JP2000265289A - Device and method for producing hypochlorite - Google Patents

Device and method for producing hypochlorite

Info

Publication number
JP2000265289A
JP2000265289A JP11067918A JP6791899A JP2000265289A JP 2000265289 A JP2000265289 A JP 2000265289A JP 11067918 A JP11067918 A JP 11067918A JP 6791899 A JP6791899 A JP 6791899A JP 2000265289 A JP2000265289 A JP 2000265289A
Authority
JP
Japan
Prior art keywords
hypochlorite
water
salt
flow rate
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11067918A
Other languages
Japanese (ja)
Other versions
JP3818619B2 (en
Inventor
Yoshitsugu Shinomiya
吉継 四宮
Koji Miyoshi
弘二 三好
Kazuo Ariga
一夫 有家
Shigeki Sudo
茂樹 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP06791899A priority Critical patent/JP3818619B2/en
Publication of JP2000265289A publication Critical patent/JP2000265289A/en
Application granted granted Critical
Publication of JP3818619B2 publication Critical patent/JP3818619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for producing hypochlorite of high concn. in which the effective utilization of the salt is possible. SOLUTION: A hypochlorite reaction cell 20 is provided integrally with an electrolytic cell 2 divided into a cathode chamber 3 and an anode chamber 5 by a cation exchange membrane 1, a space between the hypochlorite reaction cell and at least either the anode chamber or the cathode chamber is provided with introducing means 19 and 21 introducing at least either a product in the anode chamber or a product in the cathode chamber into the hypochlorite reaction cell, the feed path of salt water to the anode chamber is provided with a salt concn. measuring means 13, a flow rate measuring means 14 and a salt flow rate controlling means 18 controlling the flow rate based on the change of the salt concn. and the flow rate, and the feed path of water to the cathode chamber is provided with a water quantity measuring means 17, a feed water pump 16 and a water feed controlling means 18 based on the measured value by the water quantity measuring means and the concn. and feeding quantity of salt water to the anode chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は次亜塩素酸塩の電解
による製造装置に関し、とくに高濃度の次亜塩素酸塩を
効率的に製造する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing hypochlorite by electrolysis, and more particularly to an apparatus for efficiently producing hypochlorite at a high concentration.

【0002】[0002]

【従来の技術】次亜塩素酸ナトリウムに代表される次亜
塩素酸塩類は、漂自剤、殺菌剤として、上下水の処理、
排水の処理から家庭の台所用あるいは洗濯用等の各方面
で用いられている。次亜塩素酸塩の製造は、食塩水等の
アルカリ金属塩化物の水溶液の電気分解によって得られ
たアルカリ金属水酸化物と塩素とを反応させて製造する
方法、あるいはアルカリ金属塩化物を無隔膜電解槽にお
いて電気分解を行って、電解槽中で次亜塩素酸塩を直接
製造する方法で行われている。アルカリ金属水酸化物と
塩素を反応させる方法は、高濃度の次亜塩素酸塩を得る
ことができるので、次亜塩素酸塩を販売する目的で製造
する場合にはこの方法で行われているが、アルカリ金属
水酸化物と塩素を製造する電解設備が必要となるので、
食塩水の電解工場において水酸化ナトリウムあるいは塩
素の製造に付随して大規模に行われている。
2. Description of the Related Art Hypochlorites represented by sodium hypochlorite are used as a bleaching agent and a disinfectant, for treating water and sewage,
It is used in various fields, from wastewater treatment to home kitchen or laundry. Hypochlorite is produced by reacting an alkali metal hydroxide obtained by electrolysis of an aqueous solution of an alkali metal chloride such as a saline solution with chlorine, or a method in which an alkali metal chloride is separated into a diaphragm. It is performed by a method of performing electrolysis in an electrolytic cell and directly producing hypochlorite in the electrolytic cell. The method of reacting an alkali metal hydroxide with chlorine can produce a high concentration of hypochlorite, so this method is used when manufacturing for the purpose of selling hypochlorite. However, since an electrolytic facility for producing alkali metal hydroxide and chlorine is required,
It is carried out on a large scale at the electrolytic plant of salt water accompanying the production of sodium hydroxide or chlorine.

【0003】また、食塩などの水溶液を無隔膜電解槽に
おいて電気分解する方法も知られている。この方法で
は、生成する次亜塩素酸塩の濃度は比較的低濃度である
が、水の浄化や殺菌に直接利用することが可能な濃度の
ものを製造することができ、製造設備も水酸化アルカリ
と塩素を製造する電解設備に比べて簡単であるので、次
亜塩素酸塩を必要とする現場において製造されている。
しかも、電気分解による次亜塩素酸塩の製造は、次亜塩
素酸塩の量に応じて通電する電流を調整することによっ
て製造量を調製することが可能であり、得られるものは
殺菌などに有効な塩素分がすべて水中に溶解しているの
で利用が容易であるという特徴を有している。
There is also known a method of electrolyzing an aqueous solution such as salt in a non-diaphragm electrolytic cell. According to this method, the concentration of hypochlorite produced is relatively low, but it can be produced at a concentration that can be directly used for water purification and sterilization. It is manufactured on site where hypochlorite is required, as it is simpler than the electrolytic equipment that produces alkali and chlorine.
Moreover, in the production of hypochlorite by electrolysis, it is possible to adjust the amount of production by adjusting the current supplied according to the amount of hypochlorite, and the resulting product is used for sterilization, etc. It has the characteristic that it is easy to use because all the effective chlorine is dissolved in water.

【0004】したがって、これまで液体塩素の貯蔵設備
を設け、発生した気体状の塩素を溶解したり、あるいは
濃厚な次亜塩素酸塩を貯蔵し希釈して使用する、塩素あ
るいは次亜塩素酸塩の使用設備においても、塩素等の貯
蔵や運搬の必要がない現場での電気分解による次亜塩素
酸の製造が行われるようになっている。また、食塩など
の塩化アルカリの水溶液を、無隔膜電解槽を使用して電
気分解を行う方法の場合には、電解液として供給する塩
水は濃度が2%ないし4%程度のものである。食塩濃度
が高いほど陽極での塩素の発生効率は高いが、電気分解
で製造した次亜塩素酸を含む塩水をそのまま水処理等に
使用するために濃厚な塩水を使用すれば、高濃度の塩水
が被処理水に混合するために、好ましくないので、通常
は海水の食塩濃度程度のものを使用している。電気分解
では、陽極側で生じた塩素と陰極側で生じたアルカリと
の反応によって次亜塩素酸塩を生じるが、次亜塩素塩は
電解槽中において更に電気分解を続けていると塩素酸塩
へと変化する。したがって、比較的濃度が低い塩水を原
料として無隔膜電解槽において高濃度の次亜塩素酸塩を
製造しようとして、電解液の滞留時間を長くしても塩素
酸塩の生成量が多くなるのみで、次亜塩素酸塩の生成効
率は低下する。
Therefore, a storage facility for liquid chlorine has been provided so far to dissolve generated gaseous chlorine or to store and dilute concentrated hypochlorite for use in chlorine or hypochlorite. In the use equipment, hypochlorous acid is produced by electrolysis at the site where storage and transportation of chlorine and the like are not necessary. Further, in the case of electrolyzing an aqueous solution of an alkali chloride such as salt using a non-diaphragm electrolytic cell, the concentration of the salt water supplied as the electrolytic solution is about 2% to 4%. The higher the salt concentration, the higher the chlorine generation efficiency at the anode, but if the concentrated salt water used for water treatment, etc., containing hypochlorous acid produced by electrolysis is used as it is, high salt water Is not preferable because it is mixed with the water to be treated. In the electrolysis, hypochlorite is generated by the reaction between chlorine generated on the anode side and alkali generated on the cathode side. Changes to Therefore, in order to produce high concentration hypochlorite in a non-diaphragm electrolytic cell using relatively low concentration of salt water as a raw material, even if the residence time of the electrolytic solution is increased, only the amount of chlorate generated increases. In addition, the hypochlorite generation efficiency is reduced.

【0005】そこで、高電流効率で次亜塩素酸塩を製造
するためには、単位電解槽での電気分解率を高くせず
に、陽極と陰極を備えた複数の電解槽を仕切板を介して
多段式に設置した電解槽が提案されている(例えば、特
公昭52−28104号公報、特公昭61−44956
号公報)。ところが、このような方法において得られる
次亜塩素酸の濃度は十分なものではなく、高効率で高濃
度の次亜塩素酸塩を電気分解で製造する方法が求められ
ていた。そこで、本出願人は、陽イオン交換膜によって
区画した電解槽の陽極室において得られる濃度の低下し
たアルカリ金属塩化物水溶液を陰極室に加えて得られた
次亜塩素酸塩を含有したアルカリ水溶液と陽極室で得ら
れた塩素を反応させることによって高濃度の次亜塩素酸
塩水溶液を得る方法を特開平5−179475号公報と
して提案しているが、この方法では、特定化学物質とし
て安全上の規制がある塩素を発生させて陰極液と反応さ
せるために、塩素製造設備と同様に取り扱う必要があ
り、塩素が機器の配管等から漏洩しないように保守には
細心の注意を払う必要があった。本出願人は、食塩水の
イオン交換膜電解槽による電気分解で得られる水酸化ナ
トリウムと塩素を用いた場合と同様の高濃度の次亜塩素
酸塩の製造が可能であり、しかも塩素の漏洩の心配がな
い次亜塩素酸塩の製造装置を特開平10−121280
号公報において提案している。
Therefore, in order to produce hypochlorite with high current efficiency, a plurality of electrolytic cells having an anode and a cathode are interposed via a partition plate without increasing the electrolysis rate in a unit electrolytic cell. There have been proposed electrolyzers installed in multiple stages (for example, Japanese Patent Publication No. 52-28104, Japanese Patent Publication No. 61-44956).
No.). However, the concentration of hypochlorous acid obtained by such a method is not sufficient, and there has been a demand for a method for producing a highly efficient and high-concentration hypochlorite by electrolysis. Accordingly, the present applicant has developed a hypochlorite-containing alkaline aqueous solution obtained by adding a reduced-concentration aqueous alkali metal chloride solution obtained in an anode chamber of an electrolytic cell partitioned by a cation exchange membrane to a cathode chamber. Japanese Patent Application Laid-Open No. 5-179475 proposes a method for obtaining a high-concentration aqueous solution of hypochlorite by reacting the obtained chlorine in the anode chamber with chlorine. In order to generate chlorine that is subject to regulations and to react with the catholyte, it must be handled in the same manner as chlorine production equipment, and it is necessary to pay close attention to maintenance so that chlorine does not leak from the piping of equipment. Was. The applicant of the present invention is capable of producing high-concentration hypochlorite as in the case of using sodium hydroxide and chlorine obtained by electrolysis using a saline ion-exchange membrane electrolytic cell, and furthermore, chlorine leakage. Of Japanese Patent Application Laid-Open No.
In the publication.

【0006】[0006]

【発明が解決しようとする課題】次亜塩素酸塩の製造装
置においては、原料塩として溶解のみによって電解用食
塩水として使用可能な比較的高純度の原料塩が用いられ
ているので、電解槽の陽極室には食塩を溶解した食塩水
を直接に供給し、陽極液室からは塩素とともに食塩を含
んだ陽極液が排出されている。次亜塩素酸塩の生成量に
応じた適正な濃度以上の食塩水が供給されたとしても、
過剰な食塩水は利用されることなく排出されることとな
る。そこで、適正な濃度の食塩水の適量を供給すること
が必要となる。一定濃度の食塩水を、適量供給するため
には、塩水濃度に応じた塩水流量を決定し、塩水ポンプ
の吐出量を調整することが行われている。ところが、食
塩水の温度の変動によって、食塩水中への食塩の溶解不
足から塩水濃度が低下しても、充分な量の次亜塩素酸塩
が得られるように、あるいは多少の流量の変動があって
も充分な量の食塩が供給されるように食塩水の流量を大
きくすることが行われている。ところが、利用されない
食塩はそのまま排出されることとなり、食塩の利用率を
低下させる要因となっていた。本発明は、次亜塩素酸塩
の製造方法において、食塩の効率的な利用を可能とする
製造方法を提供することを課題とするものである。
In the apparatus for producing hypochlorite, a relatively high-purity raw material salt that can be used as a salt solution for electrolysis only by dissolving is used as a raw material salt, so that an electrolytic cell is used. A saline solution in which salt is dissolved is directly supplied to the anode chamber, and an anolyte containing salt together with chlorine is discharged from the anolyte chamber. Even if saline is supplied at an appropriate concentration or higher depending on the amount of hypochlorite produced,
Excess saline will be discharged without being used. Therefore, it is necessary to supply an appropriate amount of saline having an appropriate concentration. In order to supply an appropriate amount of a saline solution having a constant concentration, a salt water flow rate is determined according to the salt water concentration, and the discharge amount of the salt water pump is adjusted. However, even if the temperature of the saline solution fluctuates and the concentration of the saline solution decreases due to insufficient dissolution of the saline solution in the saline solution, a sufficient amount of hypochlorite is obtained, or there is some variation in the flow rate. However, the flow rate of the saline solution is increased so that a sufficient amount of the saline solution is supplied. However, the unused salt is discharged as it is, which is a factor that lowers the utilization rate of the salt. An object of the present invention is to provide a method for producing hypochlorite, which enables efficient utilization of salt.

【0007】[0007]

【課題を解決するための手段】本発明は、塩水の電気分
解による次亜塩素酸塩の製造装置において、陽イオン交
換膜によって陰極室と陽極室に区画した電解槽と一体に
次亜塩素酸塩反応槽を設け、次亜塩素酸塩反応槽と、陽
極室あるいは陰極室の少なくともいずれか一方との間に
は、陽極室生成物あるいは陰極室生成物の少なくともい
ずれか一方を次亜塩素酸塩反応槽へ導入する導入手段、
陽極室への塩水の供給路には、食塩濃度測定手段、流量
測定手段、食塩濃度および流量の変化に基づき流量を調
整する食塩流量制御手段を有し、陰極室への水の供給路
には、水量測定手段、給水ポンプ、水量測定手段の測定
値と陽極室への塩水の濃度および供給量に基づく水供給
制御手段を有する次亜塩素酸塩の製造装置である。
SUMMARY OF THE INVENTION The present invention relates to an apparatus for producing hypochlorite by electrolysis of salt water, wherein hypochlorite is integrated with an electrolytic cell partitioned into a cathode chamber and an anode chamber by a cation exchange membrane. A salt reactor is provided, and between the hypochlorite reactor and at least one of the anode compartment and the cathode compartment, at least one of the anode compartment product and the cathode compartment product is hypochlorous acid. Introduction means for introducing into the salt reaction tank,
The salt water supply path to the anode chamber has a salt concentration measuring means, a flow rate measuring means, and a salt flow rate control means for adjusting a flow rate based on a change in the salt concentration and the flow rate. This is a hypochlorite production apparatus having a water supply control means based on water flow rate measurement means, a water supply pump, a measured value of the water flow rate measurement means, and a concentration and supply amount of salt water to the anode chamber.

【0008】また、塩水の電気分解による次亜塩素酸塩
の製造方法において、陽イオン交換膜によって陰極室と
陽極室に区画した電解槽と一体に次亜塩素酸塩反応槽を
設け、次亜塩素酸塩反応槽と、陽極室あるいは陰極室の
少なくともいずれか一方との間には、陽極室生成物ある
いは陰極室生成物の少なくともいずれか一方を次亜塩素
酸塩反応槽へ導入する導入手段を設けた電解槽の陽極室
への塩水の供給量を、食塩濃度、および流量に基づき調
整し、陰極室への水の供給量を水量測定手段の測定値と
陽極室への塩水の濃度および供給量に基づいて調整する
次亜塩素酸塩の製造方法である。
In a method for producing hypochlorite by electrolysis of salt water, a hypochlorite reaction tank is provided integrally with an electrolytic cell partitioned into a cathode chamber and an anode chamber by a cation exchange membrane. Introducing means for introducing at least one of the anode compartment product and the cathode compartment product into the hypochlorite reactor between the chlorate reactor and at least one of the anode compartment and the cathode compartment. The supply amount of salt water to the anode compartment of the electrolytic cell provided with is adjusted based on the salt concentration and the flow rate, and the supply amount of water to the cathode compartment is measured by the water amount measuring means and the concentration of salt water to the anode compartment and This is a method for producing hypochlorite which is adjusted based on the supply amount.

【0009】[0009]

【発明の実施の形態】本発明の次亜塩素酸塩の製造装置
および製造方法は、陽イオン交換膜によって陰極室と陽
極室に区画したイオン交換膜電解槽と一体に次亜塩素酸
塩反応槽を設けるとともに、イオン交換膜電解槽で生成
する塩素を電解槽外に取り出すことなく、陰極室で生成
した水酸化アルカリ水溶液と反応させ、次亜塩素酸塩を
製造する装置において、陽極室に供給する塩水の濃度を
測定し、濃度に応じて流量を調整するとともに、陰極室
に供給する水の量を調整することによって製造装置にお
いて必要とする適正な量の塩水を供給することができる
ので、過剰に塩水を供給して塩水を無駄にすることを防
ぐことができるという特徴を有している。
BEST MODE FOR CARRYING OUT THE INVENTION The apparatus and method for producing hypochlorite according to the present invention are characterized in that the hypochlorite reaction is integrated with an ion exchange membrane electrolytic cell partitioned into a cathode chamber and an anode chamber by a cation exchange membrane. A tank is provided, and the chlorine generated in the ion exchange membrane electrolytic cell is reacted with the aqueous alkali hydroxide solution generated in the cathode chamber without taking out the chlorine from the electrolytic cell. By measuring the concentration of the salt water to be supplied, adjusting the flow rate according to the concentration, and adjusting the amount of water to be supplied to the cathode chamber, the appropriate amount of salt water required in the manufacturing apparatus can be supplied. It has a feature that it is possible to prevent excessive supply of salt water and waste of salt water.

【0010】以下に、本発明を図面を参照して説明す
る。図1は、本発明の次亜塩素酸塩の製造装置の一実施
例を示す図である。陽イオン交換膜1によって区画され
たイオン交換膜電解槽2の陰極室3にはニッケル、ステ
ンレス、チタンあるいはこれらの金属に水素過電圧を低
下させる陰極活性物質の被覆を形成した陰極4が設けら
れており、陽極室5には、チタン等の金属基体上に白金
族の金属の酸化物を含む電極触媒物質の被覆が形成され
た陽極6が設けられている。塩水および水は、電解液調
製装置Aによって濃度、流量が調製されて、それぞれ陽
極液供給路7から、また水は水供給路8から供給され
る。食塩9を水10によって溶解して食塩水11を調製
し、食塩水を食塩水ポンプ12によって食塩水濃度計1
3および流量計14を介して陽極室5へ供給する。ま
た、水15を給水ポンプ16によって、流量計17を介
して陰極室3へ供給する。
The present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the apparatus for producing hypochlorite of the present invention. The cathode chamber 3 of the ion exchange membrane electrolytic cell 2 partitioned by the cation exchange membrane 1 is provided with a cathode 4 in which nickel, stainless steel, titanium or a metal of these metals is coated with a cathode active substance for reducing hydrogen overvoltage. The anode chamber 5 is provided with an anode 6 in which a metal base such as titanium is coated with an electrode catalyst material containing an oxide of a platinum group metal. The concentration and the flow rate of the salt water and the water are adjusted by the electrolytic solution preparation apparatus A, and the salt water and the water are supplied from the anolyte supply path 7 and the water is supplied from the water supply path 8, respectively. A salt solution 9 is prepared by dissolving a salt solution 9 in water 10 and a saline solution 11 is prepared by a saline solution pump 12.
3 and to the anode chamber 5 via the flow meter 14. Further, water 15 is supplied to the cathode chamber 3 through the flow meter 17 by the water supply pump 16.

【0011】陽極室へ供給する食塩水の濃度、流量の測
定値に基づいて、制御装置18が食塩水ポンプ12およ
び給水ポンプ16の吐出量を調整することによって電解
槽には常に次亜塩素酸塩の生成量に応じた食塩水、およ
び水を供給することが可能となる。陰極室3の上部から
は、水酸化ナトリウム水溶液と水素を含んだ陰極室生成
物を、陰極室生成物導入手段19によって次亜塩素酸塩
反応槽20に供給すると共に、陽極室5の上部からは、
食塩濃度が低下した食塩水と塩素を含んだ陽極室生成物
を陽極室生成物導入手段21によって次亜塩素酸塩反応
槽20に供給する。次亜塩素酸塩反応槽20において、
塩素と水酸化ナトリウムが反応して次亜塩素酸塩が生成
する。また、次亜塩素酸塩反応槽内では、陰極室で発生
した水素気泡によって攪拌混合されるが、塩素と水酸化
ナトリウム水溶液の反応効率を高めるために、邪魔板を
設けたり充填物を充填しても良い。
The controller 18 adjusts the discharge rates of the saline solution pump 12 and the water supply pump 16 based on the measured values of the concentration and the flow rate of the saline solution supplied to the anode chamber. It becomes possible to supply saline and water according to the amount of salt generated. From the top of the cathode chamber 3, a cathode chamber product containing an aqueous solution of sodium hydroxide and hydrogen is supplied to the hypochlorite reaction tank 20 by the cathode chamber product introduction means 19, and from the top of the anode chamber 5. Is
An anode compartment product containing saline and chlorine having a reduced salt concentration is supplied to the hypochlorite reaction tank 20 by the anode compartment product introduction means 21. In the hypochlorite reaction tank 20,
The chlorine and sodium hydroxide react to form hypochlorite. In the hypochlorite reaction tank, the mixture is stirred and mixed by the hydrogen bubbles generated in the cathode chamber.In order to increase the reaction efficiency between the chlorine and the sodium hydroxide aqueous solution, a baffle plate is provided or the filler is filled. May be.

【0012】次亜塩素酸塩水溶液は、水封安全器を備え
た水素分離手段22において水素23を分離して、次亜
塩素酸塩水溶液の循環槽24に流入する。循環槽24か
らは製品として次亜塩素酸塩水溶液25を取り出すと共
に、次亜塩素酸塩水溶液を循環ポンプ26によって冷却
装置27に供給して次亜塩素酸塩水溶液の温度を冷却し
て次亜塩素酸塩反応槽20に循環する。これによって、
電解槽の温度上昇を防止すると共に、生成した次亜塩素
酸塩の分解を防止することができる。
The aqueous hypochlorite solution separates hydrogen 23 in a hydrogen separating means 22 provided with a water seal safety device and flows into a hypochlorite aqueous solution circulation tank 24. A hypochlorite aqueous solution 25 is taken out from the circulation tank 24 as a product, and the hypochlorite aqueous solution is supplied to a cooling device 27 by a circulation pump 26 to cool the hypochlorite aqueous solution to a temperature of the hypochlorite aqueous solution. Circulate to the chlorate reaction tank 20. by this,
It is possible to prevent a rise in the temperature of the electrolytic cell and to prevent decomposition of the generated hypochlorite.

【0013】また、次亜塩素酸塩反応槽では、下記の電
気分解によって 2NaCl+2H2O→2NaOH+Cl2+H2 生成した水酸化ナトリウムと塩素の全量が、下記の反応
式によって反応し、 2NaOH+Cl2→NaClO+NaCl+H2O 次亜塩素酸塩と等モルの食塩が生成する。一方、本発明
の方法で次亜塩素酸塩反応槽に供給した塩水中には60
ないし70g/lの食塩が含まれているので、生成する
次亜塩素酸塩の水溶液中には、次亜塩素酸塩の生成反応
で生じた食塩と塩水中に含まれていた食塩の両者が含ま
れることとなる。
In the hypochlorite reaction tank, the total amount of sodium hydroxide and chlorine produced by the following electrolysis is 2NaCl + 2H 2 O → 2NaOH + Cl 2 + H 2, and is reacted according to the following reaction formula: 2NaOH + Cl 2 → NaClO + NaCl + H Equimolar salt is produced with 2 O hypochlorite. On the other hand, in the salt water supplied to the hypochlorite reaction tank by the method of the present invention, 60
Or 70 g / l of sodium chloride, the resulting hypochlorite aqueous solution contains both the salt produced in the hypochlorite formation reaction and the salt contained in the saline. Will be included.

【0014】したがって、食塩の濃度が問題となる用途
において使用する場合には、陽極室への塩水の供給量を
減少し、食塩の分解率を上昇させることによって陽極室
中の食塩の含有量を減少させたり、あるいは、次亜塩素
酸塩水溶液中から食塩を冷却等によって晶析させて分離
しても良い。また、晶析して分離した食塩は原料塩とし
て再度溶解して利用することができる。また、本発明の
装置では、陰極室へ供給する水の量を調整することによ
って、使用目的に応じ低濃度から高濃度までの次亜塩素
酸塩水溶液を製造することができる。
Therefore, when the salt is used in applications where the concentration of salt is a problem, the amount of salt water supplied to the anode chamber is reduced and the decomposition rate of salt is increased to reduce the salt content in the anode chamber. The salt may be reduced, or the salt may be separated from the aqueous hypochlorite solution by crystallization by cooling or the like. Further, the salt separated by crystallization can be used by dissolving again as a raw material salt. Further, in the apparatus of the present invention, by adjusting the amount of water supplied to the cathode chamber, it is possible to produce a hypochlorite aqueous solution having a low concentration to a high concentration depending on the purpose of use.

【0015】また、本発明の方法で使用するイオン交換
膜電解槽の陽イオン交換膜には、フッ素樹脂系の陽イオ
ン交換膜を用いることができるが、陰極で生成する水酸
化ナトリウム水溶液の濃度をとくに高濃度とする必要は
ないので、低濃度用の陽イオン交換膜を用いることがで
きる。本発明の装置では、原料の食塩として不純物の少
ないものを用いることにより、食塩の溶解によって得ら
れた塩水を直接に使用することができるが、得られる食
塩あるいは塩水に不純物が多く含まれている場合には、
食塩水の溶解工程に食塩水の精製工程を設けても良い。
The cation exchange membrane of the ion exchange membrane electrolytic cell used in the method of the present invention may be a fluorinated resin type cation exchange membrane. Since it is not necessary to make the concentration particularly high, a cation exchange membrane for a low concentration can be used. In the apparatus of the present invention, the salt water obtained by dissolving the salt can be directly used by using a raw material having less impurities as the salt, but the obtained salt or the salt water contains many impurities. in case of,
A saline solution refining step may be provided in the saline solution dissolving step.

【0016】図2は、本発明の他の実施例を説明する図
である。図1で示した装置が、給水ポンプおよび食塩水
ポンプの吐出量を調整することによって次亜塩素酸塩の
生成量に応じた食塩水を供給するのに対して、図2で示
した装置は、塩水および水は、電解液調製装置Bによっ
て濃度、流量が調製されて、それぞれ陽極液供給路7か
ら、また水は水供給路8から供給される。電解液調製装
置Bは、食塩9を水10によって溶解して食塩水11を
調製し、食塩水を食塩水ポンプ12によって食塩水濃度
計13および流量計14を介して陽極室5へ供給する。
そして、陽極室へ供給する食塩水の濃度、流量の測定値
に基づいて、制御装置18によって、給水調節弁28、
食塩水供給調節弁29を調整して水量および塩水流量を
調整するものである。
FIG. 2 is a diagram for explaining another embodiment of the present invention. The apparatus shown in FIG. 1 supplies a saline solution in accordance with the amount of hypochlorite generated by adjusting the discharge rates of the feedwater pump and the saline solution pump, whereas the apparatus shown in FIG. , Salt water and water are adjusted in concentration and flow rate by the electrolytic solution preparation apparatus B, and are supplied from the anolyte supply path 7 and water is supplied from the water supply path 8, respectively. The electrolytic solution preparation apparatus B prepares a saline solution 11 by dissolving a saline solution 9 with water 10, and supplies the saline solution to the anode chamber 5 via a saline solution concentration meter 13 and a flow meter 14 by a saline solution pump 12.
Then, based on the measured values of the concentration and the flow rate of the saline solution supplied to the anode chamber, the control device 18 controls the water supply control valve 28,
The salt water supply control valve 29 is adjusted to adjust the amount of water and the flow rate of salt water.

【0017】図3は、本発明の他の実施例を説明する図
である。図1、あるいは図2で示した装置が、次亜塩素
酸塩の循環回路内に冷却装置27を有しているのに対し
て、図3で示した装置は、次亜塩素酸塩反応槽20に接
して冷却水30を供給した冷却装置27を設けて次亜塩
素酸塩反応槽20での発熱を直接に取り除くものであ
り、外部に冷却装置を設ける必要がない。次亜塩素酸塩
反応槽20と冷却装置27との間の熱伝導面積を大きく
し冷却効率を高めるために、隔壁部分には表面積の大き
な部材で形成しても良い。また、電解液は、図1あるい
は図2で示した電解液調製装置AあるいはBを、陽極液
供給路7、または水供給路8に接続して供給することに
よって次亜塩素酸塩の生成量に見合った水および塩水を
供給することができる。
FIG. 3 is a diagram for explaining another embodiment of the present invention. 1 or 2 has a cooling device 27 in the hypochlorite circulation circuit, whereas the device shown in FIG. 3 is a hypochlorite reaction tank. A cooling device 27 that supplies cooling water 30 in contact with 20 is provided to directly remove heat generated in the hypochlorite reaction tank 20, and there is no need to provide a cooling device outside. In order to increase the heat conduction area between the hypochlorite reaction tank 20 and the cooling device 27 and increase the cooling efficiency, the partition may be formed of a member having a large surface area. Further, the electrolytic solution is supplied by connecting the electrolytic solution preparation apparatus A or B shown in FIG. 1 or 2 to the anolyte supply path 7 or the water supply path 8 to supply the hypochlorite. Water and salt water can be supplied.

【0018】また、図4は、本発明の他の実施例を示す
図である。図4で示した装置は、図2で示した装置に比
べて、小型の製造装置に適した装置であり、次亜塩素酸
塩反応槽20に接した冷却装置27に冷却水30を導入
して冷却するものであり、次亜塩素酸塩反応槽20から
取り出した反応生成物を水素分離手段22において水素
23を分離して次亜塩素酸塩水溶液25を得るものであ
る。循環装置を設けていないので、構造が簡単となり、
小型の製造装置に適したものである。また、電解液は、
図1あるいは図2で示した電解液調製装置AあるいはB
を、陽極液供給路7、または水供給路8に接続して供給
することによって次亜塩素酸塩の生成量に見合った水お
よび塩水を供給することができる。
FIG. 4 is a diagram showing another embodiment of the present invention. The device shown in FIG. 4 is a device suitable for a small-sized manufacturing device as compared with the device shown in FIG. 2, and cooling water 30 is introduced into a cooling device 27 in contact with the hypochlorite reaction tank 20. The reaction product taken out of the hypochlorite reaction tank 20 is separated into hydrogen 23 by a hydrogen separation means 22 to obtain a hypochlorite aqueous solution 25. Since there is no circulation device, the structure becomes simple,
It is suitable for a small-sized manufacturing device. The electrolyte is
Electrolyte preparation apparatus A or B shown in FIG. 1 or FIG.
Is supplied to the anolyte supply path 7 or the water supply path 8 to supply water and salt water in proportion to the amount of hypochlorite produced.

【0019】また、図5は、本発明の他の実施例を示す
図である。図5で示した装置は、陰極室3から取り出し
た陰極室生成物を水素分離手段22で水素23を分離し
た後に循環槽24へ供給し、循環槽24から循環ポンプ
26によって冷却装置27に供給して冷却した後に、次
亜塩素酸塩反応槽20に供給し、陽極室生成物導入手段
21から供給される陽極室生成物と反応させて反応生成
物を循環槽24へ供給し、次亜塩素酸塩水溶液25を得
るものである。また、電解液は、図1あるいは図2で示
した電解液調製装置AあるいはBを、陽極液供給路7、
または水供給路8に接続して供給することによって次亜
塩素酸塩の生成量に見合った水および塩水を供給するこ
とができる。
FIG. 5 is a diagram showing another embodiment of the present invention. The apparatus shown in FIG. 5 supplies the cathode chamber product taken out of the cathode chamber 3 to the circulation tank 24 after separating the hydrogen 23 by the hydrogen separation means 22, and supplies it to the cooling device 27 by the circulation pump 26 from the circulation tank 24. After cooling, the mixture is supplied to the hypochlorite reaction tank 20 and reacted with the anode chamber product supplied from the anode chamber product introduction means 21 to supply the reaction product to the circulation tank 24. A chlorate aqueous solution 25 is obtained. Further, the electrolytic solution is supplied to the electrolytic solution preparing device A or B shown in FIG.
Alternatively, the water and the salt water can be supplied by connecting to the water supply passage 8 and supplying the amount of hypochlorite produced.

【0020】また、図6は、本発明の他の実施例を示す
図である。図6は、図5に示した装置において、冷却装
置27を次亜塩素酸塩水溶液の循環管路中に設けるので
はなく、次亜塩素酸塩反応槽20に接して冷却装置27
を設けて冷却水30を供給して次亜塩素酸塩反応槽20
を冷却するものである。また、電解液は、図1あるいは
図2で示した電解液調製装置AあるいはBを、陽極液供
給路7、または水供給路8に接続して供給することによ
って次亜塩素酸塩の生成量に見合った水および塩水を供
給することができる。
FIG. 6 is a diagram showing another embodiment of the present invention. FIG. 6 shows that, in the apparatus shown in FIG. 5, the cooling device 27 is provided in the hypochlorite reaction tank 20 instead of being provided in the circulation line of the hypochlorite aqueous solution.
The cooling water 30 is supplied and the hypochlorite reaction tank 20 is supplied.
Is to cool. Further, the electrolytic solution is supplied by connecting the electrolytic solution preparation apparatus A or B shown in FIG. 1 or 2 to the anolyte supply path 7 or the water supply path 8 to supply the hypochlorite. Water and salt water can be supplied.

【0021】また、図7は、本発明の他の実施例を示す
図である。図7で示した装置は、陰極室3から取り出し
た陰極室生成物を水素分離手段22で水素23を分離し
た後に次亜塩素酸塩反応槽20へ上部から供給するとと
もに、陽極室生成物も陽極室生成物導入手段21で供給
される。次亜塩素酸塩反応槽20には、邪魔板31が設
けられており、上部から下部へ向かって流れながら反応
し、循環槽24へ供給される。循環槽24から次亜塩素
酸塩水溶液25を取り出すとともに、循環槽24から循
環ポンプ26によって冷却装置27へ送液して冷却して
次亜塩素酸塩反応槽20へ循環する。次亜塩素酸塩反応
槽20に邪魔板31を設けるとともに、冷却装置27に
おいて冷却された液が供給されるので、次亜塩素酸塩の
反応および冷却効率を高めることができる。また、電解
液は、図1あるいは図2で示した電解液調製装置Aある
いはBを、陽極液供給路7、または水供給路8に接続し
て供給することによって次亜塩素酸塩の生成量に見合っ
た水および塩水を供給することができる。
FIG. 7 is a diagram showing another embodiment of the present invention. The apparatus shown in FIG. 7 supplies the cathode chamber product taken out of the cathode chamber 3 to the hypochlorite reaction tank 20 from the top after separating hydrogen 23 by the hydrogen separating means 22 and also supplies the anode chamber product. It is supplied by the anode chamber product introduction means 21. The hypochlorite reaction tank 20 is provided with a baffle plate 31, which reacts while flowing from the upper part to the lower part, and is supplied to the circulation tank 24. The hypochlorite aqueous solution 25 is taken out from the circulation tank 24, and is sent from the circulation tank 24 to a cooling device 27 by a circulation pump 26 to be cooled and circulated to the hypochlorite reaction tank 20. Since the baffle plate 31 is provided in the hypochlorite reaction tank 20 and the liquid cooled in the cooling device 27 is supplied, the reaction and cooling efficiency of hypochlorite can be improved. Further, the electrolytic solution is supplied by connecting the electrolytic solution preparation apparatus A or B shown in FIG. 1 or 2 to the anolyte supply path 7 or the water supply path 8 to supply the hypochlorite. Water and salt water can be supplied.

【0022】また、図8は、本発明の他の実施例を説明
する図である。イオン交換膜電解槽2の上部に次亜塩素
酸塩反応槽20を設け、陰極室生成物導入手段19およ
び陽極室生成物導入手段21で陰極室生成物および陽極
室生成物を供給して反応させる。反応生成物は、水素分
離手段12で水素13を分離した後に循環槽14へ供給
され、循環ポンプ16によって冷却装置17によって冷
却して次亜塩素酸塩反応槽10へ循環する。この装置
は、電解槽の陰極室と陽極室の上部に次亜塩素酸塩反応
槽を設けたので、装置を小型化することが可能であり、
装置を設置する面積が小さな場合に適する。また、電解
液は、図1あるいは図2で示した電解液調製装置Aある
いはBを、陽極液供給路7、または水供給路8に接続し
て供給することによって次亜塩素酸塩の生成量に見合っ
た水および塩水を供給することができる。
FIG. 8 is a diagram for explaining another embodiment of the present invention. A hypochlorite reaction tank 20 is provided above the ion exchange membrane electrolytic cell 2, and a cathode chamber product and an anode chamber product are supplied and reacted by a cathode chamber product introduction unit 19 and an anode chamber product introduction unit 21. Let it. The reaction product is supplied to the circulation tank 14 after separating the hydrogen 13 by the hydrogen separation means 12, cooled by the cooling device 17 by the circulation pump 16, and circulated to the hypochlorite reaction tank 10. Since this device is provided with a hypochlorite reaction tank above the cathode chamber and anode chamber of the electrolytic cell, it is possible to reduce the size of the apparatus,
Suitable when the area for installing the device is small. Further, the electrolytic solution is supplied by connecting the electrolytic solution preparation apparatus A or B shown in FIG. 1 or 2 to the anolyte supply path 7 or the water supply path 8 to supply the hypochlorite. Water and salt water can be supplied.

【0023】図9は、本発明の他の実施例を説明する図
であり、比較的低濃度の次亜塩素酸塩の製造に適した装
置である。図9の装置は、陽極室5の上部の一部を次亜
塩素酸塩反応槽20としたものであり、陰極室と陽極室
の上部の隔壁に貫通孔32を形成したものである。電解
液は、図1あるいは図2で示した電解液調製装置Aある
いはBを、陽極液供給路7、または水供給路8に接続し
て供給して、電解液および循環する次亜塩素酸塩水溶液
の流量を調整して、陰極室生成物が貫通孔32を通過し
て陽極室5の上部へ流入するようにする。陽極室の上部
で陰極室からの水酸化ナトリウム水溶液は、陽極室で発
生した塩素と反応し、水素分離手段22へ送られて水素
を分離した後に、循環槽24へと送られ、循環槽24か
ら次亜塩素酸塩水溶液25が取り出される。
FIG. 9 is a view for explaining another embodiment of the present invention, and is an apparatus suitable for producing hypochlorite having a relatively low concentration. In the apparatus shown in FIG. 9, a part of the upper part of the anode chamber 5 is formed as a hypochlorite reaction tank 20, and a through hole 32 is formed in a partition wall above the cathode chamber and the anode chamber. The electrolytic solution is supplied by connecting the electrolytic solution preparing apparatus A or B shown in FIG. 1 or FIG. 2 to the anolyte supply path 7 or the water supply path 8 to supply the electrolyte and the circulating hypochlorite. The flow rate of the aqueous solution is adjusted so that the cathode chamber product flows through the through hole 32 and flows into the upper part of the anode chamber 5. The aqueous sodium hydroxide solution from the cathode chamber at the upper part of the anode chamber reacts with chlorine generated in the anode chamber and is sent to the hydrogen separation means 22 to separate hydrogen, and then sent to the circulation tank 24, where it is sent to the circulation tank 24. From the aqueous solution of hypochlorite.

【0024】図10は、本発明の他の実施例を説明する
図であり、図9の装置が陽極室5の上部の一部を次亜塩
素酸塩反応槽としたものに対して、図10に示した装置
は、陰極室3の上部を次亜塩素酸塩反応槽としたもので
あり、陰極室と陽極室の上部の隔壁に貫通孔32を形成
したものである。電解液は、図1あるいは図2で示した
電解液調製装置AあるいはBを、陽極液供給路7、また
は水供給路8に接続して供給することによって陽極室5
へ供給する塩水7、陰極室3へ供給する水8とおよび循
環する次亜塩素酸塩水溶液の流量を調整して、陽極室生
成物が貫通孔32を通過して陰極室3の上部へ流入する
ようにする。陰極室3で生成した水酸化ナトリウムは、
陽極室からの塩素と反応し、次亜塩素酸塩を生成する。
次亜塩素酸塩水溶液は、水素分離手段22へ送られて水
素を分離した後に、循環槽24へと送られ、循環槽24
から次亜塩素酸塩水溶液25が取り出されるとともに、
循環ポンプ26および冷却装置27によって冷却されて
陰極室へ循環される。この装置も図9に示した装置と同
様に比較的濃度が低い次亜塩素酸塩を必要とする場合に
適した装置であるが、陰極室の一部を反応槽としている
ために生成した次亜塩素酸塩が陰極表面で還元を受ける
可能性があるので、図9のように、陽極室の一部を次亜
塩素酸塩反応槽とする場合に比べて、電流効率が低くな
る可能性があるが、電流効率が問題とならない小型の装
置においては、充分に利用することができる。また、陰
極として、次亜塩素酸塩の還元を抑制することができる
陰極を用いることによって電流効率を改善することもで
きる。
FIG. 10 is a view for explaining another embodiment of the present invention. FIG. 10 is a view showing a case where the apparatus shown in FIG. In the apparatus shown in FIG. 10, the upper part of the cathode chamber 3 is a hypochlorite reaction tank, and a through-hole 32 is formed in a partition wall above the cathode chamber and the anode chamber. The electrolytic solution is supplied by connecting the electrolytic solution preparation device A or B shown in FIG. 1 or 2 to the anolyte supply channel 7 or the water supply channel 8 to supply the electrolyte.
The flow rate of the salt water 7 supplied to the cathode chamber 3, the water 8 supplied to the cathode chamber 3, and the circulating hypochlorite aqueous solution are adjusted so that the anode chamber product flows into the upper part of the cathode chamber 3 through the through hole 32. To do it. The sodium hydroxide generated in the cathode chamber 3 is
Reacts with chlorine from the anode compartment to produce hypochlorite.
The aqueous hypochlorite solution is sent to the hydrogen separation means 22 to separate hydrogen, and then sent to the circulation tank 24,
From the hypochlorite aqueous solution 25
It is cooled by the circulation pump 26 and the cooling device 27 and circulated to the cathode chamber. This apparatus is also suitable for the case where hypochlorite having a relatively low concentration is required, as in the apparatus shown in FIG. Since chlorite may be reduced on the cathode surface, the current efficiency may be lower than when a part of the anode chamber is a hypochlorite reactor as shown in FIG. However, in a small device in which the current efficiency does not matter, it can be sufficiently used. In addition, the current efficiency can be improved by using a cathode capable of suppressing the reduction of hypochlorite as the cathode.

【0025】図11は、本発明の他の実施例を説明する
図であり、図9および図10と同様に比較的濃度が低い
次亜塩素酸塩の製造に適した装置である。陰極室3から
陰極室生成物を取り出して、水素分離手段22へ供給し
て水素23を分離した後に、循環ポンプ26によって送
られた液と、図1あるいは図2で示した電解液調製装置
AあるいはBの陽極液供給路7の塩水7を陽極室5へ供
給するものであり、陽極室5を次亜塩素酸塩反応槽とし
て陽極室より次亜塩素酸塩水溶液25を得るものであ
る。また、次亜塩素酸塩反応槽を兼ねた陽極室5に接し
て冷却装置27を設けて冷却水30によって冷却して、
次亜塩素酸塩の分解を抑制している。以上のように、本
発明の次亜塩素酸塩製造装置は、多様な実施態様が存在
し、必要とする次亜塩素酸塩の濃度等に応じて、適当な
装置を選択することができる。
FIG. 11 is a view for explaining another embodiment of the present invention, and is an apparatus suitable for producing hypochlorite having a relatively low concentration similarly to FIGS. 9 and 10. After taking out the cathode chamber product from the cathode chamber 3 and supplying it to the hydrogen separating means 22 to separate the hydrogen 23, the liquid sent by the circulation pump 26 and the electrolytic solution preparation apparatus A shown in FIG. 1 or FIG. Alternatively, the salt water 7 in the anolyte supply path 7 of B is supplied to the anode chamber 5, and the anode chamber 5 is used as a hypochlorite reaction tank to obtain a hypochlorite aqueous solution 25 from the anode chamber. Further, a cooling device 27 is provided in contact with the anode chamber 5 also serving as a hypochlorite reaction tank, and is cooled by cooling water 30.
It suppresses the decomposition of hypochlorite. As described above, the hypochlorite production apparatus of the present invention has various embodiments, and an appropriate apparatus can be selected according to the required concentration of hypochlorite and the like.

【0026】[0026]

【実施例】以下に、実施例を示し本発明を説明する。 実施例1 縦300mm、横165mmの自金族金属の酸化物を含
有する電極触媒物質を被覆した陽極を設けた陽極室、チ
タン陰極を有する陰極室、陽極室の陰極室に対向する面
とは反対側に、厚さ14mmの次亜塩素酸塩反応槽を電
解槽と一体に設け、フッ素樹脂系の陽イオン交換膜(デ
ュポン社 ナフィオン324)を使用して、陽極室と陰
極室を区画して電解槽を組み立てた。陽極室および陰極
室の上部からは次亜塩素酸塩反応槽中ヘ、それぞれ直径
10mmの導入手段を結合した。この電解槽に100ア
ンペアの電流を通電したところ、槽電圧は4Vであっ
た。陽極室への供給した食塩水濃度を変化させて、食塩
水濃度の変化に応じて塩水の供給量、陰極室への給水量
を変化させた場合の、、食塩水供給量、陰極室への給水
量、電解槽へ供給した食塩量を表1に示す。
The present invention will be described below with reference to examples. Example 1 An anode chamber provided with an anode coated with an electrode catalyst material containing an oxide of a self-metal group metal having a length of 300 mm and a width of 165 mm, a cathode chamber having a titanium cathode, and a surface of the anode chamber facing the cathode chamber On the opposite side, a hypochlorite reaction tank having a thickness of 14 mm is provided integrally with the electrolytic cell, and the anode chamber and the cathode chamber are partitioned by using a fluorinated resin-based cation exchange membrane (Dupont Nafion 324). To assemble the electrolytic cell. From the upper portions of the anode chamber and the cathode chamber, introduction means having a diameter of 10 mm were respectively connected to the hypochlorite reaction tank. When a current of 100 amperes was passed through the electrolytic cell, the cell voltage was 4 V. When the concentration of the saline solution supplied to the anode chamber is changed and the supply amount of the salt water and the water supply amount to the cathode chamber are changed in accordance with the change in the salt solution concentration, the supply amount of the saline solution and the supply amount to the cathode chamber are changed. Table 1 shows the amount of water supplied and the amount of salt supplied to the electrolytic cell.

【0027】[0027]

【表1】 設定値 試験1 試験2 試験3 塩水濃度(g/L) 300 250 280 310 塩水流量(L/時) 0.8 0.96 0.86 0.78 給水量(L/時) 1.2 1.04 1.14 1.23 供給塩量(g/時) 240 240 241 242 次亜塩素酸塩濃度(g/L) 58 58 58 58Table 1 Set values Test 1 Test 2 Test 3 Salt water concentration (g / L) 300 250 280 310 Salt water flow rate (L / hour) 0.8 0.96 0.86 0.78 Water supply amount (L / hour) 1 .2 1.04 1.14 1.23 Supply salt amount (g / h) 240 240 241 242 Hypochlorite concentration (g / L) 58 58 58 58 58

【0028】比較例 食塩濃度310g/L(リットル)の食塩水を、塩水の
濃度の低下を考慮して1L/時間の流量で供給し、陰極
室には1リットル/時間で水を供給した。1時間当たり
の食塩の供給量は、310gであった。本発明の方法に
比べて、約22%の食塩を必要とした。
Comparative Example A salt solution having a salt concentration of 310 g / L (liter) was supplied at a flow rate of 1 L / hour in consideration of a decrease in the salt water concentration, and water was supplied at a rate of 1 liter / hour to the cathode chamber. The supply amount of salt per hour was 310 g. Approximately 22% salt was required compared to the method of the present invention.

【0029】[0029]

【発明の効果】本発明の次亜塩素酸塩の製造装置におい
て、陽イオン交換膜によって陰極室と陽極室に区画した
電解槽と一体に次亜塩素酸塩反応槽を設け、次亜塩素酸
塩反応槽と、陽極室あるいは陰極室の少なくともいずれ
か一方との間には、陽極室生成物あるいは陰極室生成物
の少なくともいずれか一方を次亜塩素酸塩反応槽へ導入
する導入手段、陽極室への塩水の供給路には、食塩濃度
測定手段、流量測定手段、食塩濃度および流量の変化に
基づき流量を調整する食塩流量制御手段を有し、陰極室
への水の供給路には、水量測定手段、給水ポンプ、水量
測定手段の測定値と陽極室への塩水の濃度および供給量
に基づく水供給制御手段を設けたので、温度変化による
塩水の濃度変化があっても常に適正な量の塩を供給する
ことができるので、得られる次亜塩素酸塩濃度を一定に
保持するともに、塩の利用率を高めることができる。
In the apparatus for producing hypochlorite according to the present invention, a hypochlorite reaction tank is provided integrally with an electrolytic cell partitioned into a cathode chamber and an anode chamber by a cation exchange membrane. Introducing means for introducing at least one of the anode compartment product or the cathode compartment product into the hypochlorite reactor between the salt reactor and at least one of the anode compartment and the cathode compartment; The salt water supply path to the chamber has salt concentration measurement means, flow rate measurement means, salt flow rate control means for adjusting the flow rate based on changes in the salt concentration and flow rate, the water supply path to the cathode chamber, Water supply control means is provided based on the measured values of the water flow rate measuring means, water supply pump, and water flow rate measuring means, and the concentration and supply amount of salt water to the anode chamber. Can supply the salt of Together hold the hypochlorite concentration obtained constant, it is possible to increase the utilization rate of the salt.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の次亜塩素酸塩の製造装置の一実施例を
説明する図である。
FIG. 1 is a diagram illustrating an embodiment of a hypochlorite production apparatus according to the present invention.

【図2】本発明の次亜塩素酸塩の製造装置の他の実施例
を説明する図である。
FIG. 2 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図3】本発明の次亜塩素酸塩の製造装置の他の実施例
を説明する図である。
FIG. 3 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図4】本発明の次亜塩素酸塩の製造装置の他の実施例
を説明する図である。
FIG. 4 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図5】本発明の次亜塩素酸塩の製造装置の他の実施例
を説明する図である。
FIG. 5 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図6】本発明の次亜塩素酸塩の製造装置の他の実施例
を説明する図である。
FIG. 6 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図7】本発明の次亜塩素酸塩の製造装置の他の実施例
を説明する図である。
FIG. 7 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図8】本発明の次亜塩素酸塩の製造装置の他の実施例
を説明する図である。
FIG. 8 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図9】本発明の次亜塩素酸塩の製造装置の他の実施例
を説明する図である。
FIG. 9 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図10】本発明の次亜塩素酸塩の製造装置の他の実施
例を説明する図である。
FIG. 10 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【図11】本発明の次亜塩素酸塩の製造装置の他の実施
例を説明する図である。
FIG. 11 is a diagram illustrating another embodiment of the apparatus for producing hypochlorite according to the present invention.

【符号の説明】[Explanation of symbols]

1…陽イオン交換膜、2…イオン交換膜電解槽、3…陰
極室、4…陰極、5…陽極室、6…陽極、7…陽極液供
給路、8…水供給路、9…食塩、10…水、11…食塩
水、12…食塩水ポンプ、13…食塩水濃度計、14…
流量計、15…水、16…給水ポンプ、17…流量計、
18…制御装置、19…陰極室生成物導入手段、20…
次亜塩素酸塩反応槽、21…陽極室生成物導入手段、2
2…水素分離手段、23…水素、24…循環槽、25…
次亜塩素酸塩水溶液、26…循環ポンプ、27…冷却装
置、28…給水調節弁、29…食塩水供給調節弁、30
…冷却水、31…邪魔板、32…貫通孔、A,B…電解
液調製装置
DESCRIPTION OF SYMBOLS 1 ... Cation exchange membrane, 2 ... Ion exchange membrane electrolytic cell, 3 ... Cathode chamber, 4 ... Cathode, 5 ... Anode chamber, 6 ... Anode, 7 ... Anolyte supply path, 8 ... Water supply path, 9 ... Salt, 10 ... water, 11 ... salt water, 12 ... salt water pump, 13 ... salt water concentration meter, 14 ...
Flow meter, 15: water, 16: water supply pump, 17: flow meter,
18 ... control device, 19 ... cathode chamber product introduction means, 20 ...
Hypochlorite reaction tank, 21 ... means for introducing anode chamber product, 2
2 ... hydrogen separation means, 23 ... hydrogen, 24 ... circulation tank, 25 ...
Hypochlorite aqueous solution, 26: circulation pump, 27: cooling device, 28: water supply control valve, 29: saline solution supply control valve, 30
... cooling water, 31 ... baffle plate, 32 ... through-hole, A, B ... electrolytic solution preparation device

フロントページの続き (72)発明者 須藤 茂樹 岡山県玉野市東紅陽台2−19−131 Fターム(参考) 4D061 DA03 DB10 EA02 EB13 EB30 EB37 EB39 ED13 GA02 GA04 GA06 GA12 GA14 GC02 4K021 AB07 BA03 BC01 BC03 BC04 BC05 BC07 CA08 CA09 CA10 CA11 CA12 DB18 DB19 DB21 DB31 DC07 DC11 Continued on the front page (72) Inventor Shigeki Sudo 2-19-131 Higashi Koyodai, Tamano-shi, Okayama F-term (reference) 4D061 DA03 DB10 EA02 EB13 EB30 EB37 EB39 ED13 GA02 GA04 GA06 GA12 GA14 GC02 4K021 AB07 BA03 BC01 BC03 BC04 BC05 BC07 CA08 CA09 CA10 CA11 CA12 DB18 DB19 DB21 DB31 DC07 DC11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 塩水の電気分解による次亜塩素酸塩の製
造装置において、陽イオン交換膜によって陰極室と陽極
室に区画した電解槽と一体に次亜塩素酸塩反応槽を設
け、次亜塩素酸塩反応槽と、陽極室あるいは陰極室の少
なくともいずれか一方との間には、陽極室生成物あるい
は陰極室生成物の少なくともいずれか一方を次亜塩素酸
塩反応槽へ導入する導入手段、陽極室への塩水の供給路
には、食塩濃度測定手段、流量測定手段、食塩濃度およ
び流量の変化に基づき流量を調整する食塩流量制御手段
を有し、陰極室への水の供給路には、水量測定手段、給
水ポンプ、水量測定手段の測定値と陽極室への塩水の濃
度および供給量に基づく水供給制御手段を有することを
特徴とする次亜塩素酸塩の製造装置。
An apparatus for producing hypochlorite by electrolysis of salt water, wherein a hypochlorite reaction tank is provided integrally with an electrolytic cell partitioned into a cathode chamber and an anode chamber by a cation exchange membrane, Introducing means for introducing at least one of the anode compartment product and the cathode compartment product into the hypochlorite reactor between the chlorate reactor and at least one of the anode compartment and the cathode compartment. The salt water supply path to the anode chamber has a salt concentration measuring means, a flow rate measuring means, and a salt flow rate control means for adjusting a flow rate based on a change in the salt concentration and the flow rate. Is a hypochlorite production apparatus, comprising: a water amount measuring means, a water supply pump, and a water supply control means based on the measured value of the water amount measuring means and the concentration and supply amount of the salt water to the anode chamber.
【請求項2】 塩水の電気分解による次亜塩素酸塩の製
造方法において、陽イオン交換膜によって陰極室と陽極
室に区画した電解槽と一体に次亜塩素酸塩反応槽を設
け、次亜塩素酸塩反応槽と、陽極室あるいは陰極室の少
なくともいずれか一方との間には、陽極室生成物あるい
は陰極室生成物の少なくともいずれか一方を次亜塩素酸
塩反応槽へ導入する導入手段を設けた電解槽の陽極室へ
の塩水の供給量を、食塩濃度、および流量に基づき調整
し、陰極室への水の供給量を水量測定手段の測定値と陽
極室への塩水の濃度および供給量に基づいて調整するこ
とを特徴とする次亜塩素酸塩の製造方法。
2. A method for producing hypochlorite by electrolysis of salt water, wherein a hypochlorite reaction tank is provided integrally with an electrolytic cell partitioned into a cathode chamber and an anode chamber by a cation exchange membrane. Introducing means for introducing at least one of the anode compartment product and the cathode compartment product into the hypochlorite reactor between the chlorate reactor and at least one of the anode compartment and the cathode compartment. The supply amount of salt water to the anode compartment of the electrolytic cell provided with is adjusted based on the salt concentration and the flow rate, and the supply amount of water to the cathode compartment is measured by the water amount measuring means and the concentration of salt water to the anode compartment and A method for producing hypochlorite, wherein the method is adjusted based on a supply amount.
JP06791899A 1999-03-15 1999-03-15 Hypochlorite production apparatus and method Expired - Lifetime JP3818619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06791899A JP3818619B2 (en) 1999-03-15 1999-03-15 Hypochlorite production apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06791899A JP3818619B2 (en) 1999-03-15 1999-03-15 Hypochlorite production apparatus and method

Publications (2)

Publication Number Publication Date
JP2000265289A true JP2000265289A (en) 2000-09-26
JP3818619B2 JP3818619B2 (en) 2006-09-06

Family

ID=13358781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06791899A Expired - Lifetime JP3818619B2 (en) 1999-03-15 1999-03-15 Hypochlorite production apparatus and method

Country Status (1)

Country Link
JP (1) JP3818619B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205073A (en) * 2005-01-28 2006-08-10 Noritsu Koki Co Ltd Electrolytic device and its operation method
JP2008264746A (en) * 2007-04-25 2008-11-06 Masaaki Arai Electrolytic water production device, method for producing electrolytic water, and electrolytic water
JP2009006287A (en) * 2007-06-28 2009-01-15 Masaaki Arai Production apparatus of electrolytic water, production method of electrolytic water, and electrolytic water
JP2009034593A (en) * 2007-07-31 2009-02-19 Masaaki Arai Water purifier, toilet seat with bidet function, floor cleaner, cooling tower, air cleaning system, wastewater treatment system, contact lens cleaning device, shower device, dialyzer, medical appliance cleaner, irrigation and spray system for agriculture, sterilization mask, dishwasher, cleaning/sterilizing device for meat or the like, cleaning system, defecation device deodorizing system, food sterilizing and cleaning system and bathhouse, and pool sterilizing system
JP2011111386A (en) * 2009-11-27 2011-06-09 Yasuharu Shima Method for production of hypochlorous acid water
JP2011136333A (en) * 2010-12-13 2011-07-14 Masaaki Arai Toilet seat with local cleaning function, floor washer, cooling tower, air washing system, wastewater treatment system, contact lens washer, shower device, dialyzer, medical instrument washing apparatus, affusion and sprinkling system for agricultural use, bactericidal mask, dish washer, washing/sterilizing device for meat or the like, washing system, defecation device deodorization system, food sterilizing/cleaning system, and bathroom/pool bactericidal system
JP2015144976A (en) * 2014-01-31 2015-08-13 株式会社イシダ Electrolytic hypochlorite water-generating apparatus
GB2528650A (en) * 2014-07-16 2016-02-03 Gaffey Technical Services Ltd An electrochlorination apparatus
JP5980373B1 (en) * 2015-04-28 2016-08-31 シャープ株式会社 Electrolyzer
CN112281179A (en) * 2020-07-13 2021-01-29 陕西科技大学 Ultrahigh-pressure sodium hypochlorite generator and preparation method of sodium chlorate
KR20220048591A (en) * 2020-10-13 2022-04-20 (주) 테크윈 A system for generating sodium hypochlorite
JP7522483B2 (en) 2020-08-19 2024-07-25 テックウィン カンパニー リミテッド Sodium hypochlorite production system and water treatment method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663126B1 (en) * 2015-03-31 2016-10-10 주식회사 심스바이오닉스 Electrolytic bath for manufacturing acid water
CN108358170B (en) * 2018-05-24 2021-09-14 金溪斯普瑞药业有限公司 Calcium hypochlorite production environment-friendly device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205073A (en) * 2005-01-28 2006-08-10 Noritsu Koki Co Ltd Electrolytic device and its operation method
JP4731172B2 (en) * 2005-01-28 2011-07-20 Nkワークス株式会社 Electrolyzer
JP2008264746A (en) * 2007-04-25 2008-11-06 Masaaki Arai Electrolytic water production device, method for producing electrolytic water, and electrolytic water
JP4685830B2 (en) * 2007-04-25 2011-05-18 優章 荒井 Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP2009006287A (en) * 2007-06-28 2009-01-15 Masaaki Arai Production apparatus of electrolytic water, production method of electrolytic water, and electrolytic water
JP4685838B2 (en) * 2007-06-28 2011-05-18 優章 荒井 Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP2009034593A (en) * 2007-07-31 2009-02-19 Masaaki Arai Water purifier, toilet seat with bidet function, floor cleaner, cooling tower, air cleaning system, wastewater treatment system, contact lens cleaning device, shower device, dialyzer, medical appliance cleaner, irrigation and spray system for agriculture, sterilization mask, dishwasher, cleaning/sterilizing device for meat or the like, cleaning system, defecation device deodorizing system, food sterilizing and cleaning system and bathhouse, and pool sterilizing system
JP4705075B2 (en) * 2007-07-31 2011-06-22 優章 荒井 Water purifier
JP2011111386A (en) * 2009-11-27 2011-06-09 Yasuharu Shima Method for production of hypochlorous acid water
JP2011136333A (en) * 2010-12-13 2011-07-14 Masaaki Arai Toilet seat with local cleaning function, floor washer, cooling tower, air washing system, wastewater treatment system, contact lens washer, shower device, dialyzer, medical instrument washing apparatus, affusion and sprinkling system for agricultural use, bactericidal mask, dish washer, washing/sterilizing device for meat or the like, washing system, defecation device deodorization system, food sterilizing/cleaning system, and bathroom/pool bactericidal system
JP2015144976A (en) * 2014-01-31 2015-08-13 株式会社イシダ Electrolytic hypochlorite water-generating apparatus
GB2528650A (en) * 2014-07-16 2016-02-03 Gaffey Technical Services Ltd An electrochlorination apparatus
US10486989B2 (en) 2014-07-16 2019-11-26 Gaffey Technical Services Limited Electrochlorination apparatus
JP5980373B1 (en) * 2015-04-28 2016-08-31 シャープ株式会社 Electrolyzer
WO2016174782A1 (en) * 2015-04-28 2016-11-03 シャープ株式会社 Electrolysis device
JP2016204731A (en) * 2015-04-28 2016-12-08 シャープ株式会社 Electrolytic device
CN107849712A (en) * 2015-04-28 2018-03-27 夏普生命科学株式会社 Electrolysis unit
US20180135192A1 (en) * 2015-04-28 2018-05-17 Sharp Life Science Corporation Electrolysis device
CN112281179A (en) * 2020-07-13 2021-01-29 陕西科技大学 Ultrahigh-pressure sodium hypochlorite generator and preparation method of sodium chlorate
JP7522483B2 (en) 2020-08-19 2024-07-25 テックウィン カンパニー リミテッド Sodium hypochlorite production system and water treatment method using the same
KR20220048591A (en) * 2020-10-13 2022-04-20 (주) 테크윈 A system for generating sodium hypochlorite
KR102476542B1 (en) * 2020-10-13 2022-12-13 (주)테크윈 A system for generating sodium hypochlorite

Also Published As

Publication number Publication date
JP3818619B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
US4456510A (en) Process for manufacturing chlorine dioxide
JP3716042B2 (en) Acid water production method and electrolytic cell
US5935393A (en) Apparatus for producing hypochlorite
KR101226640B1 (en) Device for generating high-concentrated sodium hypochlorite
JP3818619B2 (en) Hypochlorite production apparatus and method
US20130236569A1 (en) Electrochemical device
JP5907501B2 (en) Method for producing hypochlorite
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
JP3283052B2 (en) Method for producing hypochlorite
US20120247970A1 (en) Bubbling air through an electrochemical cell to increase efficiency
JP2001191079A (en) Electrolytic water forming device
JPH0428438B2 (en)
JP6300252B1 (en) Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system
JP2003293178A (en) Method for preparing chemical for water treatment
JPH0938655A (en) Electrolytic hypochlorous bactericide water containing ozone, its production and device therefor
US20230373833A1 (en) The process of using demineralized water for chlorate reduction in on-site brine electrochlorination systems
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JPS6118495A (en) Preparation of water treating chemicals
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
RU2241683C2 (en) Method of synthesis of oxidizers from the water solution of sodium chloride and a device for its realization
WO2022254878A1 (en) Method and apparatus for producing sodium hypochlorite solution
JPH11267652A (en) Method of generating ozone water and hydrogen water, and device therefor
JPH0235687B2 (en)
JPH11350178A (en) Electrochemical cell for producing hydrogen peroxide
JPS5910432B2 (en) Cation exchange membrane electrolysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term