JP2000263033A - 循環水系における薬剤濃度の管理方法 - Google Patents

循環水系における薬剤濃度の管理方法

Info

Publication number
JP2000263033A
JP2000263033A JP11070819A JP7081999A JP2000263033A JP 2000263033 A JP2000263033 A JP 2000263033A JP 11070819 A JP11070819 A JP 11070819A JP 7081999 A JP7081999 A JP 7081999A JP 2000263033 A JP2000263033 A JP 2000263033A
Authority
JP
Japan
Prior art keywords
concentration
cobalt
tracer
drug
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11070819A
Other languages
English (en)
Inventor
Hajime Kono
源 河野
Shinji Ichikawa
真治 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquas Corp
Original Assignee
Aquas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquas Corp filed Critical Aquas Corp
Priority to JP11070819A priority Critical patent/JP2000263033A/ja
Publication of JP2000263033A publication Critical patent/JP2000263033A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

(57)【要約】 【課題】 循環水系の薬剤濃度を正確かつ迅速に管理す
ることができる薬剤濃度の管理方法を提供する。 【解決手段】 所定の配合比率でコバルトを混合した薬
剤を循環水中に添加し、循環水中のコバルト濃度を測定
することにより、循環水系の薬剤濃度を管理する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】 本発明は、一般空調用或い
は各種工業用の冷却水、冷温水、蓄熱水、スクラバー
水、ボイラ水等の循環水系(以下、単に「循環水系」と
いう。)に添加される薬剤の濃度を管理する方法に関
し、詳しくは薬剤に所定の配合比率で混合したトレーサ
の濃度を測定することにより薬剤の濃度を管理する方法
に関する。
【0002】
【従来の技術】 近年、生活水準の向上、産業の成長・
発展により用水の使用量が飛躍的に増加しているため、
用水、特に一般空調用或いは各種工業用の冷却水、ボイ
ラ水等の用水の循環回収による再利用が頻繁に行われて
いる。
【0003】 しかしながら、これらの循環水系におい
ては、給水中の成分により、或いは外界からの種々の混
入物に起因して配管の腐食・閉塞或いは熱交換率の低下
等、循環系統に障害を起こす機会が多くなっており、循
環水の濃縮率が高まるにつれて、障害の程度も激しくな
る傾向にある。
【0004】 循環系統の障害としては、例えば熱交換
器、循環用配管等に無機塩類等の堆積物を生ずるスケー
ル(又はスラッジ)障害、腐食性物質により熱交換器、
循環用配管等が腐食する腐食障害、熱交換器、循環用配
管等に微生物由来の粘稠物が付着するスライム障害、ボ
イラ水が泡立ち、突沸するキャリオーバー等があり、こ
れらの障害を防止するべく、分散剤、防食剤、スライム
防除剤等、目的に応じた種々の薬剤を添加して循環系統
の障害を防止することが行われている。
【0005】 これらの薬剤の効果を維持するために
は、循環水系における薬剤濃度を継続的に所定のレベル
で管理する必要がある。即ち、薬剤濃度を迅速に測定し
て的確に把握し、適宜、薬剤を再添加する等の処置が必
要となる。
【0006】 しかしながら、これらの薬剤の中には濃
度の定量法が確立していない薬剤も存在し、また、定量
法が確立していても測定操作が煩雑、或いは高価な測定
機の使用が必須等、測定上の制約があるものも存在す
る。このような場合には、循環水系における薬剤濃度を
迅速に定量して的確に把握することが困難となり、循環
系統の運転管理に支障を来すことになる。
【0007】 そこで、循環水系に添加する薬剤に、検
出が容易な化学物質(以下、「トレーサ」という。)を
所定の配合比率で混合し、当該トレーサの濃度を測定す
ることにより、循環水系における薬剤自体の濃度を管理
する方法が提案されている。
【0008】
【発明が解決しようとする課題】 しかしながら、トレ
ーサは、環境水中に存在しないか、又は無視できるほ
ど微量であること、環境水中の共存塩類の妨害を受け
ずに定量できること(選択性)、公害防止上の観点か
ら無害であること、生物学的・化学的に安定であるこ
と、金属材料に対する腐食性がないこと、定量が正
確かつ迅速に行えること、薬剤成分及び測定対象とな
る水系と容易に均一に混ざり合うこと(相溶性)等の諸
条件を満たす必要があり、これらの全てを満足する化学
物質は見出されていないのが現状である。
【0009】 例えば特許第2788354号には、臭化物イ
オン、ヨウ化物イオン等のハロゲン化物イオンをトレー
サとして利用する方法が開示されているが、当該方法は
環境水中に多量に存在する塩化物イオンの影響を回避す
る必要があり、選択性を確保するためには高濃度に添加
しなければならないという難点がある。更に、ハロゲン
化物イオンは、発ガン性物質として飲料水などで規制対
象となっているトリハロメタンを生成する因子であるた
め、その使用は公害防止上の観点から望ましくない。
【0010】 また、特公平6-11437号公報には、2−
ナフタレンスルホン酸、アシッドイエロー7等の蛍光物
質をトレーサとして利用する方法が開示されているが、
これらの蛍光物質は有機物であるため、水中において微
生物の作用により分解を受け易く、トレーサ自体の安定
性に問題がある。
【0011】 このような中で、特公昭55-3668号公報
にはリチウムイオンをトレーサとして利用する方法が開
示されている。当該方法は、分析法として原子吸光法を
採用するため高価な測定機を用いる必要があることを除
いては、トレーサとしての条件をほぼ満足しており、優
れた方法であると考えられていた。ところが、本発明者
らが詳細な調査を行ったところ、表1に示すようにリチ
ウムイオンは環境水中に予想以上に多量に存在し、ま
た、その濃度が経時的に変動することが判明した。
【0012】
【表1】
【0013】 このように環境水中の存在量が無視でき
ず、かつ、その濃度が経時的に変動する物質をトレーサ
として添加した場合、測定毎に補正を行う必要がある
等、分析が煩雑になる点が問題となる。また、前述の問
題を回避する方法として、薬剤中に高濃度にリチウムを
添加する方法もあるが、薬剤中のリチウム濃度が高くな
ると薬剤成分が均一に溶解し難くなり、薬剤との相溶性
の点においても好ましくない。
【0014】 本発明は上述のような従来技術の問題点
に鑑みてなされたものであって、本発明の目的とすると
ころは、トレーサとしての要求特性を十分満足できる化
学物質を見出し、循環水系の薬剤濃度を正確かつ迅速に
管理し得る方法を提供することにある。
【0015】
【課題を解決するための手段】 本発明者等が鋭意検討
した結果、コバルトがトレーサとしての要求特性を十分
満足できること、及びコバルトをトレーサとして使用す
ることにより従来技術の問題点を解決できることを見出
して、本発明を完成した。
【0016】 即ち、本発明によれば、所定の配合比率
でコバルトを混合した薬剤を循環水中に添加し、当該循
環水中のコバルト濃度を測定することにより、循環水系
の薬剤濃度を管理することを特徴とする循環水系におけ
る薬剤濃度管理方法が提供される。本発明の薬剤濃度管
理方法においては、コバルト濃度を化学発光分析法によ
り定量することが好ましい。
【0017】
【発明の実施の形態】 本発明の薬剤濃度管理方法は、
トレーサとしてコバルトを使用することを特徴とする。
コバルトは、トレーサとしての要求特性を十分満足する
ため、循環水系の薬剤濃度を正確かつ迅速に管理するこ
とが可能となる。以下、本発明について詳細に説明す
る。
【0018】 本発明は、所定の配合比率でトレーサを
混合した薬剤を循環水中に添加し、当該循環水中のトレ
ーサ濃度を測定することにより、当該循環水系の薬剤濃
度を管理する方法に関するものである。このような循環
水系における薬剤管理方法が有効か否かは、トレーサと
して使用する化学物質の選択、及びトレーサの定量方法
により決定される。
【0019】(トレーサの選択)本発明においては、ト
レーサとしてコバルトを選択する。コバルトは以下に示
すようにトレーサとしての要求特性を備えているからで
ある。まず、コバルトは表1に示すように環境水中にお
ける存在量は僅かであり、その濃度も安定しているた
め、環境水中のコバルトの影響を受けることがなく、薬
剤中に配合するトレーサ濃度を低減することが可能であ
る。
【0020】 また、コバルトは無害であることに加
え、既述の蛍光トレーサのように有機物ではないため微
生物による分解も受け難く、また、化学的にも安定であ
る。更には、金属材料に対する腐食性がないことを理由
としてボイラ用水等の亜硫酸塩による脱酸素の際の触媒
としてコバルト塩が推奨されているほどであって、金属
材料に対する腐食性についても全く問題がない。
【0021】 コバルトをトレーサとして用いる場合に
は、コバルトを所定の配合比率で薬剤に混合すればよ
く、混合するコバルトは、薬剤との相溶性、測定対象と
なる水系における溶解性等を考慮して適宜選択すること
ができる。
【0022】 通常は、水中で速やかに溶解する点にお
いて、塩化コバルト、硫酸コバルト等のコバルトの水溶
性塩が好適に用いられるが、薬剤中及び測定対象となる
水系中で均一な分散が確保できる限りにおいて、必ずし
も水溶性塩である必要はない。
【0023】 また、塩基性条件下などコバルトの水溶
性塩を溶解し難い場合には、コバルトイオンのキレート
錯体を薬剤に混合してもよい。コバルトイオンのキレー
ト錯体は、コバルトイオンと、EDTA(エチレンジア
ミン四酢酸)、lDA(イミノジ酢酸)などのキレート
試薬とを反応させることにより比較的簡便に調製するこ
とができる。また、市販のキレート錯体を使用してもよ
い。
【0024】(トレーサの定量方法)トレーサの定量方
法としては、例えば滴定法、吸光光度法、原子吸光法、
発光法(誘導結合プラズマ法など)等が挙げられ、上述
したコバルトの定量においてもこれらの測定方法を利用
することができる。
【0025】 但し、本発明においては、化学発光分析
法によりコバルト濃度を定量することが好ましい。化学
発光分析法は、ルミノール反応に代表されるように化学
発光反応を利用する測定法であり、一般的に吸光法や蛍
光法よりも高感度であることが知られている。
【0026】 化学発光反応を行うためには少なくとも
被酸化物と酸化剤があればよいが、化学発光反応を促進
する物質(例えば二価イオン)が共存すると、発光量が
著しく増大する。例えば没食子酸(被酸化物)と過酸化
水素(酸化剤)を塩基性溶液中で化学発光反応させる系
においては、コバルト(二価イオン)を共存させるとコ
バルト濃度に応じて発光量が増加する。従って、本発明
においても、発光量を測定することによりトレーサであ
るコバルトの濃度を定量することが可能となる。
【0027】 コバルト濃度の化学発光分析法が他の分
析法と比較して特に優れている点は、検出感度が高いこ
とに加え、一部の陽イオンが1%以下の応答を示すのみ
で他のイオンは応答を示さず高い選択性を示す点にあ
る。従ってトレーサの添加濃度を低減することができる
という顕著な特徴がある。
【0028】 更に、被検液に発光試薬を添加して発光
量を測定する分析法であることから、市販のルミノメー
タ等の比較的簡易な装置で測定できるため、現場での測
定も可能である点において優れた分析法である。
【0029】 なお、没食子酸−過酸化水素系における
コバルトの化学発光分析法は、周知の通り、遊離のコバ
ルト(II)イオンを対象とした分析法であるが、本発明
においてトレーサとして用いるコバルトは遊離のコバル
ト(II)イオンに限定されるものではなく、キレート錯
体や3価コバルト塩、場合によっては金属コバルト等を
も包含する。このように遊離のコバルト(II)イオン以
外を用いる場合には、例えばJIS K0101記載の試料の前
処理方法のように、予め塩酸、硝酸等の汎用の酸を用い
て被検液を前処理すればよい。
【0030】 以上説明してきたように、本発明の方法
においては、トレーサとしてコバルトを使用し、没食子
酸−過酸化水素系の化学発光分析法により循環水系の薬
剤濃度を管理することが特に好ましい。
【0031】
【実施例】 以下、本発明の薬剤濃度管理方法について
更に詳細に説明するが、本発明はこれらの実施例に限定
されるものではない。
【0032】(発光量の測定)検量線の作成において
は、以下に示す手順により発光量を測定した。まず、発
光用セルに被検液100μlを添加し、当該発光用セル
をマイクロテックニチオン(株)製のルミノメータにセ
ットした。次いで、表2に示す組成の試薬250μl
と、表3に示す組成の試薬250μlとを混合した後、
その全量500μlを発光用セルに添加し、発光量を測
定した。なお、実施例1〜3における発光量の測定も基
本的には同様の操作を行った。
【0033】
【表2】
【0034】
【表3】
【0035】(検量線の作成)まず、塩化コバルト(I
I)をコバルトが100mg/lの濃度となるように水
道水に溶解した後、当該水溶液を段階的に希釈すること
により、1μg/l〜1mg/lの範囲内において濃度
の異なる複数のコバルト標準溶液を調製し、当該複数の
標準溶液について発光量を測定することにより検量線を
作成した。
【0036】 図1は上記方法により作成した検量線の
グラフである。図1に示すように0.001mg/l
(1μg/l)の低濃度においてもコバルト濃度と発光
量との間に相関が見られた。即ち、化学発光分析法によ
ればコバルト濃度を極めて低濃度まで正確に測定可能で
あることが明らかになった。
【0037】(実施例1)実施例1として、循環冷却水
系にスケール付着防止のためのスケール分散剤を添加す
る場合において、本発明の薬剤濃度管理方法を適用した
例を示す。
【0038】 実施例1では、スケール分散剤のポリマ
レイン酸ナトリウム10重量%、トレーサの塩化コバル
ト0.1重量%、水89.9重量%の配合比率で混合し
た薬剤を、ポリマレイン酸の濃度が常時50ppmを維
持するように循環冷却水中に連続注入した。
【0039】 経時的に循環冷却水をサンプリングし、
化学発光分析法と、高速液体クロマトグラフィー(HP
LC)法とにより各々ポリマレイン酸の濃度を算出し
た。化学発光分析法では、発光量を予め作成した検量線
とを照合することによりコバルト濃度を算出し、更に薬
剤中のコバルト配合量からポリマレイン酸濃度を算出し
た。
【0040】 一方、HPLC法においては、化学発光
分析法と同様に、濃度の異なる複数のポリマレイン酸標
準溶液を使用して予め検量線を作成しておき、サンプリ
ングした循環冷却水のHPLC分析値と当該検量線とを
照合することによりポリマレイン酸濃度を算出した。
【0041】 その結果、表4に示すようにHPLC法
によるポリマレイン酸濃度と化学発光分析法によるポリ
マレイン酸濃度はほぼ一致しており、化学発光分析法に
よりポリマレイン酸濃度を管理できることが証明され
た。
【0042】
【表4】
【0043】(実施例2)実施例2として、循環冷却水
系に配管腐食防止のための防食剤を添加する場合におい
て、本発明の薬剤濃度管理方法を適用した例を示す。実
施例2では、防食剤のベンゾトリアゾールを15重量
%、水を84.3重量%、トレーサの塩化コバルトを
0.7重量%の配合比率で混合した薬剤をベンゾトリア
ゾールの濃度が常時10ppmを維持するように循環冷
却水中に連続注入した。
【0044】 実施例1と同様に化学発光分析法とHP
LC法とにより各々ベンゾトリアゾールの濃度を算出し
た結果、表5に示すようにHPLC法によるベンゾトリ
アゾール濃度と化学発光分析法によるベンゾトリアゾー
ル濃度はほぼ一致しており、化学発光分析法によりベン
ゾトリアゾール濃度を管理できることが証明された。
【0045】
【表5】
【0046】(実施例3)実施例3として、循環冷却水
系に配管腐食防止のための防食剤を添加する場合におい
て、コバルト(II)イオンのキレート錯体をトレーサと
して配合した例を示す。実施例3では、防食剤のトリル
トリアゾールを10重量%、トレーサのEDTA−コバ
ルトを8.0重量%、水を82.0重量%の配合比率で
混合した薬剤をトリルトリアゾールの濃度が常時1pp
mを維持するように循環冷却水中に連続注入した。
【0047】 実施例1と同様に化学発光分析法とHP
LC法とにより各々トリルトリアゾールの濃度を算出し
た結果、表6に示すようにHPLC法によるトリルトリ
アゾール濃度と化学発光分析法によるトリルトリアゾー
ル濃度はほぼ一致しており、化学発光分析法によりトリ
ルトリアゾール濃度を管理できることが証明された。
【0048】
【表6】
【0049】
【発明の効果】 以上説明したように、本発明の方法に
よれば、高価な測定機器や専門的技術が不要な極めて簡
便な方法により、循環水系の薬剤濃度を正確かつ迅速に
管理することが可能となる。
【図面の簡単な説明】
【図1】 コバルト濃度と発光量の関係を示す検量線の
グラフである。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 所定の配合比率でコバルトを混合した薬
    剤を循環水中に添加し、当該循環水中のコバルト濃度を
    測定することにより、循環水系の薬剤濃度を管理するこ
    とを特徴とする循環水系における薬剤濃度管理方法。
  2. 【請求項2】 コバルト濃度を化学発光分析法により定
    量する請求項1に記載の循環水系における薬剤濃度管理
    方法。
JP11070819A 1999-03-16 1999-03-16 循環水系における薬剤濃度の管理方法 Pending JP2000263033A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11070819A JP2000263033A (ja) 1999-03-16 1999-03-16 循環水系における薬剤濃度の管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11070819A JP2000263033A (ja) 1999-03-16 1999-03-16 循環水系における薬剤濃度の管理方法

Publications (1)

Publication Number Publication Date
JP2000263033A true JP2000263033A (ja) 2000-09-26

Family

ID=13442576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11070819A Pending JP2000263033A (ja) 1999-03-16 1999-03-16 循環水系における薬剤濃度の管理方法

Country Status (1)

Country Link
JP (1) JP2000263033A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012061068A2 (en) * 2010-10-25 2012-05-10 Diversey, Inc. Method of using a tracer for monitoring water treatment agents in a wet air scrubber
CN109983339A (zh) * 2016-11-14 2019-07-05 株式会社竹中工务店 地基注入剂浓度推定系统
CN111257309A (zh) * 2020-02-11 2020-06-09 深圳大学 一种用于细菌药敏检测的试剂盒及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012061068A2 (en) * 2010-10-25 2012-05-10 Diversey, Inc. Method of using a tracer for monitoring water treatment agents in a wet air scrubber
WO2012061068A3 (en) * 2010-10-25 2012-06-28 Diversey, Inc. Method of using a tracer for monitoring water treatment agents in a wet air scrubber
CN109983339A (zh) * 2016-11-14 2019-07-05 株式会社竹中工务店 地基注入剂浓度推定系统
CN109983339B (zh) * 2016-11-14 2022-08-05 株式会社竹中工务店 地基注入剂浓度推定方法
CN111257309A (zh) * 2020-02-11 2020-06-09 深圳大学 一种用于细菌药敏检测的试剂盒及其应用

Similar Documents

Publication Publication Date Title
CA2003681C (en) Transition metals as treatment chemical tracers
Eppley et al. Chlorine reactions with seawater constituents and the inhibition of photosynthesis of natural marine phytoplankton
US5435969A (en) Monitoring water treatment agent in-system concentration and regulating dosage
US4758312A (en) Method for in situ corrosion detection using electrochemically active compounds
US5236845A (en) On-line iron (II) concentration monitoring to continuously determine corrosion in boiler systems
US8609425B2 (en) Determination of nitrate/nitrite concentration in water by quantitative photochemical reduction using NH4CL and EDTA
Rodolfo Jr et al. Influence of buffer capacity, chlorine residual, and flow rate on corrosion of mild steel and copper
CN106082457B (zh) 适用于中低硬度及强腐蚀性水质的无磷缓蚀阻垢剂及应用
Hua et al. Effect of alkaline pH on the stability of halogenated DBPs
Lytle et al. Pitting corrosion of copper in waters with high pH and low alkalinity
CA2041800C (en) On-line iron (ii) concentration monitoring to continuously determine corrosion in boiler systems
CA2354015C (en) Rapid colorimetric method for measuring polymers in aqueous systems
JP2000263033A (ja) 循環水系における薬剤濃度の管理方法
Ballinger et al. Determination of chemical oxygen demand of wastewaters without the use of mercury salts
Lytle et al. A model for estimating the impact of orthophosphate on copper in water
Belkin et al. Effect of inorganic constituents on chemical oxygen demand—I. Bromides are unneutralizable by mercuric sulfate complexation
JP4292380B2 (ja) 水処理用薬品の濃度管理方法及び濃度管理装置
JP2010085344A (ja) 塩化物イオンの定量方法
JP2008070121A (ja) 鉄の定量方法
JP2000171397A (ja) 水処理用薬品の濃度管理方法
JP4543388B2 (ja) 水処理薬品の濃度管理方法
Gray et al. Acid mine-drainage toxicity testing
Nguyen Interactions between copper and chlorine disinfectants: chlorine decay, chloramine decay and copper pitting
JP4797902B2 (ja) 鉄の定量方法
JP4424117B2 (ja) 水系処理剤濃度の測定又は決定方法及び測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728