.83−1.99exp(−0.2
9x) の条件を満足していないために、膜密度の不十分なもの
であった。
On the other hand, the commercially available copper fine powder of Comparative Example 1 was inferior in the degree of dispersion (cohesion of copper fine particles) of the copper fine powder in the conductive paste because the coefficient of variation CV was too large.
In addition, the copper fine powder of Comparative Example 2 has a formula (tap density) ≧ 4.83-1.99 exp (−0.2
9x), the film density was insufficient.

【0043】試験例1 実施例2で得られた銅微粉末81質量部に、エピコート
806(油化シェル社製)12.2質量部及びエポメー
トB002(油化シェル社製)6.8質量部を加え、混
合した後、ロールミルで混練して導電ペーストを調製し
た。調製した導電ペーストについて、東機産業社製粘度
計RE−105Uを用い、0.5rpmで粘度を測定し
た。その結果は第3表に示す通りであった。また、実施
例2で得られた銅微粉末の代わりに比較例2で得られた
銅微粉末を用いて上記と同様に導電ペーストを調製し、
上記と同様に粘度を測定した。その結果は第3表に示す
通りであった。
Test Example 1 To 82 parts by mass of the copper fine powder obtained in Example 2, 12.2 parts by mass of Epicoat 806 (manufactured by Yuka Shell Co.) and 6.8 parts by mass of Epomate B002 (manufactured by Yuka Shell Co., Ltd.) Was added and mixed, and then kneaded with a roll mill to prepare a conductive paste. The viscosity of the prepared conductive paste was measured at 0.5 rpm using a viscometer RE-105U manufactured by Toki Sangyo Co., Ltd. The results were as shown in Table 3. Further, a conductive paste was prepared in the same manner as described above using the copper fine powder obtained in Comparative Example 2 instead of the copper fine powder obtained in Example 2,
The viscosity was measured as above. The results were as shown in Table 3.

【0044】 [0044]

【0045】第3表のデータから明らかなように、本発
明の銅微粉末を含む導電ペーストは粘度が低く、バイア
ホールへの充填性に優れており、非焼成により回路を形
成する場合にも有用である。一方、比較例2で得られた
銅微粉末を含む導電ペーストの粘度が高く、バイアホー
ルへの充填には不適切である。
As is evident from the data in Table 3, the conductive paste containing the copper fine powder of the present invention has a low viscosity, is excellent in filling the via holes, and can be used even when a circuit is formed without firing. Useful. On the other hand, the conductive paste containing the fine copper powder obtained in Comparative Example 2 has a high viscosity and is unsuitable for filling into via holes.

【0046】[0046]

【発明の効果】本発明の回路形成用銅微粉末は、平均粒
子径に比較してタップ密度が相対的に高いという特徴を
有することに起因して、導電ペースト中での充填性に優
れており、さらに粒度分布がシャープであり、そのよう
な銅微粉末を含有する導電ペーストを用いることにより
膜密度の高い塗膜を形成することができ、その結果とし
て焼成密度を高くすることができ、またファインパター
ンを形成し、高配線密度化することができ、更にそのよ
うな導電ペーストはバイアホールへの充填性に優れてお
り、また非焼成により回路を形成するのにも有用であ
る。
The copper fine powder for circuit formation according to the present invention has a feature that the tap density is relatively high as compared with the average particle diameter, and thus the copper fine powder for circuit formation has excellent filling properties in the conductive paste. In addition, the particle size distribution is sharp, and a coating film having a high film density can be formed by using a conductive paste containing such copper fine powder, and as a result, the firing density can be increased, In addition, a fine pattern can be formed to increase the wiring density. Further, such a conductive paste is excellent in filling properties into via holes, and is useful for forming a circuit by non-firing.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】SEM観察による平均粒子径をx(μm)
とし、粒子径の標準偏差をσとするとき、タップ密度
(g/cm3 )と平均粒子径xとは下記の式(1)を満
足しており、且つ下記の式(2)により求められる変動
係数CVが40%以下であることを特徴とする回路形成
用銅微粉末。 (タップ密度)≧4.83−1.99exp(−0.29x) ‥‥(1) CV(%)=(σ/x)×100‥‥(2)
1. The average particle diameter by SEM observation is x (μm)
When the standard deviation of the particle diameter is σ, the tap density (g / cm 3 ) and the average particle diameter x satisfy the following expression (1) and are obtained by the following expression (2). A copper fine powder for circuit formation, wherein a coefficient of variation CV is 40% or less. (Tap density) ≧ 4.83-1.99 exp (−0.29x) {(1) CV (%) = (σ / x) × 100} (2)
【請求項2】SEM観察による平均粒子径が0.1〜1
0μmであることを特徴とする請求項1記載の回路形成
用銅微粉末。
2. An average particle size of 0.1 to 1 by SEM observation.
2. The fine copper powder for circuit formation according to claim 1, wherein the thickness is 0 [mu] m.
【請求項3】粒子表面が有機化合物で被覆されているこ
とを特徴とする請求項1又は2記載の回路形成用銅微粉
末。
3. The fine copper powder for circuit formation according to claim 1, wherein the surface of the particles is coated with an organic compound.
JP2000309531A 2000-10-10 2000-10-10 Fine copper powder for circuit formation Expired - Lifetime JP3934869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309531A JP3934869B2 (en) 2000-10-10 2000-10-10 Fine copper powder for circuit formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000309531A JP3934869B2 (en) 2000-10-10 2000-10-10 Fine copper powder for circuit formation

Publications (2)

Publication Number Publication Date
JP2002115001A true JP2002115001A (en) 2002-04-19
JP3934869B2 JP3934869B2 (en) 2007-06-20

Family

ID=18789682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309531A Expired - Lifetime JP3934869B2 (en) 2000-10-10 2000-10-10 Fine copper powder for circuit formation

Country Status (1)

Country Link
JP (1) JP3934869B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342621A (en) * 2002-05-27 2003-12-03 Mitsui Mining & Smelting Co Ltd Method for manufacturing copper powder and copper powder obtained thereby
JP2004211108A (en) * 2002-11-12 2004-07-29 Dowa Mining Co Ltd Fine granular copper powder and its producing method
JP2005190907A (en) * 2003-12-26 2005-07-14 Mitsui Mining & Smelting Co Ltd Surface treatment metal powder, conductive paste using same, and printed wiring board and chip components obtained by using conductive paste
JP2008285761A (en) * 2002-11-12 2008-11-27 Dowa Electronics Materials Co Ltd Fine granular copper powder
JP2017059334A (en) * 2015-09-15 2017-03-23 三菱マテリアル株式会社 Conductive resin composition
WO2018163543A1 (en) * 2017-03-08 2018-09-13 株式会社Adeka Method for producing copper powder, resin composition, method for forming cured product, and cured product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121884B1 (en) 2021-03-29 2022-08-19 三菱マテリアル株式会社 Copper particles and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342621A (en) * 2002-05-27 2003-12-03 Mitsui Mining & Smelting Co Ltd Method for manufacturing copper powder and copper powder obtained thereby
JP2004211108A (en) * 2002-11-12 2004-07-29 Dowa Mining Co Ltd Fine granular copper powder and its producing method
JP2008285761A (en) * 2002-11-12 2008-11-27 Dowa Electronics Materials Co Ltd Fine granular copper powder
JP2005190907A (en) * 2003-12-26 2005-07-14 Mitsui Mining & Smelting Co Ltd Surface treatment metal powder, conductive paste using same, and printed wiring board and chip components obtained by using conductive paste
JP2017059334A (en) * 2015-09-15 2017-03-23 三菱マテリアル株式会社 Conductive resin composition
WO2018163543A1 (en) * 2017-03-08 2018-09-13 株式会社Adeka Method for producing copper powder, resin composition, method for forming cured product, and cured product
CN110248750A (en) * 2017-03-08 2019-09-17 株式会社Adeka The manufacturing method of copper powder, resin combination, the method and solidfied material for forming solidfied material
KR20190122675A (en) * 2017-03-08 2019-10-30 가부시키가이샤 아데카 Method for producing copper powder, resin composition, method for forming cured product and cured product
CN110248750B (en) * 2017-03-08 2021-07-23 株式会社Adeka Method for producing copper powder, resin composition, method for forming cured product, and cured product
KR102337047B1 (en) 2017-03-08 2021-12-07 가부시키가이샤 아데카 Manufacturing method of copper powder, resin composition, method of forming a cured product, and cured product
US11440092B2 (en) 2017-03-08 2022-09-13 Adeka Corporation Method for manufacturing copper powder, resin composition, method for forming cured product, and cured product

Also Published As

Publication number Publication date
JP3934869B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
JP6274444B2 (en) Method for producing copper powder
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
KR20130103540A (en) Copper powder for conductive paste and method for manufacturing same
KR100480873B1 (en) Nickel powder and conductive paste
CN112752627B (en) Silver powder, method for producing same, and conductive paste
KR20010089795A (en) Nickel powder, method for preparation thereof and conductive paste
JP4012960B2 (en) Silver powder manufacturing method
KR20150092193A (en) Silver powder
JP4109520B2 (en) Low cohesive silver powder, method for producing the low cohesive silver powder, and conductive paste using the low cohesive silver powder
JP2002115001A (en) Fine copper powder for forming circuit
JP4227373B2 (en) Flake copper powder and copper paste using the flake copper powder
JP4569727B2 (en) Silver powder and method for producing the same
JP5985216B2 (en) Silver powder
JP4197110B2 (en) Mixed copper powder, method for producing the mixed copper powder, copper paste using the mixed copper powder, and printed wiring board using the copper paste
JP3280372B2 (en) Nickel powder and conductive paste
JP2003034802A (en) Copper powder, manufacturing method therefor, copper paste using the copper powder, and printed circuit board using the copper paste
JP2007224422A (en) Silver powder and paste using the same
JP7288133B1 (en) Silver powder, method for producing silver powder, and conductive paste
JP6985219B2 (en) Manufacturing method of spherical silver powder
JP7069311B2 (en) How to make silver powder and conductive paste containing silver powder
JP4233334B2 (en) Copper paste and printed wiring board using the copper paste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3934869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250