JP2000256774A - Hot rolled sheet for aluminum can body material, and can body sheet using the same - Google Patents

Hot rolled sheet for aluminum can body material, and can body sheet using the same

Info

Publication number
JP2000256774A
JP2000256774A JP11059833A JP5983399A JP2000256774A JP 2000256774 A JP2000256774 A JP 2000256774A JP 11059833 A JP11059833 A JP 11059833A JP 5983399 A JP5983399 A JP 5983399A JP 2000256774 A JP2000256774 A JP 2000256774A
Authority
JP
Japan
Prior art keywords
plate
sheet
rolled
orientation
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11059833A
Other languages
Japanese (ja)
Other versions
JP4034904B2 (en
Inventor
Naoyuki Sakuma
尚幸 佐久間
Akira Hibino
旭 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP05983399A priority Critical patent/JP4034904B2/en
Publication of JP2000256774A publication Critical patent/JP2000256774A/en
Application granted granted Critical
Publication of JP4034904B2 publication Critical patent/JP4034904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a DI can body material securely and stably reduced in earing rate at deep drawing and excellent in external appearance quality by regulating the area ratio of rolled structure in the section of a sheet to a specific value or above and also regulating the orientation density of the cubic orientation and the orientation density of the rolling texture in the central part in a sheet-thickness direction to a specific value or above, respectively. SOLUTION: This sheet is composed of an Al alloy which has a composition consisting of, by weight, 0.5-2.0% Mg, 0.5-2.0% Mn, 0.1-0.7% Fe, 0.05-0.5% Si, and the balance Al with inevitable impurities and containing, if necessary, 0.005-0.20% Ti independently or in combination with 0.001-0.05% B. The area ratio of the rolled structure in the section of the sheet is regulated to >=80%. Further, the orientation density of cubic orientation is regulated to >=3 times that of random orientation over the whole region of the sheet thickness. Moreover, the orientation density of the rolling texture in the central part in the sheet-thickness direction is regulated to >=2 times the orientation density of the rolling texture in the sheet surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はDI加工(絞り−
しごき加工)による2ピースアルミニウム缶用の缶胴材
の製造に使用される熱間圧延板と、それを用いたアルミ
ニウム缶胴用板材、すなわちDI缶胴向けのAl−Mg
−Mn系アルミニウム合金からなる熱間圧延板および缶
胴用板材に関し、特に深絞り耳が低くかつ外観品質に優
れた缶胴材用熱間圧延板および缶胴用板材に関するもの
である。
The present invention relates to DI processing (drawing).
Hot-rolled sheet used for the production of a can body for a two-piece aluminum can by ironing, and a sheet material for an aluminum can body using the same, ie, Al-Mg for a DI can body
The present invention relates to a hot-rolled plate and a can body plate made of a Mn-based aluminum alloy, and more particularly to a hot-rolled plate and a can body plate having low deep drawing ears and excellent appearance quality.

【0002】[0002]

【従来の技術】一般に2ピースアルミニウム缶の製造工
程としては、缶胴素材に対して深絞り加工およびしごき
加工によるDI成形を施して缶胴形状とした後、所定の
サイズにトリミングを施して脱脂・洗浄処理を行ない、
さらに塗装および印刷を行なって焼付け(ベーキング)
を行ない、その後、缶胴縁部に対してネッキング加工、
フランジング加工を行ない、その後、別に成形した缶蓋
(缶エンド)と合せてシーミング加工を行なって缶とす
るのが通常である。
2. Description of the Related Art In general, as a manufacturing process of a two-piece aluminum can, a can body material is subjected to DI forming by deep drawing and ironing to form a can body, and then trimmed to a predetermined size to be degreased.・ Washing process,
Further painting and printing and baking (baking)
And then necking the can body edge,
Usually, flanging is performed, and thereafter, a can is formed by performing seaming together with a separately formed can lid (can end).

【0003】このようにして製造されるDI缶の素材
(缶胴材)としては、従来からAl−Mg−Mn系合金
であるJIS 3004合金の硬質板が広く用いられて
いる。この3004合金は、しごき加工性に優れてい
て、強度を高めるために高圧延率で冷間圧延を施した場
合でも比較的良好な成形性を示すところから、DI缶胴
材として好適であるとされている。
[0003] As a raw material (can body material) of the DI can thus manufactured, a hard plate of JIS 3004 alloy, which is an Al-Mg-Mn alloy, has been widely used. This 3004 alloy is excellent in ironing workability, and shows relatively good formability even when cold-rolled at a high rolling ratio in order to increase strength, so that it is suitable as a DI can body. Have been.

【0004】このようなDI缶胴用の3004合金硬質
板の製造方法としては、DC鋳造法などによって鋳造
後、鋳塊に対し均質化処理を施し、さらに熱間圧延およ
び冷間圧延を施して所定の板厚とし、かつその過程にお
ける冷間圧延前あるいは冷間圧延中途において中間焼鈍
を施す方法が一般的である。
[0004] As a method for producing such a 3004 alloy hard plate for a DI can body, after casting by a DC casting method or the like, the ingot is subjected to a homogenization treatment, and further subjected to hot rolling and cold rolling. Generally, a method is used in which a predetermined thickness is set and intermediate annealing is performed before or during cold rolling in the process.

【0005】ところでDI缶胴については、主として材
料コスト低減、軽量化の目的から、より薄肉化を図るこ
とが強く望まれている。そしてこのように薄肉化を図る
ためには、薄肉化に伴なって生じる缶の座屈強度低下の
問題を回避するため、材料の高強度化を図ることが重要
である。さらにDI缶胴用材料については、上述のよう
な薄肉化を図るための高強度化の要請ばかりではなく、
DI成形時における耳率が低いことが強く望まれる。す
なわち、DI成形時の耳率が低いことは、DI成形時の
歩留りの向上と、缶胴の耳切れに起因する缶胴破断の防
止の点から極めて重要である。そのほか、DI缶製造時
におけるフランジ成形性(口拡げ性)、しごき性(缶切
れ性)も必要である。特にこれらの要求特性のうちでも
耳率はその制御が難しく、したがってこれらの諸特性の
バランスの改善には、耳率の適切な制御が極めて重要な
課題となっている。
[0005] By the way, it is strongly desired that the DI can body be made thinner mainly for the purpose of material cost reduction and weight reduction. In order to reduce the wall thickness in this way, it is important to increase the strength of the material in order to avoid the problem of reduction in buckling strength of the can caused by the reduction in the wall thickness. Furthermore, regarding the material for DI cans, not only the demand for high strength to achieve the thinning as described above,
It is strongly desired that the ear ratio at the time of DI molding is low. That is, a low ear ratio at the time of DI molding is extremely important from the viewpoint of improving the yield at the time of DI molding and preventing breakage of the can body due to the cut end of the can body. In addition, flange formability (mouth expansion) and ironing (can openability) during the production of DI cans are also required. In particular, it is difficult to control the ear ratio among these required characteristics. Therefore, in order to improve the balance of these various characteristics, appropriate control of the ear ratio is extremely important.

【0006】一方、最近では消費者の高級指向などに起
因して、DI缶胴についてもその外観品質が重要視され
るようになっており、そこで表面の外観品質が優れたD
I缶胴材の開発が強く望まれるようになっている。
On the other hand, recently, the appearance quality of DI cans has been regarded as important due to consumers' high-grade orientation and the like.
The development of I can body materials has been strongly desired.

【0007】[0007]

【発明が解決しようとする課題】前述のようなDI缶胴
材に対して要求される諸性能のうち、耳率の低減に関し
ては、(100)[001]方位、すなわちいわゆるキ
ューブ方位の再結晶粒が深絞り加工時の耳率低減に寄与
することが知られており、そこでDI缶胴材の製造工程
においても、熱間圧延後の中間焼鈍などの最終的な再結
晶過程でキューブ方位の再結晶粒集合組織を生成させる
ことが耳率低減に有効である。そしてそのためには、熱
間圧延工程もしくはその後の冷却過程でも、キューブ方
位の亜結晶粒もしくは再結晶粒を出来るだけ数多く形成
しておくことが耳率低減に有利と考えられている。しか
しながら、キューブ方位の亜結晶粒の成長速度は、他の
方位の亜結晶粒の成長速度よりも速いことから、その後
の中間焼鈍などにおいて完全再結晶させた再結晶粒が粗
大となってしまう傾向を示す。そしてこのように粗大な
再結晶粒が板表面に存在すれば、最終冷間圧延を施して
もその影響を除去することは困難であって、DI加工後
の缶胴に肌荒れやフローラインなどを生じさせて、缶の
外観品質を低下させる原因となってしまう。
Among the various performances required for the DI can body as described above, regarding the reduction of the ear ratio, the recrystallization in the (100) [001] orientation, that is, the so-called cube orientation. It is known that the grains contribute to the reduction of the ear ratio during deep drawing. Therefore, in the manufacturing process of the DI can body, the cube orientation in the final recrystallization process such as intermediate annealing after hot rolling is also considered. Generating a recrystallized grain texture is effective in reducing ear ratio. For that purpose, it is considered that forming as many sub-crystal grains or re-crystal grains as possible in the cube orientation in the hot rolling step or the subsequent cooling step is advantageous for reducing the ear ratio. However, since the growth rate of the sub-crystal grains in the cube orientation is faster than the growth rate of the sub-crystal grains in other orientations, the recrystallized grains completely recrystallized in the subsequent intermediate annealing tend to be coarse. Is shown. If such coarse recrystallized grains are present on the plate surface, it is difficult to remove the influence even if the final cold rolling is performed. This causes deterioration of the appearance quality of the can.

【0008】したがって従来は、DI缶胴材について深
絞り耳率の低減と外観品質の向上とを同時に達成するこ
とは困難とされていたのが実情である。
Therefore, it has conventionally been difficult to simultaneously achieve a reduction in the deep drawing ear ratio and an improvement in the appearance quality of the DI can body material.

【0009】この発明は以上の事情を背景としてなされ
たもので、深絞り耳率が確実かつ安定して低く、しかも
外観品質も良好なDI缶胴材を得るに最適な熱間圧延板
およびその熱間圧延板を用いたDI缶胴用板材を提供す
ることを目的とするものである。
The present invention has been made in view of the above circumstances, and a hot-rolled sheet and a hot-rolled sheet optimal for obtaining a DI can body material having a stable, low deep drawing ear ratio and a good appearance quality. An object of the present invention is to provide a sheet material for a DI can body using a hot-rolled sheet.

【0010】[0010]

【課題を解決するための手段】前述の課題を解決するべ
く、本発明者等が鋭意実験・検討を重ねた結果、完全再
結晶した状態でのDI缶胴用板材におけるキューブ方位
密度を、板厚方向の各部位において適切に制御すること
によって、低耳率の確保と外観品質の向上とを同時に図
り得ることを見出した。そしてまた、上述のように完全
再結晶状態で板厚方向にキューブ方位密度を適切に制御
するためには、熱間圧延板の状態で、板断面における加
工組織の面積率およびキューブ方位の方位密度を適切に
制御すると同時に板厚方向の圧延集合組織の方位密度を
板厚方向の各部位で適切に制御する必要があることを見
出し、この発明をなすに至ったのである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive experiments and studies, and as a result, the cube orientation density in the DI can body plate in a completely recrystallized state was determined. It has been found that by appropriately controlling each part in the thickness direction, it is possible to simultaneously secure a low ear ratio and improve the appearance quality. Further, as described above, in order to appropriately control the cube orientation density in the sheet thickness direction in the completely recrystallized state, in the state of the hot-rolled sheet, the area ratio of the work structure in the sheet cross section and the orientation density of the cube orientation The present inventors have found that it is necessary to appropriately control the orientation density of the rolling texture in the sheet thickness direction at the same time as controlling the orientation density of each part in the sheet thickness direction, and have accomplished the present invention.

【0011】具体的には、請求項1の発明は、DI缶胴
材用の熱間圧延板について規定したものであって、Mg
0.5〜2.0%、Mn0.5〜2.0%、Fe0.1
〜0.7%、Si0.05〜0.5%を含有し、さらに
必要に応じて0.005〜0.20%のTiを単独でも
しくは0.0001〜0.05%のBと組合せて含有
し、残部がAlおよび不可避的不純物よりなるアルミニ
ウム合金からなるアルミニウム缶胴材用熱間圧延板であ
って、板の断面における圧延加工組織の面積率が80%
以上であり、しかもキューブ方位の方位密度が板厚全域
にわたりランダム方位の3倍以上であり、かつ板厚方向
の中央部における圧延集合組織の方位密度が板表面にお
ける圧延集合組織の方位密度の2倍以上であることを特
徴とするものである。
More specifically, the invention of claim 1 specifies a hot-rolled sheet for DI can body, and
0.5-2.0%, Mn 0.5-2.0%, Fe0.1
-0.7%, Si 0.05-0.5%, and if necessary, 0.005-0.20% Ti alone or in combination with 0.0001-0.05% B A hot-rolled plate for an aluminum can body comprising an aluminum alloy containing Al and unavoidable impurities, wherein the area ratio of the rolled structure in the cross section of the plate is 80%.
And the azimuth density of the cube orientation is at least three times the random orientation over the entire thickness, and the azimuth density of the rolled texture at the center in the thickness direction is 2% of the azimuth density of the rolled texture on the sheet surface. It is characterized by being twice or more.

【0012】また請求項2の発明も、DI缶胴材用の熱
間圧延板を規定したものであって、Mg0.5〜2.0
%、Mn0.5〜2.0%、Fe0.1〜0.7%、S
i0.05〜0.5%を含有し、かつCu0.05〜
0.5%、Cr0.05〜0.3%、Zn0.05〜
0.5%のうちの1種または2種以上を含有し、さらに
必要に応じて0.005〜0.20%のTiを単独でも
しくは0.0001〜0.05%のBと組合せて含有
し、残部がAlおよび不可避的不純物よりなるアルミニ
ウム合金からなるアルミニウム缶胴材用熱間圧延板であ
って、板の断面における圧延加工組織の面積率が80%
以上であり、しかもキューブ方位の方位密度が板厚全域
にわたりランダム方位の3倍以上であり、かつ板厚方向
の中央部における圧延集合組織の方位密度が板表面にお
ける圧延集合組織の方位密度の2倍以上であることを特
徴とするものである。
The invention of claim 2 also defines a hot-rolled plate for DI can body, wherein Mg is 0.5 to 2.0 mm.
%, Mn 0.5-2.0%, Fe 0.1-0.7%, S
i containing 0.05-0.5% and Cu 0.05-
0.5%, Cr 0.05-0.3%, Zn 0.05-
One or more of 0.5%, and if necessary, 0.005 to 0.20% Ti alone or in combination with 0.0001 to 0.05% B A hot-rolled plate for an aluminum can body made of an aluminum alloy containing Al and unavoidable impurities, wherein the area ratio of the rolled structure in the cross section of the plate is 80%.
And the azimuth density of the cube orientation is at least three times the random orientation over the entire thickness, and the azimuth density of the rolled texture at the center in the thickness direction is 2% of the azimuth density of the rolled texture on the sheet surface. It is characterized by being twice or more.

【0013】さらに請求項3の発明は、請求項1もしく
は請求項2に記載された熱間圧延板を用いた缶胴材用板
材について規定したものである。すなわち請求項3の発
明のアルミニウム缶胴用板材は、請求項1もしくは請求
項2の熱間圧延板を用い、その熱間圧延板の組織を完全
再結晶させてなるアルミニウム缶胴用板材であって、キ
ューブ方位の方位密度が、板表面から全板厚の10%の
位置までの表層領域ではランダム方位の30倍以下であ
り、しかも板表面から10%の位置から板厚方向中央部
までの中心領域ではランダム方位の15倍を越えるとと
もに前記表層領域におけるキューブ方位密度より高くな
っていることを特徴とするものである。
[0013] The invention of claim 3 further specifies a plate material for a can body using the hot-rolled plate described in claim 1 or 2. That is, the plate material for an aluminum can body of the invention according to claim 3 is a plate material for an aluminum can body obtained by completely recrystallizing the structure of the hot-rolled plate using the hot-rolled plate according to claim 1 or 2. Therefore, the orientation density of the cube orientation is 30 times or less of the random orientation in the surface layer region from the plate surface to a position of 10% of the total plate thickness, and furthermore, from the position of 10% from the plate surface to the center in the plate thickness direction. In the central region, the density exceeds 15 times the random direction and is higher than the cube direction density in the surface region.

【0014】[0014]

【発明の実施の形態】先ずこの発明の缶胴材用熱間圧延
板もしくは缶胴用板材において用いられるアルミニウム
合金の成分組成の限定理由について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the composition of the aluminum alloy used in the hot rolled sheet for can body or the sheet for can body of the present invention will be described.

【0015】Mg:Mgの添加は、Mgそれ自体の固溶
による強度向上に効果があり、また固溶したMgは転位
との相互作用が大きいため加工硬化による強度向上が期
待でき、さらにはSiとの共存によるMg2Siの時効
析出による強度向上も期待でき、したがってMgは缶胴
材として必要な強度を得るためには不可欠の元素であ
る。但しMg量が0.5%未満では上述の効果が少な
く、一方2.0%を越えれば、高強度は容易に得られる
ものの、DI加工時の変形抵抗が大きくなって絞り性や
耐ゴーリング特性を含むしごき性を悪くする。したがっ
てMg量は0.5〜2.0%の範囲内とした。
Mg: The addition of Mg is effective in improving the strength by solid solution of Mg itself, and the solid solution of Mg has a large interaction with dislocations, so that the strength can be expected to be improved by work hardening. It can also be expected to improve the strength by aging precipitation of Mg 2 Si due to coexistence with Mg. Therefore, Mg is an indispensable element for obtaining the necessary strength as a can body. However, if the Mg content is less than 0.5%, the above-mentioned effects are small, while if it exceeds 2.0%, high strength can be easily obtained, but deformation resistance during DI processing increases, and drawability and galling resistance are increased. And worsen ironing properties. Therefore, the Mg content is set in the range of 0.5 to 2.0%.

【0016】Mn:Mnは強度および成形性の向上に寄
与する有効な元素である。特にこの発明で目的としてい
る用途である缶胴材では、DI成形時にしごき加工が加
えられるため、とりわけMnは重要となる。アルミニウ
ム板のしごき加工においては通常エマルジョンタイプの
潤滑剤が用いられているが、Mn系晶出物が少ない場合
には同程度の強度を有していてもエマルジョンタイプ潤
滑剤だけでは潤滑能が不足し、ゴーリングと称される擦
り疵や焼付きなどの外観不良が発生するおそれがある。
ゴーリングは晶出物の大きさ、量、種類に影響されるこ
とが知られており、その晶出物を形成するためにMnは
不可欠な元素である。Mn量が0.5%未満ではMn系
化合物による固体潤滑的な効果が得られず、一方Mn量
が2.0%を越えればAl6Mnの初晶巨大金属間化合
物が発生し、著しく成形性を損なう。そこでMn量は
0.5〜2.0%の範囲内とした。
Mn: Mn is an effective element that contributes to improvement in strength and formability. In particular, in the can body material, which is the intended use of the present invention, ironing is added during DI molding, and therefore Mn is particularly important. Emulsion type lubricants are usually used for ironing aluminum plates, but when the amount of Mn-based crystals is small, lubricating ability is insufficient with only emulsion type lubricants even if they have the same strength. However, appearance defects such as abrasion and seizure called "goling" may occur.
It is known that galling is affected by the size, amount, and type of a crystallized substance, and Mn is an essential element for forming the crystallized substance. If the Mn content is less than 0.5%, the solid lubricating effect of the Mn-based compound cannot be obtained, while if the Mn content exceeds 2.0%, a primary intermetallic giant compound of Al 6 Mn is generated, resulting in remarkable molding. Impair the nature. Therefore, the Mn content is set in the range of 0.5 to 2.0%.

【0017】Fe:Feは、Mnの晶出や析出を促進し
て、アルミニウム基地中のMn固溶量やMn系金属間化
合物の分散状態を制御するために必要な元素である。適
切な化合物分散状態を得るためには、Mn添加量に応じ
てFeを添加することが必要である。Fe量が0.1%
未満では適切な化合物分散状態を得ることが困難であ
り、一方Fe量が0.7%を越えれば、Mn添加に伴な
って初晶巨大金属間化合物が発生しやすくなり、成形性
を著しく損なう。そこでFe量の範囲は0.1〜0.7
%とした。
Fe: Fe is an element required to promote crystallization and precipitation of Mn and to control the amount of Mn solid solution in the aluminum matrix and the dispersion state of the Mn-based intermetallic compound. In order to obtain an appropriate compound dispersion state, it is necessary to add Fe according to the amount of Mn added. Fe content is 0.1%
If it is less than 10%, it is difficult to obtain an appropriate compound dispersion state. On the other hand, if the amount of Fe exceeds 0.7%, a primary crystal giant intermetallic compound is easily generated with the addition of Mn, and the formability is significantly impaired. . Therefore, the range of the amount of Fe is 0.1 to 0.7.
%.

【0018】Si:Siの添加は、Mg2Si系化合物
の析出による時効硬化を通じて缶胴材の強度向上に寄与
する。またSiは、Al−Mn−Fe−Si系金属間化
合物を生成して、Mn系金属間化合物の分散状態を制御
するために必要な元素である。Si量が0.05%未満
では上記の効果が得られず、一方0.5%を越えれば時
効硬化により材料が硬くなりすぎて成形性を阻害する。
そこでSi量の範囲は0.05〜0.5%とした。
Si: The addition of Si contributes to the improvement of the strength of the can body material through age hardening due to precipitation of the Mg 2 Si-based compound. Si is an element necessary for generating an Al-Mn-Fe-Si-based intermetallic compound and controlling the dispersion state of the Mn-based intermetallic compound. If the Si content is less than 0.05%, the above effects cannot be obtained, while if it exceeds 0.5%, the material becomes too hard due to age hardening, and the formability is impaired.
Therefore, the range of the amount of Si is set to 0.05 to 0.5%.

【0019】Ti,B:通常のアルミニウム合金におい
ては、鋳塊結晶粒微細化のためにTi、あるいはTiお
よびBを微量添加することが行なわれており、この発明
においても、必要に応じて微量のTiを単独で、あるい
はBと組合せて添加しても良い。但しTi量が0.00
5%未満ではその効果が得られず、0.20%を越えれ
ば巨大なAl−Ti系金属間化合物が晶出して成形性を
阻害するため、Tiを添加する場合のTi量は0.00
5〜0.20%の範囲内とした。またTiとともにBを
添加すれば鋳塊結晶粒微細化の効果が向上するが、Ti
と併せてBを添加する場合、B量が0.0001%未満
ではその効果がなく、0.05%を越えればTi−B系
の粗大粒子が混入して成形性を害することから、Tiと
ともにBを添加する場合のB量は0.0001〜0.0
5%の範囲内とした。
Ti, B: In ordinary aluminum alloys, a small amount of Ti or Ti and B is added to refine ingot crystal grains. In the present invention, trace amounts are added as necessary. May be added alone or in combination with B. However, if the amount of Ti is 0.00
If it is less than 5%, the effect cannot be obtained, and if it exceeds 0.20%, a huge Al-Ti intermetallic compound is crystallized and the formability is impaired.
It was in the range of 5 to 0.20%. If B is added together with Ti, the effect of refining the ingot crystal grains is improved.
When B is added together with B, the effect is not obtained if the amount of B is less than 0.0001%, and if it exceeds 0.05%, coarse particles of Ti-B series are mixed and formability is impaired. When B is added, the amount of B is 0.0001 to 0.0.
It was within the range of 5%.

【0020】Cu,Cr,Zn:これらはいずれも強度
向上に寄与する元素であり、必要に応じてこれらのうち
から選ばれた1種または2種以上が添加される。これら
の各元素についてさらに説明する。
Cu, Cr, Zn: These are all elements that contribute to strength improvement, and one or more selected from these are added as necessary. Each of these elements will be further described.

【0021】Cu:Cuは、焼鈍時にアルミニウム基地
中に溶体化させておき、塗装焼付処理時にAl−Cu−
Mg系析出物として析出することによる析出硬化を利用
した強度向上に寄与する。Cu量が0.05%未満では
その効果が得られず、一方Cuを0.5%を越えて添加
した場合には、時効硬化は容易に得られるものの、硬く
なりすぎて成形性を阻害し、また耐食性も劣化する。そ
こでCu量の範囲は0.05〜0.5%とした。
Cu: Cu is dissolved in an aluminum matrix at the time of annealing, and Al-Cu-
It contributes to strength improvement utilizing precipitation hardening by precipitation as Mg-based precipitates. When the Cu content is less than 0.05%, the effect cannot be obtained. On the other hand, when Cu is added in excess of 0.5%, age hardening can be easily obtained, but it becomes too hard and impairs moldability. In addition, the corrosion resistance also deteriorates. Therefore, the range of the amount of Cu is set to 0.05 to 0.5%.

【0022】Cr;Crも強度向上に効果的な元素であ
るが、0.05%未満ではその効果が少なく、0.3%
を越えれば巨大晶出物生成によって成形性の低下を招く
ため、好ましくない。そこでCr量の範囲は0.05〜
0.3%とした。
Cr: Cr is also an element effective for improving the strength, but if less than 0.05%, the effect is small, and 0.3%
Exceeding the range is not preferred because the formation of giant crystals causes a reduction in moldability. Therefore, the range of the amount of Cr is 0.05 to
0.3%.

【0023】Zn:Znの添加はAl−Mg−Zn系粒
子の時効析出による強度向上に寄与するが、0.05%
未満ではその効果が得られず、0.5%を越えれば耐食
性を劣化させる。そこでZn量の範囲は0.05〜0.
5%とした。
Zn: The addition of Zn contributes to the improvement of the strength due to the aging precipitation of the Al—Mg—Zn-based particles.
If it is less than 0.5%, the effect cannot be obtained, and if it exceeds 0.5%, the corrosion resistance is deteriorated. Therefore, the range of the amount of Zn is 0.05-0.
5%.

【0024】以上の各元素の残部はAlと不可避不純物
とすれば良い。
The balance of each of the above elements may be Al and inevitable impurities.

【0025】次にこの発明の熱間圧延板およびそれを用
いたDI缶胴用板材の組織条件について詳細に説明す
る。
Next, the structure conditions of the hot-rolled sheet of the present invention and the sheet material for DI can body using the hot-rolled sheet will be described in detail.

【0026】熱間圧延板については、先ず第1に、キュ
ーブ方位を有する亜結晶粒(一部に再結晶粒を含んでも
良い)の方位密度、すなわちキューブ方位密度が、板厚
全域にわたってランダム方位の3倍以上でなければなら
ない。すなわち、熱間圧延板の段階で亜結晶粒のキュー
ブ方位密度がランダム方位の3倍以上となっていなけれ
ば、その後の中間焼鈍等の完全再結晶処理によってキュ
ーブ方位の再結晶粒が充分に形成されず、最終板におい
て充分な低耳率を達成することが困難となる。なおここ
でランダム方位に対するキューブ方位密度の比は、X線
回折を行なって、方位の配向のないランダム方位のサン
プル(一般には粉末サンプル)に対するキューブ方位の
X線回折強度比として求めることができる。
In the hot-rolled sheet, first, the orientation density of sub-crystal grains having a cube orientation (which may partially include recrystallized grains), that is, the cube orientation density is determined by the random orientation over the entire thickness of the sheet. Must be at least three times That is, if the cube orientation density of the sub-crystal grains is not at least three times the random orientation at the stage of the hot-rolled sheet, then the recrystallization process such as intermediate annealing will sufficiently form the cube-oriented recrystallized grains. However, it is difficult to achieve a sufficiently low ear ratio in the final board. Here, the ratio of the cube orientation density to the random orientation can be determined as the X-ray diffraction intensity ratio of the cube orientation to a random orientation sample (generally a powder sample) having no orientation by performing X-ray diffraction.

【0027】また、熱間圧延板の第2の組織条件とし
て、熱間圧延板の断面において、加工組織の面積率が8
0%以上存在することが必要である。すなわち、熱間圧
延板の段階において板の断面における加工組織の面積率
が80%未満では、キューブ方位の亜結晶粒を後の中間
焼鈍等の完全再結晶処理において成長させてキューブ方
位の再結晶粒組織を生成させるに寄与する圧延集合組織
を、板厚方向中央部において充分に発達させることが困
難となり、結果的にキューブ方位密度の高い完全再結晶
粒組織を得ることが困難となって耳率低減が困難とな
る。なおここで加工組織の面積率は、例えば光学顕微鏡
写真から画像解析装置を用いて求めることができる。
The second structure condition of the hot-rolled sheet is that the area ratio of the processed structure is 8% in the cross section of the hot-rolled sheet.
It must be present at 0% or more. That is, when the area ratio of the processed structure in the cross section of the plate is less than 80% at the stage of the hot-rolled plate, the sub-crystal grains having the cube orientation are grown in the subsequent complete recrystallization treatment such as intermediate annealing to recrystallize the cube orientation. It becomes difficult to sufficiently develop the rolled texture that contributes to the generation of the grain structure in the center in the thickness direction, and as a result, it becomes difficult to obtain a completely recrystallized grain structure having a high cube orientation density. It is difficult to reduce the rate. Here, the area ratio of the processed structure can be determined from an optical micrograph using an image analyzer.

【0028】さらに熱間圧延板の第3の組織条件とし
て、圧延集合組織の方位密度に関して、板厚方向中央部
における圧延集合組織の方位密度が板表面における圧延
集合組織の方位密度の2倍以上であることが必要であ
る。これは、逆に言えば、板表面の圧延集合組織の方位
密度が板厚方向中央部の圧延集合組織の方位密度の1/
2以下であることと同じである。このように板表面の圧
延集合組織の方位密度を板厚方向中央部の1/2以下と
することによって、その後の中間焼鈍等の完全再結晶処
理において板の表面付近(表層領域)ではキューブ方位
の再結晶粒の粗大な成長を抑制する一方、板厚方向中央
部ではキューブ方位の再結晶粒の成長を促進して、後述
する完全再結晶後の缶胴用板材の組織条件を満たすこと
が可能となり、ひいては改めて説明するように表面の外
観品質が良好でしかも低耳率のDI缶胴用板材を得るこ
とができるのである。なおここで圧延集合組織の方位密
度比は、キューブ方位の方位密度比と同様の方法によっ
て求めることができる。
Further, as a third structural condition of the hot-rolled sheet, with respect to the orientation density of the rolling texture, the orientation density of the rolling texture at the center in the thickness direction is at least twice the orientation density of the rolling texture on the sheet surface. It is necessary to be. This means that, conversely, the azimuth density of the rolled texture on the sheet surface is 1 / th of the azimuth density of the rolled texture at the center in the sheet thickness direction.
It is the same as being 2 or less. As described above, by setting the orientation density of the rolled texture on the sheet surface to 中央 or less of the central part in the thickness direction, the cube orientation near the surface of the sheet (surface layer region) in the subsequent complete recrystallization treatment such as intermediate annealing. While suppressing the coarse growth of recrystallized grains, the central part in the thickness direction promotes the growth of recrystallized grains in the cube orientation to satisfy the microstructure condition of the can body plate after complete recrystallization described later. As a result, a plate material for a DI can body having good surface appearance quality and a low ear ratio can be obtained as will be described again. Here, the orientation density ratio of the rolled texture can be obtained by the same method as the orientation density ratio of the cube orientation.

【0029】以上のように熱間圧延板については、X線
回折によるキューブ方位密度条件、板断面における加工
組織面積率条件、および板表面と板厚方向中央部におけ
る圧延集合組織の方位密度比条件の3条件を満たすこと
が必要であり、これらの3条件を同時に満たすことによ
って、その後の中間焼鈍等の完全再結晶処理後の缶胴用
板材として次に述べる条件を満たすことが可能となるの
である。
As described above, for the hot-rolled sheet, the condition of the cube orientation density by X-ray diffraction, the condition of the area ratio of the processed structure in the sheet cross section, and the condition of the direction density ratio of the rolled texture at the center of the sheet surface and the sheet thickness direction It is necessary to satisfy the following three conditions. Simultaneously satisfying these three conditions makes it possible to satisfy the following conditions as a can body plate after a complete recrystallization treatment such as intermediate annealing. is there.

【0030】完全再結晶処理後の缶胴用板材の組織条件
としては、キューブ方位の方位密度が、板表面から全板
厚の10%の位置までの領域(表層領域)ではランダム
方位の30倍以下であり、しかも全板厚の10%の位置
から板厚方向中央部の領域(中心領域)ではランダム方
位の15倍を越えるとともに表層領域におけるキューブ
方位密度よりも高くなっていることが必要である。これ
らの条件は、低耳率を確保すると同時に、製缶時に肌荒
れやフローライン等の生じるおそれの少ない外観品質が
優れた缶胴材を得るために必要な条件である。
The texture condition of the can body plate after the complete recrystallization treatment is as follows: the azimuth density of the cube orientation is 30 times the random orientation in the region (surface layer region) from the plate surface to a position of 10% of the total plate thickness. In addition, it is necessary that in the region (central region) in the central portion in the plate thickness direction from the position of 10% of the total plate thickness, it exceeds 15 times the random orientation and is higher than the cube orientation density in the surface layer region. is there. These conditions are necessary in order to ensure a low ear ratio and to obtain a can body material excellent in appearance quality which is less likely to cause skin roughness and flow lines during can manufacturing.

【0031】ここで、板表面から全板厚の10%の位置
までの表層領域のキューブ方位密度がランダム方位の3
0倍を越えれば、製缶時に肌荒れやフローラインが生
じ、外観品質の低下を招くおそれがある。一方、全板厚
の10%の位置から板厚方向中央部の中心領域における
キューブ方位密度が、ランダム方位の15倍以下の場
合、あるいは表層領域のキューブ方位密度より低い場合
は、低耳率を達成することが困難となる。なお中心領域
におけるキューブ方位密度は、ランダム方位の15倍を
越えていれば良いが、特に確実かつ安定して低耳率を得
るためにはランダム方位の30倍を越えていること、よ
り好ましくは50倍を越えていることが好ましい。
Here, the cube orientation density of the surface layer from the plate surface to the position of 10% of the total plate thickness is 3% of the random orientation.
If it exceeds 0 times, there is a possibility that rough skin or flow lines may occur at the time of can-making, leading to deterioration in appearance quality. On the other hand, when the cube orientation density in the central region from the position of 10% of the total thickness to the central portion in the thickness direction is 15 times or less of the random orientation or lower than the cube orientation density in the surface layer region, the low ear ratio is reduced. It is difficult to achieve. The cube azimuth density in the central region may be more than 15 times the random azimuth, but it is more preferably more than 30 times the random azimuth in order to obtain a low ear ratio reliably and stably, more preferably. Preferably, it exceeds 50 times.

【0032】以上のような組織条件を満たす熱間圧延
板、缶胴用板材を製造するための全体的な工程自体は従
来と同様であれば良い。すなわち、DC鋳造法などによ
って得られたスラブ等の鋳塊に均質化処理を施し、次い
で熱間圧延を行なって熱間圧延板とする。またさらに、
缶胴用板材を得るためには、熱間圧延板に対して、直ち
にあるいは第1次の冷間圧延を施した後、完全再結晶処
理としてバッチ焼鈍もしくは連続焼鈍による中間焼鈍を
施し、その後最終冷間圧延を行なって缶胴用板材として
必要な板厚とする。さらに必要に応じて、DI成形性を
向上させるため、再結晶温度よりも低い温度で最終焼鈍
を施しても良い。
The entire process itself for producing a hot-rolled plate and a plate for a can body that satisfies the above-mentioned structural conditions may be the same as the conventional process. That is, an ingot such as a slab obtained by a DC casting method or the like is subjected to a homogenization treatment and then hot-rolled to obtain a hot-rolled plate. In addition,
In order to obtain a sheet material for a can body, a hot-rolled sheet is immediately or firstly subjected to cold rolling, and then subjected to batch annealing or continuous annealing as a complete recrystallization treatment, followed by final annealing. Cold rolling is performed to obtain a sheet thickness required for a sheet material for a can body. Further, if necessary, in order to improve DI formability, final annealing may be performed at a temperature lower than the recrystallization temperature.

【0033】このような製造工程中におけるプロセス条
件は、要は前述のような組織条件を満たすように選択す
れば良い。もちろん具体的な各プロセス条件は合金の成
分組成や他のプロセス条件との兼ね合いで異なってくる
から、一概には定められないが、通常は次のような条件
が好ましい。
The process conditions during such a manufacturing process may be selected so as to satisfy the above-mentioned organizational conditions. Of course, specific process conditions are different depending on the composition of the alloy and other process conditions, and thus cannot be unconditionally determined. However, the following conditions are usually preferable.

【0034】すなわち、鋳塊に対する均質化処理を52
0〜630℃の範囲内の温度で1時間以上、好ましくは
48時間以下で行なう。次いで熱間粗圧延を350〜5
80℃の範囲内で開始し、続いて熱間仕上圧延を行なう
にあたって、その仕上圧延の各パスにおける圧延温度
を、最終パスを除いて280〜350℃の範囲内とし、
熱間仕上圧延の最終パスの圧延温度を200〜330℃
となるようにして板厚1.0〜7.0mmに仕上げるこ
とが好ましい。なお熱間圧延終了直後の200〜330
℃の範囲内の温度から室温までの平均冷却速度は100
℃/時間以下とすることが好ましい。このようにして得
られた熱間圧延板に対しては、1次冷間圧延として圧延
率が2〜60%の冷間圧延を施し、その後連続焼鈍もし
くはバッチ焼鈍によって中間焼鈍(完全再結晶処理)を
施すことが好ましい。この中間焼鈍に連続焼鈍を適用す
る場合、その連続焼鈍は、1〜100℃/秒の範囲内の
平均昇温速度で330〜620℃の範囲内の温度に加熱
し、保持なしもしくは10分以下の保持の後、1〜10
0℃/秒の範囲内の平均冷却速度で冷却する条件とする
ことが好ましい。一方、1次冷間圧延後の中間焼鈍とし
てバッチ焼鈍を適用する場合、平均昇温速度0.1℃/
秒以下で250〜500℃の範囲内の温度に加熱し、そ
の範囲内の温度で0.5時間以上24時間以下保持し、
平均冷却速度0.1℃/秒以下で冷却することが好まし
い。
That is, the homogenization process for the ingot is performed
The reaction is performed at a temperature within the range of 0 to 630 ° C. for 1 hour or more, preferably 48 hours or less. Next, hot rough rolling is performed for 350 to 5
Starting in the range of 80 ° C., and subsequently performing hot finish rolling, the rolling temperature in each pass of the finish rolling is set to a range of 280 to 350 ° C. excluding the final pass,
The final pass rolling temperature of hot finish rolling is 200-330 ° C
It is preferable to finish to a plate thickness of 1.0 to 7.0 mm. 200-330 immediately after the end of hot rolling
The average cooling rate from a temperature in the range of
C./hour or less is preferable. The hot-rolled sheet thus obtained is subjected to cold rolling at a rolling ratio of 2 to 60% as primary cold rolling, and then to intermediate annealing (continuous recrystallization treatment) by continuous annealing or batch annealing. ) Is preferred. When continuous annealing is applied to the intermediate annealing, the continuous annealing is performed by heating at a temperature in the range of 330 to 620 ° C. at an average heating rate in the range of 1 to 100 ° C./sec, and without holding or 10 minutes or less. After holding, 1-10
Preferably, the cooling is performed at an average cooling rate within the range of 0 ° C./sec. On the other hand, when batch annealing is applied as the intermediate annealing after the primary cold rolling, the average heating rate is 0.1 ° C. /
Heated to a temperature in the range of 250 to 500 ° C. in seconds or less, held at a temperature in the range for 0.5 to 24 hours,
It is preferable to cool at an average cooling rate of 0.1 ° C./second or less.

【0035】このようにして連続焼鈍もしくはバッチ焼
鈍による中間焼鈍を施した後の最終冷間圧延は、50%
以上の圧延率で施すことが好ましい。
The final cold rolling after the intermediate annealing by the continuous annealing or the batch annealing is performed by 50%
It is preferable to apply at the above rolling ratio.

【0036】なお最終冷間圧延後の板は、これを最終板
としてそのままDI成形に供しても良いが、最終冷間圧
延後の板に必要に応じて成形性向上のために80〜20
0℃の範囲内の温度で0.5〜24時間の最終焼鈍を行
なっても良い。なお積極的に最終焼鈍を行なわない場合
でも、最終冷間圧延を高速で行なうことにより発生する
加工熱を利用して、最終焼鈍と同様な効果を得ることが
できる。
The sheet after final cold rolling may be used as it is as a final sheet for DI forming. However, if necessary, the sheet after final cold rolling may be subjected to 80 to 20 to improve formability.
The final annealing may be performed at a temperature within the range of 0 ° C. for 0.5 to 24 hours. Even when the final annealing is not actively performed, the same effect as the final annealing can be obtained by utilizing the processing heat generated by performing the final cold rolling at a high speed.

【0037】[0037]

【実施例】本発明例として、表1に示す合金記号A〜D
の各合金について、常法に従ってDC鋳造法によりスラ
ブに鋳造した後、520〜630℃で1時間以上の均質
化処理を施した後、熱間圧延を施した。熱間圧延は、3
50〜580℃の範囲内の温度で熱間粗圧延を開始し、
その後熱間仕上圧延を5パスで行ない、かつその仕上圧
延の1〜4パス目までは圧延温度を280〜350℃、
5パス目では圧延温度を200〜330℃となるように
調整して、板厚2.0mmの熱間圧延板とした。さらに
室温まで冷却した後の熱間圧延板に対し、圧延率10%
の1次冷間圧延を施した後、中間焼鈍として連続焼鈍
(昇温速度および冷却速度1〜100℃/秒、加熱到達
温度330〜620℃、保持0〜10分)もしくはバッ
チ焼鈍(昇温速度および冷却速度0.1℃/秒以下、加
熱温度250〜500℃、保持0.5〜24時間)を施
し、その後、圧延率83%の最終冷間圧延を行なった。
EXAMPLES As examples of the present invention, alloy symbols A to D shown in Table 1 are used.
Each alloy was cast into a slab by a DC casting method according to a conventional method, then subjected to a homogenization treatment at 520 to 630 ° C. for 1 hour or more, and then subjected to hot rolling. Hot rolling is 3
Start hot rough rolling at a temperature within the range of 50 to 580 ° C,
Thereafter, hot finish rolling is performed in 5 passes, and the rolling temperature is 280 to 350 ° C. until the first to fourth passes of the finish rolling.
In the fifth pass, the rolling temperature was adjusted to 200 to 330 ° C. to obtain a hot-rolled sheet having a sheet thickness of 2.0 mm. Further, the rolling rate of the hot-rolled sheet after cooling to room temperature is 10%.
After the first cold rolling, continuous annealing (heating rate and cooling rate of 1 to 100 ° C./second, ultimate temperature of heating of 330 to 620 ° C., holding 0 to 10 minutes) or batch annealing (intermediate annealing) Speed and cooling rate of 0.1 ° C./sec or less, heating temperature of 250 to 500 ° C., holding 0.5 to 24 hours), and then final cold rolling at a rolling reduction of 83%.

【0038】また比較例として、表1に示す合金記号E
〜Gの各合金については、常法に従ってDC鋳造法によ
りスラブに鋳造した後、520〜630℃で1時間以上
の均質化処理を施してから熱間圧延を行なった。熱間圧
延は、450〜580℃の範囲内の温度で熱間粗圧延を
開始し、その後熱間仕上圧延を5パスで行ない、かつそ
の仕上圧延の1〜5パス目までは圧延温度360〜41
0℃で行ない、5パス目は260〜390℃の圧延温度
で行なった。その後、前述の本発明例と同様に1次冷間
圧延、中間焼鈍、最終冷間圧延を行なった。
As a comparative example, the alloy symbol E shown in Table 1 was used.
Each of the alloys Nos. To G was cast into a slab by a DC casting method according to a conventional method, and then subjected to a homogenization treatment at 520 to 630 ° C. for 1 hour or more, followed by hot rolling. Hot rolling starts hot rough rolling at a temperature in the range of 450 to 580 ° C., then performs hot finish rolling in 5 passes, and a rolling temperature of 360 to 1 to 5 passes of the finish rolling. 41
The fifth pass was performed at a rolling temperature of 260 to 390 ° C. Thereafter, primary cold rolling, intermediate annealing, and final cold rolling were performed in the same manner as in the above-described examples of the present invention.

【0039】以上の本発明例、比較例において、熱間圧
延後の熱間圧延板について、断面における加工組織の面
積率、X線回折によるランダム方位に対するキューブ方
位の方位密度比、および板表面における圧延集合組織に
対する板厚方向中央部における圧延集合組織の方位密度
比を調べた結果を表2に示す。また完全再結晶処理とし
ての中間焼鈍を行なった後の板材について、ランダム方
位に対する板表面から全板厚の10%の位置までの表層
領域におけるキューブ方位の方位密度比および全板厚の
10%の位置から板厚方向中央部までの中心領域におけ
るキューブ方位の方位密度比を調べた結果を表2に併せ
て示す。
In the above-mentioned examples of the present invention and comparative examples, for the hot-rolled sheet after hot rolling, the area ratio of the processed structure in the cross section, the orientation density ratio of the cube orientation to the random orientation by X-ray diffraction, and the Table 2 shows the results of examining the orientation density ratio of the rolled texture at the center in the sheet thickness direction to the rolled texture. Further, with respect to the sheet material after the intermediate annealing as a complete recrystallization treatment, the orientation density ratio of the cube orientation in the surface layer region from the sheet surface to the position of 10% of the total sheet thickness with respect to the random orientation and the 10% of the total sheet thickness are determined. Table 2 also shows the result of examining the azimuth density ratio of the cube azimuth in the central region from the position to the center in the thickness direction.

【0040】さらに、前述のようにして得られた最終冷
間圧延後の各缶胴用板材について、DI成形を行なって
耳率を調べるとともに、製缶後の缶の外観を調べた。そ
の結果を表3に示す。なお耳率としては2.5%以下が
合格と判定することができる。一方缶の外観評価はラン
ク“1”〜“5”の5段階評価を行なった。この5段階
評価においてはランクの数値が大きいほど良好であり
“3”のランク以上で合格と評価した。
Further, each of the can body plates obtained after the final cold rolling, obtained as described above, was subjected to DI molding to examine the ear ratio, and the appearance of the can after can production was examined. Table 3 shows the results. Note that an ear rate of 2.5% or less can be determined to be acceptable. On the other hand, the appearance of the can was evaluated on a five-point scale of ranks "1" to "5". In this five-step evaluation, the higher the numerical value of the rank, the better, and a pass of "3" or higher was evaluated.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】表1〜表3において、製造番号1〜4はい
ずれもこの発明の範囲内であり、これらの場合は耳率が
いずれも2.5%以下と低く、かつ外観品質も良好であ
った。これに対し製造番号5の場合は、熱間圧延板の断
面における加工組織の面積率が55%と低く、かつ中間
焼鈍後の完全再結晶板における中心領域のキューブ方位
の方位密度比が14と低く、この場合は外観品質は優れ
ているものの、耳率が3.6%と高くなってしまった。
また製造番号6はMg量がこの発明で規定する範囲より
も高い合金を用いた例であり、この場合、熱間圧延板の
組織条件はこの発明で規定する範囲を満たしており、ま
た中間焼鈍後の完全再結晶板における表層領域のキュー
ブ方位密度はこの発明で規定する範囲内となっている
が、中心領域のキューブ方位密度が低く、耳率が4.3
%と高くなってしまった。さらに製造番号7は、熱間圧
延板における板厚方向中央部の圧延集合組織の方位密度
が板表面の圧延集合組織の方位密度の0.8倍と低く、
この場合は中間焼鈍後の完全再結晶板における表層領域
のキューブ方位密度が高過ぎるとともに中心領域のキュ
ーブ方位密度が低く、その結果耳率が2.9%と高いば
かりでなく、表面の外観品質も劣ってしまった。
In Tables 1 to 3, the production numbers 1 to 4 are all within the scope of the present invention. In these cases, the ear ratio is as low as 2.5% or less, and the appearance quality is good. Was. On the other hand, in the case of the production number 5, the area ratio of the processed structure in the cross section of the hot-rolled sheet is as low as 55%, and the orientation density ratio of the cube orientation in the central region of the completely recrystallized sheet after the intermediate annealing is 14; In this case, the appearance quality was excellent, but the ear ratio was high at 3.6%.
Production number 6 is an example using an alloy having a Mg content higher than the range specified in the present invention. In this case, the microstructure of the hot-rolled sheet satisfies the range specified in the present invention, and the intermediate annealing is performed. Although the cube orientation density in the surface region of the later completely recrystallized plate is within the range specified in the present invention, the cube orientation density in the central region is low and the ear ratio is 4.3.
%. Furthermore, the production number 7 is such that the orientation density of the rolling texture at the center in the thickness direction of the hot-rolled sheet is 0.8 times lower than the orientation density of the rolling texture on the sheet surface,
In this case, the cube orientation density of the surface layer region in the completely recrystallized plate after the intermediate annealing is too high and the cube orientation density of the central region is low. As a result, not only the ear ratio is as high as 2.9%, but also the surface appearance quality. Was also inferior.

【0045】[0045]

【発明の効果】この発明の熱間圧延板、およびそれを用
いた缶胴用板材によれば、組織条件を適切に設定するこ
とによって、DI成形加工後の耳率を確実かつ安定して
低くすることができると同時に、DI成形加工時の肌荒
れやフローライン等の発生を防止して良好な外観品質を
有する缶を得ることができる。
According to the hot-rolled sheet of the present invention and the sheet material for a can body using the same, the ear ratio after DI forming is reliably and stably reduced by appropriately setting the structure conditions. At the same time, it is possible to obtain a can having good appearance quality by preventing the occurrence of rough skin and flow lines during DI molding.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.5〜2.0%(重量%、以下同
じ)、Mn0.5〜2.0%、Fe0.1〜0.7%、
Si0.05〜0.5%を含有し、さらに必要に応じて
0.005〜0.20%のTiを単独でもしくは0.0
001〜0.05%のBと組合せて含有し、残部がAl
および不可避的不純物よりなるアルミニウム合金からな
るアルミニウム缶胴材用熱間圧延板であって、板の断面
における圧延加工組織の面積率が80%以上であり、し
かもキューブ方位の方位密度が板厚全域にわたりランダ
ム方位の3倍以上であり、かつ板厚方向の中央部におけ
る圧延集合組織の方位密度が板表面における圧延集合組
織の方位密度の2倍以上であることを特徴とする、アル
ミニウム缶胴材用熱間圧延板。
1. Mg 0.5-2.0% (weight%, the same applies hereinafter), Mn 0.5-2.0%, Fe 0.1-0.7%,
0.05 to 0.5% of Si, and if necessary, 0.005 to 0.20% of Ti alone or 0.0
001-0.05% B in combination with the balance being Al
And a hot-rolled plate for an aluminum can body made of an aluminum alloy comprising unavoidable impurities, wherein the area ratio of the rolled structure in the cross section of the plate is 80% or more, and the azimuth density of the cube orientation is the entire thickness of the plate. Aluminum can body material characterized in that the orientation density of the rolled texture in the central part in the thickness direction is at least twice the orientation density of the rolled texture on the sheet surface. For hot rolled plate.
【請求項2】 Mg0.5〜2.0%、Mn0.5〜
2.0%、Fe0.1〜0.7%、Si0.05〜0.
5%を含有し、かつCu0.05〜0.5%、Cr0.
05〜0.3%、Zn0.05〜0.5%のうちの1種
または2種以上を含有し、さらに必要に応じて0.00
5〜0.20%のTiを単独でもしくは0.0001〜
0.05%のBと組合せて含有し、残部がAlおよび不
可避的不純物よりなるアルミニウム合金からなるアルミ
ニウム缶胴材用熱間圧延板であって、板の断面における
圧延加工組織の面積率が80%以上であり、しかもキュ
ーブ方位の方位密度が板厚全域にわたりランダム方位の
3倍以上であり、かつ板厚方向の中央部における圧延集
合組織の方位密度が板表面における圧延集合組織の方位
密度の2倍以上であることを特徴とする、アルミニウム
缶胴材用熱間圧延板。
2. Mg 0.5-2.0%, Mn 0.5-
2.0%, Fe 0.1-0.7%, Si 0.05-0.
5%, Cu 0.05-0.5%, Cr0.
0.05 to 0.3% and Zn 0.05 to 0.5%, and if necessary, 0.002% or more.
5 to 0.20% Ti alone or 0.0001 to
A hot-rolled plate for an aluminum can body made of an aluminum alloy containing 0.05% of B in combination with the balance being Al and inevitable impurities, wherein the area ratio of the rolled structure in the cross section of the plate is 80%. % Or more, and the azimuth density of the cube orientation is at least three times the random orientation over the entire thickness, and the azimuth density of the rolled texture at the center in the thickness direction is the azimuth density of the rolled texture at the plate surface. A hot-rolled sheet for aluminum can body, characterized in that it is twice or more.
【請求項3】 請求項1もしくは請求項2の熱間圧延板
を用い、その熱間圧延板の組織を完全再結晶させてなる
アルミニウム缶胴用板材であって、キューブ方位の方位
密度が、板表面から全板厚の10%の位置までの表層領
域ではランダム方位の30倍以下であり、しかも板表面
から10%の位置から板厚方向中央部までの中心領域で
はランダム方位の15倍を越えるとともに前記表層領域
におけるキューブ方位密度より高くなっていることを特
徴とする、アルミニウム缶胴用板材。
3. A plate material for an aluminum can body obtained by completely recrystallizing the structure of the hot-rolled plate using the hot-rolled plate according to claim 1 or 2, wherein the cube orientation has an orientation density of: In the surface layer region from the plate surface to the position of 10% of the total plate thickness, the random orientation is 30 times or less, and in the central region from the position of 10% from the plate surface to the center in the plate thickness direction, the random direction is 15 times. A plate material for an aluminum can body, which exceeds the cube orientation density in the surface region.
JP05983399A 1999-03-08 1999-03-08 Hot rolled plate for aluminum can body and can body plate using the same Expired - Fee Related JP4034904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05983399A JP4034904B2 (en) 1999-03-08 1999-03-08 Hot rolled plate for aluminum can body and can body plate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05983399A JP4034904B2 (en) 1999-03-08 1999-03-08 Hot rolled plate for aluminum can body and can body plate using the same

Publications (2)

Publication Number Publication Date
JP2000256774A true JP2000256774A (en) 2000-09-19
JP4034904B2 JP4034904B2 (en) 2008-01-16

Family

ID=13124636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05983399A Expired - Fee Related JP4034904B2 (en) 1999-03-08 1999-03-08 Hot rolled plate for aluminum can body and can body plate using the same

Country Status (1)

Country Link
JP (1) JP4034904B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058735A (en) * 2012-09-19 2014-04-03 Mitsubishi Alum Co Ltd Aluminum alloy sheet for aerosol can barrel and its manufacturing method
WO2015140833A1 (en) * 2014-03-20 2015-09-24 株式会社Uacj Aluminum alloy sheet for dr can body and manufacturing method therefor
WO2020045537A1 (en) * 2018-08-31 2020-03-05 株式会社Uacj Aluminum alloy sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058735A (en) * 2012-09-19 2014-04-03 Mitsubishi Alum Co Ltd Aluminum alloy sheet for aerosol can barrel and its manufacturing method
WO2015140833A1 (en) * 2014-03-20 2015-09-24 株式会社Uacj Aluminum alloy sheet for dr can body and manufacturing method therefor
JPWO2015140833A1 (en) * 2014-03-20 2017-04-06 株式会社Uacj Aluminum alloy plate for DR can body and manufacturing method thereof
WO2020045537A1 (en) * 2018-08-31 2020-03-05 株式会社Uacj Aluminum alloy sheet
KR20210040127A (en) * 2018-08-31 2021-04-12 가부시키가이샤 유에이씨제이 Aluminum alloy plate
KR102559606B1 (en) 2018-08-31 2023-07-24 가부시키가이샤 유에이씨제이 aluminum alloy plate

Also Published As

Publication number Publication date
JP4034904B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JP4257135B2 (en) Aluminum alloy hard plate for can body
JPS626740B2 (en)
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP4034904B2 (en) Hot rolled plate for aluminum can body and can body plate using the same
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH06228696A (en) Aluminum alloy sheet for di can body
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JP2000001730A (en) Aluminum alloy sheet for can body, and its production
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JP3069008B2 (en) Method for manufacturing aluminum alloy DI can body
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio
JPH0813109A (en) Production of aluminum alloy sheet for forming
JPH0790518A (en) Production of aluminum alloy sheet for forming, reduced in ear rate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees