JPH02140655A - Electrochemical detector and production thereof - Google Patents

Electrochemical detector and production thereof

Info

Publication number
JPH02140655A
JPH02140655A JP63294009A JP29400988A JPH02140655A JP H02140655 A JPH02140655 A JP H02140655A JP 63294009 A JP63294009 A JP 63294009A JP 29400988 A JP29400988 A JP 29400988A JP H02140655 A JPH02140655 A JP H02140655A
Authority
JP
Japan
Prior art keywords
electrode
substrate
resist
conductive thin
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63294009A
Other languages
Japanese (ja)
Inventor
Masao Morita
雅夫 森田
Osamu Niwa
修 丹羽
Hisao Tabei
田部井 久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63294009A priority Critical patent/JPH02140655A/en
Publication of JPH02140655A publication Critical patent/JPH02140655A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extremely diminish the inter-electrode spacing of two working electrodes to sub-micron order by determining the inter-electrode spacing by the thickness of insulating films. CONSTITUTION:A photoresist is applied on a silicon substrate 1 to 1mum thickness. The silicon substrate 2 is then put into an oven and is baked. Thereafter the substrate is subjected to contact exposing by using a chromium mask. This substrate 2 is developed in a resist developing soln. and is subjected to washing and drying, by which mask patterns are transferred onto the resist. Chromium and platinum are then successively deposited by sputtering thereon. The substrate 2 is immersed into methyl ethyl ketone and is subjected to an ultrasonic treatment by which the resist exclusive of the electrode forming parts is peeled and the lower working electrode 3 is formed. Silicon dioxide is thereafter deposited by sputtering to form the 1st insulating film 4. The resist is again peeled in the methyl ethyl ketone to form the upper working electrodes 5, 6. The surface of the substrate 2 is coated and the 2nd insulating film 6 is formed. The insulating films 8, 4 are etched to expose the electrode 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、作用電極、参照電極、対向電極を一体化して
基板上に形成され、フローセルあるいは液相クロマトグ
ラフィなどに用いられる電気化学的検出器およびその製
造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrochemical detector that is formed on a substrate by integrating a working electrode, a reference electrode, and a counter electrode, and is used in flow cells or liquid phase chromatography. and its manufacturing method.

〔従来の技術〕[Conventional technology]

血糖値測定などでは、一定流速で流れるキャリア溶媒に
検体試料を注入し、これを流路中に配した検出器により
測定するフローセルと呼ばれる装置が使われている。ま
た、液相クロマトグラフィでは試料注入口と検出器との
間にクロマトグラフィのためのカラムが挿入されており
、ここで注入試料が分離され、各成分ごとに検出される
ようになっている。
For blood sugar level measurement, a device called a flow cell is used, which injects a sample into a carrier solvent flowing at a constant flow rate and measures the sample using a detector placed in a flow path. Furthermore, in liquid phase chromatography, a column for chromatography is inserted between a sample injection port and a detector, where the injected sample is separated and each component is detected.

この試料の検出には、紫外、可視などの分光学的方法、
屈折率測定、電導度測定、電気化学的方法などが知られ
ている。電気化学的方法では、流路中に電極を配し、そ
こに一定の電位を印加しておき、キャリアにのって流れ
る試料が電極に到達した際、電極との間で起こる酸化還
元電流をモニタすることで検出を行なっている。このよ
うに電気化学的検出は、装置が単純で比較的高感度であ
シ、シかも電気化学的に不活性な物質や印加した電位よ
シ低い酸化還元電位を持つ物質には応答しないので、特
定物質を選択的に検出できるという特徴を有する。さら
にグルコースなど電気化学的に不活性な物質においても
、グルコースオキシターゼ等の酵素で電極を修飾するこ
とにょシ検出が可能になる。
Detection of this sample requires spectroscopic methods such as ultraviolet, visible, etc.
Refractive index measurement, conductivity measurement, electrochemical methods, etc. are known. In the electrochemical method, an electrode is placed in a flow path and a constant potential is applied to it. When a sample flowing on a carrier reaches the electrode, the redox current that occurs between the electrode and the electrode is generated. Detection is performed by monitoring. Electrochemical detection is thus simple, relatively sensitive, and does not respond to electrochemically inert substances or substances with redox potentials lower than the applied potential. It has the characteristic of being able to selectively detect specific substances. Furthermore, even electrochemically inactive substances such as glucose can be detected by modifying the electrode with an enzyme such as glucose oxidase.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の電極では同じくらいの酸化還元電
位を有する物質が混在する場合や非常に微世な物質の検
出には困難が生じている。
However, with conventional electrodes, it is difficult to detect a mixture of substances having similar redox potentials or to detect extremely minute substances.

一方、70−セルなどでは、電極のフロ一方向に対する
長さが長い程、検出物質との接触時間が長くなるため、
応答が鈍化してしまうという問題がある。また、参照電
極と作用電極との間の距離が遠いと、この間の液抵抗に
対応したIRドロップが生じ、信号が鈍化してしまう。
On the other hand, in a 70-cell, etc., the longer the length of the electrode in one direction of the flow, the longer the contact time with the detection substance.
There is a problem that the response becomes slow. Furthermore, if the distance between the reference electrode and the working electrode is long, an IR drop will occur corresponding to the liquid resistance between them, and the signal will become dull.

これらを抑えるためには、電極を微細化して接触時間を
短くし、作用電極と参照電極との間の間隔を短くすれば
よいのだが、こうすると電極面積が小さいため、電流値
が小さくなり、検出が困難になるという欠点を有してい
る。さらに電流応答は電極形状に依存するため、異なる
形状では異なる応答を示すことになる。微小電極の多く
はガラス細管中に白金。
In order to suppress these problems, it is possible to miniaturize the electrodes, shorten the contact time, and shorten the distance between the working electrode and the reference electrode, but in this case, the electrode area is small, so the current value becomes small. This has the disadvantage that detection becomes difficult. Furthermore, since the current response depends on the electrode shape, different shapes will show different responses. Many of the microelectrodes are made of platinum in glass tubules.

金などの金属線、炭素繊維、金yk塩化物等を封入して
作製するため、全く同じ電極形状のものを得ることがで
きず、作製に手間がかかシ多量に得ることが困難で、作
製した電極間のばらつきも大きいため、定量的なデータ
が必要な場合には前もって電極を検定しておく必要があ
シ、多大な測定時間を必要とした。このため、測定にょ
シミ極が汚染、腐食される等の理由によシ検定すること
ができない場合には、定量的なデータを得ることが極め
て困難であった。
Because it is manufactured by enclosing metal wires such as gold, carbon fiber, gold yk chloride, etc., it is impossible to obtain electrodes with exactly the same shape, and it is difficult to manufacture them in large quantities. Since there was a large variation between the electrodes produced, if quantitative data was required, it was necessary to test the electrodes in advance, which required a large amount of measurement time. For this reason, it has been extremely difficult to obtain quantitative data if the measurement electrode cannot be tested for reasons such as being contaminated or corroded.

微小電極を作製する方法として、近年、リングラフィ技
術の応用が提案されている。この方法では、レジストを
基板に塗布し、電極パターンを有する画像マスクを重ね
、露光及び現像した後、金属薄膜を蒸着法等により形成
させた後、レジストを剥離させて基板上に微小な電極を
得るリフトオフ法や絶縁性基板上に金属薄膜を作製した
後、レジストを塗布し、電極パターンを有する画像マス
クを重ね、露光及び現像し、さらに残ったレジストをマ
スクにして露出した部分の金属膜をエツチングし、電、
極パターンを得るエツチング法が知られている。
In recent years, the application of phosphorography technology has been proposed as a method for manufacturing microelectrodes. In this method, a resist is applied to a substrate, an image mask with an electrode pattern is placed over it, exposed and developed, a thin metal film is formed by vapor deposition, etc., and then the resist is peeled off to form minute electrodes on the substrate. After creating a metal thin film on an insulating substrate, a resist is applied, an image mask with an electrode pattern is layered, exposed and developed, and the exposed parts of the metal film are removed using the remaining resist as a mask. Etching, electric,
Etching methods for obtaining polar patterns are known.

この方法では、任意の形状、一定の電極間距離を持つ微
小電極を多量に再現性良く、基板上に作製することがで
きるため、近接させた2本の作用電極を作製すればリン
グ・ディスク電極と同様力測定が可能な電極対や電気化
学素子、センサーのペース電極などへ応用が可能である
。該微小電極作製法を応用してこれまでにミクロな電気
化学トランジスタ(例えば日本物理化学学会誌(J、 
Ph)’s、Chem、89.5133 (1985)
))、<L形白金電極を利用した低分子または高分子錯
体の電気化学測定(Anal、 Chem 、、  5
8. 601 (1986))等が行われている。さら
に導電性基板上にレジストを塗布し、露光、現像によシ
、レジストに多数の微細な円形孔をあけて多数のサブミ
クロンオーダーの作用電極が作製されている(日本電気
化学学会誌(J、 Electrochem、Soc、
With this method, a large amount of microelectrodes with arbitrary shapes and a constant distance between the electrodes can be fabricated on the substrate with good reproducibility. Similarly, it can be applied to electrode pairs that can measure force, electrochemical elements, and pace electrodes for sensors. Applying this microelectrode fabrication method, microelectrochemical transistors (e.g., Journal of the Physical Chemistry Society of Japan (J,
Ph)'s, Chem, 89.5133 (1985)
)), <Electrochemical measurement of low molecules or polymer complexes using L-shaped platinum electrodes (Anal, Chem,, 5
8. 601 (1986)) etc. Furthermore, a resist is coated on a conductive substrate, exposed to light, developed, and a large number of fine circular holes are made in the resist to produce a large number of submicron-order working electrodes (Journal of the Electrochemical Society of Japan). , Electrochem, Soc.
.

Vol、133,752 (1986)、))。Vol. 133, 752 (1986), )).

リングラフィ電極では、電極の形状、サイズ、電極間隔
などにばらつきが少ないため、定量的な測定に適してい
る。しかし、光を用いたりソグラフイ技術では0.5μ
m程度のギャグでパターン間を分離するのが困難になシ
再現性良く微小な電極対を作製するのは困難であった。
Lingraphy electrodes are suitable for quantitative measurements because there is little variation in electrode shape, size, electrode spacing, etc. However, when using light or lithographic technology, 0.5μ
It is difficult to separate patterns with a gag of about m, and it is difficult to produce minute electrode pairs with good reproducibility.

電極間隔が小さい電気化学セルを得る方法として、基板
上に金属、絶縁体、金属を順に積層した後、その端面を
出して電極に用いる方法が提案されている。この方法で
は、緻密な絶縁性薄膜を用いることによシ、電極間隔を
極めて狭めることが可能であるが、大面積を得ることが
できないため、電流値が低く々る。また、薄膜の端面を
使用するため、バンド電極以外の任意の形状を有する電
極が得られないなどの欠点があった。
As a method for obtaining an electrochemical cell with a small electrode spacing, a method has been proposed in which a metal, an insulator, and a metal are sequentially laminated on a substrate, and then the end surfaces are exposed and used as electrodes. In this method, the electrode spacing can be extremely narrowed by using a dense insulating thin film, but since a large area cannot be obtained, the current value is low. Furthermore, since the end face of the thin film is used, there is a drawback that an electrode having any shape other than a band electrode cannot be obtained.

[!題を解決するための手段〕 発明者は、上記現状を改良するため鋭意検討した結果、
これまで1つであった作用電極を2つにし、目的物質を
一方の電極で酸化し、生成した酸化体をもう一方で還元
し、元の目的物質に戻したのち再び最初の電極で酸化す
る、いわゆるレドックスサイクリングをさせることによ
り、高感度化できることを見いだした。さらにこの2つ
の作用電極を微小な間隙を隔てて配置することによシ感
度が向上するが、サブミクロン以下の電極間隔を再現性
よく制御でき、しかも大面積の電極が得られる方法とし
て立体的段差によシミ極間を分離することを見いだし、
本発明に至った。
[! Means for Solving the Problem] As a result of intensive studies to improve the above-mentioned current situation, the inventor has found that
The working electrode, which used to be one, is now two, the target substance is oxidized at one electrode, the generated oxidant is reduced at the other, and after returning to the original target substance, it is oxidized again at the first electrode. We have discovered that sensitivity can be increased by performing so-called redox cycling. Furthermore, the sensitivity is improved by arranging these two working electrodes with a small gap between them, but the three-dimensional method is a method that can control the electrode spacing of submicron or less with good reproducibility and obtain electrodes with a large area. We discovered that the difference in level separates the stain poles,
This led to the present invention.

また、生体試料中に多く存在する妨害物質のアスコルビ
ン酸を含む試料において、一方の電極でアスコルビン酸
を酸化してしまえば、酸化されたアスコルビン酸は更に
化学変化を起こし還元されなくなるため、もう一方の電
極で検出されず、妨害を起こさないため、検出の信号/
雑音比が向上することを見いだした。さらにかみ合つ九
くシ形電極の1つを参照電極として使用すると、もう−
方のくし形作用電極はどの位置においても参照電極に極
めて近くなシ、作用電極上の設定電位の均一性が向上し
、信号がシャープになることを見いだした。
In addition, in a sample containing ascorbic acid, which is an interfering substance that is often present in biological samples, if ascorbic acid is oxidized with one electrode, the oxidized ascorbic acid undergoes further chemical changes and is no longer reduced; The detection signal/
It was found that the noise ratio was improved. Furthermore, if one of the interlocking square-shaped electrodes is used as a reference electrode, then -
They found that because the comb-shaped working electrode was very close to the reference electrode at any position, the uniformity of the set potential on the working electrode was improved and the signal was sharper.

本発明を概説すれば、本発明は絶縁性基縁上に形成され
た複数のパターン状薄膜電極において、各電極は微小な
平面的間隙および/あるいは絶縁層を介した立体的段差
による微小間隙によって分離され、各電極表面の全面あ
るいはその一部が露出しているので、金属または半導体
または半金属で形成された一本または複数の作用電極、
対向電極および参照電極を基板上に一体化して形成する
ことを特徴とする。また、この作用電極のうち少なくと
も1つを対向電極もしくは参照電極として用いることを
特徴とする。
To summarize the present invention, in a plurality of patterned thin film electrodes formed on an insulating base edge, each electrode is formed by a minute planar gap and/or a minute gap due to a three-dimensional step through an insulating layer. one or more working electrodes formed of a metal or a semiconductor or a metalloid, separated so that the entire surface or part of each electrode surface is exposed;
It is characterized in that the counter electrode and the reference electrode are integrally formed on the substrate. Furthermore, the present invention is characterized in that at least one of the working electrodes is used as a counter electrode or a reference electrode.

また、電気化学的検出器の製造方法としては、第1図に
示すように表面あるいは全体が絶縁性の基板上に所望の
パターン形状を有する単数あるいは互いに平面的間隙で
絶縁された複数の金属または半金属または半導体の導電
性薄膜を形成し、該導電性薄膜を絶縁性膜で被覆した後
、所望のパターン形状を有する単数あるいは互いに平面
的間隙で絶縁された複数の導電性薄膜を絶縁膜上に再び
形成し、次いで該上部導電性薄膜をマスクにして絶縁層
を下層の導電性薄膜が現れるまでエツチングすることに
より作製した電極のうちの1本を対向電極に他の1本を
酸化還元性物質で覆って参照電極に残りを作用電極に用
いることを特徴とする。
As shown in Fig. 1, an electrochemical detector can be manufactured using a single metal or a plurality of metals having a desired pattern shape on a substrate whose surface or the whole is insulating. After forming a conductive thin film of semimetal or semiconductor and covering the conductive thin film with an insulating film, a single conductive thin film having a desired pattern shape or a plurality of conductive thin films insulated from each other by a planar gap are coated on the insulating film. Then, using the upper conductive thin film as a mask, the insulating layer is etched until the underlying conductive thin film is exposed.One of the electrodes is used as the counter electrode, and the other is used as the redox electrode. It is characterized in that it is covered with a substance and used as a reference electrode and the rest as a working electrode.

表面あるいは全体が絶縁性の基板としては、酸化膜つき
シリコン基板9石英板、酸化アルミニワム基板、ガラス
基板、プラスチック基板などを挙げることができる。電
極用の金属としては、金。
Examples of the substrate whose surface or the whole is insulating include a silicon substrate with an oxide film, a quartz plate, an aluminum oxide substrate, a glass substrate, and a plastic substrate. Gold is the metal for electrodes.

白金、銀、クロム、チタン、ステンレス力どを挙げるこ
とができる。電極用の半導体としては、p及びn型シリ
コン、p及びn型ゲルマニクム、硫化カドミクム、二酸
化チタン、酸化亜鉛、ガサ9ムリン、ガリワム砒素、イ
ンジクムリン、カドミワムセレン、カドミワムテルル、
二硫化モリブデン、セレン化タングステン、二酸化鋼、
酸化インジクム、インジウムスズ酸化物などを挙げるこ
とができる。半金属としては、導電性カーボンを挙げる
ことができる。絶縁膜としては、酸化シリコン、二酸化
シリコン、窒化シリコン、シリコーン樹脂、ポリイミド
及びその誘導体、エポキシ樹脂、高分子熱硬化物などを
挙げることができる。参照電極上の参照物質としては、
銀、塩化鉄、ポリビニルフェロセン等を挙げることがで
きる。
Examples include platinum, silver, chromium, titanium, and stainless steel. Semiconductors for electrodes include p- and n-type silicon, p- and n-type germanicum, cadmicum sulfide, titanium dioxide, zinc oxide, gasa 9-murine, galiwam arsenic, indicumulin, cadmiwam selenium, cadmiwam tellurium,
Molybdenum disulfide, tungsten selenide, steel dioxide,
Examples include indicum oxide and indium tin oxide. Examples of semimetals include conductive carbon. Examples of the insulating film include silicon oxide, silicon dioxide, silicon nitride, silicone resin, polyimide and derivatives thereof, epoxy resin, and thermoset polymers. The reference substance on the reference electrode is
Silver, iron chloride, polyvinylferrocene, etc. can be mentioned.

微小電極を作視する際には、基板上に蒸着、スパッタ、
CVDまたは塗布法によシ金属、半導体または半金属の
導電性薄膜、絶縁膜、導電性薄膜を形成する。該基板上
にはレジストを塗布し、そこに電極のパターンを有する
画像マスクを重ねあるいは電子線などを用いて直接パタ
ーンを露光し、現像してパターンを基板上のレジストに
転写した後、残ったレジストパターンをマスクにして上
層の導電性膜をエツチングして電極を形成するエツチン
グ法または基板上に蒸着、スパッタ、cvnたは塗布法
により金属、半導体または半金属の導電性薄膜、絶縁膜
を形成した後、レジストを塗布し、そこに電極のパター
ンを有する画像マスクを重ねあるいは電子線などを用い
て直接パターンを露光し、現像してパターンを基板上の
レジス)K転写した後、再び蒸着、スパッタ、CVDま
たは塗布法により金属、半導体または半金属の導電性薄
膜を形成し、レジストを剥離するリフトオフ法により、
1本または複数の上部電極、リード、パッドを作製する
。次に該基板上に蒸着、スパッタ、CVD″!、たは塗
布法により絶縁膜を形成し、その後、レジスト塗布、N
光、現像、エツチングによシ、電極の測定に用いる部分
のみを露出させる。
When creating microelectrodes, evaporation, sputtering,
A conductive thin film, an insulating film, or a conductive thin film of a metal, semiconductor, or semimetal is formed by CVD or a coating method. A resist is applied onto the substrate, and an image mask having an electrode pattern is overlaid thereon, or the pattern is directly exposed using an electron beam, etc., and the pattern is transferred to the resist on the substrate by development. Forming a conductive thin film or insulating film of metal, semiconductor, or semimetal on a substrate by etching the upper conductive film using a resist pattern as a mask to form an electrode, or by vapor deposition, sputtering, CVN, or coating method. After that, a resist is applied, an image mask having an electrode pattern is placed thereon, or the pattern is directly exposed using an electron beam, developed, and the pattern is transferred to the resist on the substrate. A conductive thin film of metal, semiconductor, or semimetal is formed by sputtering, CVD, or coating, and the lift-off method is used to remove the resist.
Fabricate one or more upper electrodes, leads, and pads. Next, an insulating film is formed on the substrate by vapor deposition, sputtering, CVD''!, or coating method, and then resist coating and N
Only the portion of the electrode used for measurement is exposed to light, development, and etching.

更に下層の導電性層が形成されるまでエツチングを行う
と、上層の電極パター/がマスクとなって絶縁層をエツ
チングし、上部電甑との間隔が絶縁膜の膜厚とほぼ等し
い下部電極を構成することができる。電極作製後、作製
した電極のうち、1本に支持物質となる金属、有機酸化
還元性高分子をメツキ、電解重合法によシ形成し参照電
極とする。
When etching is continued until the lower conductive layer is formed, the upper electrode pattern acts as a mask and etches the insulating layer, forming a lower electrode with a distance from the upper electrode approximately equal to the thickness of the insulating film. Can be configured. After producing the electrodes, one of the produced electrodes is plated with a metal and an organic redox polymer to serve as a supporting material, and formed by electrolytic polymerization to serve as a reference electrode.

〔作 用〕[For production]

本発明においては、2つの作用電極の電極間隔がこれら
を隔てる絶縁膜の膜厚で決まるため、サブミクロンオー
ダーと極めて小さくすることができる。
In the present invention, since the electrode spacing between the two working electrodes is determined by the thickness of the insulating film separating them, it can be extremely small, on the order of submicrons.

〔実施例〕〔Example〕

以下、図面を参照して本発明を実施例により詳細に説明
する。なお、本発明は以下の実施例のみに限定されるも
のでは力い。
Hereinafter, the present invention will be explained in detail by examples with reference to the drawings. It should be noted that the present invention is not limited only to the following examples.

第1図(a)〜(g)は本発明による電気化学的検出器
の製造方法の一実施例を説明する工程の断面図であり、
第2図は電気化学的検出器の構成を示す斜視図である。
FIGS. 1(a) to 1(g) are cross-sectional views illustrating an embodiment of the method for manufacturing an electrochemical detector according to the present invention,
FIG. 2 is a perspective view showing the structure of the electrochemical detector.

実施例1 まず、第1図<a)に示すように厚さ1μmのシリコン
酸化膜1が表面に形成されたシリコン基板(大阪チタニ
ワム社製)1上にフォトレジスト(シラプレー社g: 
MP1400−27)を1μm の厚さに塗布した。次
にこのレジスト塗布シリコン基板2をオーブン中に入れ
、温度80℃、30分の条件でベークした。その後、ク
ロムマスクを用いてマスクアライナ−(キャノン製: 
PLF−521)により20秒間密着露光した。露光し
たシリコン基板2は、レジスト覗像液(シプレー社製:
MPデベロッパー)中で温度20℃、60秒間現像を行
ない、水洗、乾燥してマスクパターンをレジストに転写
した。次にこのレジストパターン付シリコン基板2をス
パッタ装置(アネルバ製:  5PF−332H)内の
所定位置に取シ付け、クロム及び白金を順次スパッタ堆
積させた。この場合、クロムは15秒間、白金は1分間
で圧カフ、5mTorr+パワー50W下で堆積し、全
体で1100nの膜厚になるようにした。その後、この
シリコン基板2をメチルエチルケトン中に浸漬して超音
波処理を行ない、電極形成部分以外のレジストを剥離し
て第1図(b)に示すように下部作用電極3を形成した
Example 1 First, as shown in FIG. 1 <a), a photoresist (Silapray G:
MP1400-27) was applied to a thickness of 1 μm. Next, this resist-coated silicon substrate 2 was placed in an oven and baked at a temperature of 80° C. for 30 minutes. After that, use a chrome mask to apply a mask aligner (manufactured by Canon:
PLF-521) was used for contact exposure for 20 seconds. The exposed silicon substrate 2 is coated with resist imaging liquid (manufactured by Shipley:
The mask pattern was transferred to the resist by developing the film in a 20° C. MP developer for 60 seconds, washing with water, and drying. Next, this resist patterned silicon substrate 2 was attached to a predetermined position in a sputtering device (5PF-332H manufactured by ANELVA), and chromium and platinum were successively deposited by sputtering. In this case, chromium was deposited for 15 seconds and platinum was deposited for 1 minute under a pressure cuff of 5 mTorr + power of 50 W to give a total film thickness of 1100 nm. Thereafter, this silicon substrate 2 was immersed in methyl ethyl ketone and subjected to ultrasonic treatment, and the resist other than the electrode forming portion was peeled off to form the lower working electrode 3 as shown in FIG. 1(b).

その後、スパッタ装置(アネルバ製: 5PF−332
H)内の所定位置に取シ付け、二酸化シリコンのスパッ
タ堆積を行って第1図(c)に示すように第1の絶縁性
g!!4を形成した。この場合、この第1の熱縁性膜4
の成膜は、圧カフ、 5 mTorr +  アルゴン
雰囲気でパワー50W、10分スパッタを行ない、二酸
化シリコン200nmの膜厚とした。次に反射防止膜(
ブリュワサイエンス社製:ARC−2)をスピンコード
処理した後、再びレジストを塗布し、マスクを用いて露
光し、現像後、再びクロム、白金のスパッタを行い、レ
ジストをメチルエチルケトン中で剥離して第1図(d)
に示すようにリード、パッドを持つくし形状の上部作用
電極5,6および第2図に示す対向電極7をパター/形
成した。その後、スピンオングラス(東京応化製:0C
DType−7)  を用い、第1図(elに示すよう
にシリコン基板2上を被りし、第2の絶縁性膜8を形成
した後、再びレジストを塗布し、第1図(f)に示すよ
うにマスクを用いて露光し、電極部分とパッド部分とを
露出させた。次にこのシリコン基板2を反応性イオンエ
ツチング装置(アネルバ製:DEM−451)中に入れ
、Ct Fsガスを流量25SCCM 、圧力0.25
Pa、パワー150Wの条件でレジストパターンRPを
マスクにして15分間第2の絶縁性膜8および第1の絶
縁性膜4のエツチングを行って第1図(g)に示すよう
に下部作用電極3を露出させた。この結果、上部作用電
極5と下部作用電極3との間が非常に小さいかみ合った
くし形電気化学的検出器が得られた。最後にくし形状上
部作用電極5.6の1つ、例えば上部作用電極6にリー
ド線を接続し、温度60℃に加熱した銀メツキ液中で電
流密度1mA、10秒間メツキを行かい、銀を析出させ
て参照電極6′とした。
After that, sputtering equipment (manufactured by ANELVA: 5PF-332)
H) and sputter deposited silicon dioxide to form the first insulating material g! as shown in FIG. 1(c). ! 4 was formed. In this case, this first thermally edged film 4
The film was formed by sputtering using a pressure cuff and a power of 50 W for 10 minutes in an atmosphere of 5 mTorr + argon to obtain a silicon dioxide film with a thickness of 200 nm. Next, anti-reflective coating (
After spin code processing of ARC-2 (manufactured by Brewer Science), resist was applied again, exposed using a mask, developed, sputtered with chromium and platinum again, and the resist was peeled off in methyl ethyl ketone. Figure 1(d)
Comb-shaped upper working electrodes 5 and 6 having leads and pads as shown in FIG. 2 and a counter electrode 7 shown in FIG. 2 were patterned/formed. After that, spin-on glass (Tokyo Ohka: 0C)
After forming a second insulating film 8 covering the silicon substrate 2 as shown in FIG. 1 (el) using a resist film (DType-7), a resist is applied again to form the second insulating film 8 as shown in FIG. 1 (f). The silicon substrate 2 was exposed using a mask to expose the electrode portion and the pad portion.Next, this silicon substrate 2 was placed in a reactive ion etching device (manufactured by ANELVA: DEM-451), and CtFs gas was etched at a flow rate of 25 SCCM. , pressure 0.25
The second insulating film 8 and the first insulating film 4 are etched for 15 minutes using the resist pattern RP as a mask under conditions of Pa and power of 150 W, and the lower working electrode 3 is etched as shown in FIG. 1(g). exposed. This resulted in a comb-shaped electrochemical detector with very small interdigitation between the upper working electrode 5 and the lower working electrode 3. Finally, a lead wire is connected to one of the comb-shaped upper working electrodes 5.6, for example, the upper working electrode 6, and plating is performed for 10 seconds at a current density of 1 mA in a silver plating solution heated to a temperature of 60°C to remove silver. It was deposited to form a reference electrode 6'.

第2図はこのようにして作製された電気化学的検出器の
構成を示したものであり、第1図の構成と同一部分には
同一符号を付しである。同図において、上部作用電極5
および下部作用電極3のくし歯方向の長さは2mm、そ
の幅は2μmである。
FIG. 2 shows the structure of the electrochemical detector thus produced, and the same parts as in the structure of FIG. 1 are given the same reference numerals. In the figure, the upper working electrode 5
The length of the lower working electrode 3 in the comb tooth direction is 2 mm, and the width thereof is 2 μm.

この電気化学的検出器をフローセルに装着し、参照電極
6’に対し、上部作用電極5の一方の電位を0.7Vに
、下部作用電極3の電位を−0,1■にそれぞれ設定し
、1μmo L/ tの7エロセン100μtを流速0
.8mt/rninのもとで注入したところ、該くし形
電極5.6′は直ちに応答し、30 m5ecでピーク
電流値55 nAを示し、50m5ecで元に戻った。
This electrochemical detector is attached to a flow cell, and with respect to the reference electrode 6', one potential of the upper working electrode 5 is set to 0.7 V, and the potential of the lower working electrode 3 is set to -0, 1. 1 μmo L/t of 7 Erosene 100 μt at a flow rate of 0
.. When injected under 8 mt/rnin, the comb electrode 5.6' responded immediately and showed a peak current value of 55 nA at 30 m5ec, returning to the original value at 50 m5ec.

上記電極と同一面積の円形電極を用いて同様の実験を行
なったところ、50m5ecでピーク電流値0.29n
A hl’)、 500m8・Cで元に戻った。
When a similar experiment was conducted using a circular electrode with the same area as the above electrode, the peak current value was 0.29n at 50m5ec.
A hl'), returned to normal at 500m8・C.

実施例2゜ 実施例1で作製した1杼の上部作用室t#、5にリード
線を接続し、濃度5mg/mtのグルコースオキシター
ゼ、濃度0.1 mat/Lの塩化カリワムの混合水溶
液に浸漬し、電極の電位を参照電極6′に対し、O,S
Vに設定して30分間電気分解し、電甑上にグルコース
オキシターゼ分子を固定化した。この電気化学的検出器
を70−セルに装着し、下部作用電極3の電位を0.7
■に設定し、リン酸緩衝液(0,1moL/l 、 p
H= 6.8 )に溶解させた1mmot/lのグルコ
ース100μtを流速0.8mt/minのもとで注入
したところ、該くし形電極5,6′は直ちに応答し、3
0m5eCでピーク電流値2.4μAを示し、50mB
ec で元に戻った。同一面積の円形電極をグルコース
オキシターゼで修飾して同様の実験を行なった場合には
、soomsec  でピーク電流値12nAとなり、
2secで元に戻った。
Example 2゜A lead wire was connected to the upper working chamber t#, 5 of the shuttle produced in Example 1, and immersed in a mixed aqueous solution of glucose oxidase at a concentration of 5 mg/mt and potassium chloride at a concentration of 0.1 mat/L. Then, the potential of the electrode is set to O, S with respect to the reference electrode 6'.
Electrolysis was carried out for 30 minutes at a setting of V, and glucose oxidase molecules were immobilized on the electrolyte. This electrochemical detector was installed in a 70-cell, and the potential of the lower working electrode 3 was set to 0.7.
■, and add phosphate buffer (0.1 mol/l, p
When 100 μt of 1 mmot/l glucose dissolved in H=6.8) was injected at a flow rate of 0.8 mt/min, the comb-shaped electrodes 5 and 6' immediately responded, and 3
Shows a peak current value of 2.4μA at 0m5eC, 50mB
I got back to normal with ec. When a similar experiment was conducted with a circular electrode of the same area modified with glucose oxidase, the peak current value was 12 nA in soomsec,
It returned to normal in 2 seconds.

実施例3 実施例1で作製した電気化学的検出器を液相クロマトグ
ラフィに装着し、参照電極6′に対し上部作用電極5の
電位を0.7Vに、下部作用電極3の電位を−0,1■
にそれぞれ設定し、濃度100μmol/Lのアスコル
ビン酸、濃度100μmot/lのドーパミンの混合溶
液100μLを流速0.8 m L/minのもとで注
入した。その結果、注入後、3分で上部作用電極5側の
みにアスコルビン酸の酸化電流が観測され、下部作用電
極3では電流が大きく減少した。さらに注入後、8分で
上部作用電極5側ではドーパミンの酸化電流(85nA
)。
Example 3 The electrochemical detector prepared in Example 1 was attached to a liquid phase chromatography system, and the potential of the upper working electrode 5 was set to 0.7 V with respect to the reference electrode 6', and the potential of the lower working electrode 3 was set to -0. 1■
100 μL of a mixed solution of ascorbic acid with a concentration of 100 μmol/L and dopamine with a concentration of 100 μmol/L was injected at a flow rate of 0.8 mL/min. As a result, oxidation current of ascorbic acid was observed only on the upper working electrode 5 side 3 minutes after injection, and the current decreased significantly on the lower working electrode 3 side. Furthermore, 8 minutes after the injection, the oxidation current of dopamine (85 nA
).

下部作用電極3側では酸化されたドーバミ/の還元電流
が観測された。下部作用電極3を接続せず、上部作用電
極5の電位を0.7■に設定して同様のことを行なった
ところ、ドーパミンの酸化電流は、下部作用電極3を接
続して行なった場合の20分の1(4,2nA)であっ
た。
On the lower working electrode 3 side, a reduction current of oxidized dobami/ was observed. When the same thing was done without connecting the lower working electrode 3 and setting the potential of the upper working electrode 5 to 0.7■, the oxidation current of dopamine was the same as when the lower working electrode 3 was connected. It was 1/20th (4.2 nA).

実施例4、 膜厚0.3 mmの石英基板を、スパッタ族!(アネル
バ製: 5PF332H)内の所定位置に取υ付け、ク
ロム、白金を順次スパッタし、膜形成を行った。
Example 4: A quartz substrate with a film thickness of 0.3 mm was sputtered! (manufactured by ANELVA: 5PF332H) was mounted at a predetermined position, and chromium and platinum were sequentially sputtered to form a film.

圧力10  ”Torr  のアルゴン雰囲気でクロム
=50W:10秒、白金ニア0W:1分間のスパッタを
行ない、クロム、白金i:1100nの膜厚とした。そ
の後、該クロム、白金付き石英基板上にフォトレジスト
(シラプレー社製:MP14o。
Sputtering was performed in an argon atmosphere at a pressure of 10" Torr for 10 seconds for chromium = 50 W and 1 minute for platinum at 0 W to obtain a film thickness of chromium and platinum i of 1100 nm. Thereafter, a photo film was deposited on the chromium and platinum-coated quartz substrate. Resist (manufactured by Silapray: MP14o.

27)を1μmの厚みに塗布した。このレジスト塗布石
英基板をオープン中に入れ、温度80C。
27) was applied to a thickness of 1 μm. This resist-coated quartz substrate was placed in an open chamber at a temperature of 80C.

30分の条件でベークした。その後、クロムマスクを用
いてマスクアライナ−(キャノン製)にょシ、20秒間
密着露光した。露光した石英基板は、レジスト現像液(
シプレー社g:MPデベロパー)中で温度20℃、60
秒間現像を行ない、水洗。
It was baked for 30 minutes. Thereafter, contact exposure was performed for 20 seconds using a chrome mask and a mask aligner (manufactured by Canon). The exposed quartz substrate is treated with a resist developer (
Shipley Co. g: MP Developer) at a temperature of 20°C and 60°C.
Develop for seconds and wash with water.

乾燥してマスクパターンをレジストに転写シタ。Dry and transfer the mask pattern to the resist.

次に該基板を電子サイクロトロン共鳴形スパッタ装置(
アネルバ製:ECRスパッタ)に入れ、アルゴンガス圧
10   Torr t RFパワー200W。
Next, the substrate was sputtered using an electron cyclotron resonance sputtering device (
Anelva (ECR sputter)), argon gas pressure 10 Torr, RF power 200W.

引出し電圧300■にて白金をエツチングした。Platinum was etched at a drawing voltage of 300 µm.

レジストをメチルエチルケトンで剥離後、該基板を再び
スパッタ装置中に入れ、アルゴン圧力10 ”Torr
 *  パワー100Wで二酸化シリコン10分、クロ
ム10秒、白金1分のスパッタを行ない、200nmの
二酸化シリコン膜1100nの白金/クロム膜を形成し
た。その後、電子線レジスト(ダイキン工業社製:φ−
MAC)  を1μmの厚みに塗布した。このレジスト
塗布石英基板をオーブン中に入れ、180℃、60分の
条件でベークした。その後、電子線露光装置(日本電子
製:JSM−840)に入れ、電子線の加速電圧10k
V。
After removing the resist with methyl ethyl ketone, the substrate was put into the sputtering equipment again and the argon pressure was set at 10” Torr.
* Sputtering was performed with silicon dioxide for 10 minutes, chromium for 10 seconds, and platinum for 1 minute at a power of 100 W to form a platinum/chromium film of 1100 nm of silicon dioxide with a thickness of 200 nm. After that, electron beam resist (manufactured by Daikin Industries, Ltd.: φ-
MAC) was applied to a thickness of 1 μm. This resist-coated quartz substrate was placed in an oven and baked at 180° C. for 60 minutes. After that, it was placed in an electron beam exposure device (manufactured by JEOL Ltd.: JSM-840), and the acceleration voltage of the electron beam was 10k.
V.

露光量5μC/ m ”の条件でピッチ3.5μm、ギ
ャップ0.5μmの長さ1.0 mmのがみ合ったくし
形電極パターンを露光した。所定の現像液で現像後、ク
ロム、白金膜をECRスパッタ装置(アネルバ製)にて
白金をエツチングし、レジストを溶剤により除去してか
み合ったくし形電極パターンを形成した。
Interlocking interdigitated electrode patterns with a pitch of 3.5 μm, a gap of 0.5 μm and a length of 1.0 mm were exposed at an exposure dose of 5 μC/m”. After development with a specified developer, a chromium and platinum film was formed. Platinum was etched using an ECR sputtering device (manufactured by ANELVA), and the resist was removed with a solvent to form interlocking interdigitated electrode patterns.

次に該基板を再びスパッタ装置中に入れ、二酸化シリコ
ン膜を150nmの厚みに形成した。その後、該基板上
に7オトレジスト(シプレー社製:AZ1400−27
)を1μmの厚みに塗布し、クロムマスクを用いてくし
形電極部分、参照電極。
Next, the substrate was put into the sputtering apparatus again, and a silicon dioxide film was formed to a thickness of 150 nm. Thereafter, a 7-otoresist (manufactured by Shipley Co., Ltd.: AZ1400-27) was applied on the substrate.
) to a thickness of 1 μm and use a chrome mask to form the comb-shaped electrode part and the reference electrode.

対向電極、パッド部分のみを露光、現像した。次に該基
板を反応性イオンエツチング装置(アネルバ製:DEM
−451)中に入れ、C,F、ガスを流量258CCM
 、圧力0.25Pa、パワー150Wの条件でレジス
トパターンをマスクにして2分間の二酸化シリコンのエ
ツチングを行って上部および下部電極を露出させた。ま
た、参照電極部分には参照物質として実施例1と同様な
方法で銀をメツキした。
Only the counter electrode and pad portions were exposed and developed. Next, the substrate was etched using a reactive ion etching device (manufactured by ANELVA: DEM).
-451) Put C, F, and gas at a flow rate of 258 CCM
Using the resist pattern as a mask, silicon dioxide was etched for 2 minutes under conditions of a pressure of 0.25 Pa and a power of 150 W to expose the upper and lower electrodes. Further, the reference electrode portion was plated with silver as a reference material in the same manner as in Example 1.

この電気化学的検出器を70〜セルに装着し、参照電極
に対し上部作用電極の一方の電位を0.7■に、下部作
用電極の電位を一〇、1vにそれぞれ設定し、1μmo
llLの7エロセン100μtを流速0.4mt/mi
n のもとで注入したところ、該くし形電極は直ちに応
答し、24m5ecでピーク電流値160nAを示し、
’13m5@cで元に戻った。
This electrochemical detector was installed in the cell 70~, and the potential of one of the upper working electrodes was set to 0.7V and the potential of the lower working electrode was set to 1V and 1V, respectively, with respect to the reference electrode.
llL of 7 Erosene 100 μt at a flow rate of 0.4 mt/mi
When injected under n, the comb electrode responded immediately with a peak current value of 160 nA at 24 m5ec;
'I returned to normal at 13m5@c.

実施例5〜8 実施例1において、二酸化シリコンのスパッタ時間を変
えることによシ、上部作用電極と下部作用電極との間の
距離を10100n実施例5)。
Examples 5-8 In Example 1, the distance between the upper working electrode and the lower working electrode was 10100n by changing the sputtering time of silicon dioxide (Example 5).

300nm (実施例6 ) 、 500nm (実施
例7)および11000n (実施例8)とした時の上
部作用電極でのピーク電流値を表1に示す。
Table 1 shows the peak current values at the upper working electrode at 300 nm (Example 6), 500 nm (Example 7), and 11000 nm (Example 8).

表1 〔発明の効果〕 以上説明したように本発明の電気化学的検出器では、2
つの作用電極の電極間隔がこれらを隔てる絶縁性膜の膜
厚で決まるため、サブミクロンオーダーときわめて小さ
くすることができ、一方の電極で酸化(あるいは還元)
された物質をもう一方の電極で100%近く還元(ある
いは酸化)することができる。この元にもどった物質を
再び検出するレドックスサイクリングによりこれまでの
検出器に比べ100倍以上感度が向上した。また、これ
までアスコルビン酸が妨害物質となって測定が困難であ
った試料についても一方の電極でアスコルビン酸を酸化
させ、電気化学的に不活性にした後、もう一方の電極で
目的物質を検出することにより、アスコルビン酸に妨害
されることなく検出できた。更にリングラフィ技術を用
いて作製するため、任意のサイズ、形状、電極間距離の
作用電極、参照電極、対向電極を持つ測定セルを安価で
多量に得ることができ、簡単外装置で測定可能など多く
の利点を持つため、フローセルや液相りロマトグラフイ
用の電気化学的検出器として極めて利用価値が大きいな
どの極めて優れた効果が得られる。
Table 1 [Effects of the Invention] As explained above, the electrochemical detector of the present invention has two
Since the electrode spacing between the two working electrodes is determined by the thickness of the insulating film that separates them, it can be made extremely small, on the order of submicrons, and oxidation (or reduction) occurs at one electrode.
The other electrode can reduce (or oxidize) the oxidized substance by nearly 100%. Redox cycling, which detects the substance that has returned to its original state, has improved sensitivity by more than 100 times compared to previous detectors. In addition, for samples that have been difficult to measure due to ascorbic acid being an interfering substance, one electrode can oxidize the ascorbic acid to make it electrochemically inactive, and then the target substance can be detected with the other electrode. By doing this, it was possible to detect it without being interfered with by ascorbic acid. Furthermore, since it is manufactured using phosphorography technology, measurement cells with working electrodes, reference electrodes, and counter electrodes of any size, shape, and distance between electrodes can be obtained in large quantities at low cost, and measurements can be easily performed using external equipment. Because it has many advantages, it has extremely excellent effects, such as being extremely useful as an electrochemical detector for flow cells and liquid phase chromatography.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜ω)は本発明による電気化学的検出器の
製造方法を説明する工程の断面図、第2図は本発明によ
る電気化学的検出器の一実施例を示す斜視図である。 1・・−・シリコン酸化Jl、2−・・eシリコン基板
、3・・・・下部作用電極、4・・・・第1の絶縁性膜
、5,6・・・・上部作用電極、6′・・・・参照電極
、T・・・・対向電極、8・・・・第2の絶縁性膜。 特許出願人  日本電信電話株式会社
Figures 1(a) to ω) are cross-sectional views illustrating the process of manufacturing an electrochemical detector according to the present invention, and Figure 2 is a perspective view showing an embodiment of the electrochemical detector according to the present invention. be. 1... Silicon oxide Jl, 2-... e silicon substrate, 3... Lower working electrode, 4... First insulating film, 5, 6... Upper working electrode, 6 '...Reference electrode, T...Counter electrode, 8...Second insulating film. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板上に複数のパターン状導電性薄膜電極
が形成され、各導電性薄膜電極は微小な平面的間隙およ
び/あるいは絶縁性膜を介した立体的段差による微小間
隙によつて分離され、各導電性薄膜電極表面の少なくと
も一部が露出されていることを特徴とした電気化学的検
出器。
(1) A plurality of patterned conductive thin film electrodes are formed on an insulating substrate, and each conductive thin film electrode is separated by a minute planar gap and/or a minute gap formed by a three-dimensional step through the insulating film. an electrochemical detector, wherein at least a portion of the surface of each conductive thin film electrode is exposed.
(2)絶縁性基板上に所望のパターン形状を有する単数
あるいは互いに平面的間隙で絶縁された複数の導電性薄
膜を形成し、該導電性薄膜を絶縁性膜で被覆した後、該
絶縁性膜上に再び所望のパターン形状を有する単数ある
いは互いに平面的間隙で絶縁された複数の導電性薄膜を
形成し、次いで該上部導電性薄膜をマスクとして絶縁性
膜を下部導電性薄膜が現われるまでエッチングすること
により電極を形成し、該電極の1本を対向電極に、他の
1本を酸化還元物質で被覆して参照電極に、残りを作用
電極としたことを特徴とする電気化学的検出器の製造方
法。
(2) After forming a single conductive thin film having a desired pattern shape or a plurality of conductive thin films insulated from each other with a planar gap on an insulating substrate, and covering the conductive thin film with an insulating film, the insulating film A single conductive thin film or a plurality of conductive thin films insulated from each other with a planar gap are formed on top again having a desired pattern shape, and then, using the upper conductive thin film as a mask, the insulating film is etched until the lower conductive thin film appears. An electrochemical detector characterized in that one of the electrodes is used as a counter electrode, the other is coated with a redox substance and used as a reference electrode, and the remaining electrodes are used as a working electrode. Production method.
JP63294009A 1988-11-21 1988-11-21 Electrochemical detector and production thereof Pending JPH02140655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63294009A JPH02140655A (en) 1988-11-21 1988-11-21 Electrochemical detector and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63294009A JPH02140655A (en) 1988-11-21 1988-11-21 Electrochemical detector and production thereof

Publications (1)

Publication Number Publication Date
JPH02140655A true JPH02140655A (en) 1990-05-30

Family

ID=17802068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63294009A Pending JPH02140655A (en) 1988-11-21 1988-11-21 Electrochemical detector and production thereof

Country Status (1)

Country Link
JP (1) JPH02140655A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118057A (en) * 1992-10-05 1994-04-28 Agency Of Ind Science & Technol Coulometric detector and concentration measuring method
JPH08261979A (en) * 1995-03-20 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> Electrode for sensor
US6829777B2 (en) 2000-04-17 2004-12-07 Sony Corporation Turn table and optical disk using the turn table
JP2007506968A (en) * 2003-09-26 2007-03-22 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Sensor array integrated electrochemical chip, formation method thereof, and electrode coating
JP2009524811A (en) * 2006-01-27 2009-07-02 インテリテクト ウォーター リミティド Alternating comb microelectrodes and process for producing alternating comb microelectrodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150263B2 (en) * 1978-10-17 1986-11-04 Hitachi Ltd
JPS61270652A (en) * 1985-05-25 1986-11-29 Matsushita Electric Works Ltd Biosensor
JPH0219757A (en) * 1988-07-08 1990-01-23 Nippon Telegr & Teleph Corp <Ntt> Micro-electrode cell for electrochemical measurement and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150263B2 (en) * 1978-10-17 1986-11-04 Hitachi Ltd
JPS61270652A (en) * 1985-05-25 1986-11-29 Matsushita Electric Works Ltd Biosensor
JPH0219757A (en) * 1988-07-08 1990-01-23 Nippon Telegr & Teleph Corp <Ntt> Micro-electrode cell for electrochemical measurement and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118057A (en) * 1992-10-05 1994-04-28 Agency Of Ind Science & Technol Coulometric detector and concentration measuring method
JPH08261979A (en) * 1995-03-20 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> Electrode for sensor
US6829777B2 (en) 2000-04-17 2004-12-07 Sony Corporation Turn table and optical disk using the turn table
US7191458B2 (en) 2000-04-17 2007-03-13 Sony Corporation Turntable and optical disk using the turntable
JP2007506968A (en) * 2003-09-26 2007-03-22 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Sensor array integrated electrochemical chip, formation method thereof, and electrode coating
JP2009524811A (en) * 2006-01-27 2009-07-02 インテリテクト ウォーター リミティド Alternating comb microelectrodes and process for producing alternating comb microelectrodes

Similar Documents

Publication Publication Date Title
US5389215A (en) Electrochemical detection method and apparatus therefor
EP0569908B1 (en) Electrochemical detection method and apparatus therefor
US20110308942A1 (en) Microelectrode array sensor for detection of heavy metals in aqueous solutions
US5882497A (en) Semiconducting organic polymers for gas sensors
WO2009144869A1 (en) Method for detecting or quantitating target substance by using electrochemical measurement device, electrochemical measurement device, and electrode plate for electrochemical measurement
JP2992603B2 (en) Wall jet type electrochemical detector and method of manufacturing the same
JPH02140655A (en) Electrochemical detector and production thereof
JP2556993B2 (en) Micropore electrode cell for electrochemical measurement and method for producing the same
US7635422B2 (en) Electrode plate for electrochemical measurements
JP3108499B2 (en) Microelectrode cell for electrochemical detection and method for producing the same
JPH03179248A (en) Fine pore array electrode for electrochemical analysis and manufacture thereof
WO1998041853A1 (en) Gas sensor
KR20120126977A (en) CNT-based three electrode system, fabrication of the same and electrochemical biosensor using the same
JP2564030B2 (en) Method for producing carbon thin film electrode for electrochemical measurement
JP2590004B2 (en) Comb-shaped modified microelectrode cell and method for producing the same
JP2577045B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JPH0219757A (en) Micro-electrode cell for electrochemical measurement and its production
JP3047048B2 (en) Wall jet type electrochemical detector and method of manufacturing the same
JP2566173B2 (en) Electrochemical detector
JPH09127039A (en) Electrochemical detector and its manufacture
JP2009210362A (en) Microelectrochemical detector
JPH0251055A (en) Electrode cell for electrochemical measurement and manufacture thereof
JP2590002B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JPH03246460A (en) Electrochemical detector
JPH09101283A (en) Electrochemical detector and its manufacture