JP5907501B2 - Method for producing hypochlorite - Google Patents

Method for producing hypochlorite Download PDF

Info

Publication number
JP5907501B2
JP5907501B2 JP2011242672A JP2011242672A JP5907501B2 JP 5907501 B2 JP5907501 B2 JP 5907501B2 JP 2011242672 A JP2011242672 A JP 2011242672A JP 2011242672 A JP2011242672 A JP 2011242672A JP 5907501 B2 JP5907501 B2 JP 5907501B2
Authority
JP
Japan
Prior art keywords
hypochlorite
alkali metal
anolyte
aqueous solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011242672A
Other languages
Japanese (ja)
Other versions
JP2013096001A (en
Inventor
誠 大倉
誠 大倉
正浩 大原
正浩 大原
修 有元
修 有元
真弘 黒崎
真弘 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
De Nora Permelec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Nora Permelec Ltd filed Critical De Nora Permelec Ltd
Priority to JP2011242672A priority Critical patent/JP5907501B2/en
Priority to PCT/JP2012/078367 priority patent/WO2013065797A1/en
Publication of JP2013096001A publication Critical patent/JP2013096001A/en
Application granted granted Critical
Publication of JP5907501B2 publication Critical patent/JP5907501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • C01B11/06Hypochlorites
    • C01B11/062Hypochlorites of alkali metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は次亜塩素酸塩の製造方法(以下、単に「製造方法」とも称する)に関し、詳しくは、電解により高濃度の次亜塩素酸塩を製造する方法の改良に関する。   The present invention relates to a method for producing hypochlorite (hereinafter also simply referred to as “manufacturing method”), and in particular, to an improvement in a method for producing hypochlorite having a high concentration by electrolysis.

次亜塩素酸ソーダに代表される次亜塩素酸塩類は、漂白剤や殺菌剤として、上下水の処理や排水の処理等、各方面で利用されている。次亜塩素酸塩の製造方法としては、食塩水に代表されるアルカリ金属塩化物水溶液の電気分解で得られた塩素とアルカリ金属水酸化物水溶液とを反応させて製造する方法や、アルカリ金属塩化物水溶液を無隔膜電解槽において電気分解して、電解槽中で次亜塩素酸塩を直接製造する方法が一般的である。   Hypochlorite typified by sodium hypochlorite is used as a bleaching agent and disinfectant in various fields such as water and sewage treatment and wastewater treatment. Hypochlorite can be produced by reacting chlorine obtained by electrolysis of an alkali metal chloride aqueous solution typified by saline and an alkali metal hydroxide aqueous solution, or by alkali metal chloride. A general method is to produce a hypochlorite directly in an electrolytic cell by electrolyzing an aqueous solution of a physical solution in a non-diaphragm electrolytic cell.

このうち後者の方法においては、生成した次亜塩素酸塩が陰極上でアルカリ金属塩に還元されること、および、生成した次亜塩素酸塩が陽極酸化されて酸化力の無い塩素酸塩に転換されてしまうことから、高濃度の次亜塩素酸塩水溶液を得ることが困難である。そのため現在では、この方法により製造される次亜塩素酸塩の用途としては、発電プラントの熱交換水や回転機器の軸冷却水に用いられる海水中の生物増殖・成長抑制、上下水道処理および廃水処理用途などが一般的である。   Among these, in the latter method, the produced hypochlorite is reduced to an alkali metal salt on the cathode, and the produced hypochlorite is anodized to form a chlorate having no oxidizing power. Since it is converted, it is difficult to obtain a high concentration hypochlorite aqueous solution. Therefore, the use of hypochlorite produced by this method is currently limited to biological growth / growth in seawater used in heat exchange water for power plants and axial cooling water for rotating equipment, water and sewage treatment, and wastewater. Processing applications are common.

一方、前者の方法としては、食塩電解プラントにおける一般的な高濃度次亜塩素酸ソーダの製造方法が代表的であるが、食塩電解システムにおいては、重金属不純物を除去する高度な塩水精製システムが必要であること、電解後に濃度が低下した食塩水を再利用するためには電解後の塩水に含有される次亜塩素酸および塩素溶解物を分解除去するシステムが必須であることなどにより、設備が大掛かりなものになる。また、食塩電解プラントの主目的は次亜塩素酸ソーダの製造ではなく、工業的に用途が多い苛性ソーダおよび塩素ガスの製造であるので、苛性ソーダ換算で年間数万トン〜数十万トンを製造する比較的大きなプラントが多い。一方で、食塩電解プラントの数は高濃度次亜塩素酸塩を必要とする上水場などの数と比較して圧倒的に少ないことから、上水の滅菌に必要な塩素または次亜塩素酸塩を輸送して貯蔵する必要が生じ、貯蔵設備からの液漏れなどによる人的災害や環境破壊の危険性を常にはらむものとなっている。特に、塩素ガスについては、輸送に使用するタンクローリーの交通事故により大気中へ飛散する大事故が各国で発生しており、米国では塩素ガスの輸送を禁止する法律を成立させようとする動きが活発化している。   On the other hand, the former method is typically a method for producing high-concentration sodium hypochlorite in a salt electrolysis plant, but the salt electrolysis system requires an advanced salt water purification system that removes heavy metal impurities. In order to reuse the saline solution whose concentration has decreased after electrolysis, the equipment is required because a system for decomposing and removing hypochlorous acid and dissolved chlorine contained in the salt water after electrolysis is essential. It will be a big one. In addition, the main purpose of the salt electrolysis plant is not the production of sodium hypochlorite, but the production of caustic soda and chlorine gas, which have many industrial uses, so it produces tens of thousands to hundreds of thousands of tons per year in terms of caustic soda. There are many relatively large plants. On the other hand, since the number of salt electrolysis plants is overwhelmingly small compared with the number of water supply plants that require high-concentration hypochlorite, chlorine or hypochlorous acid required for sterilization of water There is a need to transport and store salt, and there is always a danger of human disasters and environmental destruction due to liquid leakage from storage facilities. In particular, with regard to chlorine gas, major accidents have occurred in various countries due to traffic accidents involving tank trucks used for transportation, and there is an active movement to enact laws prohibiting the transport of chlorine gas in the United States. It has become.

このような状況の下、上水場などの次亜塩素酸塩の利用施設に小型のアルカリ金属塩化物電解装置を設置し、必要な時に必要な量の次亜塩素酸塩を製造するオンサイト型の高濃度次亜塩素酸塩の製造方法が種々提案されている。例えば、特許文献1では、イオン交換膜によって陽極室と陰極室に区画したイオン交換膜電解槽において、陽極室でアルカリ金属塩水溶液を電解して得られた塩素ガスと、電解によって濃度が低下したアルカリ金属塩化物水溶液のうち、アルカリ金属塩化物水溶液を陰極室に導入してアルカリ金属水酸化物水溶液を製造し、電解槽の外側に設けた反応槽に塩素ガスと共に導入して高濃度次亜塩素酸塩を製造することが提案されている。また、特許文献2,3では、電解後の濃度が低下したアルカリ金属塩化物水溶液を陰極室に導入せず、陰極室で生成した金属アルカリ水酸化物水溶液と共に反応室に直接導入することで、高濃度次亜塩素酸塩を製造することが提案されている。   Under these circumstances, a small alkali metal chloride electrolyzer is installed at a hypochlorite facility such as a water supply station, and on-site manufactures the required amount of hypochlorite when needed. Various methods for producing high-concentration hypochlorite of the type have been proposed. For example, in Patent Document 1, in an ion exchange membrane electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane, the chlorine gas obtained by electrolyzing an alkali metal salt aqueous solution in the anode chamber and the concentration decreased by electrolysis. Among the alkali metal chloride aqueous solutions, the alkali metal chloride aqueous solution is introduced into the cathode chamber to produce an alkali metal hydroxide aqueous solution, which is then introduced into the reaction vessel provided outside the electrolytic cell together with chlorine gas, so It has been proposed to produce chlorates. Patent Documents 2 and 3 do not introduce an alkali metal chloride aqueous solution having a reduced concentration after electrolysis into the cathode chamber, but directly introduce it into the reaction chamber together with the metal alkali hydroxide aqueous solution generated in the cathode chamber. It has been proposed to produce highly concentrated hypochlorite.

上記特許文献1〜3に記載の方法は、いずれもアルカリ金属塩化物電解プラントで次亜塩素酸塩を製造する際に必須となる、電解後に濃度の低下した食塩水に含まれる溶存塩素および次亜塩素酸の除去工程を排除することを達成したものであり、オンサイト製造設備に必要なシステムの簡易化を可能としている。また、特許文献4にも、塩水の電気分解による次亜塩素酸塩の製造装置に係る改良技術が開示されている。   The methods described in Patent Documents 1 to 3 are all essential when producing hypochlorite in an alkali metal chloride electrolysis plant. This achieves the elimination of the chlorous acid removal process, and simplifies the system required for on-site manufacturing equipment. Also, Patent Document 4 discloses an improved technique related to a hypochlorite production apparatus by electrolysis of salt water.

特開平5−179475号公報(特許第3283052号,特許請求の範囲等)Japanese Patent Laid-Open No. 5-179475 (Japanese Patent No. 3283552, claims, etc.) 特開平10−121280号公報(特許第3729432号,特許請求の範囲等)Japanese Patent Laid-Open No. 10-121280 (Patent No. 3729432, claims, etc.) 特開2000−265289号公報(特許第3818619号,特許請求の範囲等)JP 2000-265289 A (Patent No. 3,818,619, claims, etc.) 特開平07−252683号公報(特許第3334996号,特許請求の範囲等)Japanese Patent Laid-Open No. 07-252683 (Patent No. 3334996, claims)

上記特許文献1〜3に記載された技術によれば、高濃度の次亜塩素酸塩を製造することが可能であるが、未だ解決すべき問題は残されている。例えば、特許文献1に記載された高濃度次亜塩素酸塩の製造方法においては、陽極室で電解されて濃度が低下したアルカリ金属塩化物水溶液を陰極室に導入することで、電解済みのアルカリ金属塩化物水溶液が溶存塩素と次亜塩素酸とを含有するために、これらが、陰極室において水素と共に生成する金属アルカリ水酸化物と反応して、目的製造物である次亜塩素酸塩を生成する(下記反応式(1)および(2)参照)。しかし、この場合、生成した次亜塩素酸塩が、陰極上でアルカリ金属塩化物に還元されてしまうおそれがある (下記反応式(3)参照) 。
Cl+2OH→ClO+Cl+HO (1)
HClO+OH→ClO+HO (2)
ClO+HO+2e→Cl+2OH (3)
According to the techniques described in Patent Documents 1 to 3, it is possible to produce a high concentration of hypochlorite, but there are still problems to be solved. For example, in the method for producing a high-concentration hypochlorite described in Patent Document 1, an alkali metal chloride that has been electrolyzed is introduced into the cathode chamber by introducing an alkali metal chloride aqueous solution that has been electrolyzed in the anode chamber to a reduced concentration. Since the metal chloride aqueous solution contains dissolved chlorine and hypochlorous acid, these react with the metal alkali hydroxide generated together with hydrogen in the cathode chamber, and the target product hypochlorite is obtained. (See the following reaction formulas (1) and (2)). However, in this case, the generated hypochlorite may be reduced to an alkali metal chloride on the cathode (see the following reaction formula (3)).
Cl 2 + 2OH → ClO + Cl + H 2 O (1)
HClO + OH → ClO + H 2 O (2)
ClO + H 2 O + 2e → Cl + 2OH (3)

上記反応式(3)の反応の標準電極電位は+0.89Vであり、水素発生の標準電極電位(0V)よりも大きく貴に位置することから、上記反応式(3)の反応が水素発生反応よりも優先的に進行するおそれがある。この次亜塩素酸イオンの陰極還元については、本出願人が特許文献4において詳述されているように、目的製造物質である次亜塩素酸塩を電解中に還元反応によって分解していることに他ならないので、結果的に製造効率低下やコストの増大を招く原因となる。   Since the standard electrode potential of the reaction of the above reaction formula (3) is +0.89 V, which is more precious than the standard electrode potential of hydrogen generation (0 V), the reaction of the above reaction formula (3) is the hydrogen generation reaction. There is a risk of proceeding with priority over. As for the cathodic reduction of hypochlorite ions, as described in detail in Patent Document 4, the applicant has decomposed hypochlorite, which is the target production substance, by reduction during electrolysis. As a result, this results in a decrease in manufacturing efficiency and an increase in cost.

これに対し、特許文献2,3に示す方法では、電解槽の陽極室および陰極室の外側において次亜塩素酸塩の生成反応が進行するため、陰極室で次亜塩素酸塩の一部が還元される問題については回避することが可能である。しかし、これらの技術では、陰極室から反応槽に達する部分に、陰極室で生成するアルカリ金属水酸化物の濃度を調整するメカニズムを有しないので、生成苛性アルカリ濃度が濃厚な場合には、反応槽内で生成する次亜塩素酸塩と副反応で生ずるアルカリ金属塩化物との相互溶解度の関係から、反応槽内にアルカリ金属塩化物が結晶として析出する場合がある。これは、反応槽内にアルカリ金属塩化物が析出、堆積することを示すものであって、製造装置の安定な運転を阻害する一因となるので、好ましくない。   On the other hand, in the methods shown in Patent Documents 2 and 3, since the hypochlorite formation reaction proceeds outside the anode chamber and the cathode chamber of the electrolytic cell, a part of the hypochlorite is formed in the cathode chamber. The problem of being reduced can be avoided. However, these technologies do not have a mechanism for adjusting the concentration of the alkali metal hydroxide generated in the cathode chamber in the portion reaching the reaction vessel from the cathode chamber, so if the generated caustic alkali concentration is high, Due to the mutual solubility relationship between hypochlorite produced in the tank and alkali metal chloride generated by the side reaction, the alkali metal chloride may precipitate as crystals in the reaction tank. This indicates that alkali metal chloride precipitates and accumulates in the reaction tank, and is a cause of hindering stable operation of the production apparatus, which is not preferable.

上記の問題を回避するためには、陰極室のアルカリ金属水酸化物水溶液の濃度を低下させることが必要となるが、この場合、目的製造物質である次亜塩素酸塩の濃度も低下してしまう。よって、例えば市販の次亜塩素酸ソーダ水溶液のような有効塩素濃度12質量%を超えるものを安定して製造することはできるものではなく、オンサイトの製造設備であっても結果として次亜塩素酸塩の貯槽タンクが大容量になることが避けられず、設備のコンパクト化が達成できないという難点を有していた。   In order to avoid the above problem, it is necessary to reduce the concentration of the alkali metal hydroxide aqueous solution in the cathode chamber. In this case, the concentration of hypochlorite, which is the target production substance, is also reduced. End up. Therefore, for example, a commercially available sodium hypochlorite aqueous solution having an effective chlorine concentration exceeding 12% by mass cannot be stably produced. As a result, even an on-site production facility is hypochlorous acid. A large capacity of the acid storage tank is unavoidable, and the equipment cannot be made compact.

そこで本発明の目的は、上記問題を解消して、高濃度の次亜塩素酸塩を、オンサイトの製造設備において安定的かつ効率的に、低コストで製造することができ、また、製造設備のコンパクト化にも寄与できる次亜塩素酸塩の製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and to produce a high concentration hypochlorite stably and efficiently at an on-site production facility at a low cost. Another object of the present invention is to provide a method for producing hypochlorite that can contribute to downsizing.

本発明者らは、上記課題を解決するために鋭意検討した結果、電解槽とは別に設けた反応槽内で陽極液、塩素ガスおよびアルカリ金属水酸化物水溶液の反応により次亜塩素酸塩を製造するにあたり、反応槽に導入する前の陽極液若しくはアルカリ金属水酸化物水溶液、または、反応槽に導入された後の混合物に対し、水を添加することにより、上記反応槽内でのアルカリ金属塩化物の析出を防止できることを見出して、本発明を完成するに至った。   As a result of intensive investigations to solve the above problems, the present inventors have obtained hypochlorite by reaction of an anolyte, chlorine gas and an aqueous alkali metal hydroxide solution in a reaction tank provided separately from the electrolytic cell. In the production, the alkali metal in the reaction vessel is added by adding water to the anolyte or alkali metal hydroxide aqueous solution before being introduced into the reaction vessel, or to the mixture after being introduced into the reaction vessel. The inventors have found that the precipitation of chloride can be prevented, and have completed the present invention.

すなわち、本発明の次亜塩素酸塩の製造方法は、イオン交換膜により陽極室と陰極室とに区画された電解槽の、該陽極室にアルカリ金属塩化物水溶液を供給し、該陰極室に純水を供給して電気分解を行い、電気分解後の該陽極室内の陽極液および生成塩素ガス、並びに、該陰極室内の生成アルカリ金属水酸化物水溶液を反応槽に導入して、該反応槽内での陽極液、塩素ガスおよびアルカリ金属水酸化物水溶液の反応により次亜塩素酸塩を製造する方法であって、
前記イオン交換膜として、カルボン酸層を含む二層膜であるイオン交換膜を用いるとともに、前記陽極室内の前記陽極液を前記反応槽に導入するための供給路内の該陽極液、または、該反応槽に導入された陽極液、塩素ガスおよびアルカリ金属水酸化物水溶液の混合物に対し、水を添加することを特徴とするものである。
That is, in the method for producing hypochlorite of the present invention, an alkaline metal chloride aqueous solution is supplied to the anode chamber of an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane, and the cathode chamber is supplied to the cathode chamber. Electrolysis is performed by supplying pure water, the anolyte and generated chlorine gas in the anode chamber after electrolysis, and the generated alkali metal hydroxide aqueous solution in the cathode chamber are introduced into the reaction tank, and the reaction tank A process for producing hypochlorite by reaction of an anolyte, chlorine gas and an aqueous alkali metal hydroxide solution,
As the ion exchange membrane, an ion exchange membrane that is a two-layer membrane including a carboxylic acid layer is used, and the anolyte in the supply path for introducing the anolyte in the anode chamber into the reaction vessel, or Water is added to the mixture of the anolyte, chlorine gas, and alkali metal hydroxide aqueous solution introduced into the reaction vessel.

本発明においては、好適には、前記反応槽に導入された陽極液、塩素ガスおよびアルカリ金属水酸化物水溶液の混合物に対し、水を添加する。本発明によれば、有効塩素濃度が5質量%以上の次亜塩素酸塩を製造することが可能である。   In the present invention, water is preferably added to the mixture of the anolyte, chlorine gas, and alkali metal hydroxide aqueous solution introduced into the reaction vessel. According to the present invention, hypochlorite having an effective chlorine concentration of 5% by mass or more can be produced.

本発明によれば、上記構成としたことにより、高濃度の次亜塩素酸塩を、オンサイトの製造設備において安定的かつ効率的に、低コストで製造することができ、また、製造設備のコンパクト化にも寄与できる次亜塩素酸塩の製造方法を実現することが可能となった。   According to the present invention, the above-described configuration enables high-concentration hypochlorite to be produced stably and efficiently at an on-site production facility at a low cost. It became possible to realize a hypochlorite production method that could contribute to compactness.

本発明に用いる次亜塩素酸塩の製造装置の一例を示す装置構成図である。It is an apparatus block diagram which shows an example of the manufacturing apparatus of the hypochlorite used for this invention. 食塩電解においてスルホン酸系イオン交換膜を使用した場合の電流効率と得られる苛性ソーダ濃度との関係を示すグラフである。It is a graph which shows the relationship between the current efficiency at the time of using a sulfonic acid type ion exchange membrane in salt electrolysis, and the caustic soda density | concentration obtained.

以下、本発明の実施の形態を、図面を参照しつつ詳細に説明するが、本発明は、これに限定されるものではない。
図1に、本発明に用いる次亜塩素酸塩の製造装置の一例の装置構成図を示す。本発明においては、イオン交換膜1により陽極室2と陰極室3とに区画された電解槽10の、陽極室2にアルカリ金属塩化物水溶液4を供給し、陰極室3に純水5を供給して電気分解を行う。その後、電気分解後の陽極室2内の陽極液6および生成塩素(Cl)ガス7、並びに、陰極室3内の生成アルカリ金属水酸化物水溶液8を反応槽18に導入して、反応槽18内での陽極液6、塩素ガス7およびアルカリ金属水酸化物水溶液8の反応により、次亜塩素酸塩を製造する。ここで、陽極液6とは、電解後の、例えば濃度100g/リットル未満に濃度が低下した、食塩水や塩化カリウム水溶液等(アルカリ金属塩化物水溶液)である。なお、符号9は、陰極室3から排出される水素(H)ガスを示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
In FIG. 1, the apparatus block diagram of an example of the manufacturing apparatus of the hypochlorite used for this invention is shown. In the present invention, an alkali metal chloride aqueous solution 4 is supplied to the anode chamber 2 and pure water 5 is supplied to the cathode chamber 3 of the electrolytic cell 10 partitioned by the ion exchange membrane 1 into the anode chamber 2 and the cathode chamber 3. Electrolysis is then performed. Thereafter, the anolyte 6 and the generated chlorine (Cl 2 ) gas 7 in the anode chamber 2 after electrolysis and the generated alkali metal hydroxide aqueous solution 8 in the cathode chamber 3 are introduced into the reaction tank 18, Hypochlorite is produced by the reaction of the anolyte 6, chlorine gas 7 and aqueous alkali metal hydroxide solution 8 in 18. Here, the anolyte 6 is a salt solution, a potassium chloride aqueous solution, or the like (alkali metal chloride aqueous solution) whose concentration has decreased to, for example, less than 100 g / liter after electrolysis. Reference numeral 9 denotes hydrogen (H 2 ) gas discharged from the cathode chamber 3.

本発明においては、反応槽18に導入する前の陽極液6若しくはアルカリ金属水酸化物水溶液8、または、反応槽18に導入された後の陽極液6、塩素ガス7およびアルカリ金属水酸化物水溶液8の混合物に対し、水11を添加する点が重要である。これら反応槽導入前の陽極液6若しくはアルカリ金属水酸化物水溶液8、または、反応槽導入後の混合物に対し、水11を添加するものとしたことで、反応槽内での次亜塩素酸塩生成時に副生するアルカリ金属塩化物が結晶化して析出することを防止しつつ、安定的に高濃度の次亜塩素酸塩水溶液12を製造することが可能となった。よって、本発明によれば、これにより、高濃度の次亜塩素酸塩を、オンサイトのコンパクトな製造設備において、安定的かつ効率的に、低コストで製造することができるものである。また、本発明においては、電解後に希釈された陽極液であるアルカリ金属塩化物溶液を再飽和する設備も不要であるので、装置をコンパクト化して、次亜塩素酸塩の消費場所において、次亜塩素酸塩を容易に製造することが可能となる。   In the present invention, the anolyte 6 or alkali metal hydroxide aqueous solution 8 before being introduced into the reaction vessel 18, or the anolyte 6, chlorine gas 7 and alkali metal hydroxide aqueous solution after being introduced into the reaction vessel 18. The point that water 11 is added to the mixture of 8 is important. By adding water 11 to the anolyte 6 or the alkali metal hydroxide aqueous solution 8 before the introduction of the reaction vessel, or the mixture after the introduction of the reaction vessel, hypochlorite in the reaction vessel. It became possible to stably produce a high concentration hypochlorite aqueous solution 12 while preventing the alkali metal chloride by-produced during the formation from being crystallized and precipitated. Therefore, according to the present invention, a high concentration hypochlorite can be manufactured stably and efficiently at a low cost in an on-site compact manufacturing facility. In addition, in the present invention, equipment for re-saturating the alkali metal chloride solution, which is an anolyte diluted after electrolysis, is also unnecessary, so that the apparatus can be made compact so that hypochlorite is consumed in the hypochlorite consumption place. The chlorate can be easily produced.

本発明においては、好適には、反応槽18に導入する前のアルカリ金属水酸化物水溶液、または、反応槽18に導入された陽極液等の混合物に対し、水を添加するものとする。これは、反応槽での食塩の析出を防止するためである。   In the present invention, preferably, water is added to a mixture of an alkali metal hydroxide aqueous solution before being introduced into the reaction vessel 18 or an anolyte introduced into the reaction vessel 18. This is for preventing the precipitation of salt in the reaction vessel.

本発明において、水の添加量は、アルカリ金属塩化物の析出がなく、かつ、有効塩素濃度が5質量%以上の次亜塩素酸塩が得られる範囲で、適宜設定することができ、特に制限されるものではない。水の添加量が少なすぎると、アルカリ金属塩化物の析出防止効果を十分に得られないおそれがある。また、アルカリ金属塩化物の析出防止の観点のみからいえば、水の添加量の上限はないが、水の添加量が多すぎると、反応槽で生成する次亜塩素酸塩の濃度が希釈されてしまう。より具体的には、水の適切な添加量は、電解槽の運転電流密度や、電流効率、運転温度、電解済み陽極液濃度、苛性アルカリ濃度、アルカリ金属水酸化物の生成電流効率、イオン交換膜の浸透水量等の諸要因に基づき変動する。よって、一般化することは困難であるが、例えば、後述する実施例1における運転条件内であれば、生成次亜塩素酸ナトリウム濃度が12質量%以上を維持できる範囲として、1.8〜2.1リットル/KAhが適正範囲となる。本発明において、水11は、水供給源13から陽極液の供給路等に添加することができ、特には、純水が好適である。   In the present invention, the amount of water added can be appropriately set within a range in which an alkali metal chloride is not precipitated and a hypochlorite having an effective chlorine concentration of 5% by mass or more can be obtained. Is not to be done. If the amount of water added is too small, the effect of preventing precipitation of alkali metal chloride may not be sufficiently obtained. From the standpoint of preventing the precipitation of alkali metal chlorides, there is no upper limit for the amount of water added. However, if the amount of water added is too large, the concentration of hypochlorite produced in the reaction vessel is diluted. End up. More specifically, the appropriate amount of water added is the electrolytic cell operating current density, current efficiency, operating temperature, electrolyzed anolyte concentration, caustic alkali concentration, alkali metal hydroxide generation current efficiency, ion exchange It varies based on various factors such as the amount of osmotic water in the membrane. Therefore, although it is difficult to generalize, for example, within the operating conditions in Example 1 to be described later, as a range in which the generated sodium hypochlorite concentration can maintain 12% by mass or more, 1.8 to 2 .1 liter / KAh is an appropriate range. In the present invention, the water 11 can be added from the water supply source 13 to the anolyte supply path or the like, and pure water is particularly suitable.

本発明の製造方法は、従来は得られなかった高濃度の次亜塩素酸塩が得られる点に特徴を有するものである。本発明において得られる次亜塩素酸塩としては、次亜塩素酸ナトリウム、次亜塩素酸カリウムなどが挙げられる。ここで、本発明の製造方法により、市販の、有効塩素濃度が5質量%を超える次亜塩素酸ソーダ水溶液のような高濃度の次亜塩素酸塩を、オンサイトの製造設備で安定的かつ効率的に製造するためには、下記に示す要件を満たす必要がある。
(i)生成する次亜塩素酸塩濃度を高く維持するため、陰極室において可能な限り高濃度のアルカリ金属水酸化物水溶液を製造すること。
(ii)生成する次亜塩素酸塩中のアルカリ金属塩化物の使用原単位を小さくするため、電解後の陽極液中のアルカリ金属塩化物濃度を可能な限り小さくすること。
The production method of the present invention is characterized in that a hypochlorite with a high concentration which has not been obtained conventionally can be obtained. Examples of the hypochlorite obtained in the present invention include sodium hypochlorite and potassium hypochlorite. Here, by the production method of the present invention, a highly concentrated hypochlorite salt solution such as a commercially available sodium hypochlorite aqueous solution having an effective chlorine concentration exceeding 5% by mass can be stably and on-site production equipment. In order to manufacture efficiently, it is necessary to satisfy the following requirements.
(I) To maintain a high concentration of hypochlorite to be produced, an alkali metal hydroxide aqueous solution having a concentration as high as possible is produced in the cathode chamber.
(Ii) The alkali metal chloride concentration in the anolyte after electrolysis should be made as small as possible in order to reduce the basic unit of alkali metal chloride in the hypochlorite to be produced.

上記i),ii)の条件を満たすためには、電解槽の陰極室で高濃度のアルカリ金属水酸化物水溶液を製造する必要がある。しかし、特許文献2,3の実施例で用いられているようなスルホン酸系イオン交換基を有する陽イオン交換膜を用いた場合、図2に食塩電解のケースについて示すように、陽極液濃度が190〜220g/リットルと濃い領域であったとしても90%以上の高い電流効率を達成するためには、水酸化ナトリウム濃度として10質量%以下の低濃度に維持する必要があるので、結果として、市販の次亜塩素酸ソーダ水溶液のような高濃度を達成することは不可能である。逆に、例えば30質量%以上の水酸化ナトリウム濃度を達成するためには、水酸化ナトリウム生成電流効率が60%以下になり、アルカリ金属塩化物の使用原単位を小さくするために陽極液濃度を100g/リットル以下まで下げれば、更なる生成電流効率の低下が予想されるため、電力コストの面から実用的ではない。   In order to satisfy the above conditions i) and ii), it is necessary to produce a high-concentration alkali metal hydroxide aqueous solution in the cathode chamber of the electrolytic cell. However, when a cation exchange membrane having a sulfonic acid ion exchange group as used in Examples of Patent Documents 2 and 3 is used, as shown in FIG. Even if it is a dense region of 190 to 220 g / liter, in order to achieve a high current efficiency of 90% or more, it is necessary to maintain a low concentration of 10% by mass or less as a sodium hydroxide concentration. It is impossible to achieve such high concentrations as commercially available sodium hypochlorite aqueous solutions. On the contrary, for example, in order to achieve a sodium hydroxide concentration of 30% by mass or more, the sodium hydroxide production current efficiency becomes 60% or less, and the anolyte concentration is reduced in order to reduce the basic unit of alkali metal chloride. If it is lowered to 100 g / liter or less, a further decrease in generated current efficiency is expected, so that it is not practical from the viewpoint of power cost.

かかる点から、本発明においては、電解槽10におけるイオン交換膜1として、食塩または塩化カリウム電解用の高濃度苛性アルカリ生成用イオン交換膜を用いることが必要である。これにより、電流効率と、得られる次亜塩素酸塩の高濃度とを両立できるので、市販品レベルの有効塩素濃度が5質量%以上、例えば、5〜12質量%の次亜塩素酸塩を、オンサイトの製造設備で、安定的に、かつ、より効率的に、低コストで製造することが可能となる。かかる高濃度苛性アルカリ生成用イオン交換膜としては、具体的には例えば、スルホン酸−カルボン酸二層膜等のカルボン酸層を含む二層膜が挙げられる。   From this point, in the present invention, as the ion exchange membrane 1 in the electrolytic cell 10, it is necessary to use an ion exchange membrane for producing high-concentration caustic alkali for electrolysis of sodium chloride or potassium chloride. Thereby, since current efficiency and the high concentration of the obtained hypochlorite can be made compatible, the effective chlorine concentration of a commercial item level is 5 mass% or more, for example, 5-12 mass% hypochlorite. It is possible to manufacture stably, more efficiently, and at low cost with an on-site manufacturing facility. Specific examples of the ion exchange membrane for generating high concentration caustic alkali include a bilayer membrane including a carboxylic acid layer such as a sulfonic acid-carboxylic acid bilayer membrane.

本発明の製造方法は、反応槽導入前の陽極液若しくはアルカリ金属水酸化物水溶液、または、反応槽導入後の混合物に対し水を添加する以外の点については、常法に従い、適宜実施することができ、特に制限されるものではない。例えば、本発明で用いる製造装置において、イオン交換膜1によって区画された電解槽10の陽極室2には、チタン等の金属基体上に白金族金属の酸化物を含む電極触媒物質の被覆が形成されてなる陽極14が設けられている。また、陰極室3には、ニッケルやステンレス、チタンからなるか、または、これらの金属に水素過電圧を低下させる陰極活性物質の被覆が形成されてなる陰極15が設けられている。   The production method of the present invention is appropriately carried out according to a conventional method except for adding water to the anolyte or alkali metal hydroxide aqueous solution before the introduction of the reaction vessel or the mixture after the introduction of the reaction vessel. There is no particular limitation. For example, in the manufacturing apparatus used in the present invention, the anode chamber 2 of the electrolytic cell 10 partitioned by the ion exchange membrane 1 is formed with a coating of an electrode catalyst material containing a platinum group metal oxide on a metal substrate such as titanium. An anode 14 is provided. The cathode chamber 3 is provided with a cathode 15 made of nickel, stainless steel, or titanium, or formed by covering these metals with a cathode active material coating that reduces hydrogen overvoltage.

アルカリ金属塩化物水溶液4および純水5は、次亜塩素酸塩の目的生成量に応じて、濃度および流量を制御しつつ、電解槽10に供給することができる。陰極室3の上部からは、生成したアルカリ金属水酸化物水溶液8および水素ガス9が取り出され、このうちアルカリ金属水酸化物水溶液8は反応槽18に供給され、水素ガス9は外部に排出される。また、陽極室2の上部からは、電気分解により濃度が低下したアルカリ金属塩化物水溶液からなる陽極液6と、塩素ガス7とが取り出され、それぞれ反応槽18に供給される。   The alkali metal chloride aqueous solution 4 and the pure water 5 can be supplied to the electrolytic cell 10 while controlling the concentration and flow rate according to the target amount of hypochlorite produced. The generated alkali metal hydroxide aqueous solution 8 and hydrogen gas 9 are taken out from the upper part of the cathode chamber 3, and among these, the alkali metal hydroxide aqueous solution 8 is supplied to the reaction vessel 18, and the hydrogen gas 9 is discharged to the outside. The Further, from the upper part of the anode chamber 2, the anolyte 6 made of an alkali metal chloride aqueous solution whose concentration is reduced by electrolysis and the chlorine gas 7 are taken out and supplied to the reaction tank 18.

反応槽18では、塩素とアルカリ金属水酸化物とが反応して、次亜塩素酸塩水溶液12が生成する。ここで、反応槽18から取り出した次亜塩素酸塩水溶液12は、製品として取り出すとともに、ポンプ16により冷却装置17に供給して冷却したのち、反応槽18に循環させることで、電解槽の温度上昇を防止するとともに、生成した次亜塩素酸塩の分解を防止することができる。   In the reaction tank 18, chlorine and the alkali metal hydroxide react to produce a hypochlorite aqueous solution 12. Here, the hypochlorite aqueous solution 12 taken out from the reaction vessel 18 is taken out as a product, supplied to the cooling device 17 by the pump 16, cooled, and then circulated through the reaction vessel 18, so that the temperature of the electrolytic vessel is increased. While preventing a raise, decomposition | disassembly of the produced | generated hypochlorite can be prevented.

例えば、アルカリ金属水酸化物として食塩を用いて、次亜塩素酸ナトリウムを製造する場合、電解槽10において、下記総括反応式、
2NaCl+2HO→2NaOH+Cl+H
に従う電気分解により生成した水酸化ナトリウムおよび塩素の全量が、反応槽18において、下記反応式、
2NaOH+Cl→NaClO+NaCl+H
に従い反応して、次亜塩素酸ナトリウムおよび等モルの食塩が生成する。一方、本発明において反応槽18に供給する塩水中には、例えば、実施例1では90.1g/リットルの食塩が含まれているので、生成する次亜塩素酸ナトリウムの水溶液中には、次亜塩素酸塩の生成反応で生じた食塩と塩水中に含まれていた食塩との双方が含まれることとなる。
For example, in the case of producing sodium hypochlorite using sodium chloride as the alkali metal hydroxide, in the electrolytic cell 10, the following general reaction formula:
2NaCl + 2H 2 O → 2NaOH + Cl 2 + H 2
The total amount of sodium hydroxide and chlorine produced by electrolysis according to
2NaOH + Cl 2 → NaClO + NaCl + H 2 O
To produce sodium hypochlorite and equimolar sodium chloride. On the other hand, the salt water supplied to the reaction tank 18 in the present invention contains, for example, 90.1 g / liter of sodium chloride in Example 1, so that the following aqueous sodium hypochlorite solution is Both salt produced by the chlorite formation reaction and salt contained in the salt water are included.

したがって、この場合、得られた次亜塩素酸ナトリウムを食塩の濃度が問題となる用途に使用する場合には、陽極室への塩水の供給量を減少させ、食塩の分解率を上昇させることによって陽極室中の食塩の含有量を減少させることが考えられる。本発明においては、陽極室内での食塩分解率を可能な限り上げ、食塩濃度が充分に低下した電解済み陽極液を全量陰極液と混合することで、次亜塩素酸ナトリウムを冷却しながら遠心分離したり、陰極液に対し電解済み塩水を混合せず発生塩素のみを混合するなどの従来の手法を用いることなく、食塩混入率の低い次亜塩素酸ナトリウムを製造できるので、食塩結晶を回収する設備を省略して、装置のコンパクト化を図ることができる。   Therefore, in this case, when the obtained sodium hypochlorite is used for an application in which the concentration of sodium chloride becomes a problem, the amount of salt water supplied to the anode chamber is decreased and the decomposition rate of sodium chloride is increased. It is conceivable to reduce the salt content in the anode chamber. In the present invention, the salt decomposition rate in the anode chamber is increased as much as possible, and the electrolyzed anolyte having a sufficiently reduced salt concentration is mixed with the entire amount of the catholyte, so that the sodium hypochlorite is cooled while being centrifuged. Or sodium hypochlorite with a low salt contamination rate can be produced without using conventional methods such as mixing only the generated chlorine without mixing the electrolyzed salt water with the catholyte. Equipment can be omitted, and the apparatus can be made compact.

以下、本発明を、実施例を用いてより具体的に説明する。
[実施例1]
図1に示す構成の装置において、次亜塩素酸ソーダの製造を行った。電解槽の電解面積は100cmとし、流す電流は40Aとした。陽極室と陰極室とを仕切るイオン交換膜としては、食塩電解用途で幅広く用いられているデュポン(株)製のナフィオン(登録商標)N2030を使用した。
Hereinafter, the present invention will be described more specifically with reference to examples.
[Example 1]
In the apparatus having the configuration shown in FIG. 1, sodium hypochlorite was produced. The electrolytic area of the electrolytic cell was 100 cm 2 , and the flowing current was 40A. As the ion exchange membrane for partitioning the anode chamber and the cathode chamber, Nafion (registered trademark) N2030 manufactured by DuPont Co., Ltd., which is widely used for salt electrolysis, was used.

あらかじめ陽極室に飽和食塩水を、陰極室に30質量%の苛性ソーダ水溶液を、それぞれ張り込んで、温度80℃にて運転を開始した。運転が安定した一週間後の電解済み陽極液の食塩濃度は90.1g/リットル、生成苛性ソーダ濃度は31.9質量%、苛性ソーダの生成電流効率は97.1%であり、この状態で生成する塩素ガス、電解済み陽極液および生成苛性ソーダを電解槽の外に配置した反応槽に導入し、併せて、純水を0.08リットル/hrの速度で反応槽に供給して、次亜塩素酸ソーダの製造を行った。   The operation was started at a temperature of 80 ° C. with saturated saline in the anode chamber and 30% by mass aqueous caustic soda solution in the cathode chamber. After 1 week of stable operation, the salt concentration of the electrolyzed anolyte is 90.1 g / liter, the generated caustic soda concentration is 31.9% by mass, and the generated current efficiency of caustic soda is 97.1%. Chlorine gas, electrolyzed anolyte and generated caustic soda are introduced into a reaction vessel arranged outside the electrolytic cell, and pure water is supplied to the reaction vessel at a rate of 0.08 liter / hr, and hypochlorous acid is added. Soda was manufactured.

次亜塩素酸ソーダの製造開始から2時間後に運転を停止し、冷却後に反応槽内の次亜塩素酸ソーダ水溶液を確認したところ、食塩の結晶化による析出は見られなかった。この生成次亜塩素酸ソーダの濃度分析を行ったところ、有効塩素濃度で12.1質量%であった。   When the operation was stopped 2 hours after the start of the production of sodium hypochlorite and the aqueous sodium hypochlorite solution in the reaction vessel was confirmed after cooling, no precipitation due to crystallization of sodium chloride was observed. When the concentration analysis of this produced sodium hypochlorite was conducted, the effective chlorine concentration was 12.1% by mass.

[比較例1]
反応槽に純水を供給しない点以外は実施例1と同様の電解槽および電解条件にて電解を行い、次亜塩素酸ソーダの製造を行った。次亜塩素酸ソーダ製造開始前の電解槽の電解済み陽極液の食塩濃度は93g/リットル、生成苛性ソーダ濃度は31.5質量%、苛性ソーダの生成電流効率は96.5%であり、この状態で生成する塩素ガス、電解済み陽極液および生成苛性ソーダを電解槽の外側にある反応槽に導入して、次亜塩素酸ソーダの製造を行った。
[Comparative Example 1]
Except that pure water was not supplied to the reaction tank, electrolysis was performed in the same electrolytic tank and electrolytic conditions as in Example 1 to produce sodium hypochlorite. The salt concentration of the electrolyzed anolyte in the electrolytic cell before the start of sodium hypochlorite production was 93 g / liter, the generated caustic soda concentration was 31.5% by mass, and the generated current efficiency of caustic soda was 96.5%. The produced chlorine gas, electrolyzed anolyte and produced caustic soda were introduced into a reaction vessel outside the electrolytic cell to produce sodium hypochlorite.

2時間経過したところで電解槽の運転を停止し、反応槽の中を確認したところ、食塩結晶が反応槽内の底部に析出していた。析出した食塩を濾別回収し、乾燥後に重量を測定したところ、約2gであった。また、濾液である次亜塩素酸ソーダの濃度を測定したところ、有効塩素濃度で15.2質量%であった。   When the operation of the electrolytic cell was stopped after 2 hours and the inside of the reaction vessel was confirmed, salt crystals were precipitated at the bottom of the reaction vessel. Precipitated salt was collected by filtration, and the weight was measured after drying, and it was about 2 g. Moreover, when the density | concentration of the sodium hypochlorite which is a filtrate was measured, it was 15.2 mass% in effective chlorine density | concentration.

[比較例2]
陽極室と陰極室とを仕切るイオン交換膜を、デュポン(株)製のナフィオン(登録商標)N324に変更した以外は実施例1と同じ電解槽および電解条件にて、運転を行った。運転が安定した1週間後の電解済み陽極液の食塩濃度は95g/リットル、生成苛性ソーダ濃度は28.5質量%、苛性ソーダの生成電流効率は51%であり、高濃度の次亜塩素酸ソーダを製造できたものの、実施例1と比較すると、経済性の点で不十分であることが確認された。
[Comparative Example 2]
The operation was carried out in the same electrolytic cell and electrolysis conditions as in Example 1 except that the ion exchange membrane separating the anode chamber and the cathode chamber was changed to Nafion (registered trademark) N324 manufactured by DuPont. The salt concentration of the electrolyzed anolyte after one week when the operation is stable is 95 g / liter, the concentration of the produced caustic soda is 28.5% by mass, the production current efficiency of the caustic soda is 51%, and high concentration sodium hypochlorite is used. Although it was able to be manufactured, it was confirmed that it was insufficient in terms of economy as compared with Example 1.

1 イオン交換膜
2 陽極室
3 陰極室
4 アルカリ金属塩化物水溶液
5 純水
6 陽極液
7 生成塩素ガス
8 アルカリ金属水酸化物水溶液
9 水素ガス
10 電解槽
11 水
12 次亜塩素酸塩水溶液
13 水供給源
14 陽極
15 陰極
16 ポンプ
17 冷却装置
18 反応槽
DESCRIPTION OF SYMBOLS 1 Ion exchange membrane 2 Anode chamber 3 Cathode chamber 4 Alkali metal chloride aqueous solution 5 Pure water 6 Anolyte 7 Generated chlorine gas 8 Alkali metal hydroxide aqueous solution 9 Hydrogen gas 10 Electrolysis tank 11 Water 12 Hypochlorite aqueous solution 13 Water Supply source 14 Anode 15 Cathode 16 Pump 17 Cooling device 18 Reaction tank

Claims (3)

イオン交換膜により陽極室と陰極室とに区画された電解槽の、該陽極室にアルカリ金属塩化物水溶液を供給し、該陰極室に純水を供給して電気分解を行い、電気分解後の該陽極室内の陽極液および生成塩素ガス、並びに、該陰極室内の生成アルカリ金属水酸化物水溶液を反応槽に導入して、該反応槽内での陽極液、塩素ガスおよびアルカリ金属水酸化物水溶液の反応により次亜塩素酸塩を製造する方法であって、
前記イオン交換膜として、カルボン酸層を含む二層膜であるイオン交換膜を用いるとともに、前記陽極室内の前記陽極液を前記反応槽に導入するための供給路内の該陽極液、または、該反応槽に導入された陽極液、塩素ガスおよびアルカリ金属水酸化物水溶液の混合物に対し、水を添加することを特徴とする次亜塩素酸塩の製造方法。
In an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane, an alkali metal chloride aqueous solution is supplied to the anode chamber, pure water is supplied to the cathode chamber, and electrolysis is performed. The anolyte in the anode chamber and the generated chlorine gas, and the generated alkali metal hydroxide aqueous solution in the cathode chamber are introduced into a reaction vessel, and the anolyte, chlorine gas and alkali metal hydroxide aqueous solution in the reaction vessel are introduced. A method for producing hypochlorite by the reaction of
Wherein as an ion-exchange membrane, with an ion-exchange membrane is a bilayer membrane comprising a carboxylic acid layer, the anolyte supply path for introducing the anolyte of the anode chamber to the reactor, or, the A method for producing hypochlorite, comprising adding water to a mixture of an anolyte, chlorine gas and an aqueous alkali metal hydroxide solution introduced into a reaction vessel.
有効塩素濃度が5質量%以上の次亜塩素酸塩を製造する請求項1記載の製造方法。   The manufacturing method of Claim 1 which manufactures hypochlorite whose effective chlorine concentration is 5 mass% or more. 前記反応槽に導入された陽極液、塩素ガスおよびアルカリ金属水酸化物水溶液の混合物に対し、水を添加する請求項1または2記載の製造方法。 The manufacturing method of Claim 1 or 2 which adds water with respect to the mixture of the anolyte introduce | transduced into the said reaction tank, chlorine gas, and alkali metal hydroxide aqueous solution.
JP2011242672A 2011-11-04 2011-11-04 Method for producing hypochlorite Active JP5907501B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011242672A JP5907501B2 (en) 2011-11-04 2011-11-04 Method for producing hypochlorite
PCT/JP2012/078367 WO2013065797A1 (en) 2011-11-04 2012-11-01 Method for producing hypochlorite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242672A JP5907501B2 (en) 2011-11-04 2011-11-04 Method for producing hypochlorite

Publications (2)

Publication Number Publication Date
JP2013096001A JP2013096001A (en) 2013-05-20
JP5907501B2 true JP5907501B2 (en) 2016-04-26

Family

ID=48192135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242672A Active JP5907501B2 (en) 2011-11-04 2011-11-04 Method for producing hypochlorite

Country Status (2)

Country Link
JP (1) JP5907501B2 (en)
WO (1) WO2013065797A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9695073B2 (en) 2014-07-30 2017-07-04 Ecolab Usa Inc. Dual biocide generator
JP6226845B2 (en) * 2014-09-19 2017-11-08 株式会社東芝 Electrolyzer
CN106745551A (en) * 2017-01-04 2017-05-31 江苏润聚环保科技有限公司 The apparatus and method of chlorion in removal industrial circulating water
CN111560622A (en) * 2020-05-26 2020-08-21 芦建锋 High-concentration weak-acid hypochlorous acid disinfectant generator for manufacturing stable pH value
JP7445622B2 (en) 2021-04-30 2024-03-07 デノラ・ペルメレック株式会社 Method and equipment for producing sodium hypochlorite solution
JP2022184083A (en) 2021-05-31 2022-12-13 デノラ・ペルメレック株式会社 Method and device of producing sodium hypochlorite solution
CN117228637B (en) * 2023-11-15 2024-03-19 福建浩达智能科技股份有限公司 Hypochlorous acid preparation device, system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118495A (en) * 1984-07-05 1986-01-27 Osaka Soda Co Ltd Preparation of water treating chemicals
JP2742164B2 (en) * 1991-11-21 1998-04-22 株式会社トクヤマ Method for producing aqueous sodium hypochlorite solution
JP4329339B2 (en) * 2002-12-13 2009-09-09 旭硝子株式会社 Salt electrolysis method

Also Published As

Publication number Publication date
JP2013096001A (en) 2013-05-20
WO2013065797A1 (en) 2013-05-10

Similar Documents

Publication Publication Date Title
JP5907501B2 (en) Method for producing hypochlorite
US10259727B2 (en) Electrochemical system and method for on-site generation of oxidants at high current density
RU2112817C1 (en) Methods for producing chlorine dioxide
FI110772B (en) Process for the production of chlorine dioxide
US5938916A (en) Electrolytic treatment of aqueous salt solutions
JP3729432B2 (en) Hypochlorite production equipment
JP3818619B2 (en) Hypochlorite production apparatus and method
KR101436139B1 (en) A electrolysis apparatus
JP2006522213A (en) Electrochemical oxidation process of bromide to bromine
US4510026A (en) Process for electrolysis of sea water
JPH10291808A (en) Production method of aqueous hydrogen peroxide and device therefor
RU2459768C1 (en) Water sterilisation station
RU160773U1 (en) INSTALLATION FOR INTEGRATED PRODUCTION OF CHLORINE-CONTAINING REAGENTS AND SODIUM FERRATE
JPH11140679A (en) Electrolytic cell for production of hydrogen peroxide
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
US20120247970A1 (en) Bubbling air through an electrochemical cell to increase efficiency
CA2821309A1 (en) Electrolytic process
JPH05179475A (en) Production of hypochlorite
KR102663704B1 (en) Manufacturing method and manufacturing device of sodium hypochlorite solution
RU2349682C2 (en) Electrolytic installation for obtaining sodium hypochlorite
JP2003293178A (en) Method for preparing chemical for water treatment
KR100817730B1 (en) A chlorine dioxide generator and method
JP2007051318A (en) Apparatus for electrolyzing saline solution
WO2022254878A1 (en) Method and apparatus for producing sodium hypochlorite solution
Delfrate Chlorine–alkaline electrolysis–Technology and use and economy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5907501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250