JP2556993B2 - Micropore electrode cell for electrochemical measurement and method for producing the same - Google Patents

Micropore electrode cell for electrochemical measurement and method for producing the same

Info

Publication number
JP2556993B2
JP2556993B2 JP1090094A JP9009489A JP2556993B2 JP 2556993 B2 JP2556993 B2 JP 2556993B2 JP 1090094 A JP1090094 A JP 1090094A JP 9009489 A JP9009489 A JP 9009489A JP 2556993 B2 JP2556993 B2 JP 2556993B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
substrate
film
electrochemical measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1090094A
Other languages
Japanese (ja)
Other versions
JPH02268265A (en
Inventor
雅夫 森田
修 丹羽
久男 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1090094A priority Critical patent/JP2556993B2/en
Publication of JPH02268265A publication Critical patent/JPH02268265A/en
Application granted granted Critical
Publication of JP2556993B2 publication Critical patent/JP2556993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気化学分析やフローセルあるいは液相ク
ロマトグラフイなどに用いられる微小な電気化学測定用
電極セルおよびその製造方法に関するのである。
TECHNICAL FIELD The present invention relates to an electrode cell for minute electrochemical measurement used in electrochemical analysis, flow cell, liquid phase chromatography and the like, and a method for producing the same.

〔従来の技術〕[Conventional technology]

一般に、電気化学測定用電極セル,いわゆる微細電極
は生体内などの微小領域や微量溶液サンプルの分析に適
していることから、様々な有機または無機材料と組み合
わせてセンサーなどへの応用が試みられている。ところ
で、微細電極の多くはガラス細管中に白金,金などと金
属線,炭素繊維,金属塩化物等を封入して作製されてい
る。この微細電極の応答挙動は電極の形状によつて異な
り、また応答速度は電極のサイズが減少するに従つて高
くなるため高速電気化学反応の測定を目的として、様々
な電極形状,電極の微細化が検討されている。
In general, electrochemical measurement electrode cells, so-called microelectrodes, are suitable for the analysis of microscopic regions such as in vivo or microvolume solution samples, so application to various sensors such as organic or inorganic materials has been attempted. There is. By the way, most of the fine electrodes are manufactured by enclosing platinum, gold, etc., metal wires, carbon fibers, metal chlorides, etc. in a glass thin tube. The response behavior of this fine electrode differs depending on the electrode shape, and the response speed increases as the electrode size decreases, so various electrode shapes and electrode miniaturization are performed for the purpose of measuring fast electrochemical reactions. Is being considered.

しかし、電極半径を1μm程度まで微細化すると検出
できる電流はnAオーダー以下に低下し、測定時にノイズ
の増加や感度の低下が起るため低濃度の試料の測定が困
難になり、シールドボツクス中での測定が必要であつ
た。
However, if the electrode radius is reduced to about 1 μm, the current that can be detected will drop below the nA order, and noise will increase and sensitivity will decrease during measurement, making it difficult to measure low-concentration samples. Was required.

また、電極の感度向上を計るため、作用電極の数を増
やすことが提案されている。この電極は多数のカーボン
繊維を絶縁性樹脂中に封入し、更に溶液のかくはん,汚
染の影響を除去するため封入したカーボン繊維をエツチ
ングし、多数の微細化中に微小デイスク電極が配置され
た構造である。
It has also been proposed to increase the number of working electrodes in order to improve the sensitivity of the electrodes. This electrode has a structure in which a large number of carbon fibers are enclosed in an insulating resin, and the enclosed carbon fibers are etched in order to remove the effects of stirring and contamination of the solution. Is.

しかし、この方法では、全く同じ電極形状のものやデ
イスク電極以外の形状を得ることができず、作製に手間
がかかり多量に得ることが困難で、封入に用いる樹脂の
劣化などの欠点があつた。
However, with this method, it is not possible to obtain electrodes having exactly the same electrode shape or shapes other than the disk electrode, and it takes time to manufacture and it is difficult to obtain a large amount, and there are drawbacks such as deterioration of the resin used for encapsulation. .

一方、微小電極を作製する方法として近年、リソグラ
フイ技術の応用が提案されている。この方法ではレジス
トを基板に塗布し、電極パターンを有する画像マスクを
重ねて露光,及び現像し、さらに金属薄膜を蒸着法等に
より形成させた後、レジストを剥離させて基板上に微小
な電極を得るリフトオフ法や、絶縁性基板上に金属薄膜
を作製した後、レジストを塗布し、電極パターンを有す
る画像マスクを重ねて露光、及び現像し、さらに残つた
レジストをマスクにして露出した部分の金属膜をエツチ
ングし、電極パターンを得るエツチング法が知られてい
る。
On the other hand, in recent years, application of the lithographic technique has been proposed as a method for producing a microelectrode. In this method, a resist is applied to a substrate, an image mask having an electrode pattern is overlaid, exposed and developed, and a metal thin film is formed by a vapor deposition method or the like, and then the resist is peeled off to form a minute electrode on the substrate. To obtain a lift-off method or after forming a metal thin film on an insulating substrate, apply a resist, overlay an image mask with an electrode pattern, expose and develop, and use the remaining resist as a mask to expose the exposed metal An etching method is known in which a film is etched to obtain an electrode pattern.

この方法では任意の形状,一定の電極間距離を持つ微
小電極を多量に再現性良く、基板上に作製することがで
きるため、近接させた2本の作用電極を作製すればリン
グ・デイスク電極と同様な測定が可能な電極対や,電気
化学素子,センサーのベース電極などへ応用が可能であ
る。この微細電極作製法を応用して、これまでにミクロ
な電気化学トランジスタ(例えばJ.Phys.Chem.89.5133
(1985))、くし形白金電極を利用した低分子または高
分子錯体の電気化学測定(Anal.Chem.,58,601(198
6))等が行われている。さらに、導電性基板上にレジ
スト(ポリメチルメタクリレート:PMMA)を塗布し、露
光,現像によりレジストに多数の微細な円形孔をあけて
多数の微細円形パターンを有する作用電極が作製されて
いる(J.Electrochem.Soc.Vol.133,752(1986).)。
With this method, a large number of microelectrodes having an arbitrary shape and a fixed distance between electrodes can be produced on the substrate with good reproducibility. Therefore, if two working electrodes that are placed close to each other are produced, a ring disk electrode is obtained. It can be applied to electrode pairs that can perform similar measurements, electrochemical devices, and sensor base electrodes. By applying this method of manufacturing fine electrodes, it has been possible to use a micro electrochemical transistor (for example, J. Phys. Chem. 89.5133).
(1985)), electrochemical measurement of low-molecular or high-molecular complexes using a comb-shaped platinum electrode (Anal. Chem., 58,601 (198).
6)) and so on. Furthermore, a working electrode having a large number of fine circular patterns is prepared by coating a resist (polymethylmethacrylate: PMMA) on a conductive substrate and exposing a large number of fine circular holes in the resist by exposure and development (J .Electrochem.Soc. Vol.133, 752 (1986).).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、かかる微細な電極を緻密に配置しただ
けでは、通常のサイズの電極と同様となり、微細電極と
しての特性が失われてしまう。従つて、ある程度の距離
を保つて微細電極を配する必要があり、測定可能な電流
を得るためには全体としては大きなものになつてしまう
という欠点があつた。
However, if only such fine electrodes are densely arranged, it becomes the same as a normal size electrode, and the characteristics as a fine electrode are lost. Therefore, it is necessary to dispose the fine electrodes while keeping a certain distance, and there is a drawback that the whole becomes large in order to obtain a measurable current.

本発明は以上の点に鑑み、かかる問題点を解決すべく
なされたもので、その目的は、多数の微細孔の各々の底
部,中間部または上部に電極が配列される少なくとも2
つの作用電極を用いることにより、電気化学測定を高感
度で応答性良く行うことができる微細孔電極セル及びそ
の製造方法を提供することにある。
In view of the above points, the present invention has been made to solve the above problems, and an object of the present invention is to provide at least two electrodes in which the electrodes are arranged at the bottom, middle, or top of each of a large number of fine holes.
It is an object of the present invention to provide a microporous electrode cell that can perform electrochemical measurement with high sensitivity and responsiveness by using one working electrode, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、本発明は、物質検出用の
作用電極を有する電気化学測定用電極セルにおいて、そ
の作用電極が、絶縁性の基板上に形成され、互いに絶縁
膜を介して形成された2つ以上の電極から構成された多
層構造を有し、その多層構造の一端より他端の電極に届
くように多数の孔が形成されており、該電極の材質が金
属,半金属または半導体であることを特徴とするもので
ある。
In order to achieve the above object, the present invention provides an electrochemical measurement electrode cell having a working electrode for detecting a substance, wherein the working electrode is formed on an insulating substrate and is formed via an insulating film. Has a multi-layer structure composed of two or more electrodes, and a large number of holes are formed so that one end of the multi-layer structure reaches the electrode at the other end, and the material of the electrode is metal, semimetal or semiconductor. It is characterized by being.

また、本発明の製造方法は、表面あるいは全体が絶縁
性の基板上に金属,半金属または半導体の導電性薄膜と
絶縁性膜を交互に少なくとも各々1回以上順次積層し、
次いでその上に微細孔レジストパターンを形成したの
ち、エツチング法により最下層の導電性膜面が現れるま
で多数の微細孔をあけることを特徴とするものである。
In addition, the manufacturing method of the present invention is such that a conductive thin film of a metal, a semimetal or a semiconductor and an insulating film are alternately laminated at least once each successively on a substrate whose surface or the whole is insulating,
Then, after forming a fine hole resist pattern thereon, a large number of fine holes are formed by an etching method until the bottommost conductive film surface appears.

〔作用〕[Action]

したがつて、本発明においては、これまでの電極では
目的物質が電極面に垂直に拡散してきたために定常状態
になるのに時間がかかり、電流密度も低かつたのに対
し、電極を微細化することによつて拡散を半球状にする
ことにより定常状態になるまでの時間を短くし、電流密
度を挙げることができる。さらに、作用電極を2つ以上
にし、隣あつた電極の一方の目的物質の酸化電位に、も
う一方を還元電位にすることにより、隣あつた電極間で
酸化と還元が繰り返されるため、実効上電流を大幅に増
加させることができる。
Therefore, in the present invention, in the conventional electrodes, it took time to reach a steady state because the target substance diffused perpendicularly to the electrode surface, and the current density was low. By making the diffusion hemispherical, the time to reach a steady state can be shortened and the current density can be increased. Furthermore, by setting two or more working electrodes so that the oxidation potential of one target substance on the adjacent electrodes and the reduction potential on the other side are repeated, oxidation and reduction are repeated between the adjacent electrodes. The current can be increased significantly.

〔実施例〕〔Example〕

以下に図面を参照して本発明を実施例により詳細に説
明する。
Hereinafter, the present invention will be described in detail with reference to the drawings with reference to the embodiments.

第1図は本発明の一実施例による電気化学測定用微細
孔電極セルの概略図である。同図において、1は絶縁性
の基板であり、これは、例えばシリコン基板1aの主表面
に酸化膜1bが被着された,いわゆる酸化膜付きシリコン
基板から成る。2はこの基板1上の酸化膜1b表面つまり
絶縁表面に金属,半金属または半導体で形成された作用
電極としての下部電極、3はこの下部電極2上に形成さ
れた絶縁膜、4は該絶縁膜3上の表面に下部電極2と同
様の金属,半金属または半導体で形成されたもう1つの
作用電極としての表面電極である。5はこの表面電極4
上の表面より絶縁膜3を通して最下層の下部電極2の膜
面に達すべく円形状にあけられた多数の微細孔(微細円
形孔ともいう)であり、この多数の微細孔5を有する表
面電極4を上部作用電極とし、それに対向して該微細孔
5の底部に互いに絶縁膜3の微細孔壁で絶縁された下部
電極2を下部作用電極として、これら2つの作用電極に
より微細孔電極セルが構成されている。なお、第1図
中、7は下部電極2の一端部に外部リードを接続するた
めに開口された電極引出し用の開口部である。
FIG. 1 is a schematic view of a micropore electrode cell for electrochemical measurement according to an embodiment of the present invention. In the figure, reference numeral 1 denotes an insulating substrate, which is, for example, a so-called silicon substrate with an oxide film in which a main surface of a silicon substrate 1a is covered with an oxide film 1b. 2 is a lower electrode as a working electrode formed of metal, semimetal or semiconductor on the surface of the oxide film 1b on the substrate 1, that is, an insulating surface, 3 is an insulating film formed on the lower electrode 2, and 4 is the insulating film. It is a surface electrode as another working electrode formed of the same metal, semimetal or semiconductor as the lower electrode 2 on the surface of the film 3. 5 is this surface electrode 4
A large number of fine holes (also called fine circular holes) formed in a circular shape from the upper surface to reach the film surface of the lowermost lower electrode 2 through the insulating film 3, and the surface electrode having the large number of fine holes 5 4 as an upper working electrode, and a lower electrode 2 facing each other at the bottom of the fine hole 5 and insulated from each other by the fine hole wall of the insulating film 3 as a lower working electrode, and these two working electrodes form a fine hole electrode cell. It is configured. In FIG. 1, reference numeral 7 denotes an opening for leading out an electrode, which is opened to connect an external lead to one end of the lower electrode 2.

ここで、表面あるいは全体が絶縁性の基板1として
は、酸化膜付きシリコン基板の他に、石英板,酸化アル
ミニウム基板,ガラス基板,プラスチツク基板などを挙
げることができる。下部及び表面電極2,4用の金属とし
ては金,白金,銀,クロム,チタン,ステンレスなど
を、同じくその電極用の半導体としてはp及びn型シリ
コン,p及びn型ゲルマニウム,硫化カドミウム,二酸化
チタン,酸化亜鉛,ガリウムリン,ガリウム砒素,イン
ジウムリン,カドミウムセレン,カドミウムテルル,二
砒化モリブデン,セレン化タングステン,二酸化銅,酸
化スズ,酸化インジウム,インジウムスズ酸化物など
を、さらに電極用の半金属としては導電性カーボンを挙
げることができる。絶縁膜3としては酸化シリコン,二
酸化シリコン,窒化シリコン,シリコーン樹脂,ポリイ
ミド及びその誘導体,エポキシ樹脂,高分子熱硬化物な
どを挙げることができる。
Here, as the substrate 1 whose surface or the whole is insulative, besides a silicon substrate with an oxide film, a quartz plate, an aluminum oxide substrate, a glass substrate, a plastic substrate and the like can be cited. Gold, platinum, silver, chromium, titanium, stainless steel, etc. are used as the metal for the lower and surface electrodes 2, 4, and p and n type silicon, p and n type germanium, cadmium sulfide, and dioxide are also used as the semiconductors for the electrodes. Titanium, zinc oxide, gallium phosphide, gallium arsenide, indium phosphide, cadmium selenium, cadmium tellurium, molybdenum diarsenide, tungsten selenide, copper dioxide, tin oxide, indium oxide, indium tin oxide, and semimetals for electrodes. Examples of the conductive carbon include conductive carbon. Examples of the insulating film 3 include silicon oxide, silicon dioxide, silicon nitride, silicone resin, polyimide and its derivatives, epoxy resin, and thermosetting polymer.

また、微小電極としての微細孔電極セルを作製する際
には、基板1上に電極2あるいは4を形成すべく導電性
薄膜と絶縁膜3を交互に積層するが、これらの作製には
蒸着,スパツタ,VCD,または塗布法などを用いることが
できる。そして、この基板上にはレジストを塗布し、そ
こに電極のパターンを有する画像マスクを重ね、あるい
は電子線などを用いて直接パターンを露光し、現像して
パターンを基板上のレジストに転写した後、残つたレジ
ストパターンをマスクにして、前記各導電性膜と絶縁膜
の積層膜をエツチングし、微細孔をあけて多数の微小作
用電極を形成する。すなわち、絶縁性の基板1上に下部
電極2,絶縁膜3及び表面電極4を順次積層したのち、そ
の上にレジストを塗布すると共に、露光,現像して微細
孔レジストパターンを形成する。しかる後、このパター
ンを基に表面電極4と絶縁膜3の積層膜をエツチングす
ることにより、最下層の下部電極2の膜面が現出された
多数の微細孔5をあけることができる。
Further, when manufacturing a micropore electrode cell as a microelectrode, a conductive thin film and an insulating film 3 are alternately laminated to form an electrode 2 or 4 on a substrate 1. A spatter, VCD, or coating method can be used. Then, a resist is applied on this substrate, an image mask having an electrode pattern is superposed thereon, or the pattern is directly exposed by using an electron beam or the like and developed to transfer the pattern to the resist on the substrate. Using the remaining resist pattern as a mask, the laminated film of each conductive film and insulating film is etched to form a plurality of fine working electrodes by forming fine holes. That is, a lower electrode 2, an insulating film 3 and a surface electrode 4 are sequentially laminated on an insulating substrate 1, a resist is applied thereon, and exposure and development are performed to form a fine hole resist pattern. Then, by etching the laminated film of the surface electrode 4 and the insulating film 3 based on this pattern, a large number of fine holes 5 in which the film surface of the lowermost lower electrode 2 is exposed can be formed.

このように本実施例のものによると、従来の電極では
目的物質が電極面に垂直に拡散するようになつていたた
め定常状態になるのに時間がかかり、電流密度も低かつ
たのに対し、電極を微細化することによつて拡散を半球
状にすることにより、定常状態になるまでの時間を短く
し、電流密度を上げることができる。また、作用電極を
2つの下部電極2,表面電極4から構成し、その隣あつた
電極の一方を目的物質の酸化電位に、もう一方を還元電
位にすることにより、隣あつた電極間で酸化と還元が繰
り返されるため、実効上電流を大幅に増加させることが
できる。
As described above, according to the present embodiment, in the conventional electrode, the target substance was diffused perpendicularly to the electrode surface, so it took time to reach a steady state and the current density was low. By making the diffusion into a hemispherical shape by making the electrodes finer, it is possible to shorten the time until a steady state is reached and increase the current density. In addition, the working electrode is composed of two lower electrodes 2 and surface electrodes 4, and one of the adjacent electrodes is set to the oxidation potential of the target substance and the other is set to the reduction potential, so that the oxidation between the adjacent electrodes is performed. Since the reduction is repeated, the effective current can be greatly increased.

以上の実施例では作用電極として2つ表面電極,下部
電極を用いる場合について示したが、本発明はこれに限
らず、多数の微細孔の各々の底部,中間部または上部に
電極が配列される作用電極を2つ以上任意に組み合せて
構成することもできる。
In the above embodiments, the case where two surface electrodes and a lower electrode are used as the working electrodes has been described, but the present invention is not limited to this, and the electrodes are arranged at the bottom, middle, or upper part of each of a large number of fine holes. Two or more working electrodes can be arbitrarily combined and configured.

また、微細孔電極セルの製造に際しては、基板上に2
つ以上の作用電極のみを一体化する他に、参照電極およ
び対向電極も一体的に作製できる。すなわち、基板上に
導電性薄膜と絶縁膜を交互に1回以上順次積層したの
ち、この積層膜を上述の実施例と同様にエツチングし微
細孔をあけて多数の微小作用電極を形成する。その後、
上層絶縁膜上にレジストを塗布し、そこに電極のパター
ンを有する画像マスクを重ねるか,あるいは電子線など
を用いて、微細孔のない部分に直接パターンを露光し現
像してパターンを基板上のレジストに転写する。しかる
後、スパツタ,蒸着,CVD,塗布法等により金属,半導体
または半金属薄膜を形成し、その後レジストを剥離する
リフトオフ法により参照電極,対向電極を作製して、作
用電極、参照電極、対向電極が一体化された微小な電気
化学測定用微細孔電極セルを得ることもできる。
In addition, when manufacturing a micropore electrode cell, 2
In addition to integrating only one or more working electrodes, a reference electrode and a counter electrode can be integrally formed. That is, after a conductive thin film and an insulating film are alternately laminated one or more times on a substrate, this laminated film is etched in the same manner as in the above-described embodiment to form fine holes to form a large number of minute working electrodes. afterwards,
A resist is applied on the upper insulating film, and an image mask having an electrode pattern is laid on the resist, or an electron beam is used to directly expose and develop a pattern on a portion without fine holes to develop the pattern on the substrate. Transfer to resist. After that, a metal, semiconductor or semimetal thin film is formed by a sputtering method, vapor deposition, CVD, coating method, etc., and then a reference electrode and a counter electrode are prepared by a lift-off method of peeling the resist, and a working electrode, a reference electrode and a counter electrode. It is also possible to obtain a fine micropore electrode cell for electrochemical measurement in which is integrated.

この場合、参照電極を作製するには、該電極セルで微
細孔作用電極以外の2本の電極のうち1本の電極上に支
持物質となる金属,有機酸化還元性高分子をメツキ,電
解重合法により、形成して作製する。また、参照電極上
の参照物質としては銀,塩化銀,ポリビニルフエロセン
等を挙げることができる。
In this case, in order to manufacture a reference electrode, a metal serving as a supporting material, an organic redox polymer, is plated on one of two electrodes other than the micropore working electrode in the electrode cell, and an electrolytic weight is applied. It is formed and manufactured by a legal method. Further, examples of the reference substance on the reference electrode include silver, silver chloride, polyvinyl ferrocene and the like.

かかる方法によつて作製された構成の微細孔電極セル
によると、作用電極,参照電極,対向電極の3電極を同
一基板上に形成できるため、少量の試料や微小領域の測
定に好適である。
According to the micropore electrode cell having the structure manufactured by such a method, the three electrodes of the working electrode, the reference electrode, and the counter electrode can be formed on the same substrate, which is suitable for measuring a small amount of sample or a minute area.

次に、本発明方法を実施する場合の具体例を第2図を
参照して以下に説明するが、本発明はこれら実施例に限
定されるものでないことは云うまでもない。
Next, specific examples for carrying out the method of the present invention will be described below with reference to FIG. 2, but it goes without saying that the present invention is not limited to these examples.

実施例1 1μmの酸化膜付きシリコンウエハー(大阪チタニウ
ム社製)を基板1(第2図(a))とし、スパツタ装置
(アネルバ製:SPF−332H)内の所定位置にメタルマスク
と共に取り付け、圧力1.3Pa,アルゴン中、パワー50Wで
クロムのスパツタを10秒間行い、真空を破ることなく続
いてパワー70Wで1分間白金のスパツタを行い、膜厚100
nmのクロム−白金膜の下部電極2を形成した(第2図
(b))。次にメタルマスクをはずして絶縁膜として二
酸化シリコン膜3をスパツタ法で堆積させた(第2図
(c))。このとき、パワー50W,10分スパツタを行い、
二酸化シリコンを300nmの膜厚とした。再び別のメタル
マスクを装着し、クロム−白金の表面電極4を100nm堆
積した(第2図(d))。
Example 1 A silicon wafer with an oxide film of 1 μm (manufactured by Osaka Titanium Co., Ltd.) was used as a substrate 1 (FIG. 2 (a)), and it was attached with a metal mask at a predetermined position in a sputtering device (Anerva: SPF-332H), and pressure was applied. Sputtering chromium is performed for 10 seconds at a power of 50 W in 1.3 Pa and argon, and then platinum is sputtered at a power of 70 W for 1 minute without breaking the vacuum to obtain a film thickness of 100.
A lower electrode 2 of a chromium-platinum film of nm was formed (Fig. 2 (b)). Next, the metal mask was removed and a silicon dioxide film 3 was deposited as an insulating film by a sputtering method (FIG. 2 (c)). At this time, power 50W, spatter for 10 minutes,
The film thickness of silicon dioxide was 300 nm. Another metal mask was attached again, and a chromium-platinum surface electrode 4 was deposited to a thickness of 100 nm (FIG. 2 (d)).

その後、該シリコン基板上にフオトレジスト6(シツ
プレー社製MP1400−27)を1μmの厚みに塗布した。こ
のレジスト塗布シリコンウエハーをオーブン中にいれ80
℃,30分の条件でベークした。その後,クロムマスクを
用いて、マスクアライナー(キヤノン製)により20秒間
密着露光した。露光したシリコンウエハーは、レジスト
現像液(シプレー社製,MF−319)中で20℃,60秒間現像
を行い、水洗,乾燥してマスクパターンをレジストに転
写した(第2図(e))。
Then, Photoresist 6 (MP1400-27 manufactured by Shipley Co., Ltd.) was applied on the silicon substrate to a thickness of 1 μm. Place this resist-coated silicon wafer in the oven.
Baking was carried out under the conditions of ℃ and 30 minutes. Then, using a chrome mask, contact exposure was performed for 20 seconds with a mask aligner (manufactured by Canon Inc.). The exposed silicon wafer was developed in a resist developer (MF-319 manufactured by Shipley Co., Ltd.) at 20 ° C. for 60 seconds, washed with water and dried to transfer the mask pattern to the resist (FIG. 2 (e)).

現像後、該基板はアルゴンミリング装置に入れ、アル
ゴンガスの流量12SCCM、圧力0.03Pa、ビーム電流90mAの
条件で白金をエッチングしたのち、反応性イオンエッチ
ング装置に入れ、C2F6ガスの流量25SCCM,圧力0.25Pa,15
0Wの条件で10分間、二酸化シリコンのエツチングを行つ
て微細孔5を持つ多数のデイスク電極パターンを形成し
た(第2図(f))。このとき、各デイスク電極の直径
を1μm,個数を10000個とした。その後、基板をメチル
エチルケトン中に浸して超音波処理を行い、電極形成部
分以外のレジストを剥離して電極パターンを得た。この
ようにして作製した電気化学測定用微細孔電極セルの概
略を第1図に示す。
After development, the substrate was placed in an argon milling device, and after etching platinum under the conditions of an argon gas flow rate of 12 SCCM, a pressure of 0.03 Pa, and a beam current of 90 mA, the substrate was placed in a reactive ion etching device and a C 2 F 6 gas flow rate of 25 SCCM. , Pressure 0.25Pa, 15
A large number of disk electrode patterns having fine holes 5 were formed by etching silicon dioxide for 10 minutes under the condition of 0 W (FIG. 2 (f)). At this time, the diameter of each disk electrode was 1 μm, and the number was 10,000. After that, the substrate was immersed in methyl ethyl ketone and subjected to ultrasonic treatment, and the resist other than the electrode forming portion was peeled off to obtain an electrode pattern. An outline of the micropore electrode cell for electrochemical measurement produced in this manner is shown in FIG.

この微小電気化学測定用電極セル(以下、電気化学セ
ルと称する)を0.1mmol/lのフエロセン,0.1mol/lの支持
電解質(テトラエチルアンモニウム・パークロレート)
を溶かしたアセトニトリル溶液に浸し、下部および表面
電極2,4をそれぞれデユアルポテンシオスタツトにリー
ド線を介して接続し、表面電極4を−0.1Vに固定し、下
部電極2を0Vから0.5Vまで100mV/secで電位走査をして
電流値の測定を行い、1μmのデイスク電極10000個の
みの作用電極を用いた場合と比較した。
The electrode cell for microelectrochemical measurement (hereinafter referred to as an electrochemical cell) is 0.1 mmol / l ferrocene, 0.1 mol / l supporting electrolyte (tetraethylammonium perchlorate)
Immersed in a solution of acetonitrile, and connect the lower and surface electrodes 2 and 4 to the dual potentiostat via lead wires respectively, fix the surface electrode 4 to -0.1V, and lower electrode 2 from 0V to 0.5V. The potential value was scanned at 100 mV / sec to measure the current value, and the result was compared with the case where only 10000 working electrodes of 1 μm were used.

その結果、両者とも0.3V(銀参照電極基準)に立ち上
がりをもつフエロセンの酸化に対応した限界電流が得ら
れた。しかし、1μm径のデイスク電極では限界電流の
大きさが0.46μAしか得られないのに対し、本実施例電
極では1.5μAの値が得られた。一方、作製した本実施
例による電気化学セルの多数の微小孔デイスク電極と同
一面積の作用電極(直径:0.10mm)を持つ電気化学セル
と比較すると、前者では限界電流が観測されたのに対
し、後者ではフエロセンの酸化還元反応に伴うピークが
観測され、本実施例の電気化学セルは同一面積を持つ電
極に比較し、速い応答が得られた。また、電位を0Vから
0.5Vまでステツプして電流値の測定を行うと、本実施例
の電気化学セルは直径0.10mmのデイスク電極に比べて、
電圧印加0.4秒後で比較して5.2倍の電流値が得られ感度
も向上していることが分かつた。
As a result, a limiting current corresponding to the oxidation of ferrocene with a rise of 0.3 V (based on the silver reference electrode) was obtained. However, with the disk electrode having a diameter of 1 μm, the magnitude of the limiting current was only 0.46 μA, whereas with the electrode of this example, a value of 1.5 μA was obtained. On the other hand, comparing with the electrochemical cell having many working holes (diameter: 0.10 mm) of the same area as the many micropore disk electrodes of the electrochemical cell prepared in this example, the limiting current was observed in the former case. In the latter case, a peak associated with the oxidation-reduction reaction of ferrocene was observed, and the electrochemical cell of this example obtained a faster response than the electrode having the same area. In addition, the potential from 0V
When the current value is measured by stepping to 0.5V, the electrochemical cell of this example has a diameter of 0.10 mm as compared with the disk electrode.
It was found that the current value was 5.2 times as high as 0.4 seconds after the voltage application and the sensitivity was improved.

実施例2 実施例1において、二酸化シリコン膜を形成する際ス
パツタ法に代えてスピンオングラスを用いた。スピンオ
ングラス(東京応化製 OCD Type−7)を約1μmの厚
みでスピンコートした後、450℃で1時間ベークを行つ
た。その後、実施例1と同様の方法で電極を作製した。
各微細孔の直径を2μm,個数を2500個とした。
Example 2 In Example 1, spin-on glass was used instead of the sputtering method when forming the silicon dioxide film. Spin-on glass (OCD Type-7 manufactured by Tokyo Ohka Co., Ltd.) was spin-coated to a thickness of about 1 μm, and then baked at 450 ° C. for 1 hour. Then, an electrode was produced in the same manner as in Example 1.
The diameter of each micropore was 2 μm and the number was 2500.

次に、上記実施例と同様の条件で電気化学的測定を行
ない、直径2μm,個数2500個のデイスク電極と比較し
た。両者とも実施例1で示したものと同様な曲線の限界
電流が得られた。2μm径のデイスク電極では限界電流
の大きさが0.83μAしか得られないのに対し、本実施例
電極では2.4μAの値を示した。また、溶液のかくはん
を行つても、電位−電流曲線の変化は小さかつた。一
方、作製した本実施例の電気化学セルの多数の微小孔デ
イスク電極と同一面積の作用電極(直径:0.20mm)を持
つ電気化学セルと比較すると、前者では限界電流が観測
されたのに対し、後者ではフエロセンの酸化還元反応に
伴うピークが観測され、本実施例の電気化学セルは同一
面積の持つ電極に比較し、速い応答が得られた。また、
電位を0Vから0.5Vまでステツプして電流値の測定を行う
と、本実施例の電気化学セルは直径0.20mmのデイスク電
極に比べて、電圧印加0.4秒後で4.7倍の電流値が得られ
感度が向上していることが分かつた。
Next, an electrochemical measurement was performed under the same conditions as in the above-mentioned example, and a comparison was made with a disk electrode having a diameter of 2 μm and a number of 2500. In both cases, the limiting current of the curve similar to that shown in Example 1 was obtained. The disk electrode having a diameter of 2 μm gives a limiting current of only 0.83 μA, whereas the electrode of this example shows a value of 2.4 μA. Further, even when the solution was stirred, the change in the potential-current curve was small. On the other hand, in comparison with an electrochemical cell having a large number of micropore disk electrodes of the electrochemical cell of the present Example prepared and a working electrode (diameter: 0.20 mm) of the same area, a limiting current was observed in the former case. In the latter case, a peak associated with the oxidation-reduction reaction of ferrocene was observed, and the electrochemical cell of this example provided a faster response than the electrode having the same area. Also,
When the electric current was measured by stepping the electric potential from 0 V to 0.5 V, the electrochemical cell of the present example had a 4.7-fold current value 0.4 seconds after the voltage was applied, as compared with the disk electrode having a diameter of 0.20 mm. It was found that the sensitivity was improved.

実施例3 厚み0.32mmの石英基板をメタルマスクと共に真空蒸着
装置(日本電子製)中に入れ、クロム,及び金を真空蒸
着した。膜厚は200nmとした。次にCVD装置(ANELVA製PE
D−401)を用い、該基板上に1μmの厚みの窒化シリコ
ン膜を形成した。再び別のメタルマスクを用い、クロム
−金の表面電極を形成した。その後、電子線レジスト
(φ−MAC,ダイキン工業社製)を1μmの厚みに塗布し
た。このレジスト塗布石英基板をオープン中に入れ、18
0℃,60分の条件でベークした。その後、電子線露光装置
(日本電子:JSM−840)に入れ、電子線の加速電圧:10K
V,露光量:5μC/cm2の条件で露光した。
Example 3 A quartz substrate having a thickness of 0.32 mm was put together with a metal mask in a vacuum deposition apparatus (made by JEOL Ltd.), and chromium and gold were vacuum deposited. The film thickness was 200 nm. Next, CVD equipment (ANELVA PE
D-401) was used to form a silicon nitride film having a thickness of 1 μm on the substrate. Using another metal mask again, a chromium-gold surface electrode was formed. Then, an electron beam resist (φ-MAC, manufactured by Daikin Industries, Ltd.) was applied to a thickness of 1 μm. Put this resist coated quartz substrate in the open
Baking was performed at 0 ° C. for 60 minutes. After that, it was put in an electron beam exposure system (JEOL: JSM-840), and the electron beam acceleration voltage was 10K.
Exposure was performed under the conditions of V, exposure amount: 5 μC / cm 2 .

現像後、該基板をアルゴミリング装置に入れ、アルゴ
ンガスの流量12SCCM、圧力0.03Pa、ビーム電流90mAの条
件で金のエッチングをしたのち、反応性イオンエッチン
グ装置に入れ、4フツ化炭素と酸素の10:1の混合ガスを
エツチヤントとし、ガス圧2.6Pa,流量50SCCM,パワー100
Wの条件で10分間,窒化シリコンのエツチングを行つて
電極を得た。作製したデイスク電極の直径を0.5μm,個
数を40000個とした。
After development, the substrate was placed in an Algomi ring apparatus, gold was etched under the conditions of an argon gas flow rate of 12 SCCM, a pressure of 0.03 Pa, and a beam current of 90 mA, and then placed in a reactive ion etching apparatus. A 10: 1 mixed gas is used as an etchant, gas pressure 2.6Pa, flow rate 50SCCM, power 100.
An electrode was obtained by etching silicon nitride under the condition of W for 10 minutes. The diameter of the produced disk electrode was 0.5 μm and the number was 40,000.

次に、上記実施例と同様の条件で電気化学的測定を行
ない、直径0.5μm,個数40000個のデイスク電極と比較し
た。両者とも実施例1で示したものと同様な曲線の限界
電流が得られた。0.5μm径のデイスク電極では限界電
流の大きさが0.92μAしか得られないのに対し、本実施
例電極では3.5μAの値を示した。一方、作製した本実
施例の電気化学セルの多数の微小孔デイスク電極と同一
面積の作用電極(直径:0.10mm)を持つ電気化学セルと
比較すると、前者では限界電流が観測されたのに対し、
後者ではフエロセンの酸化還元反応に伴うピークが観測
され、本実施例の電気化学セルは同一面積を持つ電極に
比較し、応答速度が速いことが分かつた。
Next, an electrochemical measurement was performed under the same conditions as in the above-mentioned example, and a comparison was made with a disk electrode having a diameter of 0.5 μm and a number of 40,000. In both cases, the limiting current of the curve similar to that shown in Example 1 was obtained. With the disk electrode having a diameter of 0.5 μm, the magnitude of the limiting current was only 0.92 μA, whereas with the electrode of this example, the value was 3.5 μA. On the other hand, in comparison with an electrochemical cell having a large number of micropore disk electrodes and a working electrode (diameter: 0.10 mm) of the same area in the produced electrochemical cell of this example, a limiting current was observed in the former case. ,
In the latter case, a peak associated with the oxidation-reduction reaction of ferrocene was observed, and it was found that the electrochemical cell of this example had a faster response speed than the electrodes having the same area.

また、電位を0Vから0.5Vまでステツプして電流値の測
定を行うと、本実施例の電気化学セルは直径0.10mmのデ
イスク電極に比べて、電圧印加0.4秒後で5.5倍の電流値
が得られ、感度が向上していることが分かつた。
Further, when the current value is measured by stepping the potential from 0 V to 0.5 V, the electrochemical cell of the present example has a 5.5-fold current value 0.4 seconds after voltage application, as compared with the disk electrode having a diameter of 0.10 mm. It was found that the sensitivity was improved.

実施例4 1μmの酸化膜付きシリコンウエハー(大阪チタニウ
ム社製)を基板とし、スパツタ装置(アネルバ製:SPF−
332H)内の所定位置にメタルマスクと共に取り付け、圧
力1.3Pa,アルゴン中,パワー50Wでクロムのスパツタを1
0秒間行い、真空を破ることなく続いてパワーの70Wで1
分間白金のスパツタを行い、膜厚100nmのクロム−白金
膜の下部電極を形成した。次にメタルマスクをはずして
二酸化シリコン膜をスパツタ法で堆積させた。このと
き、パワー50W,10分スパツタを行い、二酸化シリコンを
300nmの膜厚とした。再び別のメタルマスクを装着し、
クロム−白金の表面電極を100nm堆積し、次にメタルマ
スクをはずして二酸化シリコン膜を300nmスパツタ法で
堆積させた。その後、該シリコン基板上にフオトレジス
ト(シツプレー社製MP1400−27)を1μmの厚みに塗布
した。このレジスト塗布シリコンウエハーをオープン中
にいれ80℃,30分の条件でベークした。その後、クロム
マスクを用いて、マスクアライナー(キヤノン製)によ
り20秒間密着露光した。露光したシリコンウエハーは、
レジスト現像液(シプレー社製,MF−319)中で、20℃,6
0秒間現像を行い、水洗,乾燥してマスクパターンをレ
ジストに転写した。現像後、該基板は反応性イオンエツ
チング装置(アネルバ製,DEM−451)中に入れ、C2F6
スの流量25SCCM,圧力0.25Pa,パワー150Wの条件で10分
間、二酸化シリコンのエツチングを行つて、つぎにアル
ゴンミリング装置に入れ、アルゴンガスの流量12SCCM、
圧力0.03Pa、ビーム電流90mAの条件で白金のエッチング
をしたのち、再び反応性イオンエッチング装置に入れ、
C2F6ガスでエツチングして微細孔を持つ多数のデイスク
電極パターを形成した。このとき、各デイスク電極の直
径を1μm,個数を10000個とした。その後、基板をメチ
ルエチルケトン中に浸漬して超音波処理を行い、電極形
成部分以外のレジストを剥離して電極パターンを得た。
Example 4 A silicon wafer with an oxide film of 1 μm (manufactured by Osaka Titanium Co.) was used as a substrate, and a sputtering device (manufactured by Anerva: SPF-) was used.
332H) with a metal mask at a predetermined position, pressure 1.3Pa, argon, power 50W, chrome spatter 1
Do it for 0 seconds and continue without breaking the vacuum with a power of 70W 1
The platinum was sputtered for a minute to form a lower electrode of a 100 nm thick chromium-platinum film. Next, the metal mask was removed and a silicon dioxide film was deposited by the sputtering method. At this time, perform power 50W, sputter for 10 minutes, and remove silicon dioxide.
The film thickness was 300 nm. Attach another metal mask again,
A chromium-platinum surface electrode was deposited to a thickness of 100 nm, and then the metal mask was removed to deposit a silicon dioxide film by a 300 nm sputtering method. After that, a photoresist (MP1400-27 manufactured by Shipley Co., Ltd.) was applied on the silicon substrate to a thickness of 1 μm. The resist-coated silicon wafer was put into an open and baked at 80 ° C. for 30 minutes. Then, using a chrome mask, contact exposure was carried out for 20 seconds with a mask aligner (manufactured by Canon Inc.). The exposed silicon wafer is
In a resist developer (made by Shipley, MF-319), 20 ℃, 6
It was developed for 0 seconds, washed with water and dried to transfer the mask pattern to the resist. After development, the substrate was placed in a reactive ion etching apparatus (DEM-451 manufactured by Anelva), and etching of silicon dioxide was performed for 10 minutes under the conditions of a C 2 F 6 gas flow rate of 25 SCCM, a pressure of 0.25 Pa, and a power of 150 W. Then, put it in an argon milling machine, and then the flow rate of argon gas is 12SCCM,
After etching platinum under the conditions of pressure 0.03Pa and beam current 90mA, put it in the reactive ion etching equipment again,
A large number of disk electrode patterns with fine holes were formed by etching with C 2 F 6 gas. At this time, the diameter of each disk electrode was 1 μm, and the number was 10,000. Thereafter, the substrate was immersed in methyl ethyl ketone and subjected to ultrasonic treatment, and the resist except for the portion where the electrode was formed was removed to obtain an electrode pattern.

本実施例電極を0.1mmol/lのフエロセン,0.1mol/lの支
持電解質(テトラエチルアンモニウム・パークロレー
ト)を溶かしたアセトニトリル溶液に浸し、下部および
表面電極をそれぞれデュアルポテンシオスタツトにリー
ド線を介して接続し、表面電極を−0.1Vに固定し、下部
電極を0Vから0.5Vまで100mV/secで電位走査をして電流
値の測定を行い、1μmのデイスク電極10000個のみの
作用電極を用いた場合と比較した。両者とも0.3V(銀参
照電極基準)に立ち上がりをもつフエロセンの酸化に対
応した限界電流が得られた。1μm径のデイスク電極で
は限界電流の大きさが0.46μAしか得られないのに対
し、本実施例電極では1.3μAの値が得られた。一方、
作製した本実施例の電気化学セルの多数の微小孔デイス
ク電極と同一面積の作用電極(直径:0.10mm)を持つ電
気化学セルと比較すると、前者では限界電流が観測され
たのに対し、後者ではフエロセンの酸化還元反応に伴う
ピークが観測され、本実施例の電気化学セルは同一面積
を持つ電極に比較し、速い応答が得られた。また、電位
を0Vから0.5Vまでステツプして電流値の測定を行うと、
本実施例の電気化学セルは直径0.10mmのデイスク電極に
比べて、電圧印加0.4秒後で比較して4.9倍の電流値が得
られ感度も向上していることが分かつた。
The electrode of this example was immersed in an acetonitrile solution in which 0.1 mmol / l ferrocene and 0.1 mol / l supporting electrolyte (tetraethylammonium perchlorate) were dissolved, and the lower and surface electrodes were respectively connected to the dual potentiostat via lead wires. Connected, the surface electrode was fixed at -0.1V, the lower electrode was subjected to potential scanning from 0V to 0.5V at 100 mV / sec to measure the current value, and only 10000 working electrodes of 1 μm disk electrode were used. Compared to the case. In both cases, a limiting current corresponding to the oxidation of ferrocene with a rise of 0.3 V (based on the silver reference electrode) was obtained. With the disk electrode having a diameter of 1 μm, the magnitude of the limiting current was only 0.46 μA, whereas with the electrode of this example, the value was 1.3 μA. on the other hand,
Compared with the electrochemical cell having a large number of micropore disk electrodes of the electrochemical cell of the present Example prepared and the working electrode (diameter: 0.10 mm) of the same area, the limiting current was observed in the former, whereas the latter A peak associated with the oxidation-reduction reaction of ferrocene was observed in, and the electrochemical cell of this example obtained a faster response than an electrode having the same area. Also, when measuring the current value by stepping the potential from 0V to 0.5V,
It was found that the electrochemical cell of this example obtained a current value 4.9 times as high as that of the disk electrode having a diameter of 0.10 mm as compared with the disk electrode having a diameter of 0.40 seconds after voltage application for 0.4 seconds.

実施例5 実施例1で作製した電極セルを用い、濃度が3μmol/
lのエピネフリンと50μmol/lのアスコルビン酸、0.1mol
/lの支持電解質(燐酸ナトリウム)を溶かした水溶液に
浸し、表面電極を−0.3Vに、下部電極を0Vから0.7Vまで
100mV/secで電位走査をして電流値の測定を行い、直径
1μmのデイスク電極10000個のみの作用電極を用いた
場合と比較した。
Example 5 Using the electrode cell prepared in Example 1, the concentration was 3 μmol /
l epinephrine and 50 μmol / l ascorbic acid, 0.1 mol
Immerse in an aqueous solution of / l supporting electrolyte (sodium phosphate), the surface electrode is -0.3V, the lower electrode is 0V to 0.7V
The potential value was scanned at 100 mV / sec to measure the current value, which was compared with the case where only 10,000 working electrodes having a diameter of 1 μm were used.

1μmのデイスク電極ではアスコルビン酸の酸化電流
のためエピネフリンの応答が隠れてしまつたのに対し、
本実施例電極セルの下部電極ではエピネフリンの限界電
流にアスコルビン酸の過渡応答が重なつた応答が、表面
電極側ではエピネフリンの還元の限界電流のみが観測さ
れ、アスコルビン酸に妨害されることなく定量が可能で
あつた。
On the 1 μm disk electrode, the response of epinephrine was hidden due to the oxidation current of ascorbic acid.
In the lower electrode of the electrode cell of this example, a response in which the transient response of ascorbic acid was superimposed on the limiting current of epinephrine was superposed, and only the limiting current of the reduction of epinephrine was observed on the surface electrode side, which was quantified without being disturbed by ascorbic acid. Was possible.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の電気化学測定用微細孔
電極セルは、それを構成する作用電極を絶縁性基板上に
形成するようにし、そして、それらが互いに絶縁膜を介
して形成された2つ以上の電極から構成された多層構造
を有し、その多層構造の一端より他端の電極に届くよう
に多数の孔が形成されており、その材質が金属,半金属
または半導体であるようにしたので従来の微小電極に比
べ、高感度で、また同一電極面積を持つ作用電極と比較
しても、応答速度および電流値が大きく、かつ簡単な装
置で測定可能など多くの利点を有し、低濃度試料の高感
度分析にも極めて顕著な効果がある。
As described above, in the electrochemical measurement micropore electrode cell of the present invention, the working electrode constituting the cell is formed on the insulating substrate, and they are formed on each other via the insulating film. It has a multi-layered structure composed of three or more electrodes, and a large number of holes are formed so as to reach the electrode at the other end from one end of the multi-layered structure, and the material is a metal, a semimetal or a semiconductor. Therefore, compared to conventional microelectrodes, it has many advantages such as high sensitivity and large response speed and current value even when compared with working electrodes having the same electrode area, and measurement with a simple device. It is also extremely effective for high-sensitivity analysis of low-concentration samples.

また、本発明の方法によれば、リソグラフイ技術を用
いて多数の微細孔を持つパターンの作用電極からなる電
気化学測定用微細孔電極セルを作製するため、任意のサ
イズ,形状の作用電極を安価で多量に得ることができる
効果がある。
Further, according to the method of the present invention, in order to produce a micropore electrode cell for electrochemical measurement comprising a working electrode having a pattern having a large number of micropores by using the lithographic technique, a working electrode of any size and shape can be prepared. It is inexpensive and can be obtained in large quantities.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による電気化学測定用微細孔
電極セルの概略図、第2図(a)ないし(f)はこの実
施例の作製プロセスの工程断面図である。 1……基板、1a……シリコン基板、1b……酸化膜、2…
…下部電極、3……絶縁膜(二酸化シリコン膜)、4…
…表面電極、5……微細孔、6……レジスト。
FIG. 1 is a schematic view of a micropore electrode cell for electrochemical measurement according to an embodiment of the present invention, and FIGS. 2 (a) to 2 (f) are sectional views showing steps in the manufacturing process of this embodiment. 1 ... Substrate, 1a ... Silicon substrate, 1b ... Oxide film, 2 ...
... Lower electrode, 3 ... Insulating film (silicon dioxide film), 4 ...
… Surface electrodes, 5 …… micropores, 6 …… resist.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物質検出用の作用電極を有する電気化学測
定用電極セルにおいて、 前記作用電極は、 絶縁性の基板上に形成され、 互いに絶縁膜を介して形成された2つ以上の電極から構
成された多層構造を有し、 その多層構造の一端より他端の電極に届くように多数の
孔が形成されており、 該電極の材質が金属、半金属または半導体であることを
特徴とする電気化学測定用微細孔電極セル。
1. An electrochemical measurement electrode cell having a working electrode for detecting a substance, wherein the working electrode is formed on an insulating substrate, and is composed of two or more electrodes formed through an insulating film. It has a multi-layer structure configured, and a large number of holes are formed so as to reach the electrode at one end from the other end of the multi-layer structure, and the material of the electrode is metal, semimetal or semiconductor. Micropore electrode cell for electrochemical measurement.
【請求項2】表面あるいは全体が絶縁性の基板上に金
属、半金属または半導体の導電性薄膜と絶縁性膜を交互
に少なくとも各々1回以上順次積層し、次いでこの上に
微細孔レジストパターンを形成したのち、エッチング法
により最下層の導電性膜面が現れるまで多数の微細孔を
あける工程を具備することを特徴とする電気化学測定用
微細孔電極セルの製造方法。
2. A conductive thin film of a metal, a semimetal or a semiconductor and an insulating film are alternately laminated at least once one by one on a substrate whose surface or the whole is insulative, and then a fine hole resist pattern is formed thereon. After the formation, a method for producing a micropore electrode cell for electrochemical measurement, comprising a step of forming a large number of micropores by an etching method until the bottommost conductive film surface appears.
JP1090094A 1989-04-10 1989-04-10 Micropore electrode cell for electrochemical measurement and method for producing the same Expired - Fee Related JP2556993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090094A JP2556993B2 (en) 1989-04-10 1989-04-10 Micropore electrode cell for electrochemical measurement and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090094A JP2556993B2 (en) 1989-04-10 1989-04-10 Micropore electrode cell for electrochemical measurement and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02268265A JPH02268265A (en) 1990-11-01
JP2556993B2 true JP2556993B2 (en) 1996-11-27

Family

ID=13988932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090094A Expired - Fee Related JP2556993B2 (en) 1989-04-10 1989-04-10 Micropore electrode cell for electrochemical measurement and method for producing the same

Country Status (1)

Country Link
JP (1) JP2556993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638035B2 (en) 2007-07-20 2009-12-29 Panasonic Corporation Electrode plate for electrochemical measurements

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566173B2 (en) * 1990-02-16 1996-12-25 日本電信電話株式会社 Electrochemical detector
US5389215A (en) * 1992-11-05 1995-02-14 Nippon Telegraph And Telephone Corporation Electrochemical detection method and apparatus therefor
US20030077600A1 (en) * 2001-10-23 2003-04-24 Chi-Chan Chen Photovoltaic device to accelerate the interaction among biomolecules
JP4750394B2 (en) * 2004-09-10 2011-08-17 三菱化学メディエンス株式会社 Multilayer electrode and multilayer electrode cartridge, electrochemical analysis device and electrochemical analysis method, electrochemiluminescence analysis device and electrochemiluminescence analysis method
WO2009057240A1 (en) 2007-11-01 2009-05-07 Panasonic Corporation Electrode plate for electrochemical measurement, electrochemical measuring instrument having the electrode plate for electrochemical measurement, and method for determining target substance using the electrode plate for electrochemical measurement
CN101960300B (en) 2008-05-28 2013-05-29 松下电器产业株式会社 Method for detecting or quantitating target substance by using electrochemical measurement device, electrochemical measurement device, and electrode plate for electrochemical measurement
EP2141491A1 (en) * 2008-07-02 2010-01-06 Micronas GmbH Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638035B2 (en) 2007-07-20 2009-12-29 Panasonic Corporation Electrode plate for electrochemical measurements

Also Published As

Publication number Publication date
JPH02268265A (en) 1990-11-01

Similar Documents

Publication Publication Date Title
US5378343A (en) Electrode assembly including iridium based mercury ultramicroelectrode array
JP4418030B2 (en) Method for detecting or quantifying target substance using electrochemical measuring device, electrochemical measuring device, and electrode plate for electrochemical measurement
US11022577B2 (en) Nanopatterned biosensor electrode for enhanced sensor signal and sensitivity
US11156579B2 (en) Electrode structure and method of manufacturing an electrode structure
US20050241939A1 (en) Method and apparatus for providing and electrochemical gas sensor having a porous electrolyte
JPH0815202A (en) Method for depositing semiconductor organic polymer
JP2556993B2 (en) Micropore electrode cell for electrochemical measurement and method for producing the same
JPH0326956A (en) Electrochemical sensor and preparation thereof
JP4283881B1 (en) Electrochemical measurement electrode plate, electrochemical measurement apparatus having the electrochemical measurement electrode plate, and method for quantifying a target substance using the electrochemical measurement electrode plate
JP2577045B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JP2622589B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
Buss et al. Modifications and characterization of a silicon-based microelectrode array
JP2590004B2 (en) Comb-shaped modified microelectrode cell and method for producing the same
JPH05281181A (en) Enzyme modified electrochemical detector and its manufacture
JP2564030B2 (en) Method for producing carbon thin film electrode for electrochemical measurement
JPH02140655A (en) Electrochemical detector and production thereof
JP3047048B2 (en) Wall jet type electrochemical detector and method of manufacturing the same
JP2590002B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
US20130306473A1 (en) Method for producing a device for detecting an analyte and device and the use thereof
JP2566173B2 (en) Electrochemical detector
JPH0251055A (en) Electrode cell for electrochemical measurement and manufacture thereof
JPH03246460A (en) Electrochemical detector
JPH0843344A (en) Micro-array carbon electrode and its manufacture
JPH01269044A (en) Miniature electrode cell for electrochemical measurement and its production
JP2501856B2 (en) Electrochemical sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees