JPH08261979A - Electrode for sensor - Google Patents

Electrode for sensor

Info

Publication number
JPH08261979A
JPH08261979A JP7088709A JP8870995A JPH08261979A JP H08261979 A JPH08261979 A JP H08261979A JP 7088709 A JP7088709 A JP 7088709A JP 8870995 A JP8870995 A JP 8870995A JP H08261979 A JPH08261979 A JP H08261979A
Authority
JP
Japan
Prior art keywords
electrode
sensor
small
layer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7088709A
Other languages
Japanese (ja)
Other versions
JP3244249B2 (en
Inventor
Hisataka Takenaka
久貴 竹中
Toru Maruno
透 丸野
Fumio Yamamoto
二三男 山本
Shigekuni Sasaki
重邦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP08870995A priority Critical patent/JP3244249B2/en
Publication of JPH08261979A publication Critical patent/JPH08261979A/en
Application granted granted Critical
Publication of JP3244249B2 publication Critical patent/JP3244249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To make an electrode area very small and improve sensitivity by forming a multi-layer film sensor laminated with an insulator thin film and a metal thin film alternately into two or more layers on a substrate. CONSTITUTION: A multi-layer film laminated with 50 pairs of an Au metal layer 2 of 10nm and a SiO2 insulating layer 3 of 10nm alternately is formed on a SiO2 substrate 1, for example, it is cut to the required size, the cut face is polished, and a liquid or gas detecting sensor using the metal layers 2 as electrodes is formed. Since the electrodes (metal layers) 2 of this sensor are small, the current value is small, the iR drop is small, and a sample having high electric resistance can be measured at a high S-N ratio because of a small charging current of the electric double layer. The substance is isotropically diffused to the electrodes 2, the current density is high, and stationary state can be recovered in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い検出感度を有するセ
ンサー用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor electrode having high detection sensitivity.

【0002】[0002]

【従来の技術】従来、溶液中の微量物質の検出などには
電気化学測定が多く用いられていた。一般には電極のサ
イズが大きいため、感度が低いという問題があった。こ
れを改善するため数μm〜10μm幅で数mmの長さの
金属を櫛形に配置した電極を用いて微量物質を検出しよ
うという試みもなされてきた[例えばO.Niwa, M.Morit
a, and H.Tabei, Electroanalysis, 3, 163(1991)]。
一方、このような方式により、液体を用いてガスと電解
液との反応で起こる電気分解を利用することで溶液中の
分析のみならず、大気中のガスを検出しようとする電気
化学式ガスセンサーも提案されていた。ガスセンサーは
この方法以外に酸化物半導体、有機半導体、固体電解
質、多孔質セラミックスを使用するものなども多数提案
されていた[例えば新田正義、武田義章、原留美吉著ガ
スセンサとその応用(パワー社)]。半導体の性質を持
つセラミックスを用いたガスセンサーはセラミックス表
面で起こる各種ガスの吸着および脱離によるセラミック
スの電気伝導度の変化を利用する。電解質セラミックス
を用いたガスセンサーでは相対する2つの面でガスの濃
度に差があるとき、セラミックス内をイオンが移動し、
このため起電力が生じる。セラミックスの一方の面でガ
ス濃度が明らかになっていればこの起電力を利用して他
方の面でのガス濃度が検出可能となる。多孔質セラミッ
クスを用いたガスセンサーでは表面に触媒を分散させた
セラミックス担体が高温状態で可燃性ガスに触れるとガ
スが燃焼し、セラミックスの温度が上昇する。セラミッ
クスの内部に金属線を埋め込んでおくと、金属線の抵抗
値が変化するので、これを利用することでガス濃度が明
らかになるなど多くの方法が用いられている。これら以
外にガス吸着により生じる重量変化を利用したセンサー
などもある。いずれにしても問題は感度が十分でなく、
ppmオーダー以下のガス濃度の分析が極めて困難なこ
とであった。
2. Description of the Related Art Conventionally, electrochemical measurement has been widely used for detecting trace substances in a solution. In general, there is a problem that the sensitivity is low because the size of the electrode is large. In order to improve this, attempts have been made to detect trace substances by using electrodes in which a metal having a width of several μm to 10 μm and a length of several mm is arranged in a comb shape [eg O. Niwa, M. Morit.
a, and H. Tabei, Electroanalysis, 3, 163 (1991)].
On the other hand, according to such a method, not only the analysis in the solution by utilizing the electrolysis that occurs in the reaction between the gas and the electrolytic solution using the liquid, but also the electrochemical gas sensor for detecting the gas in the atmosphere Was proposed. In addition to this method, many gas sensors using oxide semiconductors, organic semiconductors, solid electrolytes, porous ceramics, etc. have been proposed [eg, Masayoshi Nitta, Yoshiaki Takeda, Mikichi Harumaru and their applications (power. Company)]. A gas sensor using a ceramic having a semiconductor property utilizes a change in electric conductivity of the ceramic due to adsorption and desorption of various gases on the surface of the ceramic. In a gas sensor using electrolyte ceramics, when there is a difference in gas concentration between two opposing surfaces, ions move in the ceramics,
Therefore, electromotive force is generated. If the gas concentration on one side of the ceramic is known, this electromotive force can be used to detect the gas concentration on the other side. In a gas sensor using porous ceramics, when a ceramic carrier having a catalyst dispersed on its surface comes into contact with a combustible gas in a high temperature state, the gas burns and the temperature of the ceramic rises. If a metal wire is embedded inside the ceramics, the resistance value of the metal wire changes, so many methods are used, such as using this to clarify the gas concentration. Other than these, there are sensors that utilize the weight change caused by gas adsorption. In any case, the problem is that the sensitivity is not sufficient,
It has been extremely difficult to analyze the gas concentration on the order of ppm or less.

【0003】[0003]

【発明が解決しようとする課題】溶液中の微量物質を検
出する電気化学測定においては電極サイズが大きいた
め、感度に限界がある。現在、最も高感度の電極とされ
る櫛形電極においてさえ、最も微小なサイズが数μmで
あるため、溶液中においても10nmol/dm3を切
る濃度を検出する感度がやっとであった。また、これを
ガスセンサーとして使用する場合においても、ガス成分
が溶液にとけ込む量が極めて少ないため、感度は桁違い
に悪くなるという欠点があった。本発明によるガスセン
サーとして関連するのは、上記の電気分解反応を利用し
た電気化学式ガスセンサー以外に多孔質セラミックスセ
ンサーが存在する。この多孔質セラミックスセンサーも
感度が高くないという問題を持つ。しかも多孔質セラミ
ックスセンサーはこれに加え、ガス吸着用の細孔のサイ
ズを最適化すること、また、その分布を最適に制御する
ことが困難であるという問題があった。また、溶液を用
いる電気化学式ガスセンサーは電極面で起こる電極反応
による電流を検知するのに、電解液を用いる必要がある
ので電解液の水分の蒸発・吸収などが生じるため制御が
困難という問題もあった。本発明は従来の問題点を解決
し、感度が高く、作製制御性に優れたガスセンサーを提
供することを目的としている。
In the electrochemical measurement for detecting a trace substance in a solution, the electrode size is large and the sensitivity is limited. At present, even the comb-shaped electrode, which is the most sensitive electrode, has the smallest size of several μm, so that the sensitivity for detecting the concentration below 10 nmol / dm 3 was barely reached even in the solution. In addition, even when this is used as a gas sensor, the amount of the gas component that melts into the solution is extremely small, so that there is a drawback in that the sensitivity deteriorates by an order of magnitude. Related to the gas sensor according to the present invention is a porous ceramics sensor in addition to the electrochemical gas sensor utilizing the above electrolysis reaction. This porous ceramics sensor also has a problem that the sensitivity is not high. In addition to this, the porous ceramics sensor has a problem that it is difficult to optimize the size of the gas adsorption pores and to control the distribution thereof optimally. In addition, an electrochemical gas sensor that uses a solution also requires the use of an electrolytic solution to detect an electric current due to an electrode reaction that occurs on the electrode surface, so that it is difficult to control because the evaporation and absorption of water in the electrolytic solution occurs. there were. An object of the present invention is to solve the conventional problems, and to provide a gas sensor having high sensitivity and excellent controllability of production.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め本発明は溶液またはガスを検知するセンサにおいて、
基板上に絶縁体薄膜と金属薄膜とが積み重なった構造の
多層膜からなり、該金属薄膜を電極として使用すること
を発明の特徴とするものである。さらに本発明は前記絶
縁体薄膜と金属薄膜とが交互に2層以上積層されている
ことを発明の特徴とするものである。
To achieve the above object, the present invention provides a sensor for detecting a solution or a gas,
The invention is characterized in that it is composed of a multilayer film having a structure in which an insulator thin film and a metal thin film are stacked on a substrate, and the metal thin film is used as an electrode. Furthermore, the present invention is characterized in that the insulator thin film and the metal thin film are alternately laminated in two or more layers.

【0005】[0005]

【作用】電気化学判定において電極面積を小さくする
と、電極形状にもよるが、電極への物質の拡散状態が一
次元から2次元、3次元拡散が支配的となる、即ち、斜
め方向の拡散によっても物質が電極に供給されるため、
単位時間、単位体積あたりに到達する物質量が電極の微
細化にともない急激に増加する。その結果、観測される
電流密度が大幅に増大する。このような電極面積の小さ
な電極を電気化学判定に適用すると 電極が小さいため電流値が小さくなりiRドロップ
が小さくなる。このため電気抵抗の高い試料の測定が可
能になる。 電気2重層の充電電流が小さくなるため高速でS/
N比の高い測定が可能になる。 拡散が等方的になるため電流密度が高く、定常状態
になる時間が早い。などの特徴が現れるようになる。
When the electrode area is reduced in the electrochemical judgment, the diffusion state of the substance into the electrode becomes dominant from one-dimensional to two-dimensional and three-dimensional diffusion, that is, depending on the electrode shape. Substance is supplied to the electrode,
The amount of substance that reaches per unit time and unit volume increases rapidly with the miniaturization of electrodes. As a result, the observed current density is significantly increased. When such an electrode having a small electrode area is applied to the electrochemical determination, the current value becomes small and the iR drop becomes small because the electrode is small. Therefore, it becomes possible to measure a sample having high electric resistance. Since the charging current of the electric double layer becomes small, S /
Measurement with a high N ratio becomes possible. Since the diffusion becomes isotropic, the current density is high and the time to reach a steady state is short. And other features will appear.

【0006】一方、薄膜を積み重ねた多層膜は1nm程
度から数μmの微細な積層構造をとることができる。こ
のため、複数の金属層を絶縁体層を挟んで1nm程度か
ら数μmの微細な間隔で並べたのち、薄膜面に垂直ある
いは様々な傾きをもった角度で切断することにより積層
膜の断面を露出させ金属層を電極とし、これら電極間に
電圧源と接続する配線を形成すると1nm程度から数1
000nmサイズという微小な電極が容易に形成可能と
なる。これを電極として用いると極めて高い抵抗溶液中
においても溶液内の電位降下が小さくなりより正確に電
極電位を測定できることになる。また、電流密度が大き
くなるので、低濃度溶液中の物質の検出や濃度の検出が
可能となる。また、このような電極サイズでは水蒸気、
エチルアルコール、アンモニアガスその他の可燃性ガス
などが電極を覆った場合においても、電極間隔が極めて
小さいので、電極表面に吸着したガス分子を抵抗変化等
により電気的に検出することが可能となる。この電流を
読みとることでガスの検知が可能となる。上記の微細電
極であるため感度が高いという特徴[青木幸一:電気化
学56,1391A(1988)]のみならず、通常の
電気化学式センサーにくらべ電解液が不要となるため取
り扱いも簡単になるという効果が生じる。以下にその実
施例を示す。本発明の電極としては導電性が高ければ良
いため、Al,Cu,Au,Pt等の金属が好適に使用
できる。電極間の間をあけるスペーサー層としては酸化
物などの絶縁体であればよいのでSiO2 等の酸化物、
Si3 4 等の窒化物が好適に使用できる。
On the other hand, a multilayer film in which thin films are stacked can have a fine laminated structure of about 1 nm to several μm. For this reason, a plurality of metal layers are arranged at a fine interval of about 1 nm to several μm with an insulator layer sandwiched therebetween, and then cut at a vertical angle to the thin film surface or at an angle with various inclinations to form a cross section of the laminated film. When the exposed metal layer is used as an electrode and a wiring for connecting to a voltage source is formed between these electrodes, it is about 1 nm to several 1
It is possible to easily form a minute electrode having a size of 000 nm. If this is used as an electrode, the potential drop in the solution becomes small even in an extremely high resistance solution, and the electrode potential can be measured more accurately. Moreover, since the current density is increased, it is possible to detect the substance in the low-concentration solution and to detect the concentration. Also, with such an electrode size, water vapor,
Even when ethyl alcohol, ammonia gas or other combustible gas covers the electrode, the electrode interval is extremely small, so that gas molecules adsorbed on the electrode surface can be electrically detected by resistance change or the like. Gas can be detected by reading this current. In addition to the feature of high sensitivity due to the above-mentioned fine electrodes [Koichi Aoki: Electrochemistry 56, 1391A (1988)], an electrolytic solution is not required as compared with the usual electrochemical type sensor, and thus the handling is easy. Occurs. The example is shown below. A metal such as Al, Cu, Au or Pt can be preferably used for the electrode of the present invention as long as it has high conductivity. Since the spacer layer between the electrodes may be an insulator such as an oxide, an oxide such as SiO 2
A nitride such as Si 3 N 4 can be preferably used.

【0007】[0007]

【実施例】次に本発明を実施例について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲で、種々の変更あるいは改良を行いうることは云
うまでもない。 (実施例1)基板1としてSiを使用し、これを真空チ
ャンバーの下部に2つのスパッタ蒸着源(ターゲットと
呼ぶ)をもち基板をターゲットに対向させてチャンバー
の上部にとりつけることができ、かつ、基板ホルダーが
公転してターゲット上を回転することが可能な回転式対
向型スパッタ装置にセットする。蒸着源にAuとSiO
2 を使用し、真空チャンバー内を10-8Torr台まで
排気後Arガスを5×10-3torr導入し、Auター
ゲットは200Wの、SiO2 は300Wのパワーでr
f放電を行う。このあとSi基板を基板ホルダーごと回
転させて、Si基板をAuターゲット上とSiO2 ター
ゲット上を交互に通過させる。この場合、基板ホルダー
は一定速度で回転していることでスパッタ法ではスパッ
タ粒子の堆積速度がほとんど一定であることから、基板
上に形成される薄膜の厚みは6インチ(15.24c
m)径の面積内で平均値が0.1nm以内のずれまでで
制御することができた。この手法を用いて10nmのA
u電極層と100nmのSiO2 絶縁層が50対形成し
た。この多層膜を薄膜平面に垂直方向にスクライバーで
所要のサイズにカット後、カット面をバフ研磨で研磨
後、この多層膜中の電極層を利用した電極形成を、フォ
トリソグラフィと反応性イオンエッチングによって行っ
た。
Next, the present invention will be described with reference to examples. The embodiment is merely an example, and it goes without saying that various changes or improvements can be made without departing from the spirit of the present invention. (Example 1) Si can be used as the substrate 1, and this can be mounted on the upper part of the chamber with two sputter deposition sources (called targets) in the lower part of the vacuum chamber and the substrate facing the target. The substrate holder is set on a rotary opposed-type sputtering apparatus that can revolve around the target and rotate on the target. Au and SiO for evaporation source
2 was used, Ar gas was introduced at 5 × 10 −3 torr after exhausting the vacuum chamber to the 10 −8 Torr level, Au target was 200 W, SiO 2 was 300 W and r
f discharge is performed. After that, the Si substrate is rotated together with the substrate holder, and the Si substrate is alternately passed over the Au target and the SiO 2 target. In this case, since the substrate holder is rotating at a constant speed and the deposition rate of sputtered particles is almost constant in the sputtering method, the thickness of the thin film formed on the substrate is 6 inches (15.24c).
m) The average value could be controlled within a range of 0.1 nm within the diameter area. Using this technique, A of 10 nm
Fifty pairs of the u electrode layer and the 100 nm SiO 2 insulating layer were formed. After cutting this multilayer film to the required size in the direction perpendicular to the thin film plane with a scriber, after polishing the cut surface by buffing, the electrode formation using the electrode layer in this multilayer film is performed by photolithography and reactive ion etching. went.

【0008】図1は形成した多層膜の断面構造の模式図
を示す。図において1は基板、2は金属層、3は絶縁層
を示す。図2には、電極配線接続を行うため、金属層の
露出面積を広げるため行った斜めイオンエッチング後の
多層膜の断面構造を示す。図において、1は基板、2は
金属層、3は絶縁層を示す。本発明ではエッチング不要
部分はレジストコートしておきエッチング終了後、レジ
ストは除去する方法を用いた。基板上の電極およびリー
ド専用配線部作製後、配線部分をSiO2 薄膜でコート
した。
FIG. 1 shows a schematic view of the cross-sectional structure of the formed multilayer film. In the figure, 1 is a substrate, 2 is a metal layer, and 3 is an insulating layer. FIG. 2 shows a cross-sectional structure of the multilayer film after oblique ion etching for expanding the exposed area of the metal layer for connecting the electrode wiring. In the figure, 1 is a substrate, 2 is a metal layer, and 3 is an insulating layer. In the present invention, a method is used in which a portion not requiring etching is coated with a resist and the resist is removed after the etching is completed. After the electrodes on the substrate and the lead-only wiring portion were prepared, the wiring portion was coated with a SiO 2 thin film.

【0009】図3は多層膜の一部を斜めエッチングし、
金属層2、絶縁層3の露出部分を大きくして、リード配
線4との接続を容易にした状態での多層膜中の金属層と
リード配線との接続状態を模式的に示したものである。
図において1は基板、2は金属層、3は絶縁層、4はリ
ード線、5はコンタクト部、6はリード線、7は電気掃
引用電圧発生部、8は配線部分絶縁用絶縁膜を示す。図
4は図3の鳥瞰図を示す。この多層膜電極を1nmol
/dm3 のドーパミン溶液の中にいれ測定したところ、
図5に示すようなボルタノグラムが得られ、このような
低濃度物質の検出ができることが確認された。また、こ
の濃度のドーパミンが6倍量アスコルビン酸と共存する
場合においてもドーパミンは検出できた。
In FIG. 3, a part of the multilayer film is obliquely etched,
1 schematically shows a connection state between a metal layer in a multilayer film and a lead wiring in a state where the exposed portions of the metal layer 2 and the insulating layer 3 are enlarged to facilitate the connection with the lead wiring 4. .
In the figure, 1 is a substrate, 2 is a metal layer, 3 is an insulating layer, 4 is a lead wire, 5 is a contact portion, 6 is a lead wire, 7 is an electric sweep reference voltage generating portion, and 8 is an insulating film for insulating a wiring portion. . FIG. 4 shows a bird's-eye view of FIG. 1 nmol of this multilayer electrode
When put into a dopamine solution of / dm 3 and measured,
A voltanomogram as shown in FIG. 5 was obtained, and it was confirmed that such a low concentration substance could be detected. Further, dopamine could be detected even when this concentration of dopamine coexisted with 6-fold amount of ascorbic acid.

【0010】(実施例2)実施例1と同様基板1として
Siを使用し、これを真空チャンバーの下部に2つのス
パッタ蒸着源(ターゲットと呼ぶ)をもち基板をターゲ
ットに対向させてチャンバーの上部にとりつけることが
でき、かつ、基板ホルダーが公転してターゲット上を回
転することが可能な回転式対向型スパッタ装置にセット
する。蒸着源にPtとSiO2 を使用した。実施例1と
同様にして、10nmのPt電極層と100nmのSi
2 絶縁層が50対からなるセンサ用電極を形成した。
この多層膜電極を用いて実施例1と同様の溶液中てドー
パミン検出を行ったところ0.5nmol/dm3 のド
ーパミン溶液においても検出が可能となった。また、1
nmol/dm3 の濃度のドーパミンが10倍量アスコ
ルビン酸と共存する場合においてもドーパミンは検出で
きた。
(Embodiment 2) As in Embodiment 1, Si is used as the substrate 1, which has two sputter deposition sources (referred to as targets) in the lower part of the vacuum chamber and the substrate facing the target and the upper part of the chamber. The substrate holder is set on a rotary opposed type sputtering apparatus which can be mounted on the target and can rotate on the target by revolving the substrate holder. Pt and SiO 2 were used as vapor deposition sources. As in Example 1, a 10 nm Pt electrode layer and a 100 nm Si layer were formed.
A sensor electrode having 50 pairs of O 2 insulating layers was formed.
When dopamine detection was carried out in the same solution as in Example 1 using this multilayer film electrode, detection was possible even in a dopamine solution of 0.5 nmol / dm 3 . Also, 1
Dopamine could be detected even when the concentration of nmol / dm 3 coexisted with 10 times ascorbic acid.

【0011】(実施例3)実施例1と同様にしてSiO
2 基板上に10nmのPt電極層と12nmのSiO2
絶縁層が10対からなるセンサ用電極を形成した。この
多層膜電極を用いて実施例1と同様の溶液中でドーパミ
ン検出を行ったところ0.2nmol/dm3 のドーパ
ミン溶液においても検出が可能となった。また、1nm
ol/dm3 の濃度のドーパミンが15倍量アスコルビ
ン酸と共存する場合においてもドーパミンは検出でき
た。
Example 3 As in Example 1, SiO
10 nm Pt electrode layer and 12 nm SiO 2 on 2 substrates
A sensor electrode having 10 pairs of insulating layers was formed. When dopamine detection was carried out in the same solution as in Example 1 using this multilayer electrode, detection was possible even in a dopamine solution of 0.2 nmol / dm 3 . Also, 1 nm
Dopamine could be detected even when the concentration of ol / dm 3 coexisted with ascorbic acid in a 15-fold amount.

【0012】(実施例4)実施例1と同様にしてSiO
2 基板上に10nmのPt電極層と9nmのSiO2
縁層が3対からなるセンサ用電極を形成した。この多層
膜電極を用いて実施例1と同様の溶液中でドーパミン検
出を行ったところ0.1nmol/dm3 のドーパミン
溶液においても検出が可能となった。また、1nmol
/dm3 の濃度のドーパミンが30倍量アスコルビン酸
と共存する場合においてもドーパミンは検出できた。
(Embodiment 4) As in Embodiment 1, SiO
A pair of 10 nm Pt electrode layers and 3 nm 9 nm SiO 2 insulating layers were formed as sensor electrodes on two substrates. When dopamine detection was carried out in the same solution as in Example 1 using this multilayer film electrode, detection was possible even in a dopamine solution of 0.1 nmol / dm 3 . In addition, 1 nmol
Even when a concentration of dopamine of / dm 3 coexists with 30 times ascorbic acid, dopamine could be detected.

【0013】(実施例5)実施例1と同様にして5nm
のPt電極層と20nmのSiO2 絶縁層が100対か
らなるセンサ用電極を形成し多層膜電極を1気圧の大気
中、40%の水蒸気雰囲気中にいれ、電極間に2ボルト
の電圧をかけたところ、約10nAの電流値が得られ
た。水蒸気の分圧を増加させていくと電流値も増加して
いくことも確認され、本発明の多層膜型電極構造は湿度
検出センサーとして機能することが確認された。
(Embodiment 5) As in Embodiment 1, 5 nm
Sensor electrode consisting of 100 pairs of Pt electrode layer of 20 nm and SiO 2 insulating layer of 20 nm is formed, and the multi-layered film electrode is placed in an atmosphere of 1 atm in a 40% steam atmosphere and a voltage of 2 V is applied between the electrodes. As a result, a current value of about 10 nA was obtained. It was also confirmed that the current value increased as the partial pressure of water vapor was increased, and it was confirmed that the multilayer film type electrode structure of the present invention functions as a humidity detection sensor.

【0014】(実施例6)作製した5nmのPt電極層
と20nmのSiO2 絶縁層が100対からなるセンサ
用電極を種々のSO2 濃度条件下に放置した場合の導電
率変化を観測することにより、SO2 センサーとしての
特性を評価した。なお、作製した薄膜の導電率は非常に
小さかったため、実際には印加電圧を変化させて、電流
量が10-10 〜10-NAの範囲になるように調整し、吸
脱着による電流変化を微小電流計を用いて測定した。S
2 濃度は、乾燥窒素とSO2 の流量を変化させること
により制御した。SO2 の濃度が100ppb場合にも
十分な感度を有していた。なお、電極材料をAgやAu
に変更して同様の実験を行った場合にも、本実施例と同
様の結果が得られた。
(Embodiment 6) To observe the change in conductivity when the prepared sensor electrode consisting of 100 pairs of 5 nm Pt electrode layer and 20 nm SiO 2 insulating layer was left under various SO 2 concentration conditions. The characteristics of the SO 2 sensor were evaluated by. Since the conductivity of the prepared thin film was very small, the applied voltage was actually changed to adjust the current amount to fall within the range of 10 −10 to 10 −NA , and the current change due to adsorption / desorption was changed. It measured using the microammeter. S
The O 2 concentration was controlled by changing the flow rates of dry nitrogen and SO 2 . It had sufficient sensitivity even when the SO 2 concentration was 100 ppb. The electrode material is Ag or Au.
Even when the same experiment was performed by changing to, the same result as this example was obtained.

【0015】(実施例7)実施例5と同様にして作製し
た5nmのPt電極層と20nmのSiO2 絶縁層が1
00対からなるセンサ用電極を種々のSO2 濃度条件下
に放置した場合の導電率変化を観測することにより、N
2 センサーとしての特性を評価した。NO2 濃度は、
乾燥窒素とNO2 の流量を変化させることにより制御し
た。NO2の濃度が600ppbの場合にも十分な感度
を有していた。なお、電極材料をCuやNiに変更して
同様の実験を行った場合にも、本実施例と同様の結果が
得られた。
[0015] (Example 7) SiO 2 insulating layer of Pt electrode layer and 20nm of 5nm prepared in the same manner as in Example 5 is 1
By observing the change in conductivity when the sensor electrode consisting of 00 pairs was left under various SO 2 concentration conditions,
The characteristics as an O 2 sensor were evaluated. NO 2 concentration is
It was controlled by changing the flow rates of dry nitrogen and NO 2 . It had a sufficient sensitivity even when the concentration of NO 2 was 600 ppb. Even when the same experiment was performed by changing the electrode material to Cu or Ni, the same result as that of this example was obtained.

【0016】[0016]

【発明の効果】本発明によれば、溶液またはガスを検知
するセンサにおいて、基板上に絶縁体薄膜と金属薄膜と
が積み重なった構造の多層膜からなり、該金属薄膜を電
極として使用することにより、電極間距離を極めて小さ
くすることができる上、電極面積を極めて小さくできる
ので、従来の電気化学センサーと異なり高感度の溶液セ
ンサーとなる。特に電極間距離が10nmをきると極め
て高感度になる。また、電極間距離が極めて小さいため
電極に吸着したガス成分を抵抗変化等で検出することが
できるので溶液がなくともガスを検出することができ
る。このため溶液のいらない取り扱いの簡単なガスセン
サーとなるという効果を有するものである。
According to the present invention, in a sensor for detecting a solution or gas, a multilayer film having a structure in which an insulator thin film and a metal thin film are stacked on a substrate is used, and the metal thin film is used as an electrode. Since the distance between the electrodes can be made extremely small and the electrode area can be made extremely small, it becomes a highly sensitive solution sensor unlike conventional electrochemical sensors. In particular, when the distance between the electrodes is less than 10 nm, the sensitivity becomes extremely high. Further, since the distance between the electrodes is extremely small, the gas component adsorbed on the electrodes can be detected by a resistance change or the like, so that the gas can be detected without a solution. Therefore, the gas sensor has an effect of requiring no solution and being easy to handle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による多層膜電極構造の断面図を示す。1 shows a cross-sectional view of a multilayer electrode structure according to the present invention.

【図2】電極配線接続用に金属層の露出面積を広げるた
め行った斜めイオンエッチング後の多層膜の断面構造図
を示す。
FIG. 2 is a cross-sectional structural view of a multilayer film after oblique ion etching performed for expanding an exposed area of a metal layer for connecting electrode wiring.

【図3】金属層とリード電圧発生部との接続状態を模式
的に示したものである。
FIG. 3 is a schematic diagram showing a connection state between a metal layer and a lead voltage generating section.

【図4】図3の鳥瞰図を示す。FIG. 4 shows a bird's-eye view of FIG.

【図5】測定結果を示す。FIG. 5 shows measurement results.

【符号の説明】[Explanation of symbols]

1 基板 2 金属層 3 絶縁層 4 リード配線 5 コンタクト部 6 リード線 7 電気掃引用電圧発生部 8 配線部分絶縁用絶縁膜 1 Substrate 2 Metal layer 3 Insulating layer 4 Lead wiring 5 Contact part 6 Lead wire 7 Electric sweep reference voltage generation part 8 Insulation film for wiring part insulation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 重邦 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigenkuni Sasaki 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶液またはガスを検知するセンサにおい
て、基板上に絶縁体薄膜と金属薄膜とが積み重なった構
造の多層膜からなり、該金属薄膜を電極として使用する
ことを特徴とするセンサー用電極。
1. A sensor for detecting a solution or gas, which comprises a multilayer film having a structure in which an insulator thin film and a metal thin film are stacked on a substrate, and the metal thin film is used as an electrode. .
【請求項2】 前記絶縁体薄膜と金属薄膜とが交互に2
層以上積層されていることを特徴とする請求項1記載の
センサー用電極。
2. The insulator thin film and the metal thin film are alternately formed into two.
The sensor electrode according to claim 1, wherein the electrode is formed by stacking more than one layer.
JP08870995A 1995-03-20 1995-03-20 Electrode for sensor Expired - Fee Related JP3244249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08870995A JP3244249B2 (en) 1995-03-20 1995-03-20 Electrode for sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08870995A JP3244249B2 (en) 1995-03-20 1995-03-20 Electrode for sensor

Publications (2)

Publication Number Publication Date
JPH08261979A true JPH08261979A (en) 1996-10-11
JP3244249B2 JP3244249B2 (en) 2002-01-07

Family

ID=13950430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08870995A Expired - Fee Related JP3244249B2 (en) 1995-03-20 1995-03-20 Electrode for sensor

Country Status (1)

Country Link
JP (1) JP3244249B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006825A1 (en) * 1997-07-31 1999-02-11 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
WO2007086268A1 (en) * 2006-01-24 2007-08-02 National Institute Of Advanced Industrial Science And Technology Microelectrode and method for manufacturing same
JP2009509166A (en) * 2005-09-23 2009-03-05 メドトロニック・ミニメッド・インコーポレーテッド Detector with layered electrode
JP2011503528A (en) * 2007-10-15 2011-01-27 ユニベルシテ ピエール エ マリー キュリー Semiconductor transducers and their use in sensors for detecting electron donor or electron acceptor species
WO2012128593A2 (en) * 2011-03-24 2012-09-27 조인셋 주식회사 Sensor having an embedded electrode, and method for manufacturing same
CN103443619A (en) * 2011-03-24 2013-12-11 卓英社有限公司 Sensor having an embedded electrode, and method for manufacturing same
WO2015064639A1 (en) * 2013-10-31 2015-05-07 学校法人加計学園 Gas sensor and gas sensor array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223339A (en) * 1988-03-02 1989-09-06 Okazaki Kokuritsu Kyodo Kenkyu Kikouchiyou Gas sensor utilizing section of multilayer thin film
JPH0219757A (en) * 1988-07-08 1990-01-23 Nippon Telegr & Teleph Corp <Ntt> Micro-electrode cell for electrochemical measurement and its production
JPH02140655A (en) * 1988-11-21 1990-05-30 Nippon Telegr & Teleph Corp <Ntt> Electrochemical detector and production thereof
JPH03505785A (en) * 1989-04-04 1991-12-12 ウルバン ゲラルト Micro multi-electrode structure
JPH04130064U (en) * 1991-05-18 1992-11-30 株式会社堀場製作所 Sheet type electrode for ion concentration measurement
JPH052007A (en) * 1991-06-24 1993-01-08 Nippon Telegr & Teleph Corp <Ntt> Wall jet-type electrochemical detector and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223339A (en) * 1988-03-02 1989-09-06 Okazaki Kokuritsu Kyodo Kenkyu Kikouchiyou Gas sensor utilizing section of multilayer thin film
JPH0219757A (en) * 1988-07-08 1990-01-23 Nippon Telegr & Teleph Corp <Ntt> Micro-electrode cell for electrochemical measurement and its production
JPH02140655A (en) * 1988-11-21 1990-05-30 Nippon Telegr & Teleph Corp <Ntt> Electrochemical detector and production thereof
JPH03505785A (en) * 1989-04-04 1991-12-12 ウルバン ゲラルト Micro multi-electrode structure
JPH04130064U (en) * 1991-05-18 1992-11-30 株式会社堀場製作所 Sheet type electrode for ion concentration measurement
JPH052007A (en) * 1991-06-24 1993-01-08 Nippon Telegr & Teleph Corp <Ntt> Wall jet-type electrochemical detector and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006825A1 (en) * 1997-07-31 1999-02-11 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
JP2009509166A (en) * 2005-09-23 2009-03-05 メドトロニック・ミニメッド・インコーポレーテッド Detector with layered electrode
JP4982899B2 (en) * 2006-01-24 2012-07-25 独立行政法人産業技術総合研究所 Microelectrode and manufacturing method thereof
JPWO2007086268A1 (en) * 2006-01-24 2009-06-18 独立行政法人産業技術総合研究所 Microelectrode and manufacturing method thereof
WO2007086268A1 (en) * 2006-01-24 2007-08-02 National Institute Of Advanced Industrial Science And Technology Microelectrode and method for manufacturing same
JP2011503528A (en) * 2007-10-15 2011-01-27 ユニベルシテ ピエール エ マリー キュリー Semiconductor transducers and their use in sensors for detecting electron donor or electron acceptor species
WO2012128593A2 (en) * 2011-03-24 2012-09-27 조인셋 주식회사 Sensor having an embedded electrode, and method for manufacturing same
WO2012128593A3 (en) * 2011-03-24 2012-12-27 조인셋 주식회사 Sensor having an embedded electrode, and method for manufacturing same
CN103443619A (en) * 2011-03-24 2013-12-11 卓英社有限公司 Sensor having an embedded electrode, and method for manufacturing same
US9347806B2 (en) 2011-03-24 2016-05-24 Joinset Co., Ltd. Sensor having an embedded electrode, and method for manufacturing same
WO2015064639A1 (en) * 2013-10-31 2015-05-07 学校法人加計学園 Gas sensor and gas sensor array
JPWO2015064639A1 (en) * 2013-10-31 2017-03-09 学校法人加計学園 Gas sensor and gas sensor array

Also Published As

Publication number Publication date
JP3244249B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
Gong et al. Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance
FR2764986A1 (en) ELECTROCHEMICAL SENSOR OF NITROGEN OXIDE WITH SOLID ELECTROLYTE
JPH10505911A (en) Gas detection method and apparatus
JPH08261979A (en) Electrode for sensor
JPH06508432A (en) Electrical analysis of liquids and detection elements used for it
US8132457B2 (en) Nano-porous alumina sensor
Chu et al. Thin and thick film electrochemical CO2 sensors
CA2060183A1 (en) Self-supporting thin-film filament detector, process for its manufacture and its applications to gas detection and gas chromatography
CN1037041C (en) Inorganic thin film humidity-sensitive element with high performance and its producing method
US7223328B2 (en) Sensors for reducing gas molecules
CA2526087C (en) Solid state gas sensors based on tunnel junction geometry
JP4591033B2 (en) Gas sensor element and manufacturing method thereof
JPH0664008B2 (en) Gas sensor and manufacturing method thereof
Madou et al. Multilayer ionic devices fabricated by thin-and thick-film technologies
RU2647168C2 (en) Humidity sensor
JP3170909B2 (en) Manufacturing method of gas detection element
KR100475743B1 (en) In2O3 Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering and Their Fabrication Method
JPH04168356A (en) Carbon-dioxide detecting sensor and manufacture thereof
JPH06213853A (en) Manufacture of gas detecting element
JP2841795B2 (en) Hydrogen gas sensor
JPH04218761A (en) Working electrode for electrochemical type hydrogen fluorite detector
JPH04254749A (en) Laminated-type limiting-current-type oxygen sensor
Vaivars et al. Application of sol-gel and laser evaporation methods to obtain thin gas sensitive films
RU2308713C2 (en) Ammonia concentration sensor and a method for forming sensitive layer
JP2918392B2 (en) Nitrogen oxide detection sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees