JP2017059334A - Conductive resin composition - Google Patents

Conductive resin composition Download PDF

Info

Publication number
JP2017059334A
JP2017059334A JP2015181396A JP2015181396A JP2017059334A JP 2017059334 A JP2017059334 A JP 2017059334A JP 2015181396 A JP2015181396 A JP 2015181396A JP 2015181396 A JP2015181396 A JP 2015181396A JP 2017059334 A JP2017059334 A JP 2017059334A
Authority
JP
Japan
Prior art keywords
silver
particles
coated particles
resin composition
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015181396A
Other languages
Japanese (ja)
Other versions
JP6512048B2 (en
Inventor
寛人 赤池
Hiroto Akaike
寛人 赤池
山崎 和彦
Kazuhiko Yamazaki
和彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015181396A priority Critical patent/JP6512048B2/en
Publication of JP2017059334A publication Critical patent/JP2017059334A/en
Application granted granted Critical
Publication of JP6512048B2 publication Critical patent/JP6512048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive resin composition excellent in printability during application, shape retention property after application and before drying and conductivity when made as a coated film.SOLUTION: A conductive resin composition contains 2 kinds of silver coated particle A and silver coated particle B having different average particle diameter as conductive fillers and a binder resin C. Both of variation coefficient of particle diameter of the silver coated particle A (CV) and variation coefficient of particle diameter of the silver coated particle B (CV) are 15% or less, specific gravity of the silver coated particle A (d) and specific gravity of the silver coated particle B (d) are in a range of 2.0 to 6.0 respectively, a ratio D/Dof average particle diameter of the silver coated particle A (D) to average particle diameter of the silver coated particle B (D) is 1.2 to 5.0, a ratio W/Wof mass of the silver coated particle A (W) to weight of the silver coated particle B (W) is 0.5 to 3.0, and a ratio (W+W)/Wof total mass of the silver coated particles A and B (W+W) to mass of the binder resin C (W) is 3.0 to 8.0.SELECTED DRAWING: None

Description

本発明は、塗布時の印刷性及び塗布した後の乾燥前の形状保持性に優れ、塗膜にしたときの導電性に優れた導電性樹脂組成物に関する。   The present invention relates to a conductive resin composition excellent in printability at the time of coating and shape retention before drying after coating, and excellent in conductivity when formed into a coating film.

従来、銀粒子とバインダ樹脂とを含む導電部形成用組成物が開示されている(例えば、特許文献1参照。)。また銀被覆シリカ粒子とエポキシ樹脂と硬化剤を必須成分とする導電性樹脂組成物が開示されている(例えば、特許文献2参照。)。特許文献2には、銀被覆シリカ粒子の比重が2.4〜3.6であることが記載されている。   Conventionally, a composition for forming a conductive part containing silver particles and a binder resin has been disclosed (see, for example, Patent Document 1). Moreover, the electroconductive resin composition which has silver covering silica particle, an epoxy resin, and a hardening | curing agent as an essential component is disclosed (for example, refer patent document 2). Patent Document 2 describes that the specific gravity of silver-coated silica particles is 2.4 to 3.6.

特開2014−67492号公報(請求項1、請求項3)JP 2014-67492 A (Claims 1 and 3) 特開2015−26519号公報(請求項1、請求項2)Japanese Patent Laying-Open No. 2015-26519 (Claims 1 and 2)

特許文献1の導電部形成用組成物のように、導電性フィラーとして銀粒子を用いた場合、バインダ樹脂に比べて銀粒子の比重が大きいため、この組成物を塗布した後の乾燥前に、導電性フィラーの自重により塗布した組成物内で沈降し、形状が不安定になりやすく、形状保持性が低い不具合がある。また特許文献2の導電性樹脂組成物のように、銀粒子に比べて比重が小さい銀被覆粒子を導電性フィラーとして用いた場合、導電性フィラーの粒径の変動係数が大きいときには、粒径のばらつきにより塗膜中の導電性フィラーの充填率を高くすることができず、塗膜中にボイドを生じて塗膜の導電性が低下する不具合がある。   When silver particles are used as the conductive filler as in the conductive part forming composition of Patent Document 1, since the specific gravity of the silver particles is larger than that of the binder resin, before drying after applying this composition, There exists a malfunction which settles in the composition apply | coated by the dead weight of an electroconductive filler, a shape becomes easy to become unstable, and shape retainability is low. Moreover, like the conductive resin composition of patent document 2, when the silver covering particle | grains whose specific gravity is small compared with silver particle are used as a conductive filler, when the variation coefficient of the particle size of a conductive filler is large, a particle size of Due to the variation, the filling rate of the conductive filler in the coating film cannot be increased, and there is a problem that voids are generated in the coating film and the conductivity of the coating film is lowered.

本発明の目的は、塗布時の印刷性及び塗布した後の乾燥前の形状保持性に優れ、塗膜にしたときの導電性に優れた導電性樹脂組成物を提供することにある。   An object of the present invention is to provide a conductive resin composition that is excellent in printability at the time of coating and shape retention before drying after coating, and excellent in conductivity when formed into a coating film.

本発明の第1の観点は、導電性フィラーとしての平均粒径の異なる2種類の銀被覆粒子A及び銀被覆粒子Bと、バインダ樹脂Cとを含み、前記銀被覆粒子Aの粒径の変動係数(CV)及び前記銀被覆粒子Bの粒径の変動係数(CV)がともに15%以下であり、前記銀被覆粒子Aの比重(d)及び前記銀被覆粒子Bの比重(d)がそれぞれ2.0〜6.0の範囲内にあり、前記銀被覆粒子Aの平均粒径(D)と前記銀被覆粒子Bの平均粒径(D)の比(D/D)が1.2〜5.0であり、前記銀被覆粒子Aの質量(W)と前記銀被覆粒子Bの質量(W)の比(W/W)が0.5〜3.0であり、前記銀被覆粒子A及び前記銀被覆粒子Bの総質量(W+W)と前記バインダ樹脂Cの質量(W)の比((W+W)/W)が3.0〜8.0である導電性樹脂組成物である。 The first aspect of the present invention includes two kinds of silver-coated particles A and silver-coated particles B having different average particle diameters as a conductive filler, and a binder resin C. Both the coefficient (CV A ) and the coefficient of variation (CV B ) of the particle diameter of the silver-coated particles B are 15% or less, and the specific gravity (d A ) of the silver-coated particles A and the specific gravity (d of the silver-coated particles B) B ) is in the range of 2.0 to 6.0, respectively, and the ratio of the average particle diameter (D A ) of the silver-coated particles A to the average particle diameter (D B ) of the silver-coated particles B (D A / D B ) is 1.2 to 5.0, and the ratio (W A / W B ) of the mass (W A ) of the silver-coated particles A to the mass (W B ) of the silver-coated particles B is 0.5. is 3.0, the total weight (W a + W B) and the mass of the binder resin C of the silver-coated particles a and the silver-coated particles B (W Ratio) ((W A + W B ) / W C) is a conductive resin composition is 3.0 to 8.0.

本発明の第2の観点は、第1の観点に基づく導電性樹脂組成物を基材に塗布して導電性塗膜を形成する方法である。   The 2nd viewpoint of this invention is the method of apply | coating the conductive resin composition based on a 1st viewpoint to a base material, and forming a conductive coating film.

本発明の第1の観点の導電性樹脂組成物では、銀被覆粒子Aの粒径の変動係数(CV)及び銀被覆粒子Bの粒径の変動係数(CV)がともに15%以下であるため、銀被覆粒子Aと銀被覆粒子Bの両方又はどちらか一方が粒径の変動係数が15%を超える場合と比較して、粒径のばらつきに起因する局所的なボイドが低減されるとともに、粒径の異なる銀被覆粒子の表面エネルギーの差に由来する凝集が低減され、樹脂組成物中での均一分散性が向上し、導電性に優れた塗膜が得られる。導電性塗膜中に、銀被覆粒子Aの比重(d)及び銀被覆粒子Bの比重(d)がそれぞれ2.0〜6.0の範囲内の値であるため、塗布した後乾燥する前の組成物中、両粒子A、Bの自重による沈降差はなく、均一に存在する。また銀被覆粒子Aの平均粒径(D)と銀被覆粒子Bの平均粒径(D)の比(D/D)が1.2〜5.0であって、しかも銀被覆粒子Aの質量(W)と銀被覆粒子Bの質量(W)の比(W/W)が0.5〜3.0であるため、粒子A間に生じた間隙を粒子Bが埋めることによりボイドがなく充填密度の高く導電性に優れた塗膜が得られる。更に銀被覆粒子A及び銀被覆粒子Bの総質量(W+W)とバインダ樹脂Cの質量(W)の比((W+W)/W)が3.0〜8.0であるため、基材上に組成物を塗布し乾燥した塗膜は銀被覆粒子の接触点が多く、導電性に優れる。 In the conductive resin composition of the first aspect of the present invention, the coefficient of variation (CV A ) of the particle diameter of the silver-coated particles A and the coefficient of variation (CV B ) of the particle diameter of the silver-coated particles B are both 15% or less. Therefore, local voids due to the variation in particle size are reduced compared to the case where the coefficient of variation of the particle size of silver-coated particle A and / or silver-coated particle B exceeds 15%. At the same time, agglomeration derived from the difference in surface energy of silver-coated particles having different particle diameters is reduced, the uniform dispersibility in the resin composition is improved, and a coating film excellent in conductivity is obtained. In the conductive coating film, the specific gravity (d A ) of the silver-coated particles A and the specific gravity (d B ) of the silver-coated particles B are values in the range of 2.0 to 6.0, respectively. There is no difference in sedimentation due to the weights of both particles A and B in the composition before the removal, and the particles exist uniformly. The ratio (D A / D B ) of the average particle diameter (D A ) of the silver-coated particles A and the average particle diameter (D B ) of the silver-coated particles B is 1.2 to 5.0, and the silver-coated particles since the ratio of the mass of particles a (W a) and the silver-coated particles B mass (W B) (W a / W B) is 0.5 to 3.0, the particles B a gap generated between the particles a By filling the film, a coating film having no voids and high packing density and excellent conductivity can be obtained. Furthermore, the ratio ((W A + W B ) / W C ) of the total mass (W A + W B ) of the silver-coated particles A and the silver-coated particles B to the mass (W C ) of the binder resin C is 3.0 to 8.0. Therefore, the coating film obtained by applying the composition onto the substrate and drying it has many contact points with the silver-coated particles and is excellent in conductivity.

本発明の第2の観点の導電性塗膜の形成方法では、スクリーン印刷などの塗布工程において、導電性樹脂組成物の優れたチクソトロピック性により、導電性樹脂組成物を精細に印刷することが可能となる。導電性樹脂組成物を塗布した後の乾燥前で、その形状が保持され、所定の形状の塗膜を形成することができる。また塗膜にしたときに銀被覆粒子A、Bの充填密度が高く体積抵抗率の低い塗膜を形成することができる。   In the method for forming a conductive coating film according to the second aspect of the present invention, in a coating process such as screen printing, the conductive resin composition can be finely printed due to the excellent thixotropic property of the conductive resin composition. It becomes possible. Before drying after applying the conductive resin composition, the shape is maintained, and a coating film having a predetermined shape can be formed. Moreover, when it is set as a coating film, the coating density with high packing density of silver coating particle A and B and low volume resistivity can be formed.

次に本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

〔銀被覆粒子〕
本実施形態の銀被覆粒子は、平均粒径の異なる2種類の銀被覆粒子A及び銀被覆粒子Bからなる。両粒子A、Bは、それぞれコア粒子とこのコア粒子の表面に形成された銀被覆層とを備える。このコア粒子には樹脂粒子と無機粒子がある。樹脂粒子としては、アクリル樹脂粒子、スチレン樹脂粒子、フェノール樹脂粒子、シリコーン樹脂粒子、シリコーンゴム粒子、メラミン樹脂粒子、フッ素ゴム粒子、ポリアミド樹脂粒子、ポリイミド樹脂粒子等が挙げられる。また、無機粒子としては、シリカ粒子、ガラス粒子、マイカ粒子、アルミナ粒子、アルミニウム粒子、タルク粒子等及びこれらの混合粉が挙げられる。これらの粒子は、必要な粒度やCV値を得るために分級されたものを用いてもよい。両粒子A、Bは同一の組成で構成される方が製造上好ましいが、互いに異なる組成でもよい。銀被覆層に含まれる銀の量は、両粒子A、Bとも銀被覆粒子100質量部に対して45〜90質量部の範囲にあることが好ましい。また銀被覆層の厚さは、両粒子A、Bとも0.05〜0.70μmの範囲にあることが好ましい。上記銀被覆層に含まれる銀の量及び銀被覆層の厚さに応じて、銀被覆粒子Aの比重dA及び銀被覆粒子Bの比重dBとも、2.0〜6.0の範囲にある。これらの比重は導電性樹脂組成物に使用する有機溶媒を用いた液浸法により測定した。
[Silver coated particles]
The silver-coated particles of this embodiment are composed of two types of silver-coated particles A and silver-coated particles B having different average particle sizes. Both particles A and B each include a core particle and a silver coating layer formed on the surface of the core particle. The core particles include resin particles and inorganic particles. Examples of the resin particles include acrylic resin particles, styrene resin particles, phenol resin particles, silicone resin particles, silicone rubber particles, melamine resin particles, fluororubber particles, polyamide resin particles, and polyimide resin particles. Examples of inorganic particles include silica particles, glass particles, mica particles, alumina particles, aluminum particles, talc particles, and mixed powders thereof. These particles may be classified so as to obtain a required particle size and CV value. The two particles A and B are preferably manufactured to have the same composition, but they may have different compositions. It is preferable that the quantity of silver contained in a silver coating layer exists in the range of 45-90 mass parts with respect to 100 mass parts of silver-coated particles in both particles A and B. The thickness of the silver coating layer is preferably in the range of 0.05 to 0.70 μm for both particles A and B. Depending on the amount of silver contained in the silver coating layer and the thickness of the silver coating layer, the specific gravity dA of the silver-coated particles A and the specific gravity dB of the silver-coated particles B are in the range of 2.0 to 6.0. These specific gravities were measured by a liquid immersion method using an organic solvent used for the conductive resin composition.

銀の被覆量(含有量)は樹脂の平均粒径と必要とされる導電性により決められる。銀被覆層に含まれる銀の量が下限値の45質量部未満では、また銀被覆層の厚さが0.05μm未満では、導電性フィラーとして銀被覆粒子が分散したときに、銀同士の接点が取り難く十分な導電性を付与できない。一方、銀の含有量が90質量部を超えると、また銀被覆層の厚さが0.70μmを超えると、銀被覆粒子の比重が大きくなりコストも高くなるとともに導電性が飽和してしまう。この銀の含有量は更に好ましくは50〜88質量部である。銀の被覆量については、例えば銀被覆粒子を酸分解した後、ICP発光分光測定により求める。   The silver coating amount (content) is determined by the average particle size of the resin and the required conductivity. When the amount of silver contained in the silver coating layer is less than the lower limit of 45 parts by mass, and when the thickness of the silver coating layer is less than 0.05 μm, the silver-coated contacts are dispersed when the silver-coated particles are dispersed as the conductive filler. However, it is difficult to obtain sufficient conductivity. On the other hand, when the silver content exceeds 90 parts by mass, and when the thickness of the silver coating layer exceeds 0.70 μm, the specific gravity of the silver-coated particles increases, the cost increases, and the conductivity is saturated. The silver content is more preferably 50 to 88 parts by mass. The silver coating amount is obtained by, for example, ICP emission spectrometry after acid-decomposing silver-coated particles.

銀被覆粒子Aのコア粒子の平均粒径は1.0〜20μmの範囲にあることが好ましく、1.5〜5.0μmの範囲にあることが更に好ましい。また銀被覆粒子Bのコア粒子の平均粒径は、銀被覆粒子Aのコア粒子の平均粒径より小さく、0.3〜12μmの範囲にあることが好ましく、0.5〜3μmの範囲にあることが更に好ましい。両粒子A、Bともコア粒子は凝集のない単一粒子が好ましい。銀被覆粒子Bのコア粒子の下限値の0.3μm未満では、コア粒子が凝集し易く、またコア粒子の表面積が大きくなり、導電性フィラーとして必要な導電性を得るための銀の量を多くする必要があり、また良好な銀被覆層を形成しにくいからである。また銀被覆粒子Aのコア粒子の平均粒径が20μmを超えると、樹脂電極皮膜の表面平滑性が低下する、導電粒子の接触割合が減少し抵抗値が増大するなどの不具合を生じる。なお、本明細書において、コア粒子の平均粒径とは、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製 型式名:S−4300SE)を用いて、ソフトウェア(品名:PC SEM)により、倍率5000倍で、300個の銀被覆樹脂の直径を測定し、算出された平均値をいう。真球以外は長辺を平均した値をいう。コア粒子は、球状の粒子でもよく、球状でなく異形状、例えば扁平状、板状、針状でもよい。   The average particle diameter of the core particles of the silver-coated particles A is preferably in the range of 1.0 to 20 μm, and more preferably in the range of 1.5 to 5.0 μm. The average particle size of the core particles of the silver-coated particles B is smaller than the average particle size of the core particles of the silver-coated particles A, preferably in the range of 0.3 to 12 μm, and in the range of 0.5 to 3 μm. More preferably. For both particles A and B, the core particles are preferably single particles without aggregation. If the lower limit of 0.3 μm of the core particle of the silver-coated particle B is less than 0.3 μm, the core particle is likely to aggregate, the surface area of the core particle is increased, and the amount of silver for obtaining the necessary conductivity as a conductive filler is increased. This is because it is difficult to form a good silver coating layer. On the other hand, when the average particle diameter of the core particles of the silver-coated particles A exceeds 20 μm, problems such as a decrease in the surface smoothness of the resin electrode film, a decrease in the contact ratio of the conductive particles, and an increase in the resistance value occur. In the present specification, the average particle diameter of the core particles is a magnification of 5000 times by software (product name: PC SEM) using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation: model name: S-4300SE). Then, the diameter of 300 silver-coated resins is measured and the calculated average value is referred to. The values other than the true sphere mean the average of the long sides. The core particle may be a spherical particle, or may be a non-spherical shape, such as a flat shape, a plate shape, or a needle shape.

銀被覆粒子Aの平均粒径Dは、コア粒子の粒径に銀被覆層の厚さを加えて、1.1〜21μmの範囲にあることが好ましく、1.6〜5.1μmの範囲にあることが更に好ましい。また銀被覆粒子Bの平均粒径Dは、同様に、銀被覆粒子Aのコア粒子の平均粒径より小さく、0.4〜3.5μmの範囲にあることが好ましく、0.8〜2.0μmの範囲にあることが更に好ましい。銀被覆粒子Aの平均粒径Dに対する銀被覆粒子Bの平均粒径Dの比D/Dは、1.2〜5.0である。1.2未満である場合、両粒子A、Bの平均粒径の差が小さくなり過ぎ、粒子A間に生じた間隙を粒子Bが埋めることができない。また5.0を超えると、両粒子A、Bの平均粒径の差が大きくなり過ぎ、やはり粒子A間に生じた間隙を粒子Bが埋めることができない。比D/Dの好ましい範囲は1.5〜3.0である。 The average particle size D A of the silver-coated particles A, in addition to the thickness of the silver coating layer on the particle size of the core particles is preferably in the range of 1.1~21Myuemu, range 1.6~5.1μm More preferably, The average particle size D B of the silver-coated particles B are likewise smaller than the average particle size of the core particles of the silver-coated particles A, preferably in the range of 0.4~3.5Myuemu, 0.8 to 2 More preferably, it is in the range of 0.0 μm. The ratio D A / D B of the average particle diameter D B of the silver-coated particles B to the average particle diameter D A of the silver-coated particles A is 1.2 to 5.0. If it is less than 1.2, the difference between the average particle sizes of the particles A and B becomes too small, and the particle B cannot fill the gap formed between the particles A. On the other hand, if it exceeds 5.0, the difference between the average particle diameters of the two particles A and B becomes too large, and the particle B cannot fill the gap formed between the particles A. A preferable range of the ratio D A / D B is 1.5 to 3.0.

また銀被覆粒子Aの粒径の変動係数CV及び銀被覆粒子Aの粒径の変動係数CVは、ともに15.0%以下であり、粒径が揃っていることが好ましい。変動係数が15.0%を超え、粒径が揃っていないと、導電性フィラーとして用いるときの導電性付与の再現性を損ねるためである。変動係数(CV値、単位:%)は、上記300個の樹脂の粒径から、式:〔(標準偏差/平均粒径)×100〕により求める。 The coefficient of variation CV B of grain size distribution variation coefficient of the grain size of the silver-coated particles A CV A and silver-coated particles A is less than both 15.0%, preferably have uniform particle size. This is because if the coefficient of variation exceeds 15.0% and the particle diameter is not uniform, the reproducibility of imparting conductivity when used as a conductive filler is impaired. The coefficient of variation (CV value, unit:%) is determined from the particle size of the 300 resins by the formula: [(standard deviation / average particle size) × 100].

〔銀被覆粒子の製造方法〕
本実施形態の銀被覆粒子A及びBは、それぞれ次の方法により製造される。先ずコア粒子を25〜45℃に保温された錫化合物の水溶液に添加してこのコア粒子の表面に錫吸着層を形成する。次いでこのコア粒子の表面に形成された錫吸着層に還元剤を含まない無電解銀めっき液を接触させて、コア粒子の表面に形成された錫吸着層と無電解めっき液中の銀との置換反応によりコア粒子の表面に銀置換層を形成する。次に無電解銀めっき液に還元剤を添加することにより、コア粒子の銀置換層の表面に銀被覆層を形成する。
[Method for producing silver-coated particles]
The silver-coated particles A and B of this embodiment are each produced by the following method. First, the core particle is added to an aqueous solution of a tin compound kept at 25 to 45 ° C. to form a tin adsorption layer on the surface of the core particle. Next, an electroless silver plating solution containing no reducing agent is brought into contact with the tin adsorption layer formed on the surface of the core particle, and the tin adsorption layer formed on the surface of the core particle and the silver in the electroless plating solution A silver substitution layer is formed on the surface of the core particle by a substitution reaction. Next, by adding a reducing agent to the electroless silver plating solution, a silver coating layer is formed on the surface of the silver replacement layer of the core particles.

〔無電解銀めっきによる銀被覆層の形成方法〕
コア粒子の表面には、銀被覆層が設けられる。一般に、有機質材料や無機質材料などの不導体の表面に無電解めっきを実施する際には、予め不導体の表面に対して触媒化処理を行う必要がある。本実施形態では、触媒化処理としてコア粒子の表面に錫吸着層が設ける処理を行い、その後で無電解銀めっき処理を行って銀被覆層を形成する。具体的には、本実施形態の銀被覆層は、次の方法により製造される。先ずコア粒子を25〜45℃に保温された錫化合物の水溶液に添加してこのコア粒子の表面に錫吸着層を形成する。次いでこの錫吸着層に含まない無電解銀めっき液を接触させて、コア粒子の表面に形成された錫吸着層と無電解めっき液中の銀との置換反応によりコア粒子の表面に銀置換層を形成する。次に無電解銀めっき液に還元剤を添加することにより、コア粒子の銀置換層の表面に銀被覆層を形成する。
[Method of forming silver coating layer by electroless silver plating]
A silver coating layer is provided on the surface of the core particle. Generally, when electroless plating is performed on the surface of a nonconductor such as an organic material or an inorganic material, it is necessary to perform a catalyst treatment on the surface of the nonconductor in advance. In the present embodiment, as a catalyst treatment, a treatment for providing a tin adsorption layer on the surface of the core particles is performed, and then an electroless silver plating treatment is performed to form a silver coating layer. Specifically, the silver coating layer of this embodiment is manufactured by the following method. First, the core particle is added to an aqueous solution of a tin compound kept at 25 to 45 ° C. to form a tin adsorption layer on the surface of the core particle. Next, an electroless silver plating solution not included in the tin adsorption layer is brought into contact, and a silver substitution layer is formed on the surface of the core particle by a substitution reaction between the tin adsorption layer formed on the surface of the core particle and silver in the electroless plating solution. Form. Next, by adding a reducing agent to the electroless silver plating solution, a silver coating layer is formed on the surface of the silver replacement layer of the core particles.

上記錫吸着層を形成するためには、錫化合物の水溶液にコア粒子を添加し攪拌した後、コア粒子を濾別、又は遠心分離して水洗する。攪拌時間は、以下の錫化合物の水溶液の温度及び錫化合物の含有量によって適宜決定されるが、好ましくは、0.5〜24時間である。錫化合物の水溶液の温度は、25〜45℃であり、好ましくは25〜35℃であり、更に好ましくは27〜35℃である。錫化合物の水溶液の温度が25℃未満であると、温度が低く過ぎて水溶液の活性が低くなり、コア粒子に錫化合物が十分に付着しない。一方、錫化合物の水溶液の温度が45℃を超えると、錫化合物が酸化するため、水溶液が不安定となり、コア粒子に錫化合物が十分に付着しない。この処理を25〜45℃の水溶液で実施すると、錫の2価イオンがコア粒子の表面に付着し錫吸着層が形成される。   In order to form the tin adsorption layer, the core particles are added to an aqueous solution of a tin compound and stirred, and then the core particles are filtered or centrifuged and washed with water. Although stirring time is suitably determined by the temperature of the following aqueous solution of a tin compound and the content of the tin compound, it is preferably 0.5 to 24 hours. The temperature of the aqueous solution of the tin compound is 25 to 45 ° C, preferably 25 to 35 ° C, and more preferably 27 to 35 ° C. When the temperature of the aqueous solution of the tin compound is less than 25 ° C., the temperature is too low and the activity of the aqueous solution becomes low, and the tin compound does not sufficiently adhere to the core particles. On the other hand, when the temperature of the aqueous solution of the tin compound exceeds 45 ° C., the tin compound is oxidized, so that the aqueous solution becomes unstable and the tin compound does not sufficiently adhere to the core particles. When this treatment is carried out with an aqueous solution at 25 to 45 ° C., divalent ions of tin adhere to the surface of the core particles, and a tin adsorption layer is formed.

上記錫化合物としては、塩化第一錫、フッ化第一錫、臭化第一錫、ヨウ化第一錫等が挙げられる。塩化第一錫を用いる場合、錫化合物の水溶液中の塩化第一錫の含有量は、30〜100g/dmが好ましい。塩化第一錫の含有量が30g/dm以上であれば、均一な錫吸着層を形成することができる。また塩化第一錫の含有量が100g/dm以下であると、塩化第一錫中の不可避不純物の量を抑制する。なお、塩化第一錫は、飽和になるまで錫化合物の水溶液に含有させることができる。 Examples of the tin compound include stannous chloride, stannous fluoride, stannous bromide, stannous iodide, and the like. When using stannous chloride, the content of stannous chloride in the aqueous solution of the tin compound is preferably 30 to 100 g / dm 3 . If the content of stannous chloride is 30 g / dm 3 or more, a uniform tin adsorption layer can be formed. If the stannous chloride content is 100 g / dm 3 or less, the amount of inevitable impurities in stannous chloride is suppressed. Note that stannous chloride can be contained in an aqueous solution of a tin compound until saturation.

コア粒子の表面に錫吸着層を形成した後、この錫吸着層に還元剤を含まない無電解めっき液を接触させて、錫と銀の置換反応により、コア粒子の表面に銀置換層を生成し、引き続いて還元剤を無電解銀めっき液に添加して無電解めっきを行うことによりコア粒子の表面に銀被覆層を形成して銀被覆粒子を作製する。無電解銀めっき法としては、(1)錯化剤、還元剤等を含む水溶液中に、表面に銀置換層を形成したコア粒子を浸漬し、銀塩水溶液を滴下する方法、(2)銀塩、錯化剤を含む水溶液中に、表面に銀置換層を形成したコア粒子を浸漬し、還元剤水溶液を滴下する方法、(3)銀塩、錯化剤、還元剤等を含む水溶液に、表面に銀置換層を形成したコア粒子を浸漬し、苛性アルカリ水溶液を滴下する方法が挙げられる。   After a tin adsorption layer is formed on the surface of the core particle, an electroless plating solution containing no reducing agent is brought into contact with the tin adsorption layer, and a silver substitution layer is formed on the surface of the core particle by a substitution reaction of tin and silver. Subsequently, a reducing agent is added to the electroless silver plating solution to perform electroless plating, thereby forming a silver coating layer on the surface of the core particles to produce silver coated particles. The electroless silver plating method includes (1) a method in which core particles having a silver substitution layer formed on the surface are immersed in an aqueous solution containing a complexing agent, a reducing agent, and the like, and (2) silver salt aqueous solution is dropped. A method in which core particles having a silver substitution layer formed on the surface thereof are immersed in an aqueous solution containing a salt and a complexing agent, and a reducing agent aqueous solution is dropped; (3) an aqueous solution containing a silver salt, a complexing agent, a reducing agent, etc. And a method of immersing core particles having a silver substitution layer on the surface and dropping a caustic aqueous solution.

銀塩としては、硝酸銀或いは銀を硝酸に溶解したもの等を用いることができる。錯化剤としては、アンモニア、エチレンジアミン四酢酸、エチレンジアミン四酢酸四ナトリウム、ニトロ三酢酸、トリエチレンテトラアンミン六酢酸、チオ硫酸ナトリウム、コハク酸塩、コハク酸イミド、クエン酸塩又はヨウ化物塩等の塩類を用いることができる。還元剤としては、ホルマリン、ブドウ糖、イミダゾール、ロッシェル塩(酒石酸ナトリウムカリウム)、ヒドラジン及びその誘導体、ヒドロキノン、L−アスコルビン酸又はギ酸等を用いることができる。還元剤としては、還元力の強さから、ホルムアルデヒドが好ましく、少なくともホルムアルデヒドを含む2種以上の還元剤の混合物がより好ましく、ホルムアルデヒドとブドウ糖を含む還元剤の混合物が最も好ましい。   As the silver salt, silver nitrate or silver dissolved in nitric acid can be used. Complexing agents include salts such as ammonia, ethylenediaminetetraacetic acid, tetrasodium ethylenediaminetetraacetic acid, nitrotriacetic acid, triethylenetetraamminehexaacetic acid, sodium thiosulfate, succinate, succinimide, citrate or iodide salt Can be used. As the reducing agent, formalin, glucose, imidazole, Rochelle salt (sodium potassium tartrate), hydrazine and its derivatives, hydroquinone, L-ascorbic acid or formic acid can be used. As the reducing agent, formaldehyde is preferable because of its strong reducing power, a mixture of two or more reducing agents containing at least formaldehyde is more preferable, and a mixture of reducing agent containing formaldehyde and glucose is most preferable.

無電解銀めっき処理工程の前段の工程において、錫吸着層の錫は溶液中の銀イオンと接触することにより電子を放出して溶出し、一方、銀イオンは錫から電子を受け取り、金属としてコア粒子の錫が吸着していた部分に置換析出する。その後、すべての錫が水溶液中に溶解すると錫と銀の置換反応は終了する。引き続いて還元剤を無電解めっき液に添加し、還元剤による還元反応によって、コア粒子の表面に銀の被覆層が形成され、銀被覆粒子が作製される。   In the previous step of the electroless silver plating process, tin in the tin adsorption layer releases and elutes electrons by coming into contact with silver ions in the solution, while silver ions receive electrons from tin and core as metal. Displacement deposits on the portion of the particles where the tin was adsorbed. Thereafter, when all the tin is dissolved in the aqueous solution, the substitution reaction of tin and silver is completed. Subsequently, a reducing agent is added to the electroless plating solution, and a silver coating layer is formed on the surface of the core particles by a reduction reaction with the reducing agent, thereby producing silver-coated particles.

〔導電性樹脂組成物〕
本実施形態の導電性樹脂組成物は、導電性フィラーとしての平均粒径の異なる2種類の銀被覆粒子A及び銀被覆粒子Bと、バインダ樹脂Cとを含む。これらの組成比は、銀被覆粒子Aの質量をWとし、銀被覆粒子Bの質量をWとし、バインダ樹脂Cの質量をWとするとき、W/Wは0.5〜3.0の範囲にあり、(W+W)/Wは3.0〜8.0の範囲にある。上記W/Wの範囲は、上述した両粒子A、Bの平均粒径及び比重の各範囲により決められる。(W+W)/Wが3.0未満である場合、バインダ樹脂が多すぎるために粒子の接触が阻害され、導電性が低下する。また8.0を超える場合、バインダ樹脂が少なすぎ、組成物の基材への塗工性及び密着性に劣る。
[Conductive resin composition]
The conductive resin composition of this embodiment contains two types of silver-coated particles A and silver-coated particles B having different average particle diameters as a conductive filler, and a binder resin C. These compositional ratio of the mass of the silver-coated particles A and W A, the mass of the silver-coated particles B and W B, when the mass of the binder resin C and W C, W A / W B are 0.5 in the range of 3.0, it is in the range of 3.0~8.0 (W a + W B) / W C. The range of W A / W B is determined by the ranges of the average particle diameter and specific gravity of both particles A and B described above. (W A + W B) / If W C is less than 3.0, the contact of the particles is inhibited because the binder resin is too large, conductivity decreases. Moreover, when it exceeds 8.0, there are too few binder resins and it is inferior to the coating property and adhesiveness to the base material of a composition.

〔導電性樹脂組成物の製造方法〕
導電性樹脂組成物に含まれるバインダ樹脂Cとしては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂又はポリイミド樹脂のいずれかである。導電性樹脂組成物は、銀被覆粒子A、銀被覆粒子B及びバインダ樹脂C以外に、硬化剤及び溶剤を含む。
[Method for producing conductive resin composition]
The binder resin C contained in the conductive resin composition is any one of an epoxy resin, a phenol resin, a urethane resin, an acrylic resin, a silicone resin, or a polyimide resin. In addition to the silver-coated particles A, the silver-coated particles B, and the binder resin C, the conductive resin composition contains a curing agent and a solvent.

〔導電性樹脂組成物中の銀被覆粒子の割合〕
導電性樹脂組成物中の銀被覆粒子A及びBの合計した割合は、導電性樹脂組成物100質量%中、70〜90質量%の割合とするのが好ましく、75〜85質量%の割合にするのが更に好ましい。70質量%未満では、導電性樹脂組成物を塗布硬化させて形成される電極又は配線等の抵抗値が上がり、導電性に優れた電極又は配線等を形成することが困難になる。一方、90質量%を超えると、良好な流動性を持つ組成物が得られない傾向がみられることから、印刷性等の面で、良好な電極等を形成しにくくなる。
[Ratio of silver-coated particles in the conductive resin composition]
The total ratio of the silver-coated particles A and B in the conductive resin composition is preferably 70 to 90% by mass, and 75 to 85% by mass in 100% by mass of the conductive resin composition. More preferably. If it is less than 70% by mass, the resistance value of an electrode or wiring formed by applying and curing the conductive resin composition is increased, and it becomes difficult to form an electrode or wiring having excellent conductivity. On the other hand, if it exceeds 90% by mass, a composition having good fluidity tends to be not obtained, and it becomes difficult to form a good electrode in terms of printability.

〔導電性樹脂組成物中のバインダ樹脂〕
導電性樹脂組成物に含ませるバインダ樹脂としてのエポキシ樹脂は、例えばビスフェノール型、ビフェニル型、ビフェニル混合型、ナフタレン型、クレゾールノボラック型、ジシクロペンタジエン型、トリスフェノールエタン型、テトラフェノールエタン型のエポキシ樹脂が挙げられる。上記エポキシ樹脂の硬化剤としては、一般的に用いられるイミダゾール類、第3級アミン類又はフッ化ホウ素を含むルイス酸、或いはその化合物、フェノール樹脂系硬化剤、酸無水物系硬化剤、ジシアンジアミド等の潜在性硬化剤が好適である。イミダゾール類には、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニルイミダゾールイソシアヌル酸付加物等が挙げられる。第3級アミン類には、ピペリジン、ベンジルジアミン、ジエチルアミノプロピルアミン、イソフォロンジアミン、ジアミノジフェニルメタン等が挙げられる。フッ化ホウ素を含むルイス酸には、フッ化ホウ素モノエチルアミン等のフッ化ホウ素のアミン錯体が挙げられる。
[Binder resin in conductive resin composition]
Examples of the epoxy resin as the binder resin to be included in the conductive resin composition include bisphenol type, biphenyl type, biphenyl mixed type, naphthalene type, cresol novolac type, dicyclopentadiene type, trisphenolethane type, tetraphenolethane type epoxy. Resin. Examples of epoxy resin curing agents include commonly used imidazoles, tertiary amines or Lewis acids containing boron fluoride, or compounds thereof, phenol resin curing agents, acid anhydride curing agents, dicyandiamide, and the like. The latent curing agent is preferred. Examples of imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4. -Methyl-5-hydroxymethylimidazole, 2-phenylimidazole isocyanuric acid adduct and the like. Tertiary amines include piperidine, benzyldiamine, diethylaminopropylamine, isophoronediamine, diaminodiphenylmethane, and the like. The Lewis acid containing boron fluoride includes an amine complex of boron fluoride such as boron fluoride monoethylamine.

フェノール系硬化剤には、フェノールノボラック樹脂、パラキシリレンフェノール樹脂、ジシクロペンタジエンフェノール樹脂等が挙げられる。酸無水物系硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等が挙げられる。また、必要に応じて硬化促進剤を添加してもよい。硬化促進剤としては、1−ベンジル−2−メチルイミダゾール等のイミダゾール類及びその塩類、1,8‐ジアザビシクロ[5.4.0]ウンデカ‐7‐エン等の3級アミン及びその塩類、トリフェニルホスフィン等の有機ホスフィン化合物及びその塩類、オクチル酸亜鉛、オクチル酸スズ、アルコキシチタン等の有機金属塩、白金、パラジウム等の貴金属類等が挙げられる。   Examples of the phenolic curing agent include phenol novolac resin, paraxylylene phenol resin, and dicyclopentadiene phenol resin. Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride and the like. Moreover, you may add a hardening accelerator as needed. Curing accelerators include imidazoles such as 1-benzyl-2-methylimidazole and salts thereof, tertiary amines such as 1,8-diazabicyclo [5.4.0] undec-7-ene and salts thereof, triphenyl, and the like. Examples thereof include organic phosphine compounds such as phosphine and salts thereof, organic metal salts such as zinc octylate, tin octylate and alkoxytitanium, and noble metals such as platinum and palladium.

導電性樹脂組成物に含ませるバインダ樹脂としてのフェノール樹脂は、熱硬化性型フェノール樹脂は、熱硬化型であればいかなる構造のものでも差し支えないが、ホルムアルデヒド/フェノールのモル比が1〜2の範囲であることが好ましい。該熱硬化型フェノール樹脂の重量平均分子量は300〜5000であることが好ましく、より好ましくは1000〜4000である。300未満の場合、加熱硬化時に発生する水蒸気が多く膜中にボイドができ易く、充分な膜強度が得られ難い。5000より大の場合は、可溶性が不充分であり、ペースト化が困難となる。本発明に用いる熱硬化型フェノール成分の一部を他のフェノール性水酸基を持つ化合物に置き換えても差し支えない。   The phenol resin as the binder resin to be included in the conductive resin composition may be of any structure as long as the thermosetting phenol resin is a thermosetting type, but the molar ratio of formaldehyde / phenol is 1-2. A range is preferable. The thermosetting phenol resin preferably has a weight average molecular weight of 300 to 5,000, more preferably 1,000 to 4,000. If it is less than 300, the amount of water vapor generated during heat curing is large, and voids are easily formed in the film, and it is difficult to obtain sufficient film strength. If it is greater than 5000, the solubility is insufficient and it becomes difficult to form a paste. A part of the thermosetting phenol component used in the present invention may be replaced with another compound having a phenolic hydroxyl group.

導電性樹脂組成物に含ませるバインダ樹脂としてのウレタン樹脂は、一般に接着用として用いられているものが使用できる。具体的にはポリオール系ウレタン樹脂、ポリエステル系ウレタン樹脂、ポリカプロラクタム系ウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ウレタン樹脂、ウレタンアクリレート樹脂等が挙げることができ、これらを単独又は組み合わせて使用することができる。 また、必要に応じてイソシアネート、ブロックイソシアネート等の硬化剤を添加することができる。   As the urethane resin as the binder resin to be included in the conductive resin composition, those generally used for bonding can be used. Specific examples include polyol-based urethane resins, polyester-based urethane resins, polycaprolactam-based urethane resins, polyether-based urethane resins, polycarbonate-based urethane resins, and urethane acrylate resins. These may be used alone or in combination. Can do. Moreover, hardening | curing agents, such as isocyanate and block isocyanate, can be added as needed.

導電性樹脂組成物に含ませるバインダ樹脂としてのシリコーン樹脂は、一般に接着用として用いられているものならば、付加型及び縮合型のいずれの構造のものも使用可能である。このシリコーン樹脂としては、具体的には各種オルガノポリシロキサン、変性ポリシロキサン、エラストマー変性ポリシロキサン、室温硬化型シリコーンゴム等が挙げることができ、これらを単独又は組み合わせて使用することができる。   As the silicone resin as the binder resin to be included in the conductive resin composition, any structure of addition type or condensation type can be used as long as it is generally used for bonding. Specific examples of the silicone resin include various organopolysiloxanes, modified polysiloxanes, elastomer-modified polysiloxanes, room temperature curable silicone rubbers, and the like, and these can be used alone or in combination.

導電性樹脂組成物に含ませるバインダ樹脂としてのアクリル樹脂は、一般に用いられている熱硬化型、光重合型、溶媒蒸発型のものが使用可能である。例えば、アクリル―メラミド樹脂、ポリメタクリル酸メチル樹脂、アクリルースチレン共重合体、シリコン変性アクリル樹脂、エポキシ変性アクリル樹脂などが挙げられ、これらを単独又は組み合わせて使用することができる。また必要に応じて、イソシアネート等の熱硬化剤、アルキルフェノン系光重合開始剤などを硬化剤として使用できる。   As the acrylic resin as the binder resin to be included in the conductive resin composition, generally used thermosetting, photopolymerization, and solvent evaporation types can be used. For example, acrylic-melamide resin, polymethyl methacrylate resin, acrylic-styrene copolymer, silicon-modified acrylic resin, epoxy-modified acrylic resin and the like can be used, and these can be used alone or in combination. If necessary, a thermosetting agent such as isocyanate, an alkylphenone photopolymerization initiator, or the like can be used as the curing agent.

導電性樹脂組成物に含ませるバインダ樹脂としてのポリイミド樹脂は、一般に用いられているものが使用可能である。例えば、芳香族ポリイミド、脂環式ポリイミド、ポリイミドシロキサン、エポキシ変性ポリイミド、感光性ポリイミド等を挙げることができ、これらを単独又は組み合わせて使用することができる。   Generally used polyimide resin can be used as the binder resin to be included in the conductive resin composition. For example, aromatic polyimide, alicyclic polyimide, polyimide siloxane, epoxy-modified polyimide, photosensitive polyimide and the like can be mentioned, and these can be used alone or in combination.

上述したエポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂又はポリイミド樹脂は、導電性樹脂組成物の経時変化による品質劣化を抑制できると同時に、主鎖に剛直な骨格を持ち、硬化物が耐熱性や耐湿性に優れていることから、形成する電極等の耐久性を向上させることができる。バインダ樹脂の割合が下限値未満では、密着性不良のような不具合が生じる。上限値を超えると、導電性が低下する等の不具合が生じる。   The above-mentioned epoxy resin, phenol resin, urethane resin, acrylic resin, silicone resin or polyimide resin can suppress deterioration in quality due to aging of the conductive resin composition, and at the same time has a rigid skeleton in the main chain and a cured product. Since it is excellent in heat resistance and moisture resistance, durability of an electrode or the like to be formed can be improved. When the ratio of the binder resin is less than the lower limit, problems such as poor adhesion occur. Exceeding the upper limit causes problems such as a decrease in conductivity.

〔導電性樹脂組成物中の溶剤〕
溶剤としては、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコ−ルモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル等のエーテルアルコール系溶剤及びそれらの酢酸エステル系溶剤、エチレングリコール、プロピレングリコール、テルピネオール、ミネラルスピリット、トルエン等の芳香族炭化水素系溶剤、ドデカン等の脂肪族炭化水素系溶剤、ジメチルホルムアミド、N−メチル―2−ピロリドン、ジメチルスルホキシド、ジアセトンアルコール、ジメチルアセトアミド、γ−ブチロラクトン等が挙げられる。これらはバインダ樹脂との相溶性によって選択され、シリコーン樹脂においてはミネラルスピリットやトルエン、ポリイミド樹脂においてはN−メチル2−ピロリドン、フェノール樹脂、ウレタン樹脂、エポキシ樹脂ではエチルカルビトールアセテート、ブチルカルビトールアセテート、α―テルピネオールが特に好ましい。これらの溶媒は単独でも複数種の組み合わせでも用いることができる。
[Solvent in conductive resin composition]
As the solvent, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, Ether alcohol solvents such as dipropylene glycol monobutyl ether and tripropylene glycol monomethyl ether and their acetate solvents, ethylene hydrocarbon, propylene glycol, terpineol, mineral spirits, aromatic hydrocarbon solvents such as toluene, fats such as dodecane, etc. Group hydrocarbon solvents, dimethylformamide, N-methyl-2- Pyrrolidone, dimethyl sulfoxide, diacetone alcohol, dimethylacetamide, .gamma.-butyrolactone. These are selected depending on the compatibility with the binder resin. In the case of silicone resin, mineral spirit and toluene, in the case of polyimide resin, N-methyl 2-pyrrolidone, phenol resin, urethane resin, and epoxy resin, ethyl carbitol acetate and butyl carbitol acetate. Α-terpineol is particularly preferred. These solvents can be used alone or in combination of two or more.

バインダ樹脂及びその混合物に対しては、導電性、密着性、形状保持性を阻害しない範囲で添加物を混合することができる。添加物としては、シランカップリング剤、チタンカップリング剤、銀ナノ粒子、増粘剤、分散剤、難燃剤、消泡剤及び酸化防止剤等が挙げられる。   With respect to the binder resin and the mixture thereof, additives can be mixed as long as the conductivity, adhesion, and shape retention are not impaired. Examples of the additive include a silane coupling agent, a titanium coupling agent, silver nanoparticles, a thickener, a dispersant, a flame retardant, an antifoaming agent, and an antioxidant.

〔導電性樹脂組成物の調製方法〕
導電性樹脂組成物の調製方法は、先ず、好ましくは温度50〜70℃、更に好ましくは60℃の条件で、上記溶剤に上記バインダ樹脂を混合する。このとき、バインダ樹脂の割合は、溶剤100質量部に対して5〜50質量部とするのが好ましく、20〜40質量部とするのが更に好ましい。次に、必要に応じて上記硬化剤を適量混合し、更に上記導電性フィラーを添加して、例えば3本ロールミル又はライカイ機等の混練機を用いて、好ましくは0.1〜1時間混練し、ペースト化することにより導電性樹脂組成物が調製される。このとき、調製される導電性樹脂組成物に適性な粘度及び必要な流動性を持たせるため、また、上述の理由から、導電性樹脂組成物によって形成された塗膜中に占める導電性フィラーが75〜89質量%となるように混合する。また、バインダ樹脂の使用量は、上述の理由から、導電性フィラーとの質量比が上述の割合になるよう調整する。その結果、粘度が好ましくは0.5〜3.0Pa・sに調整される。粘度がこの範囲に調整されることで導電性樹脂組成物の印刷性が向上するとともに、印刷後の印刷パターン形状も良好に保たれる。
[Method for preparing conductive resin composition]
The conductive resin composition is prepared by first mixing the binder resin with the solvent under the conditions of a temperature of preferably 50 to 70 ° C, more preferably 60 ° C. At this time, the ratio of the binder resin is preferably 5 to 50 parts by mass and more preferably 20 to 40 parts by mass with respect to 100 parts by mass of the solvent. Next, if necessary, the curing agent is mixed in an appropriate amount, and the conductive filler is further added. The kneading machine is preferably kneaded for 0.1 to 1 hour, for example, using a kneader such as a three-roll mill or a reiki machine. The conductive resin composition is prepared by making a paste. At this time, in order to give the prepared conductive resin composition suitable viscosity and necessary fluidity, and for the reasons described above, the conductive filler occupies the coating film formed by the conductive resin composition. Mix to 75-89% by mass. Moreover, the usage-amount of binder resin is adjusted so that mass ratio with an electroconductive filler may become the above-mentioned ratio from the reason mentioned above. As a result, the viscosity is preferably adjusted to 0.5 to 3.0 Pa · s. By adjusting the viscosity within this range, the printability of the conductive resin composition is improved and the printed pattern shape after printing is also kept good.

このように調製された導電性樹脂組成物は、例えば基材である4×4cmのアルミナ基板上に塗布され、所定の温度で乾燥、焼成等を行うことにより塗布膜となる。焼成は、例えば、熱風循環炉等の装置を用いて、好ましくは150〜250℃の温度で0.5〜1時間保持することにより行われる。   The conductive resin composition thus prepared is applied onto, for example, a 4 × 4 cm alumina substrate as a base material, and dried at a predetermined temperature, fired, or the like to form a coating film. Firing is performed, for example, by holding at a temperature of 150 to 250 ° C. for 0.5 to 1 hour using an apparatus such as a hot air circulating furnace.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、塩化第一錫15gと、濃度が35%の塩酸15cmを、容量1dmのメスフラスコを用いて水で1dmに希釈(メスアップ)し、30℃に保温した。この水溶液に、母体となるコア粒子として表1に示される種類と平均粒径を有するコア粒子Aを5.0g添加して、1時間撹拌し、その後、これらのコア粒子Aを濾別して水洗することにより前処理を行った。
<Example 1>
First, 15 g of stannous chloride and 15 cm 3 of hydrochloric acid having a concentration of 35% were diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask and kept at 30 ° C. To this aqueous solution, 5.0 g of core particles A having the types and average particle diameters shown in Table 1 as core particles serving as a base are added and stirred for 1 hour, and then these core particles A are filtered and washed with water. The pretreatment was performed.

次に、上記前処理により表面に錫吸着層が形成されたコア粒子Aの表面に、無電解めっきにより銀被覆層を形成した。具体的には、先ず、水2dmに、錯化剤としてエチレンジアミン四酢酸ナトリウム40g、pH調整剤として水酸化ナトリウム20.0g、還元剤としてホルマリン(ホルムアルデヒド濃度37質量%)15cmを添加し、これらを溶解させることにより、錯化剤及び還元剤を含む水溶液を調製した。次に、この水溶液に、上記前処理後のコア粒子Aを浸漬させることによりスラリーを調製した。 Next, a silver coating layer was formed by electroless plating on the surface of the core particle A on which the tin adsorption layer was formed on the surface by the pretreatment. Specifically, first, 40 g of ethylenediaminetetraacetate as a complexing agent, 20.0 g of sodium hydroxide as a pH adjusting agent, and 15 cm 3 of formalin (formaldehyde concentration 37% by mass) as a reducing agent are added to 2 dm 3 of water. By dissolving these, an aqueous solution containing a complexing agent and a reducing agent was prepared. Next, a slurry was prepared by immersing the pretreated core particles A in this aqueous solution.

次いで、硝酸銀30g、25%アンモニア水35cm、水50cmを混合して硝酸銀含有水溶液を調製し、上記スラリーを攪拌しながら、この硝酸銀含有水溶液を滴下した。更に、硝酸銀含有水溶液滴下後のスラリーに、水酸化ナトリウム水溶液を滴下してpHを12に調整し、25℃の温度に保持しながら撹拌することにより、コア粒子Aの表面に銀を析出させた。その後、洗浄、濾過を行い、最後に真空乾燥機を用いて60℃の温度で乾燥させて、銀被覆粒子Aを得た。 Then, silver nitrate 30 g, 25% ammonia water 35 cm 3, water 50 cm 3 were mixed to prepare a silver nitrate-containing aqueous solution, while stirring the slurry, it was added dropwise the silver nitrate-containing aqueous solution. Further, a sodium hydroxide aqueous solution was dropped into the slurry after dropping the silver nitrate-containing aqueous solution to adjust the pH to 12, and the silver was deposited on the surface of the core particles A by stirring while maintaining the temperature at 25 ° C. . Then, washing | cleaning and filtration were performed, and it was made to dry at the temperature of 60 degreeC finally with the vacuum dryer, and the silver coating particle A was obtained.

表1に示される種類と平均粒径を有するコア粒子B 5.0gに対しても、コア粒子Aと同様の操作を別の系にて行い、銀被覆粒子Bを得た。表4に実施例1の銀被覆粒子A及びBの物性を、表5に実施例1の銀被覆粒子A及びBにおける銀の割合(質量%)をそれぞれ示す。   Also for the core particles B 5.0 g having the types and average particle sizes shown in Table 1, the same operation as that for the core particles A was performed in another system to obtain silver-coated particles B. Table 4 shows the physical properties of the silver-coated particles A and B of Example 1, and Table 5 shows the ratio (mass%) of silver in the silver-coated particles A and B of Example 1.

バインダ樹脂として、表2に示されるビスフェノールF型エポキシ樹脂(三菱化学社製 jER807)とビフェニル型エポキシ樹脂(日本化薬社製 NC−3000)の質量比1:1の混合物5.0g、硬化剤としてジシアンジアミド(三菱化学社製 DICY7)0.3g、3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素0.1g、溶剤としてジプロピレングリコールモノブチルエーテル5.0gを泡取り練太郎(シンキー社)を用いて混合し、バインダワニスを調製した。   As a binder resin, 5.0 g of a 1: 1 mass ratio mixture of a bisphenol F type epoxy resin (JER807 manufactured by Mitsubishi Chemical Corporation) and a biphenyl type epoxy resin (NC-3000 manufactured by Nippon Kayaku Co., Ltd.) shown in Table 2, a curing agent Dicyandiamide (DICY7, manufactured by Mitsubishi Chemical Corporation) 0.3 g, 3- (3,4-dichlorophenyl) -1,1-dimethylurea 0.1 g, dipropylene glycol monobutyl ether 5.0 g as a solvent Was used to prepare a binder varnish.

表4に示される物性を有する実施例1の銀被覆粒子A 20.0gと銀被覆粒子B 15.0gを導電性フィラーとしてそれぞれ上記調製したバインダワニスに泡取り練太郎(シンキー社)を用いて混合した。この混合物を、三本ロールミル(EXAKT社)にて混練し、実施例1の導電性樹脂組成物を得た。   Using the above-prepared binder varnish with 20.0 g of silver-coated particles A and 15.0 g of silver-coated particles B of Example 1 having the physical properties shown in Table 4 as conductive fillers, each using foam removal Netaro (Sinky Corporation) Mixed. This mixture was kneaded with a three-roll mill (EXAKT) to obtain a conductive resin composition of Example 1.

<実施例2〜10、比較例1〜12>
銀被覆粒子A及びBは、表1に示される種類のコア粒子A及びBを沈降法により分級することで表1に示される平均粒径とした後、表5に示されたような銀の割合(質量%)となるように硝酸銀、エチレンジアミン四酢酸ナトリウム、水酸化ナトリウム、ホルマリンの量を調整し、それ以外は実施例1と同様にして作製した。得られた銀被覆粒子A及びBを表2、表3に示される種類のバインダ樹脂を、表4に示される配合割合にて実施例1と同様な手法により混練し、実施例2〜10及び比較例1〜12の導電性樹脂組成物を得た。
<Examples 2 to 10 and Comparative Examples 1 to 12>
The silver-coated particles A and B are obtained by classifying the core particles A and B of the type shown in Table 1 by the sedimentation method to obtain the average particle size shown in Table 1, and then the silver particles as shown in Table 5 The amounts of silver nitrate, ethylenediaminetetraacetic acid sodium salt, sodium hydroxide, and formalin were adjusted so that the ratio (mass%) was obtained, and the other components were produced in the same manner as in Example 1. The obtained silver-coated particles A and B were kneaded with the binder resins of the types shown in Tables 2 and 3 at the blending ratios shown in Table 4 in the same manner as in Example 1, and Examples 2 to 10 and The conductive resin composition of Comparative Examples 1-12 was obtained.

Figure 2017059334
Figure 2017059334

Figure 2017059334
Figure 2017059334

Figure 2017059334
Figure 2017059334

Figure 2017059334
Figure 2017059334

Figure 2017059334
Figure 2017059334

<比較試験及び評価>
実施例1〜10及び比較例1〜12で得られた導電性樹脂組成物について、塗布時の印刷性と、塗布した後の乾燥前の形状保持性と、塗膜にしたときの導電性(体積抵抗率)とを、以下に示す方法でそれぞれ評価した。これらの結果を表5に示す。
<Comparison test and evaluation>
About the conductive resin composition obtained in Examples 1-10 and Comparative Examples 1-12, the printability at the time of application | coating, the shape retainability before drying after apply | coating, and the electroconductivity when it was used as a coating film ( The volume resistivity was evaluated by the methods shown below. These results are shown in Table 5.

(1)塗布時の印刷性
実施例1〜10及び比較例1〜12で得られた導電性樹脂組成物をスクリーン印刷機にて、250メッシュのスクリーン版を用いてL/S(ライン・アンド・スペース)=300μmの櫛形配線のパターンをガラス基板上に印刷した。印刷したパターンをレーザー顕微鏡(キーエンス社)にて20倍の対物レンズを用いて観察、測定し、印刷時のにじみ、かすれ等の外観観察及び表面粗さ(Ra値)を測定した。にじみ、かすれ等がなくかつRa値が10μm未満である場合を「良好」とし、にじみ、かすれ等があるか、又はRa値が10μm以上のいずれかの場合を「不良」とした。
(1) Printability at the time of application The conductive resin compositions obtained in Examples 1 to 10 and Comparative Examples 1 to 12 were subjected to L / S (line and line) using a 250 mesh screen plate with a screen printer. -Space) = 300 μm comb-shaped wiring pattern was printed on a glass substrate. The printed pattern was observed and measured with a 20 × objective lens with a laser microscope (Keyence), and appearance observation and surface roughness (Ra value) such as bleeding and blurring during printing were measured. The case where there was no blur or blur and the Ra value was less than 10 μm was judged as “good”, and the case where there was blur, blur or the like or the Ra value was 10 μm or more was judged as “bad”.

(2)塗布した後の乾燥前の形状保持性
実施例1〜10及び比較例1〜12で得られた導電性樹脂組成物をスクリーン印刷機にて、250メッシュのスクリーン版を用いてL/S=300μmの櫛形配線10本のパターンをガラス基板上に10セット印刷した。このうち5セットは印刷直後5分以内に焼成炉にて大気雰囲気下、150℃で1時間焼成炉を用いて揮発成分を乾燥及びバインダ樹脂を硬化させ、導電性塗膜を得た。残りの5セットはデシケータ内部で1時間静置後、同様の条件で揮発成分を乾燥及びバインダ樹脂を硬化させ、導電性塗膜を得た。導電性塗膜のうち櫛部の線幅をレーザー顕微鏡(キーエンス社)にて20倍の対物レンズを用いて測定した。各測定における10本の櫛形配線5セットの平均値を算出し、形状崩れによる線幅の広がりを比較した。静置後の線幅が静置なしの線幅の1.05倍未満を「良好」とし、1.05倍以上を「不良」とした。
(2) Shape retention before drying after coating The conductive resin compositions obtained in Examples 1 to 10 and Comparative Examples 1 to 12 were screened using a 250-mesh screen slab. Ten sets of 10 patterns of S = 300 μm comb wiring were printed on a glass substrate. Of these, 5 sets were dried within 5 minutes immediately after printing in an air atmosphere in a baking furnace at 150 ° C. for 1 hour using a baking furnace to dry the volatile components and cure the binder resin to obtain a conductive coating film. The remaining 5 sets were allowed to stand inside the desiccator for 1 hour, and then the volatile components were dried and the binder resin was cured under the same conditions to obtain a conductive coating film. The line width of the comb portion of the conductive coating film was measured with a laser microscope (Keyence) using a 20 × objective lens. The average value of 10 sets of 10 comb-shaped wirings in each measurement was calculated, and the line width expansion due to shape collapse was compared. The line width after standing was less than 1.05 times the line width without standing, and “good” and 1.05 or more times “bad”.

(3) 塗膜にしたときの導電性(体積抵抗率)
実施例1〜10及び比較例1〜12で得られた導電性樹脂組成物をスクリーン印刷機にて10×10mmの□形状のパターン状にガラス基板に印刷し、大気雰囲気下、150℃で1時間焼成炉を用いて揮発成分を乾燥しかつバインダ樹脂を硬化させ、導電性塗膜を得た。この塗膜の表面抵抗をロレスタ抵抗計にて測定し、更にレーザー顕微鏡で求めた導電性塗膜の膜厚から体積抵抗率を算出した。体積抵抗率が1.0×10−3Ω・cm未満の場合を導電性ありと判断し、1.0×10−3Ω・cm以上の場合を導電性なしと判断した。
(3) Conductivity when used as a coating (volume resistivity)
The conductive resin compositions obtained in Examples 1 to 10 and Comparative Examples 1 to 12 were printed on a glass substrate in a 10 × 10 mm square pattern using a screen printing machine, and 1 at 150 ° C. in an air atmosphere. The volatile components were dried using a time firing furnace and the binder resin was cured to obtain a conductive coating film. The surface resistance of the coating film was measured with a Loresta resistance meter, and the volume resistivity was calculated from the film thickness of the conductive coating film obtained with a laser microscope. Volume resistivity is determined that there is conductivity of less than 1.0 × 10 -3 Ω · cm, and determine when more than 1.0 × 10 -3 Ω · cm and no conductive.

表4及び表5から明らかなように、適切な銀被覆粒子の平均粒径比、CV値、比重、混合比とした実施例1〜10においては、印刷性、形状保持性及び体積抵抗率に優れていた。それに対して、銀被覆粒子を単一種類しか混合しなかった比較例1及び2に関しては、チクソトロピック性の不足により印刷性の低下が見られ、また塗膜中に生じたボイドにより十分な体積抵抗率が得られなかった。銀被覆粒子のCV値が15%より大きくなった比較例3及び4に関しては、塗膜中の銀被覆粒子が十分に充填されず、ボイドが生じたことにより十分な体積抵抗率が得られなかった。銀被覆粒子Aの比重が2.0を下回った比較例5に関しては、もう一方の粒子との比重バランスの差により形状保持性が低下した。銀被覆粒子Bの比重が6.3を上回った比較例6に関しては、もう一方の粒子との比重バランスが崩れることにより印刷性、形状保持性及び体積抵抗率が低下した。銀被覆粒子の平均粒径比が1.2〜5.0の範囲外となった比較例7,8に関しては、チクソトロピック性の不足により印刷性の低下が見られ、また塗膜中に生じたボイドにより十分な体積抵抗率が得られなかった。   As is clear from Tables 4 and 5, in Examples 1 to 10 in which the average particle size ratio, CV value, specific gravity, and mixing ratio of appropriate silver-coated particles were used, the printability, shape retention, and volume resistivity were improved. It was excellent. On the other hand, in Comparative Examples 1 and 2 in which only a single type of silver-coated particles was mixed, printability was deteriorated due to insufficient thixotropic property, and a sufficient volume due to voids generated in the coating film. The resistivity was not obtained. With respect to Comparative Examples 3 and 4 in which the CV value of the silver-coated particles was greater than 15%, the silver-coated particles in the coating film were not sufficiently filled and sufficient volume resistivity could not be obtained due to the formation of voids. It was. With respect to Comparative Example 5 in which the specific gravity of the silver-coated particles A was less than 2.0, the shape retention decreased due to the difference in the specific gravity balance with the other particles. Regarding Comparative Example 6 in which the specific gravity of the silver-coated particles B exceeded 6.3, the printability, shape retention, and volume resistivity were lowered due to the loss of the specific gravity balance with the other particles. Regarding Comparative Examples 7 and 8 in which the average particle size ratio of the silver-coated particles was out of the range of 1.2 to 5.0, the printability was deteriorated due to insufficient thixotropic property, and occurred in the coating film. A sufficient volume resistivity could not be obtained due to the voids.

樹脂組成物中の銀被覆粒子AとBの質量比が0.5〜3.0の範囲外となった比較例9、10に関しては、塗膜中に生じたボイドにより十分な体積抵抗率が得られなかった。樹脂組成物中の銀被覆粒子の総質量とバインダ樹脂の質量の比が8.0を上回った比較例11に関しては、銀被覆粒子同士の接触が不十分であることにより十分な体積抵抗率が得られなかった。樹脂組成物中の銀被覆粒子の総質量とバインダ樹脂の質量の比が3.0を下回った比較例12に関しては、バインダ分の不足により樹脂組成物の流動性、塗膜の接着性が低下し、十分な印刷性、形状保持性及び体積抵抗率が得られなかった。   Regarding Comparative Examples 9 and 10 in which the mass ratio of the silver-coated particles A and B in the resin composition was outside the range of 0.5 to 3.0, a sufficient volume resistivity was obtained due to the voids generated in the coating film. It was not obtained. With respect to Comparative Example 11 in which the ratio of the total mass of silver-coated particles in the resin composition to the mass of the binder resin exceeded 8.0, sufficient volume resistivity was obtained due to insufficient contact between the silver-coated particles. It was not obtained. Regarding Comparative Example 12 in which the ratio of the total mass of the silver-coated particles in the resin composition to the mass of the binder resin was less than 3.0, the fluidity of the resin composition and the adhesiveness of the coating film were reduced due to insufficient binder content. However, sufficient printability, shape retention and volume resistivity were not obtained.

本発明の導電性樹脂組成物は、ペースト状、フィルム状、インク状の導電性接着剤、異方性又は等方性の導電性フィルム及び導電性スペーサに利用することができる。   The conductive resin composition of the present invention can be used for paste-like, film-like, and ink-like conductive adhesives, anisotropic or isotropic conductive films, and conductive spacers.

Claims (2)

導電性フィラーとしての平均粒径の異なる2種類の銀被覆粒子A及び銀被覆粒子Bと、バインダ樹脂Cとを含み、
前記銀被覆粒子Aの粒径の変動係数(CV)及び前記銀被覆粒子Bの粒径の変動係数(CV)がともに15%以下であり、
前記銀被覆粒子Aの比重(d)及び前記銀被覆粒子Bの比重(d)がそれぞれ2.0〜6.0の範囲内にあり、
前記銀被覆粒子Aの平均粒径(D)と前記銀被覆粒子Bの平均粒径(D)の比(D/D)が1.2〜5.0であり、
前記銀被覆粒子Aの質量(W)と前記銀被覆粒子Bの質量(W)の比(W/W)が0.5〜3.0であり、
前記銀被覆粒子A及び前記銀被覆粒子Bの総質量(W+W)と前記バインダ樹脂Cの質量(W)の比((W+W)/W)が3.0〜8.0である導電性樹脂組成物。
Including two kinds of silver-coated particles A and silver-coated particles B having different average particle diameters as a conductive filler, and a binder resin C;
The coefficient of variation (CV A ) of the particle diameter of the silver-coated particles A and the coefficient of variation (CV B ) of the particle diameter of the silver-coated particles B are both 15% or less,
The specific gravity (d A ) of the silver-coated particles A and the specific gravity (d B ) of the silver-coated particles B are in the range of 2.0 to 6.0, respectively.
The ratio (D A / D B ) of the average particle size (D A ) of the silver-coated particles A and the average particle size (D B ) of the silver-coated particles B is 1.2 to 5.0,
The ratio (W A / W B ) of the mass (W A ) of the silver-coated particles A and the mass (W B ) of the silver-coated particles B is 0.5 to 3.0,
The ratio ((W A + W B ) / W C ) of the total mass (W A + W B ) of the silver-coated particles A and the silver-coated particles B to the mass (W C ) of the binder resin C is 3.0 to 8 Conductive resin composition which is 0.0.
請求項1記載の導電性樹脂組成物を基材に塗布して導電性塗膜を形成する方法。   A method for forming a conductive coating film by applying the conductive resin composition according to claim 1 to a substrate.
JP2015181396A 2015-09-15 2015-09-15 Conductive resin composition Active JP6512048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015181396A JP6512048B2 (en) 2015-09-15 2015-09-15 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181396A JP6512048B2 (en) 2015-09-15 2015-09-15 Conductive resin composition

Publications (2)

Publication Number Publication Date
JP2017059334A true JP2017059334A (en) 2017-03-23
JP6512048B2 JP6512048B2 (en) 2019-05-15

Family

ID=58391654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181396A Active JP6512048B2 (en) 2015-09-15 2015-09-15 Conductive resin composition

Country Status (1)

Country Link
JP (1) JP6512048B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115001A (en) * 2000-10-10 2002-04-19 Mitsui Mining & Smelting Co Ltd Fine copper powder for forming circuit
JP2009016201A (en) * 2007-07-05 2009-01-22 Dowa Electronics Materials Co Ltd Silver paste
JP2015049973A (en) * 2013-08-30 2015-03-16 新日鉄住金化学株式会社 Conductive paste and method for manufacturing composite nickel fine particle used therefor
JP2015127392A (en) * 2013-11-27 2015-07-09 日東電工株式会社 Conductive adhesive tape, electronic component and adhesive agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115001A (en) * 2000-10-10 2002-04-19 Mitsui Mining & Smelting Co Ltd Fine copper powder for forming circuit
JP2009016201A (en) * 2007-07-05 2009-01-22 Dowa Electronics Materials Co Ltd Silver paste
JP2015049973A (en) * 2013-08-30 2015-03-16 新日鉄住金化学株式会社 Conductive paste and method for manufacturing composite nickel fine particle used therefor
JP2015127392A (en) * 2013-11-27 2015-07-09 日東電工株式会社 Conductive adhesive tape, electronic component and adhesive agent

Also Published As

Publication number Publication date
JP6512048B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
US10510462B2 (en) Silver-coated resin particles, method for manufacturing same, and electroconductive paste using same
JP4935592B2 (en) Thermosetting conductive paste
TWI664223B (en) Resin composition for electrode formation, wafer-type electronic component, and manufacturing method thereof
JP2010044967A (en) Conductive adhesive and led substrate using it
TWI712661B (en) Conductive paste and conductive film formed by using it
JP6235952B2 (en) Conductive paste
EP3369781B1 (en) Resin composition, bonded body and semiconductor device
KR102498131B1 (en) Silver-coated silicone rubber particles, conductive paste containing the particles, and method for producing a conductive film using the conductive paste
WO2017073393A1 (en) Resin composition, bonded body and semiconductor device
JP6488156B2 (en) Conductive paste
JP2018002916A (en) Conductive resin composition
JP6512048B2 (en) Conductive resin composition
JP6852846B2 (en) Electrode paste and laminated ceramic electronic components
TWI631160B (en) Conductive paste and substrate with conductive film
JP5855420B2 (en) Conductive resin composition and printed wiring board using conductive resin composition
TW202028379A (en) Resin composition for electrode formation, chip type electronic component and manufacturing method thereof
JP3547083B2 (en) Thermosetting conductive paste
JP2017155287A (en) Silver-coated hollow particle, conductive paste, and conductive film formed by using conductive paste
JP2018106907A (en) Paste for electrode, and multilayer ceramic electronic component
JP2019206615A (en) Metallic paste and end surface forming electrode paste
WO2015118827A1 (en) Paste composition for filling through hole and printed wiring board using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6512048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150