JP2000248395A - Method for controlling electrodeposition and production of quantum magnetic disk and electron emitting element using the method - Google Patents

Method for controlling electrodeposition and production of quantum magnetic disk and electron emitting element using the method

Info

Publication number
JP2000248395A
JP2000248395A JP4957999A JP4957999A JP2000248395A JP 2000248395 A JP2000248395 A JP 2000248395A JP 4957999 A JP4957999 A JP 4957999A JP 4957999 A JP4957999 A JP 4957999A JP 2000248395 A JP2000248395 A JP 2000248395A
Authority
JP
Japan
Prior art keywords
electrode
electrodeposition
monitor
monitor electrode
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4957999A
Other languages
Japanese (ja)
Inventor
Shin Kitamura
伸 北村
Masato Yamanobe
正人 山野辺
Shinichi Kawate
信一 河手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4957999A priority Critical patent/JP2000248395A/en
Publication of JP2000248395A publication Critical patent/JP2000248395A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide an electrodeposition controlling method for monitoring the position at the objective place and stopping electrodeposition. SOLUTION: The electrode 1 to be electrodeposited, a counter electrode 2 and a reference electrode 3 are connected to a potentiostat 4, and a monitor electrode 5 is connected to a power source 7 via an ammeter or a voltmeter 6. Electrodeposition is executed in such a manner that the potential of the monitor electrode 5 viewed from the reference electrode 3 is set to be baser than the oxidation-reduction potential and nobler than the electrode 1 to be electrodeposited, and at the instant in which an electrodeposit 13 comes into contact with the monitor electrode 5, a measuring instrument 6 detects the change of the electric current value or voltage caused by the potential difference between the electrode 1 to be electrodeposited and the monitor electrode 5, a personal computer 9 allows the potentiostat 4 and the power source 7 to stop the potential feed, and the electrodeposition is stopped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電析を行なう際に、
電析物を所望の位置で制御する必要がある場合の制御方
法に関し、特に、基板上に、下部電極と、細孔を有する
絶縁層及び上部電極とをこの順に積層し細孔内に電析に
より電極を埋め込んだ電子放出素子または量子磁気ディ
スクの製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to
Regarding a control method when it is necessary to control an electrodeposit at a desired position, in particular, a lower electrode, an insulating layer having pores and an upper electrode are laminated in this order on a substrate, and electrodeposited in the pores. The present invention relates to a method for manufacturing an electron-emitting device or a quantum magnetic disk in which electrodes are buried by the method.

【0002】[0002]

【従来の技術】従来より電析物の制御は、電流効率を求
めて、ファラデーの法則から析出量を計算し、時間また
は電流によるクーロン量の制御により行われている。電
流効率は温度、液PH、電析を行なう部分の形状、電析
総面積、電析電流などに依存して変化するので、事前に
同条件において逐一調べておく必要がある。また、電流
効率を求めるためには被電析体積を既知としておかなけ
ればならないが、電析しようとする部分が、複雑な形状
の場合などは正確に体積を求めておくことは困難であ
る。
2. Description of the Related Art Electrodeposits are conventionally controlled by calculating current efficiency, calculating the amount of deposition from Faraday's law, and controlling the amount of Coulomb by time or current. The current efficiency changes depending on the temperature, the liquid PH, the shape of the portion to be electrodeposited, the total area of the electrodeposition, the electrodeposition current, and the like. Further, in order to obtain the current efficiency, the volume to be deposited must be known, but it is difficult to accurately determine the volume when the portion to be deposited has a complicated shape.

【0003】電解液中で電析物の膜厚を測定する方法と
しては、超音波パルスを電析物上に入射し電析物表面の
反射波と、電析下地金属表面での反射波との時間的遅れ
をもって電析物の膜厚を知る方法がある。しかし、同方
法では測定可能な時間的遅れは超音波パルスの幅と同程
度であるため、超音波の波長に比較して薄い膜の厚さを
測定する事は困難であった。
As a method of measuring the thickness of an electrodeposit in an electrolytic solution, an ultrasonic pulse is incident on the electrodeposit and the reflected wave on the surface of the electrodeposit and the reflected wave on the metal surface of the electrodeposited substrate are measured. There is a method of knowing the film thickness of the electrodeposit with the time delay of the above. However, in this method, the measurable time delay is almost the same as the width of the ultrasonic pulse, so that it was difficult to measure the thickness of a thin film compared to the wavelength of the ultrasonic wave.

【0004】そこで超音波の波長に比較して薄い膜の厚
さを測定する方法として、超音波伝播用の液体から基板
に入射する超音波の入射角が、基板、液体及び膜の物質
に固有の値で、かつ超音波の波長(λ)と膜厚の比が基
板、液体及び膜の物質に固有の値のときに、超音波の反
射率が低下する事を利用して、膜厚を測定する技術があ
る。(特公平4―32962号報)しかし、この測定法
では、入射角及び超音波の波長と膜厚の比が、基板、液
体及び膜の材料に依存しており、電析液、下地基板が変
わる毎に、これらの値を調べておく必要があるという不
都合がある。
Therefore, as a method of measuring the thickness of a thin film as compared with the wavelength of the ultrasonic wave, the angle of incidence of the ultrasonic wave incident on the substrate from the ultrasonic wave propagating liquid is unique to the substrate, the liquid and the material of the film. When the ratio of the wavelength of the ultrasonic wave (λ) to the film thickness is a value specific to the substrate, the liquid and the substance of the film, the reflectivity of the ultrasonic wave is reduced, and the film thickness is reduced. There is a technology to measure. However, in this measurement method, the ratio of the incident angle and the wavelength of the ultrasonic wave to the film thickness depends on the material of the substrate, liquid and film. The disadvantage is that these values need to be checked each time they change.

【0005】特開平09―269216には簡便な方法
で薄い膜厚の測定を可能とした報告がある。これは、周
波数を適宜変更して膜に向かい送信されたバースト波
(定常波が急激に立ち上がり、平坦部を経た後に、急激
に消失する超音波を言う)のうち膜表面で反射する表面
反射波、および膜と固体基材との境界面で反射する境界
反射波の合成波を受信する。その合成波の正又は負のい
ずれか一方における各極値の包絡線が平坦になり、最も
突き出し、又は最も窪む等のいずれかの状態変化にほぼ
対応するバースト波の周波数を少なくとも2つ求め、次
式により膜厚dを求めるという方式である。
[0005] JP-A-09-269216 reports that a thin film thickness can be measured by a simple method. This is a surface reflected wave reflected on the film surface of a burst wave transmitted to the film by changing the frequency as appropriate (referred to as an ultrasonic wave that suddenly rises and goes through a flat portion and then disappears rapidly). And a composite wave of a boundary reflected wave reflected at an interface between the film and the solid substrate. The envelope of each extreme value in either the positive or negative direction of the composite wave becomes flat, and at least two frequencies of the burst wave substantially corresponding to any state change such as the most protruding or the most depressed are obtained. The following formula is used to determine the film thickness d.

【0006】d=v×M/(2×(f2−f1)) ここで、vは膜を構成する材料の音速、Mは前期包絡線の
状態変化に対応する位相差を2πで除した位相差波数、
f2及びf1はそれぞれ最も突き出し、又は最も窪む等
の状態変化にほぼ対応するバースト波の周波数である。
D = v × M / (2 × (f2−f1)) where v is the sound velocity of the material constituting the film, and M is the position obtained by dividing the phase difference corresponding to the change in the state of the envelope by 2π. Phase difference wave number,
f2 and f1 are the frequencies of the burst waves substantially corresponding to the state changes such as the most protruding or the most depressed, respectively.

【0007】特開平6-88295には超音波により電析中に
電析物の膜厚をモニターして制御する方法が報告されて
いる。
[0007] Japanese Patent Application Laid-Open No. 6-88295 reports a method of monitoring and controlling the film thickness of an electrodeposit during ultrasonic deposition.

【0008】しかし、上記のような音速等を利用した膜
厚の測定方法では、測定可能な膜厚の限界がμmのオー
ダーであり、さらに薄い電析物の膜厚を電析中に探知し
制御する事は困難である。
However, in the method of measuring the film thickness utilizing the speed of sound as described above, the limit of the film thickness that can be measured is on the order of μm, and the film thickness of a thinner deposit is detected during the electrodeposition. It is difficult to control.

【0009】[0009]

【発明が解決しようとする課題】これまでは、薄い膜厚
に電析物を制御する場合には、電流効率を求めて時間や
電流による盲目的な制御方法であった。また、電析条件
の僅かな変化に依存して電析量が変動するため、目的と
する位置で正確に電析を停止させる事は困難であった。
このような理由により、基板上に、下部電極と、細孔を
有する絶縁層及び上部電極の順に積層された構造におい
て、特に細孔内への電析物埋め込みを制御して行い、電
子放出素子を作製することは非常に困難であった。
Heretofore, in the case of controlling an electrodeposit to a thin film thickness, a blind control method using time or current has been used to obtain current efficiency. In addition, since the amount of electrodeposition fluctuates depending on a slight change in the electrodeposition conditions, it has been difficult to accurately stop the electrodeposition at a target position.
For this reason, in a structure in which a lower electrode, an insulating layer having pores, and an upper electrode are stacked in this order on a substrate, the embedding of the deposits in the pores is particularly controlled, and the electron-emitting device is used. Was very difficult to produce.

【0010】そこで、本発明では、電析が行われる部分
の形状、総面積、電析電流等に依存した電析量の変化に
関わらず、また電析物、下地金属材料を問わず目的とす
る場所で、電析物の膜厚でなく位置をモニターして電析
を停止させる電析制御方法を提供する事、また、この方
法を用いた電子放出素子または量子磁気ディスクの製造
方法を提供する事を目的とする。
Therefore, in the present invention, regardless of the change in the amount of electrodeposition depending on the shape, total area, electrodeposition current, etc. of the portion where the electrodeposition is performed, and irrespective of the electrodeposit and the underlying metal material, To provide an electrodeposition control method that stops the electrodeposition by monitoring the position, not the film thickness, of the electrodeposit at the place to be deposited, and also provides a method of manufacturing an electron-emitting device or a quantum magnetic disk using this method. The purpose is to do.

【0011】[0011]

【課題を解決するための手段】上記従来技術の課題を解
決するために第1の発明は、電解液中に被電析電極と対
向電極と参照電極に加え、モニター電極が電析を制御し
ようとする部分に配置され、該モニター電極には電流計
または電圧計が接続され、該参照電極を基準にしたモニ
ター電極の電位を、酸素発生の酸化還元電位よりも卑、
かつ被電析電極の電位よりも貴になるように設定して電
析を行い、電析物がモニター電極に接触した瞬間に、該
被電析電極と該モニター電極間の電位差による電流値の
変化または、電圧値の変化を探知して制御装置が電析を
停止させる事を特徴とする電析の制御方法である。
According to a first aspect of the present invention, a monitor electrode controls the electrodeposition in an electrolytic solution in addition to an electrode to be deposited, a counter electrode, and a reference electrode. An ammeter or a voltmeter is connected to the monitor electrode, and the potential of the monitor electrode with respect to the reference electrode is lower than the oxidation-reduction potential of oxygen generation.
Electrodeposition is performed by setting the potential to be nobler than the potential of the electrode to be deposited, and at the moment the electrodeposit contacts the monitor electrode, the current value due to the potential difference between the electrode to be deposited and the monitor electrode is determined. This is a method for controlling electrodeposition, in which a control device detects a change or a change in a voltage value and stops electrodeposition.

【0012】第2の発明は、第1の発明において、前記
参照電極を基準にしたモニター電極の電位を、電析物の
酸化還元電位よりも貴に設定したことを特徴とする。
A second invention is characterized in that, in the first invention, the potential of the monitor electrode with respect to the reference electrode is set to be more noble than the oxidation-reduction potential of the deposit.

【0013】第3の発明は、第1又は第2の発明におい
て、絶縁基板上に被電析電極と上記モニター電極が同一
平面上に配置されたことを特徴とする。
According to a third aspect of the present invention, in the first or second aspect, the electrode to be deposited and the monitor electrode are arranged on the same plane on an insulating substrate.

【0014】第4の発明は、第1又は第2の発明におい
て、基板上に被電析電極、孔を有する絶縁層の順なる積
層構成において、孔の周縁部分に接して上記モニター電
極が設置されたことを特徴とする。
According to a fourth aspect of the present invention, in the first or second aspect, the monitor electrode is provided in contact with a peripheral portion of the hole in the laminated structure of the electrode to be deposited and the insulating layer having the hole on the substrate. It is characterized by having been done.

【0015】第5の発明は、第4の発明に係る電析の制
御方法において、前記孔が多数存在する場合に、少なく
とも一つにモニター電極が設置されていることを特徴と
する。
According to a fifth aspect of the present invention, in the method for controlling electrodeposition according to the fourth aspect, when a large number of the holes exist, a monitor electrode is provided in at least one of the holes.

【0016】第6の発明は、第4又は第5の発明に係る
電析の制御方法において、前記孔の周縁部分から、ある
距離をおいてモニター電極が設置されていることを特徴
とする。
According to a sixth aspect of the present invention, in the electrodeposition control method according to the fourth or fifth aspect, a monitor electrode is provided at a certain distance from a peripheral portion of the hole.

【0017】第7の発明は、第1乃至第6のいずれかの
発明において、電析制御後に、モニター電極を取り除く
工程を含むことを特徴とする。
According to a seventh aspect, in any one of the first to sixth aspects, the method further comprises a step of removing the monitor electrode after the electrodeposition control.

【0018】第8の発明は、第4乃至第7のいずれかの
発明に係る電析の制御方法において、前記孔がフォトリ
ソグラフィーにより形成された、孔径数μm程度である
事を特徴とする。
According to an eighth aspect of the present invention, in the method for controlling electrodeposition according to any one of the fourth to seventh aspects, the holes are formed by photolithography and have a diameter of about several μm.

【0019】第9の発明は、第4乃至第7のいずれかの
発明に係る電析の制御方法において前記孔がアルミニウ
ムの陽極酸化により作製した、孔径数十nm程度である事
を特徴とする。
According to a ninth aspect of the present invention, in the method for controlling electrodeposition according to any one of the fourth to seventh aspects, the pores are formed by anodic oxidation of aluminum and have a pore diameter of about several tens nm. .

【0020】第10の発明は、基板上に、下部電極と絶
縁層、及び上部電極の順なる積層構造において、上部電
極をモニター電極とした第4の発明に係る電析の制御方
法を用いるとともに電析制御後にモニター電極を取り除
いて、絶縁層の孔内に電析物を埋め込み作製することを
特徴とする量子磁気ディスク(QMD)の製造方法であ
る。
A tenth aspect of the present invention uses the electrodeposition control method according to the fourth aspect of the present invention in which a lower electrode, an insulating layer, and an upper electrode are sequentially stacked on a substrate, and the upper electrode is a monitor electrode. A method for manufacturing a quantum magnetic disk (QMD), characterized in that a monitor electrode is removed after electrodeposition control, and an electrodeposit is buried in a hole of an insulating layer.

【0021】第11の発明は、基板上に、下部電極と絶
縁層、及び上部電極の順なる積層構造において、上部電
極をモニター電極とした第4又は第5の発明に係る電析
の制御方法により作製した、上部電極と電析物間に微小
間隙を有する電子放出素子の製造方法である。
According to an eleventh aspect of the present invention, there is provided a method for controlling electrodeposition according to the fourth or fifth aspect, wherein the lower electrode, the insulating layer, and the upper electrode are sequentially stacked on the substrate, and the upper electrode is used as a monitor electrode. This is a method for producing an electron-emitting device having a small gap between an upper electrode and an electrodeposit, produced by the method described above.

【0022】第12の発明は、第11の発明において、
前記孔がフォトリソグラフィーにより形成された、孔径
数μm程度である事を特徴とする。
According to a twelfth aspect, in the eleventh aspect,
The hole is formed by photolithography and has a hole diameter of about several μm.

【0023】第13の発明は、第11の発明において、
前記孔がアルミニウムの陽極酸化により作製した、孔径
数十nm程度である事を特徴とする。
According to a thirteenth aspect, in the eleventh aspect,
The hole is formed by anodizing aluminum and has a hole diameter of about several tens nm.

【0024】[0024]

【発明の実施の形態】[実施の形態1]以下、図面を参
照して、本発明の実施の形態について説明する。図1は
本発明の最も基本的構成を示す模式図である。図1
(a)の1は被電析電極、2は対向電極、3は参照電極
でありポテンシオスタット4に接続されている。5がモ
ニター電極であり、電流計または電圧計6を介し、電源
7に接続されている。また、モニター電極5は別の電圧
計8を介し参照電極3に接続されている。ポテンシオス
タット4および電源7はパーソナルコンピューター9に
よりコントロールされている。被電析電極1とモニター
電極5間は絶縁層10により、電気的に絶縁されてい
る。11は電解槽であり、12は電解液である。図1
(b)のようなモニター電極配置で、参照電極3からみ
たモニター電極5の電位を、酸素発生の酸化還元電位よ
りも卑、かつ被電析電極1よりも貴になるように設定し
て電析を行うと、電析物13がモニター電極5に接触し
た瞬間に、被電析電極1−モニター電極5間の電位差に
よる電流値の変化または、電圧の変化を計測器6が探知
し、パーソナルコンピューター9が、ポテンシオスタッ
ト4および電源7に電位供給を中止させ電析が停止す
る。ここで液抵抗を介して被電析電極1−モニター電極
5間に流れる電流値を小さくしておくために、両電極間
の電位差はより小さい事が好ましい。また、モニター電
極5に電析物が析出すると不都合が生じる場合(後に選
択的にモニター電極5を取り除く必要がある場合など)
には、電析物の酸化還元電位よりもモニター電極5の電
位を貴にするという条件を加える。
[First Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the most basic configuration of the present invention. FIG.
In FIG. 1A, reference numeral 1 denotes an electrode to be deposited, 2 denotes a counter electrode, and 3 denotes a reference electrode, which is connected to a potentiostat 4. Reference numeral 5 denotes a monitor electrode, which is supplied with a power through an ammeter or a voltmeter 6.
Connected to 7. The monitor electrode 5 is connected to the reference electrode 3 via another voltmeter 8. The potentiostat 4 and the power supply 7 are controlled by a personal computer 9. The electrode 1 to be deposited and the monitor electrode 5 are electrically insulated by an insulating layer 10. Reference numeral 11 denotes an electrolytic cell, and 12 denotes an electrolytic solution. FIG.
In the arrangement of the monitor electrodes as shown in (b), the potential of the monitor electrode 5 viewed from the reference electrode 3 is set so as to be lower than the oxidation-reduction potential of oxygen generation and more noble than the electrode 1 to be electrodeposited. When the electrodeposit 13 is in contact with the monitor electrode 5, the measuring instrument 6 detects a change in current value or a change in voltage due to a potential difference between the electrode to be deposited 1 and the monitor electrode 5, and the personal instrument The computer 9 stops supplying the potential to the potentiostat 4 and the power supply 7 to stop the electrodeposition. Here, in order to keep the current flowing between the electrode to be deposited 1 and the monitor electrode 5 via the liquid resistance small, it is preferable that the potential difference between the two electrodes is small. In addition, when an electrodeposit is deposited on the monitor electrode 5 to cause a problem (for example, when it is necessary to selectively remove the monitor electrode 5 later).
Is added to the condition that the potential of the monitor electrode 5 is more noble than the oxidation-reduction potential of the deposit.

【0025】[実施の形態2]次にモニター電極の配置
位置が実施の形態1と異なる例を示す。図2は絶縁基板
上に被電析電極とモニター電極が同一平面上に配置され
ている場合である。21は電析が行われる電極、22は
絶縁基板、23はモニター電極である。電析を開始し電
析物24が基板22上に成長していきモニター電極23
に接触した所で実施形態1と同様に電析が停止する。被
電析電極21−モニター電極23間の距離で電析物24
の面積を規定する事ができる。モニター電極23は電析
後に選択エッチングにより取り除く事もできる。例えば
被電析電極21、絶縁基板22、モニター電極23及び
電析物24が、それぞれAu、SiO2、Pt及びNi
であり、CrO3+H2SO4をエッチャントに用いれば
モニター電極のみ除去する事ができる。
[Second Embodiment] Next, an example in which the arrangement positions of the monitor electrodes are different from those of the first embodiment will be described. FIG. 2 shows a case where an electrode to be deposited and a monitor electrode are arranged on the same plane on an insulating substrate. 21 is an electrode on which electrodeposition is performed, 22 is an insulating substrate, and 23 is a monitor electrode. Electrodeposition is started, and an electrodeposit 24 grows on the substrate 22 to monitor the electrode 23.
The electrodeposition stops in the same place as in the first embodiment. The distance between the electrode 21 to be deposited and the monitor electrode 23 is
Area can be defined. The monitor electrode 23 can be removed by selective etching after electrodeposition. For example, the electrode 21 to be deposited, the insulating substrate 22, the monitor electrode 23, and the electrodeposit 24 are made of Au, SiO 2 , Pt, and Ni, respectively.
When CrO 3 + H 2 SO 4 is used as an etchant, only the monitor electrode can be removed.

【0026】[実施の形態3]図3は基板上に被電析電
極、孔を有する絶縁層の順なる積層構成において、孔の
周縁部分に接して上記モニター電極が設置された場合で
ある。31は被電析電極、32は少なくともひとつの孔
を有する絶縁層、33はモニター電極、35は基板であ
る。モニター電極33の設置は基板35上に真空蒸着、
スピンコート等により被電析電極31、絶縁層32、モ
ニター電極33及び図示しないマスク材料の順で積層
し、フォトリソグラフィーまたは陽極酸化により孔パタ
ーンを形成してドライエッチング等により孔開けし被電
析電極31を露出させる方法等で行なう事ができる。マス
ク材料は必要に応じて電析前、または電析後に除去す
る。尚孔の大きさ、形状等に問わず本制御方法は適用で
きる。孔内の被電析電極31上に析出した電析物34
が、絶縁層32とモニター電極33の境界部分に達する
と形態1と同様に電析が停止する。つまり電析物34の
高さを絶縁層の厚さで規定する事ができる。ここで孔が
多数存在する場合に、モニター電極33は少なくともひ
とつの孔に対して設置されていれば良い。制御後に絶縁
層を除去すると柱状の電析物が得られる。
[Embodiment 3] FIG. 3 shows a case where the above-mentioned monitor electrode is provided in contact with a peripheral portion of a hole in a laminated structure of an electrode to be deposited and an insulating layer having a hole on a substrate. 31 is an electrode to be deposited, 32 is an insulating layer having at least one hole, 33 is a monitor electrode, and 35 is a substrate. The monitor electrode 33 is installed on the substrate 35 by vacuum evaporation,
The electrode 31 to be deposited, the insulating layer 32, the monitor electrode 33 and a mask material (not shown) are laminated in this order by spin coating or the like, a hole pattern is formed by photolithography or anodic oxidation, and holes are formed by dry etching or the like. It can be performed by a method of exposing the electrode 31 or the like. The mask material is removed before or after electrodeposition as required. This control method can be applied regardless of the size and shape of the hole. Electrodeposit 34 deposited on electrode 31 to be deposited in the hole
However, when reaching the boundary portion between the insulating layer 32 and the monitor electrode 33, the deposition stops as in the first embodiment. That is, the height of the electrodeposit 34 can be defined by the thickness of the insulating layer. Here, when there are many holes, the monitor electrode 33 only needs to be provided for at least one hole. When the insulating layer is removed after the control, a columnar electrodeposit is obtained.

【0027】[実施の形態4]図4は基板上に被電析電
極、孔を有する絶縁層の順なる積層構成において、孔の
周縁部分からある距離をおいてモニター電極が設置され
た場合である。41は被電析電極、42は少なくともひ
とつの孔を有する絶縁層、43はモニター電極、45は
基板である。モニター電極43の設置は基板45上に真
空蒸着、スピンコート等により被電析電極41、絶縁層
42及び図示しないマスク材料の順で積層し、フォトリ
ソグラフィーによりマスクパターンを形成してモニター
電極43をマスク蒸着する。マスク材料をリフトオフ後、
再びマスク材料を塗布し、フォトリソグラフィーまたは
電子ビームにより孔パターンを形成し、ドライエッチン
グ等による孔開けにより被電析電極41を露出させる方
法で行なう事ができる。マスク材料は必要に応じて電析
前、または電析後に除去する。電析を行なうと、被電析
電極41上に析出した電析物44が孔を満たし絶縁層4
2上に球面を形成し始め、電析物44がモニター電極4
3に接触した所で形態1と同様に電析が停止される。孔
の周縁部からモニター電極43までの距離で球の径が規
定できる。
[Embodiment 4] FIG. 4 shows a case where a monitor electrode is placed at a certain distance from the periphery of a hole in a laminated structure of an electrode to be deposited and an insulating layer having a hole on a substrate. is there. 41 is an electrode to be deposited, 42 is an insulating layer having at least one hole, 43 is a monitor electrode, and 45 is a substrate. The monitor electrode 43 is provided by stacking the electrode 41 to be deposited, the insulating layer 42, and a mask material (not shown) in this order on the substrate 45 by vacuum evaporation, spin coating, or the like, and forming a mask pattern by photolithography to form the monitor electrode 43. Mask evaporation is performed. After lifting off the mask material,
The method can be performed by applying a mask material again, forming a hole pattern by photolithography or an electron beam, and exposing the electrode 41 to be deposited by making holes by dry etching or the like. The mask material is removed before or after electrodeposition as required. When electrodeposition is performed, an electrodeposit 44 deposited on the electrode 41 to be deposited
2 begins to form a spherical surface, and the deposit 44
Electrodeposition is stopped in the same manner as in the form 1 at the place where it contacts with No. 3. The diameter of the sphere can be defined by the distance from the periphery of the hole to the monitor electrode 43.

【0028】[0028]

【実施例】以下に実施例を示し、本発明を更に詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0029】[実施例1]実施例1として、上記実施の
形態で述べた図1の構成、及びモニター電極配置でNi
電析の膜厚制御を行なった例について説明する。
[Example 1] As Example 1, the structure of FIG.
An example of controlling the film thickness of electrodeposition will be described.

【0030】(工程1)被電析電極上にモニター電極を
配置 図1(b)のように、スパッタ法により被電析電極1の
一部に、絶縁層10、モニター電極5の順で積層した。
構成は被電析電極Au、絶縁層SiO2:200nm、
モニター電極Pt:30nmである。被電析電極1には
Au以外の金属あるいは低抵抗な化合物が適応でき、化
学的に安定なPt、Pd等の貴金属が好ましく用いられ
る。絶縁層10はSiO2以外にもその表面が絶縁性で
あり、電極間がリークしない材料であれば良い。モニタ
ー電極5はPt以外の金属も適応できる。
(Step 1) A monitor electrode is arranged on the electrode to be deposited. As shown in FIG. 1B, an insulating layer 10 and a monitor electrode 5 are laminated in order on a part of the electrode 1 to be deposited by sputtering. did.
The composition is electrodeposited electrode Au, insulating layer SiO 2 : 200 nm,
Monitor electrode Pt: 30 nm. A metal other than Au or a low-resistance compound can be used for the electrode 1 to be deposited, and a chemically stable noble metal such as Pt or Pd is preferably used. The insulating layer 10 may be made of any material other than SiO 2 as long as the material has an insulating surface and does not leak between the electrodes. Metal other than Pt can be used for the monitor electrode 5.

【0031】(工程2)電析 電析物には一般に電析材料として多く用いられているN
iを使用し、電解液の組成はNiSO4:1×10-1
ol/l、H3BO4:3×10-1mol/lの水溶液でP
H=4.1でありNi電解液としては最も基本的な物を
用いた。対極には不活性電極であるカーボン電極、参照
電極にはAg/AgClを用いた。Auにのみ選択的に
電析を行なわせるために、参照電極からみたモニター電
極の電位を、Niの酸化還元電位(-0.4V vs A
g/AgCl)よりも貴、かつ水素発生が起こらないよう
にH2の酸化還元電位(-0.2V vs Ag/AgC
l)よりも貴である0Vに設定し、定電圧-1.1VでA
u上にNi電析を行なった。Au上に析出したNiがモ
ニター電極に接触した瞬間に液抵抗の消失による電流値
の増加が観測され、電析が停止した。Ni電析膜の厚さ
は、被電析電極とモニター電極間の距離である200n
mとなった。尚この距離は絶縁層の厚さであるので、容
易に設定する事ができた。
(Step 2) Electrodeposition As an electrodeposit, N is commonly used as an electrodeposition material.
i, and the composition of the electrolyte is NiSO 4 : 1 × 10 −1 m
ol / l, H 3 BO 4 : 3 × 10 -1 mol / l aqueous solution
H = 4.1, and the most basic Ni electrolyte was used. A carbon electrode, which is an inert electrode, was used as a counter electrode, and Ag / AgCl was used as a reference electrode. In order to selectively deposit only Au, the potential of the monitor electrode viewed from the reference electrode is changed to the oxidation-reduction potential of Ni (−0.4 V vs. A).
g / AgCl) and the redox potential of H 2 (−0.2 V vs. Ag / AgC) so that hydrogen generation does not occur.
l) is set to 0V which is more noble than A).
Ni was deposited on u. At the moment when the Ni deposited on Au came into contact with the monitor electrode, an increase in the current value due to the disappearance of the liquid resistance was observed, and the electrodeposition was stopped. The thickness of the Ni electrodeposited film is 200 n, which is the distance between the electrode to be deposited and the monitor electrode.
m. Since this distance was the thickness of the insulating layer, it could be easily set.

【0032】[実施例2]実施例2として、上記実施の
形態で述べた図3のモニター電極配置で量子磁気ディス
ク(QMD)を作製した例について図5を用いて説明す
る。
Example 2 As Example 2, an example of manufacturing a quantum magnetic disk (QMD) with the monitor electrode arrangement of FIG. 3 described in the above embodiment will be described with reference to FIG.

【0033】(工程1)Si基板上に薄膜堆積 Si基板55上にスパッタ法により被電析電極51(A
u:50nm)、絶縁層52(SiO2:200nm)、モ
ニター電極53(Pt:50nm)の順で積層した。さら
にモニター電極53上にPMMA56(polymet
hyl−methacrylate)を塗布した。図5
(a)に積層構造を示した。
(Step 1) Deposition of Thin Film on Si Substrate On the Si substrate 55, the electrode 51 (A
u: 50 nm), an insulating layer 52 (SiO 2 : 200 nm), and a monitor electrode 53 (Pt: 50 nm) in this order. Further, PMMA 56 (polymet) is placed on the monitor electrode 53.
hy-methacrylate) was applied. FIG.
(A) shows the laminated structure.

【0034】(工程2)細孔形成 電子ビームリソグラフィーにてPMMA(56)に孔パタ
ーンを形成し、H2SO4によりPt(53)をエッチング
して、まずモニター電極53に細孔(径50nm)を形成
する。続いて、モニター電極53をマスクとしてCF4
ガスで絶縁層SiO2(52)をエッチングし、被電析
電極Au(51)を露出させた。図5(b)に細孔が形成
された様子を示した。
(Step 2) Formation of Pore A hole pattern is formed in PMMA (56) by electron beam lithography, and Pt (53) is etched with H 2 SO 4. ) Is formed. Subsequently, CF 4 is used with the monitor electrode 53 as a mask.
The insulating layer SiO 2 (52) was etched with a gas to expose the electrode to be electrodeposited Au (51). FIG. 5B shows a state in which the pores are formed.

【0035】(工程3)細孔内への電析 対極には不活性電極であるカーボン電極、参照電極には
Ag/AgClを用い、電解液の組成はNiSO4:1×
10-1mol/l、H3BO4:3×10-1mol/lの水
溶液(PH=4.1)で電析を行なった。Au(51)に
のみ選択的に電析を行なわせるために、参照電極からみ
たモニター電極53の電位を、Niの酸化還元電位(-
0.4V vs Ag/AgCl)よりも貴、かつ水素発
生が起こらないようにH2の酸化還元電位(-0.2V
vs Ag/AgCl)よりも貴である0Vに設定し、定電
圧-0.8Vで細孔内にNi電析を行なった。被電析電
極Au(51)上に析出したNi(54)がモニター電極5
3と絶縁層52の境界面に達した所で電析が停止した。
図5(c)に細孔内に電析が行われた様子を示す。
(Step 3) Electrodeposition into pores A carbon electrode, which is an inert electrode, is used as a counter electrode, and Ag / AgCl is used as a reference electrode. The composition of the electrolytic solution is NiSO 4 : 1 ×
10 -1 mol / l, H 3 BO 4: was performed electrodeposition in an aqueous solution of 3 × 10 -1 mol / l ( PH = 4.1). In order to selectively deposit only Au (51), the potential of the monitor electrode 53 viewed from the reference electrode is changed to the oxidation-reduction potential of Ni (−
0.4 V vs. Ag / AgCl) and the oxidation-reduction potential of H2 (-0.2 V
vs. Ag / AgCl), and Ni was deposited in the pores at a constant voltage of -0.8 V. Ni (54) deposited on the electrode Au (51) to be deposited is
Electrodeposition was stopped at the point where the interface between the insulating layer 3 and the insulating layer 52 was reached.
FIG. 5C shows a state in which the electrodeposition is performed in the pores.

【0036】(工程4)モニター電極除去 CrO3+H2SO4によりモニター電極53(Pt)を
選択エッチングする事によりQMDが作製された。図5
(d)はその完成図である。
(Step 4) Removal of Monitor Electrode The monitor electrode 53 (Pt) was selectively etched with CrO 3 + H 2 SO 4 to produce a QMD. FIG.
(D) is the completed drawing.

【0037】[実施例3]実施例3として、上記実施の
形態で述べた図3のモニター電極配置で電子放出素子を
作製した例について図6を用いて説明する。
Example 3 As Example 3, an example in which an electron-emitting device was manufactured with the monitor electrode arrangement of FIG. 3 described in the above embodiment will be described with reference to FIG.

【0038】(工程1)下部電極、細孔を有する絶縁層
および上部電極形成 ガラス基板65上に、スパッタ法で下部電極61(T
a:300nm)、絶縁層62(SiO2:100n
m)および上部電極63(Pt:20nm)の順に積層
した。下部電極はTa以外の金属あるいは低抵抗な化合
物が適応でき、Mo、W、Pt等の金属が熱的安定性が
高いため、好ましく用いられる。絶縁層SiO2は誘電
率が小さく、絶縁耐圧が高い材料である。上部電極は下
部電極と同じ材質でもよいが、後の工程でモニター電極
として使用するので酸化還元電位が貴であり、不活性金
属であるPtを選択した。
(Step 1) Formation of lower electrode, insulating layer having pores and upper electrode On a glass substrate 65, a lower electrode 61 (T
a: 300 nm), insulating layer 62 (SiO 2 : 100 n)
m) and the upper electrode 63 (Pt: 20 nm). For the lower electrode, a metal other than Ta or a low-resistance compound can be used, and metals such as Mo, W, and Pt are preferably used because of their high thermal stability. The insulating layer SiO 2 is a material having a small dielectric constant and a high withstand voltage. The upper electrode may be made of the same material as the lower electrode, but since it is used as a monitor electrode in a later step, the oxidation-reduction potential is noble and Pt, which is an inert metal, was selected.

【0039】次に上部電極上にスピンコートにより不図
示のレジストを塗布し、フォトリソグラフィーにより孔
パターン(径2μmの円)を形成し、Arプラズマにより
Pt(63)を、続いてCF4ガスによりSiO2(62)を
エッチングし下部電極61を露出させた。図6(a)は
これらの構成図である。
Next, a resist (not shown) is applied on the upper electrode by spin coating, a hole pattern (circle having a diameter of 2 μm) is formed by photolithography, and Pt (63) is applied by Ar plasma, followed by CF 4 gas. The lower electrode 61 was exposed by etching SiO 2 (62). FIG. 6A is a configuration diagram of these.

【0040】(工程2)孔内への電析 対極に不活性電極であるカーボン電極、参照電極にはA
g/AgClを用い、上部電極63をモニター電極とし
て細孔内の下部電極61上に電析を行なった。電析物6
4は電子放出体となるので高融点材料であるMo、W等
が望ましいが、一般に電析材料として多く用いられてい
るNiを用いた。電解液の組成はNiSO4:1×10
-1mol/l、H3BO4:3×10-1mol/lの水溶液
(PH=4.1)である。下部電極61にのみ選択的に電
析を行なわせるために、参照電極からみたモニター電極
63の電位を、Niの酸化還元電位(−0.4V vs
Ag/AgCl)よりも貴、かつ水素発生が起こらないよ
うにH2の酸化還元電位(−0.2V vs Ag/Ag
Cl)よりも貴である0Vに設定し、下部電極61の電位
は電極の溶解が起こらないようにTaの酸化還元電位(−
1.0V vsAg/AgCl)よりも卑である−1.1
Vに設定した。これらの条件において電析を行なうと、
下部電極61に析出したNi(64)が上部電極63と絶
縁層62の境界面に達した所で電析が停止した。図6
(b)は孔内に電析物が埋め込まれた様子である。
(Step 2) Electrodeposition into the hole A carbon electrode which is an inert electrode at the counter electrode, and A is a reference electrode
Using g / AgCl, electrodeposition was performed on the lower electrode 61 in the pores using the upper electrode 63 as a monitor electrode. Electrodeposit 6
4 is a high melting point material such as Mo, W, etc., because it becomes an electron emitter. Ni, which is generally widely used as an electrodeposition material, is used. The composition of the electrolyte is NiSO 4 : 1 × 10
-1 mol / l, H 3 BO 4 : 3 × 10 -1 mol / l aqueous solution
(PH = 4.1). In order to selectively deposit only on the lower electrode 61, the potential of the monitor electrode 63 viewed from the reference electrode is changed to the oxidation-reduction potential of Ni (−0.4 V vs.
Ag / AgCl) and a redox potential (−0.2 V vs. Ag / Ag) of H 2 so that hydrogen generation does not occur.
Cl), the potential of the lower electrode 61 is set to 0 V, which is more noble than Cl).
1.0V vs. Ag / AgCl) -1.1
V was set. When electrodeposition is performed under these conditions,
Electrodeposition was stopped when Ni (64) deposited on the lower electrode 61 reached the interface between the upper electrode 63 and the insulating layer 62. FIG.
(B) is a state in which the electrodeposit is embedded in the hole.

【0041】(工程3)電析物と上部電極間で微小間隙
作製 工程2により孔内に埋め込んだ電析物64と上部電極6
3との接点は微小であるので、上下電極間に電圧を印加
して電流を流すと、接点部分でジュール熱によるフォー
ミングが起こる。この結果、電析物と上部電極との間に
電子放出部となる数nmの微小間隙が形成され、電子放
出素子が作製された。図6(c)は電子放出素子の完成
図である。本実施例により作製された電子放出素子を真
空装置内に設置し、下部電極を負極、上部電極を正とし
た電圧を印加することにより、電子放出部66より電子
放出が確認された。
(Step 3) Preparation of a minute gap between the electrodeposit and the upper electrode The electrodeposit 64 and the upper electrode 6 buried in the hole in the step 2
Since the contact point with No. 3 is very small, when a voltage is applied between the upper and lower electrodes to flow a current, forming due to Joule heat occurs at the contact point. As a result, a small gap of several nanometers serving as an electron emitting portion was formed between the electrodeposit and the upper electrode, and an electron emitting device was manufactured. FIG. 6C is a completed view of the electron-emitting device. Electron emission from the electron emitting portion 66 was confirmed by placing the electron-emitting device manufactured in this example in a vacuum apparatus and applying a voltage with the lower electrode being negative and the upper electrode being positive.

【0042】[0042]

【発明の効果】以上説明してきたように、本発明の電析
制御方法によれば、電析の制御が膜厚でなく位置をモニ
ターする事により行われ、電析が行われる部分の形状、
総面積、電析電流等に依存した電析量の変化に関わら
ず、モニター電極の設置位置で正確に電析を制御する事
が可能となった。本発明によって、下部電極と、細孔を
有する絶縁層及び上部電極の順に積層された構造におい
て、細孔内への電析物埋め込みを、絶縁層と上部電極と
の境界面で正確に制御する事ができ、これにより電子放
出素子または量子磁気ディスクを作製することができ
た。
As described above, according to the electrodeposition control method of the present invention, the electrodeposition is controlled by monitoring not the film thickness but the position, and the shape of the portion where the electrodeposition is performed
Irrespective of changes in the amount of electrodeposition depending on the total area, the electrodeposition current, etc., the electrodeposition can be accurately controlled at the installation position of the monitor electrode. According to the present invention, in a structure in which a lower electrode, an insulating layer having pores, and an upper electrode are stacked in this order, embedding of deposits in the pores is accurately controlled at the interface between the insulating layer and the upper electrode. As a result, an electron-emitting device or a quantum magnetic disk could be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明の構成を示す模式図であ
る。図1(b)は実施形態1を説明するための断面図で
ある。
FIG. 1A is a schematic diagram showing a configuration of the present invention. FIG. 1B is a cross-sectional view for explaining the first embodiment.

【図2】図2は実施形態2を説明するための断面図であ
る。
FIG. 2 is a cross-sectional view illustrating a second embodiment.

【図3】図3は実施形態3を説明するための断面図であ
る。
FIG. 3 is a cross-sectional view for explaining a third embodiment.

【図4】図4は実施形態4を説明するための断面図であ
る。
FIG. 4 is a cross-sectional view for explaining a fourth embodiment.

【図5】図5は実施例2を説明するための断面図であ
り、図5(a)は薄膜堆積後の状態、図5(b)は細孔
形成後の状態、図5(c)は電析制御後の状態、図5
(d)はQMDが完成した状態をそれぞれ示す。
5 is a cross-sectional view for explaining Example 2, FIG. 5 (a) is a state after thin film deposition, FIG. 5 (b) is a state after pore formation, FIG. 5 (c) Fig. 5 shows the state after electrodeposition control,
(D) shows a state where the QMD is completed.

【図6】図6は実施例3を説明するための断面図であ
り、図6(a)は細孔形成後の状態、図6(b)は埋め
込み電極形成後の状態、図6(c)は電子放出素子が完
成した状態をそれぞれ示す。
6A and 6B are cross-sectional views for explaining Example 3; FIG. 6A is a state after forming pores, FIG. 6B is a state after forming buried electrodes, and FIG. ) Shows the completed state of the electron-emitting device.

【符号の説明】[Explanation of symbols]

1,21,41 被電析電極 2 対極 3 参照電極 4 ポテンシオスタット 5,23,33,43,53 モニター電極 6 電流計または電圧計 7 電源 8 電圧計 9 パーソナルコンピューター 10,22,32,42,52,62 絶縁層 11 電解槽 12 電解液 13,24,34,44,54 電析物 35,45,55,65 基板 51 被電析電極(配線) 61 下部電極(配線) 64 電析物(埋め込み電極) 66 電子放出部 1,21,41 Electrodeposited electrode 2 Counter electrode 3 Reference electrode 4 Potentiostat 5,23,33,43,53 Monitor electrode 6 Ammeter or voltmeter 7 Power supply 8 Voltmeter 9 Personal computer 10,22,32,42 , 52, 62 Insulating layer 11 Electrolyzer 12 Electrolyte 13, 24, 34, 44, 54 Electrodeposit 35, 45, 55, 65 Substrate 51 Electrodeposited electrode (wiring) 61 Lower electrode (wiring) 64 Electrodeposit (Embedded electrode) 66 Electron emission part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河手 信一 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 4K058 AA02 BA17 BB02 FB02 FB04 5D112 AA18 AA24 EE06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Kawate 3-30-2 Shimomaruko, Ota-ku, Tokyo F-term in Canon Inc. (reference) 4K058 AA02 BA17 BB02 FB02 FB04 5D112 AA18 AA24 EE06

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 電解液中に被電析電極と対向電極と参照
電極に加え、モニター電極が電析を制御しようとする部
分に配置され、該モニター電極には電流計または電圧計
が接続され、該参照電極を基準にしたモニター電極の電
位を、酸素発生の酸化還元電位よりも卑、かつ被電析電
極の電位よりも貴になるように設定して電析を行い、電
析物がモニター電極に接触した瞬間に、該被電析電極と
該モニター電極間の電位差による電流値の変化または、
電圧値の変化を探知して制御装置が電析を停止させる事
を特徴とする電析の制御方法。
1. A monitor electrode is disposed in a portion of an electrolytic solution in which an electrode to be deposited, a counter electrode and a reference electrode are to be controlled, and an ammeter or a voltmeter is connected to the monitor electrode. The potential of the monitor electrode with respect to the reference electrode is set to be lower than the oxidation-reduction potential of oxygen generation, and is set to be more noble than the potential of the electrode to be deposited. At the moment of contact with the monitor electrode, a change in current value due to a potential difference between the electrode to be deposited and the monitor electrode, or
A method for controlling electrodeposition, comprising detecting a change in a voltage value and causing a control device to stop electrodeposition.
【請求項2】 前記参照電極を基準にしたモニター電極
の電位を、電析物の酸化還元電位よりも貴に設定したこ
とを特徴とする請求項1記載の電析の制御方法。
2. The method according to claim 1, wherein the potential of the monitor electrode with respect to the reference electrode is set to be more noble than the redox potential of the deposit.
【請求項3】 絶縁基板上に被電析電極と上記モニター
電極が同一平面上に配置されたことを特徴とする請求項
1又は2記載の電析の制御方法。
3. The method according to claim 1, wherein the electrode to be deposited and the monitor electrode are arranged on the same plane on an insulating substrate.
【請求項4】 基板上に被電析電極、孔を有する絶縁層
の順なる積層構成において、孔の周縁部分に接して上記
モニター電極が設置されたことを特徴とする請求項1又
は2記載の電析の制御方法。
4. The monitor electrode according to claim 1, wherein the monitor electrode is provided in contact with a peripheral portion of the hole in the laminated structure of the electrode to be deposited and the insulating layer having the hole on the substrate. Control method of electrodeposition.
【請求項5】 請求項4記載の電析の制御方法におい
て、前記孔が多数存在する場合に、少なくとも一つにモ
ニター電極が設置されていることを特徴とする電析の制
御方法。
5. The method for controlling electrodeposition according to claim 4, wherein when a large number of said holes are present, a monitor electrode is provided in at least one of said holes.
【請求項6】 請求項4又は5記載の電析の制御方法に
おいて、前記孔の周縁部分から、ある距離をおいてモニ
ター電極が設置されていることを特徴とする電析の制御
方法。
6. The method for controlling electrodeposition according to claim 4, wherein a monitor electrode is provided at a certain distance from a peripheral portion of the hole.
【請求項7】 電析制御後に、モニター電極を取り除く
工程を含むことを特徴とする請求項1乃至6のいずれか
に記載の電析の制御方法。
7. The method for controlling electrodeposition according to claim 1, further comprising a step of removing the monitor electrode after the electrodeposition control.
【請求項8】 請求項4乃至7のいずれかに記載の電析
の制御方法において、前記孔がフォトリソグラフィーに
より形成された、孔径数μm程度である事を特徴とする
電析の制御方法。
8. The method for controlling electrodeposition according to claim 4, wherein said holes are formed by photolithography and have a diameter of about several μm.
【請求項9】 請求項4乃至7のいずれかに記載の電析
の制御方法において前記孔がアルミニウムの陽極酸化に
より作製した、孔径数十nm程度である事を特徴とする電
析の制御方法。
9. The method for controlling electrodeposition according to claim 4, wherein said holes are formed by anodic oxidation of aluminum and have a hole diameter of about several tens of nanometers. .
【請求項10】 基板上に、下部電極と絶縁層、及び上
部電極の順なる積層構造において、 上部電極をモニター電極とした請求項4に記載の電析の
制御方法を用いるとともに電析制御後にモニター電極を
取り除いて、絶縁層の孔内に電析物を埋め込み作製する
ことを特徴とする量子磁気ディスク(QMD)の製造方法
10. The method for controlling electrodeposition according to claim 4, wherein the upper electrode is a monitor electrode in a laminated structure of a lower electrode, an insulating layer, and an upper electrode on a substrate. A method for manufacturing a quantum magnetic disk (QMD), which comprises removing an electrode from a monitor and embedding an electrodeposit in a hole of an insulating layer.
【請求項11】 基板上に、下部電極と絶縁層、及び上
部電極の順なる積層構造において、 上部電極をモニター電極とした請求項4又は5に記載の
電析の制御方法により作製した、上部電極と電析物間に
微小間隙を有する電子放出素子の製造方法。
11. A method for controlling electrodeposition according to claim 4, wherein the lower electrode, the insulating layer, and the upper electrode are sequentially stacked on the substrate, wherein the upper electrode is a monitor electrode. A method for manufacturing an electron-emitting device having a minute gap between an electrode and an electrodeposit.
【請求項12】 前記孔がフォトリソグラフィーにより
形成された、孔径数μm程度である事を特徴とする請求
項11記載の電子放出素子の製造方法。
12. The method according to claim 11, wherein the holes are formed by photolithography and have a hole diameter of about several μm.
【請求項13】 前記孔がアルミニウムの陽極酸化によ
り作製した、孔径数十nm程度である事を特徴とする請求
項11記載の電子放出素子の製造方法。
13. The method for manufacturing an electron-emitting device according to claim 11, wherein said holes have a hole diameter of about several tens nm, which is formed by anodic oxidation of aluminum.
JP4957999A 1999-02-26 1999-02-26 Method for controlling electrodeposition and production of quantum magnetic disk and electron emitting element using the method Withdrawn JP2000248395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4957999A JP2000248395A (en) 1999-02-26 1999-02-26 Method for controlling electrodeposition and production of quantum magnetic disk and electron emitting element using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4957999A JP2000248395A (en) 1999-02-26 1999-02-26 Method for controlling electrodeposition and production of quantum magnetic disk and electron emitting element using the method

Publications (1)

Publication Number Publication Date
JP2000248395A true JP2000248395A (en) 2000-09-12

Family

ID=12835141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4957999A Withdrawn JP2000248395A (en) 1999-02-26 1999-02-26 Method for controlling electrodeposition and production of quantum magnetic disk and electron emitting element using the method

Country Status (1)

Country Link
JP (1) JP2000248395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014165937A1 (en) * 2013-04-12 2014-10-16 Ventseatech Pty Ltd Apparatus and method for recovery of metals from a body of fluid by electrodeposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014165937A1 (en) * 2013-04-12 2014-10-16 Ventseatech Pty Ltd Apparatus and method for recovery of metals from a body of fluid by electrodeposition

Similar Documents

Publication Publication Date Title
JP4481813B2 (en) Separator / diffusion layer assembly for fuel cell and manufacturing method thereof
JP3610293B2 (en) Structure having pores and device using the structure having pores
KR100670946B1 (en) Multi-scale cantilever structures having fine holes of nano size and the preparation method thereof
US20110308942A1 (en) Microelectrode array sensor for detection of heavy metals in aqueous solutions
JP2005537469A (en) Formation of metal nanowires for use as variable range hydrogen sensors
JP2005314802A (en) Film-forming method, base plate and liquid discharge head
JP4681939B2 (en) Method for producing nanostructure
JPWO2017047728A1 (en) Hydrogen sensor
JP2000248395A (en) Method for controlling electrodeposition and production of quantum magnetic disk and electron emitting element using the method
JP2010017865A (en) Method for manufacturing mold for nanoimprinting
JP2005256071A (en) Method for producing anodized film
JPS5812315A (en) Manufacture of thin film coil
JP2556993B2 (en) Micropore electrode cell for electrochemical measurement and method for producing the same
KR20170071261A (en) Manufacturing method of metal electrode
CN102332351B (en) Manufacturing method of micro-variable capacitor for micro-nanometer measurement
TWI332086B (en) Multi-layer electric probe and fabricating method
JP2001207288A (en) Method for electrodeposition into pore and structure
Gao et al. On-chip suspended gold nanowire electrode with a rough surface: Fabrication and electrochemical properties
KR100821740B1 (en) Pd nanowire hydrogen sensors and its manufacturing method
KR100404783B1 (en) Method for fabrication electrode on micro pH sensor
Daud et al. Image Reversal Resist Photolithography of Silicon-Based Platinum and Silver Microelectrode Pattern
JP5807889B2 (en) Method for forming metal structure
JP2003019624A (en) Capacitor manufacturing method by use of electrolytic discharge machining
JP2501856B2 (en) Electrochemical sensor
JPH05175573A (en) Substrate for preparing bimolecular membrane

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509