JPH01223339A - Gas sensor utilizing section of multilayer thin film - Google Patents

Gas sensor utilizing section of multilayer thin film

Info

Publication number
JPH01223339A
JPH01223339A JP63047536A JP4753688A JPH01223339A JP H01223339 A JPH01223339 A JP H01223339A JP 63047536 A JP63047536 A JP 63047536A JP 4753688 A JP4753688 A JP 4753688A JP H01223339 A JPH01223339 A JP H01223339A
Authority
JP
Japan
Prior art keywords
gas
thin film
multilayer thin
electrodes
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63047536A
Other languages
Japanese (ja)
Other versions
JPH0664008B2 (en
Inventor
Tadayoshi Sakata
坂田 忠良
Masahiro Hiramoto
昌宏 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAZAKI KOKURITSU KYODO KENKYU KIKOUCHIYOU
Original Assignee
OKAZAKI KOKURITSU KYODO KENKYU KIKOUCHIYOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAZAKI KOKURITSU KYODO KENKYU KIKOUCHIYOU filed Critical OKAZAKI KOKURITSU KYODO KENKYU KIKOUCHIYOU
Priority to JP63047536A priority Critical patent/JPH0664008B2/en
Publication of JPH01223339A publication Critical patent/JPH01223339A/en
Publication of JPH0664008B2 publication Critical patent/JPH0664008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly sensitive detection of various gases, by a method wherein a low voltage is applied to two layers of metal electrodes close to each other to decompose a gas molecule such as water vapor adsorbed on the surface of the electrodes directly in a electrochemical fashion while a current flowing is monitored. CONSTITUTION:Two layers of metal electrodes 7 and 8 which can be manufactured by exposing a section part 6 of a multilayer thin film with a structure of laminating metal thin films 2 and 4 and insulator thin films 3 and 5 alternately are provided on a ceramic substrate 1 close to each other at a distance of several hundreds - several thousands A. A required voltage source is connected between the electrodes 7 and 8 to decompose a gas molecule adsorbed on the surfaces of the electrodes 7 and 8 directly in an electrochemical fashion under the introduction of a gas such as water vapor or ammonia. Thus, a current flowing between the two layers of the electrodes 7 and 8 is monitored thereby enabling highly sensitive detection the gas introduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、湿度、有害なガスの検知など電気機器の制御
、ガスもれ検知、公害防止などの分野に必要なガスセン
サーに関し、検知部分に吸着したガス分子を直接電気化
学的に分解することによって流れる電流をモニターする
ことで、高感度、高選択性、高汎用性でかつ設計が容易
なガスセンサーが得られるようにしたものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a gas sensor necessary for the control of electrical equipment such as humidity and harmful gas detection, gas leak detection, and pollution prevention. By monitoring the current that flows through direct electrochemical decomposition of gas molecules adsorbed on the gas, it is possible to obtain a gas sensor that is highly sensitive, highly selective, highly versatile, and easy to design. .

(従来の技術) 従来、気相中にある物質を検出するのに使われてきたガ
スセンサーとして、半導体ガスセンサー、湿度測定用の
多孔質セラミックセンサー、固体電解質センサー、電気
化学式ガスセンサーなどがあり、種々の目的ガスに適し
た種々のタイプのセンサーが開発されその一部は実用化
されてきた。
(Conventional technology) Conventionally, gas sensors used to detect substances in the gas phase include semiconductor gas sensors, porous ceramic sensors for humidity measurement, solid electrolyte sensors, and electrochemical gas sensors. Various types of sensors suitable for various target gases have been developed, and some of them have been put into practical use.

しかしながら、かかる従来のセンサーにおいては、 ■ 選択性に乏しい ■ 感度が充分でない ■ 長期間使用すると感度がおちる ■ 設計が容易でない ■ 保守が容易でない などの問題点が残されている。However, in such conventional sensors, ■ Poor selectivity ■ Sensitivity is not sufficient ■ Sensitivity decreases after long-term use ■ Not easy to design ■ Maintenance is not easy Other issues remain.

(発明が解決しようとする課題) かかる従来のガスセンサーが有する難点を解決すること
を目途として開発された従来のガスセンサーで本発明に
関連するものとして多孔質セラミックセンサー、電気化
学式ガスセンサーが挙げられる。
(Problems to be Solved by the Invention) Porous ceramic sensors and electrochemical gas sensors are examples of conventional gas sensors that have been developed with the aim of solving the problems of conventional gas sensors and are related to the present invention. It will be done.

しかし、これらの多孔質セラミックセンサーは、酸化物
の細孔構造に吸着した被検知物質の物理吸着による電気
抵抗変化を測定する為、最適の細孔分布を実現するのに
困難が伴ったり、種々のガスに対する選択性を付与する
ことができないなどの欠点がつきまとっている。
However, these porous ceramic sensors measure the change in electrical resistance due to physical adsorption of the target substance adsorbed to the pore structure of the oxide, so it is difficult to achieve the optimal pore distribution and various problems arise. However, there are many drawbacks such as the inability to provide selectivity to other gases.

また、電気化学式ガスセンサーは、電極面で起こる電橋
反応による電流をモニターするが電解液を用いる必要が
ある為、電解液の水分の放散・吸収など保守上の難点が
あるばかりでなく、検出できるガスが制限を受けるなど
の欠点があった。
In addition, electrochemical gas sensors monitor the current caused by the bridge reaction that occurs on the electrode surface, but because they require the use of an electrolyte, they not only have maintenance difficulties such as dissipation and absorption of water in the electrolyte, but also There were drawbacks such as restrictions on the amount of gas that could be produced.

(課題を解決するための手段) 本発明の目的は、上述した従来の欠点を除去して問題を
解決するため、素子に吸着したガスによる電気抵抗変化
のような間接的な現象を利用するのではなく、吸着した
ガス分子を電解質がなくても直接電気化学的に分解でき
る様に、多層薄膜の断面を利用する方法で測定できるよ
うに、構成したもので2層の金属電極を絶縁体薄膜を介
して数百から数千オングストロームまで近接させた構造
を持つ電極を用いて、ガス導入下、2Nの金属電極間に
電圧印加した時流れる電流をモニターする全く新しいタ
イプで高感度・高選択性のガスセンサーを提供すること
にある。
(Means for Solving the Problems) An object of the present invention is to eliminate the above-mentioned conventional drawbacks and solve the problems by utilizing an indirect phenomenon such as a change in electrical resistance due to gas adsorbed on an element. Rather, it is constructed so that the adsorbed gas molecules can be directly electrochemically decomposed without an electrolyte, and can be measured using a cross-section of a multilayer thin film.The two-layer metal electrode is connected to an insulator thin film. A completely new type with high sensitivity and high selectivity that monitors the current that flows when a voltage is applied between 2N metal electrodes while gas is introduced, using electrodes that have a structure in which they are placed close to each other by several hundred to several thousand angstroms. gas sensors.

本発明は種々のガスを電気的に検出するガスセンサーに
おいて、セラミック基板上に金属薄膜と絶縁体薄膜とが
交互に積み重なった構造を持つ多層薄膜の断面を露出す
ることによって作製できる数百から数千オングストロー
ムの距離に近接して絶縁体薄膜でへたてられた多II薄
膜の露出断面よりなる2層の金属電極間に所要の直流電
圧源を接続し、水蒸気、アンモニアなどのガス導入した
とき電極表面に吸着したガス分子を直接電気化学的に分
解し、2層の金属電極間に流れる電流をモニターするこ
とによって、導入したガスを検出できるよう構成した多
層薄膜断面を利用したガスセンサーに係る。
The present invention is a gas sensor that electrically detects various gases, which can be manufactured by exposing the cross section of a multilayer thin film having a structure in which metal thin films and insulating thin films are stacked alternately on a ceramic substrate. When a required DC voltage source is connected between two layers of metal electrodes consisting of an exposed cross section of a multilayer II thin film held close to a distance of 1,000 angstroms by an insulating thin film, and a gas such as water vapor or ammonia is introduced. Relating to a gas sensor using a cross-section of a multilayer thin film configured to detect introduced gas by directly electrochemically decomposing gas molecules adsorbed on the electrode surface and monitoring the current flowing between two layers of metal electrodes. .

本発明の多層薄膜の断面を利用したガスセンサーは電解
質を含まない高抵抗溶媒中、ガス雰囲気下、低温下の何
れかにおいて電気化学的反応を行うことを特徴とする。
The gas sensor using the cross section of the multilayer thin film of the present invention is characterized by performing an electrochemical reaction either in a high resistance solvent containing no electrolyte, in a gas atmosphere, or at low temperature.

本発明の他の目的とする所はセラミック基板上に金属薄
膜と絶縁体薄膜とを数百オングストロームないし数千オ
ングストロームの厚さで交互に積み重ねた構造の多重薄
膜状を形成し、前記多層薄膜の一部を化学エツチングま
たはアルゴンイオンエツチングによって除去し、多層薄
膜の2層の金属電極を数百ないし数千オングストローム
の距離に近接して露出させ、この2Nの金属電極間に所
要の電圧源を接続し、該電極表面に水蒸気、アンモニア
などのガス導入下で電極表面に吸着されたガス分子が電
気化学的に分解され、両金属電極間に流れる電流を測定
することによって、導入したガスを検出できるガスセン
サーを製造することを特徴きする多層薄膜の断面を利用
したガスセンサーの製造法を提供するにある。
Another object of the present invention is to form a multi-thin film structure in which metal thin films and insulating thin films are alternately stacked on a ceramic substrate with a thickness of several hundred angstroms to several thousand angstroms, and to A portion is removed by chemical etching or argon ion etching, and the two metal electrodes of the multilayer thin film are exposed in close proximity at a distance of several hundred to several thousand angstroms, and a required voltage source is connected between these 2N metal electrodes. When a gas such as water vapor or ammonia is introduced onto the electrode surface, the gas molecules adsorbed on the electrode surface are electrochemically decomposed, and the introduced gas can be detected by measuring the current flowing between the two metal electrodes. An object of the present invention is to provide a method for manufacturing a gas sensor using a cross section of a multilayer thin film, which is characterized in that the gas sensor is manufactured.

本発明多層薄膜の断面を利用したガスセンサーは、数百
オングストロームから数千オングストローム程度の距離
で非常に近接し、かつ相互に完全に電気的に絶縁された
2層の金属電極を、金属薄膜と絶縁体薄膜を交互に積み
重ねた多層薄膜の断面を利用することによって作った。
The gas sensor using the cross section of the multilayer thin film of the present invention has two layers of metal electrodes that are very close to each other at a distance of several hundred to several thousand angstroms and are completely electrically insulated from each other. It was made by using a cross section of a multilayer thin film made by stacking alternately insulating thin films.

具体的には、そのような多層薄膜の一部を化学エツチン
グまたはアルゴンイオンエツチングと光リソグラフィー
技術を使って露出させることによって作製し、2層の金
属電極間に数ボルトの低電圧を印加し、電極表面に吸着
した種々のガス分子を電気化学的に分解し、その際2層
の金属電極間に流れる電流をモニターすることによって
、室温で水蒸気、アンモニア、酢酸などのガスを検知で
き、低温下で電極表面に凝縮する二酸化炭素などのガス
を検知するよう構成したことを特徴とするものである。
Specifically, a part of such a multilayer thin film is made by exposing a part using chemical etching or argon ion etching and photolithography technology, and a low voltage of several volts is applied between the two layers of metal electrodes. By electrochemically decomposing various gas molecules adsorbed on the electrode surface and monitoring the current flowing between two layers of metal electrodes, gases such as water vapor, ammonia, and acetic acid can be detected at room temperature. The device is characterized in that it is configured to detect gases such as carbon dioxide that condense on the electrode surface.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

本発明多層薄膜の断面を利用したガスセンサーの要部の
構成例を第1図に示す。まず、凹凸が数ナノメーター以
下の非常にフラットな表面を持つ5iOz基板1または
、厚いSi0g膜で覆われた鏡面研磨されたシリコンウ
ェハーを用意する。そのような平滑な絶縁板上に膜厚数
百オングストロームから1ミクロン程度までの薄膜を多
層積み重ねて得られた多層薄膜の表面に垂直な断面を切
りだす。
FIG. 1 shows an example of the configuration of the main parts of a gas sensor using a cross section of the multilayer thin film of the present invention. First, a 5iOz substrate 1 having a very flat surface with irregularities of several nanometers or less or a mirror-polished silicon wafer covered with a thick Si0g film is prepared. A cross section perpendicular to the surface of the multilayer thin film obtained by stacking multiple thin films ranging in thickness from several hundred angstroms to about 1 micron on such a smooth insulating plate is cut out.

第1図はそのようにして作製された電極の構造を示す。FIG. 1 shows the structure of the electrode thus produced.

本発明においては、多層薄膜は基板1上に金属2.4と
絶縁体3.5とを交互に積み重ねた構造になっており、
絶縁体としては酸化シリコン(SiOt)、酸化アルミ
ニウム(A1203)、シリコンカーバイド(S i 
C) 、窒化シリコン(SiN)など種々の物質を使う
ことができ、金属としても一’−ッケル(Ni)、白金
(P t ) 、金(Au)、ffl(Ag)、アルミ
ニウム(AN)など種々の物質を使うことができる。2
層の金属電極を持つ断面を得る場合、絶縁体基板の上に
金属層2−絶縁体N3−金属)!!4−絶縁体jW5の
順に薄膜を堆積させなければならない。また、2層の金
属薄膜それぞれと電気的接続をとるため、それぞれの金
属薄膜は7.8に示す様な平面のパターンで堆積されな
ければならない。
In the present invention, the multilayer thin film has a structure in which metals 2.4 and insulators 3.5 are alternately stacked on a substrate 1.
Insulators include silicon oxide (SiOt), aluminum oxide (A1203), and silicon carbide (SiOt).
C) Various materials such as silicon nitride (SiN) can be used, and metals such as -nickel (Ni), platinum (Pt), gold (Au), ffl (Ag), aluminum (AN), etc. Various substances can be used. 2
When obtaining a cross section with metal electrodes of layers, on top of the insulator substrate metal layer 2 - insulator N3 - metal)! ! 4-Thin films must be deposited in the order of insulator jW5. Further, in order to establish electrical connection with each of the two metal thin films, each metal thin film must be deposited in a planar pattern as shown in 7.8.

絶縁体層として酸化シリコン、金属層としてニッケルを
用いる場合、酸化シリコンはシラン(Sit14)と酸
化窒素(NtO)との混合ガスから300″Cに加熱し
た基板にプラズマCVDを用いて堆積させ、金属層は各
種金属ターゲットから高周波スパッタリング装置を用い
て常温で堆積させる。多層薄膜の断面6の露出は、多層
薄膜の一部分(9で示した部分)を化学エツチングまた
はアルゴンイオンエツチングで除去することによって行
う。化学エツチングの場合、多層’?l膜の表面をフォ
トレジストで部分的に被覆し露出した部分をフッ化水素
アンモニウム(NH,F・IIF)水溶液と硝酸との混
合液で溶かして断面を露出する。アルゴンイオンエツチ
ングの場合、多層薄膜の表面をフォトレジストで部分的
に被覆し、全面に酸化シリコンを厚く堆積させた後、フ
ォトレジストを剥離し、最後に全面を高周波スパッタリ
ング装置内でアルゴンイオンスパッタリングすると、レ
ジストを除去した部分は酸化シリコンで厚く覆われてい
ないために、その部分のみ多層薄膜が除去され断面が露
出される。以上の作製手順の間、後で2層の金属電極間
に電圧を印加する必要があるため、2層の金属層が完全
に電気的に絶縁されている必要があり、断面を露出する
際も絶縁が破壊されないように注意する必要がある。
When using silicon oxide as the insulator layer and nickel as the metal layer, silicon oxide is deposited using plasma CVD on a substrate heated to 300"C from a mixed gas of silane (Sit14) and nitrogen oxide (NtO), and the metal layer is deposited using plasma CVD. The layers are deposited at room temperature using a high frequency sputtering device from various metal targets.The cross section 6 of the multilayer thin film is exposed by removing a portion (indicated by 9) of the multilayer thin film by chemical etching or argon ion etching. In the case of chemical etching, the surface of the multilayer film is partially covered with photoresist, and the exposed part is dissolved in a mixture of ammonium hydrogen fluoride (NH, F, IIF) aqueous solution and nitric acid to expose the cross section. In the case of argon ion etching, the surface of the multilayer thin film is partially covered with photoresist, silicon oxide is deposited thickly on the entire surface, the photoresist is peeled off, and finally the entire surface is etched with argon ions in a high frequency sputtering device. When sputtering is performed, the parts where the resist is removed are not covered thickly with silicon oxide, so the multilayer thin film is removed only in those parts and the cross section is exposed. Since it is necessary to apply a voltage, the two metal layers must be completely electrically insulated, and care must be taken not to break down the insulation when exposing the cross section.

上述の様にして作製した多層薄膜の断面を利用したガス
センサーは2層の金属電極間の距離を最終的には百オン
グストローム前後まで近接させることができるという特
徴を持っており、金属電極2と金属電極4との間の距離
も金属間にはさまれた酸化シリコン薄膜3の膜厚を変え
ることによって自由に変えることが出来る。この2層の
金属電極間の距離が非常に小さいという特徴のために、
本発明多層薄膜の断面を利用したガスセンサーは、電解
質が無くても電気化学反応を行うことができ、さらには
水蒸気などのガスを導入しただけで電気化学反応を行う
ことが可能になった。例えば、金属間路HDが130ナ
ノメーター、すなわち2層の金属薄膜2.4の間の酸化
シリコン薄膜3の膜厚が1300オングストローム、そ
して2層の金属薄膜の膜厚が1000オングストローム
である場合、2層の金属電極間に3ボルト程度の電圧を
印加すると、真空下ではほとんど電流は流れないが、そ
こに水蒸気が導入されると1.6 Vより大きい電圧印
加、すなわち電解質を含んだ水溶液中で見られる水の電
気分解に必要な電圧とほぼ同じ電圧で電極表面に吸着し
た水の分解による電流が流れ電圧増加とともに急激に電
流量も増大する。露出したニッケル薄膜電極の面積から
計算した電流密度は非常に太きく3.5Vの電圧印加で
70+sAcm−”に達する。流れる電流は水蒸気圧が
上がるとともに徐々に増加し、本発明多層薄膜の断面を
利用したガスセンサーが湿度センサーとして働くことを
示している。2層の電極間の距HDが大きくなると応答
が見られなくなるが、これは電極間の距離が非常に小さ
いことによる効果を明瞭に示している。なお、この電極
をあらかじめ硫酸ナトリウム(NazSO4)水溶液に
浸し電極表面にイオン種を吸着させておくと、水蒸気に
対する応答は増大し、より低い水蒸気圧から応答が見ら
れるようになる。
The gas sensor that utilizes the cross section of the multilayer thin film produced as described above has the characteristic that the distance between the two metal electrodes can ultimately be made close to about 100 angstroms; The distance between the metal electrodes 4 can also be freely changed by changing the thickness of the silicon oxide thin film 3 sandwiched between the metals. Due to the feature that the distance between the two layers of metal electrodes is very small,
The gas sensor using the cross section of the multilayer thin film of the present invention can perform an electrochemical reaction even without an electrolyte, and furthermore, it has become possible to perform an electrochemical reaction simply by introducing a gas such as water vapor. For example, if the metal path HD is 130 nanometers, that is, the thickness of the silicon oxide thin film 3 between the two metal thin films 2.4 is 1300 angstroms, and the thickness of the two metal thin films is 1000 angstroms, When a voltage of about 3 volts is applied between two layers of metal electrodes, almost no current flows under vacuum, but when water vapor is introduced there, a voltage greater than 1.6 V is applied, that is, in an aqueous solution containing an electrolyte. A current flows due to the decomposition of the water adsorbed on the electrode surface at almost the same voltage as the voltage required for water electrolysis as seen in , and the amount of current increases rapidly as the voltage increases. The current density calculated from the area of the exposed nickel thin film electrode is very large, reaching 70+sAcm-'' when a voltage of 3.5V is applied.The flowing current gradually increases as the water vapor pressure increases, and the current density increases as the water vapor pressure increases. This shows that the gas sensor used works as a humidity sensor.As the distance HD between the two layers of electrodes increases, no response is observed, but this clearly shows the effect of the very small distance between the electrodes. Note that if this electrode is immersed in a sodium sulfate (NazSO4) aqueous solution in advance to adsorb ionic species on the electrode surface, the response to water vapor will increase, and the response will become visible from a lower water vapor pressure.

本発明多層薄膜の断面を利用したガスセンサーは水蒸気
以外にも酢酸・ギ酸・アンモニアなどのガスにも応答す
るが、メタノール・エタノール・アセトン・ベンゼン・
n−へブタン・1−ブタノール・アセトアルデヒドなど
のガスに対しては、それらの蒸気圧が非常に高い場合で
もほとんど応答しない。また、応答するガスにおける応
答電流の蒸気圧依存性はそれぞれ異なっており、本発明
が種々のガスに対する選択性を持ったガスセンサーとし
て働くことを示している。さらに、使用している絶縁体
や金属の種類を変えることによって色々な選択性を持っ
たガスセンサーを作製できることが可能となる。
The gas sensor using the cross section of the multilayer thin film of the present invention responds not only to water vapor but also to gases such as acetic acid, formic acid, ammonia, etc., but also responds to gases such as methanol, ethanol, acetone, benzene,
It hardly responds to gases such as n-hebutane, 1-butanol, and acetaldehyde, even if their vapor pressures are very high. Furthermore, the dependence of the response current on the vapor pressure of the responding gases is different, indicating that the present invention works as a gas sensor with selectivity for various gases. Furthermore, by changing the types of insulators and metals used, it becomes possible to create gas sensors with various selectivities.

本発明の多層薄膜の断面を利用したガスセンサーは低温
において二酸化炭素などにも応答する。
The gas sensor using the cross section of the multilayer thin film of the present invention also responds to carbon dioxide and the like at low temperatures.

あらかじめ電極表面に硫酸ナトリウムの水溶液からイオ
ンを吸着させておいた本発明の電極を、二酸化炭素50
0 Torr存在下で冷却していくと、−50°Cから
一30°Cの温度範囲、印加電圧約3V以上で電流応答
が見られる。
The electrode of the present invention, in which ions have been adsorbed from an aqueous solution of sodium sulfate on the electrode surface, is heated to 50% carbon dioxide.
When cooling in the presence of 0 Torr, a current response is observed in a temperature range of -50°C to -30°C and an applied voltage of about 3V or more.

(効 果) 以上の説明から明らかなように、本発明多層薄膜の断面
を利用したガスセンサーを用いると、低い電圧(数ボル
ト)を非常に近接した2層の金属電極に印加する事によ
って、電極表面に吸着した水蒸気などの気体分子を直接
電気化学的に分解し、その際に流れる電流をモニターす
ることで、種々のガスの検知を行うことが可能となる。
(Effects) As is clear from the above explanation, when a gas sensor using the cross section of the multilayer thin film of the present invention is used, by applying a low voltage (several volts) to two metal electrodes in close proximity to each other, By directly electrochemically decomposing gas molecules such as water vapor adsorbed on the electrode surface and monitoring the current flowing at that time, it becomes possible to detect various gases.

本発明の多層薄膜の断面を利用したガスセンサーは、低
温下で電極表面に凝集するような二酸化炭素などの気体
も電極全体を冷却しながら2層の金属電極に電圧印加す
ることで検知することができる。
The gas sensor using the cross section of the multilayer thin film of the present invention can detect gases such as carbon dioxide that aggregate on the electrode surface at low temperatures by applying voltage to the two-layer metal electrode while cooling the entire electrode. Can be done.

本発明の多層薄膜の断面を利用したガスセンサーのその
他の効果はつぎの通りである。
Other effects of the gas sensor using the cross section of the multilayer thin film of the present invention are as follows.

(1)絶縁層の厚さ、すなわち、2層の金属電極間の距
離を変化させることによって色々なガス濃度領域に敏感
な電極を作ることができ、それらの組合せによっである
ガスの全濃度領域にわたって高感度のガスセンサーを設
計することができる。
(1) By changing the thickness of the insulating layer, that is, the distance between the two layers of metal electrodes, it is possible to create electrodes that are sensitive to various gas concentration regions, and by combining them, the total concentration of a certain gas can be adjusted. Gas sensors can be designed with high sensitivity over a wide range of regions.

(2)ある種類の絶縁層と金属層の組合せを用いた場合
、電極表面に吸着できるガスと、出来ないガスとがあり
、かつまた吸着できるガスのあいだでも吸着のしやすさ
が異なるため電流応答のガス濃度依存性が異なり、特定
のガスに敏感であるという選択性を持たせることができ
る。このことは、絶縁層と金属層に使われる物質の種類
を変えることによって、電極表面に吸着できるガスの種
類を変えることが可能であることを意味し、色々なガス
を同時に選択的に検知できるガスセンサーを設計できる
利点をもっている。
(2) When using a certain type of combination of an insulating layer and a metal layer, some gases can be adsorbed to the electrode surface and others cannot, and even the adsorbable gases differ in their ease of adsorption, so the current The gas concentration dependence of the response is different, and it is possible to have selectivity in that it is sensitive to a specific gas. This means that by changing the types of materials used in the insulating and metal layers, it is possible to change the types of gases that can be adsorbed on the electrode surface, making it possible to selectively detect various gases at the same time. It has the advantage of being able to design gas sensors.

(3)微細加工技術によって多層薄膜に微小な穴を多数
あければ露出した薄膜の断面の面積を飛躍的に増大させ
ることができる為、電極に流せる電流量も飛躍的に増え
、本発明をセンサーとしてのみならず電気化学反応用の
電極として用いることができる。例えば、今まで行うこ
とが困難だった、抵抗の高い非水溶媒中での有機合成、
ガスの電気化学反応、溶媒が使えないような低温での電
気化学反応などに使うことができる。
(3) By making many tiny holes in a multilayer thin film using microfabrication technology, it is possible to dramatically increase the cross-sectional area of the exposed thin film, which dramatically increases the amount of current that can be passed through the electrodes. It can be used not only as an electrode but also as an electrode for electrochemical reactions. For example, organic synthesis in highly resistant non-aqueous solvents, which has been difficult until now,
It can be used for electrochemical reactions of gases and electrochemical reactions at low temperatures where solvents cannot be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明多層薄膜の断面を利用したガスセンサー
の要部の構造を示す拡大図、第2図は同一部の平面図で
ある。 1・・・SiO□基板     2.4・・・金属薄膜
3.5・・・絶縁体薄膜  6・・・多層薄膜の断面部
7・・・下層の金属薄膜  8・・・上層の金属薄膜9
・・・多層薄膜の除去部分
FIG. 1 is an enlarged view showing the structure of a main part of a gas sensor using a cross section of the multilayer thin film of the present invention, and FIG. 2 is a plan view of the same part. 1... SiO□ substrate 2.4... Metal thin film 3.5... Insulator thin film 6... Cross section of multilayer thin film 7... Lower layer metal thin film 8... Upper layer metal thin film 9
・・・Removed part of multilayer thin film

Claims (1)

【特許請求の範囲】 1、種々のガスを電気的に検出するガスセンサーにおい
て、セラミック基板上に金属薄膜と絶縁体薄膜とが交互
に積み重なった構造を持つ多層薄膜の断面を露出するこ
とによって作製できる数百から数千オングストロームの
距離に近接して設けられた2層の金属電極を具備し、種
々のガスを電気的に検出するガスセンサーにおいて、2
層の金属電極間に所要の電圧源を接続し、水蒸気、アン
モニアなどのガス導入下で電極表面に吸着したガス分子
を直接電気化学的に分解し、2層の金属電極間に流れる
電流をモニターすることによって、導入したガスを検出
できるよう構成したことを特徴とする多層薄膜の断面を
利用したガスセンサー。 2、電解質を含まない高抵抗溶媒中、ガス雰囲気下、低
温下の何れかにおいて電気化学的反応を行なうことを特
徴とする多層薄膜の断面を利用したガスセンサー。 3、セラミック基板上に金属薄膜と絶縁体薄膜とを数百
オングストロームないし数千オングストロームの厚さで
交互に積み重ねた構造の多重薄膜状を形成し、前記多層
薄膜の一部を化学エッチングまたはアルゴンイオンエッ
チングによって除去し、多層薄膜の2層の金属電極を数
百ないし数千オングストロームの距離に近接して露出さ
せ、この2層の金属電極間に所要の電圧源を接続し、該
電極表面に水蒸気、アンモニアなどのガス導入下で電極
表面に吸着されたガス分子が電気化学的に分解され、両
金属電極間に流れる電流を測定することによって、導入
したガスを検出できるガスセンサーを製造することを特
徴とする多層薄膜の断面を利用したガスセンサーの製造
法。
[Claims] 1. A gas sensor that electrically detects various gases is manufactured by exposing the cross section of a multilayer thin film having a structure in which metal thin films and insulating thin films are alternately stacked on a ceramic substrate. In a gas sensor that electrically detects various gases, it is equipped with two layers of metal electrodes that are placed close to each other at a distance of several hundred to several thousand angstroms.
Connect the required voltage source between the metal electrodes in the layer, and directly electrochemically decompose the gas molecules adsorbed on the electrode surface while introducing a gas such as water vapor or ammonia, and monitor the current flowing between the metal electrodes in the two layers. A gas sensor using a cross section of a multilayer thin film, characterized in that it is configured so that introduced gas can be detected by doing so. 2. A gas sensor using a cross-section of a multilayer thin film, which is characterized by carrying out an electrochemical reaction in a high-resistance solvent that does not contain an electrolyte, in a gas atmosphere, or at low temperatures. 3. Form a multi-thin film structure in which metal thin films and insulating thin films are alternately stacked to a thickness of several hundred to several thousand angstroms on a ceramic substrate, and part of the multilayer thin film is chemically etched or etched with argon ions. The metal electrodes of the two layers of the multilayer thin film are exposed in close proximity at a distance of several hundred to several thousand angstroms, and a required voltage source is connected between these two layers of metal electrodes, and water vapor is applied to the surface of the electrodes. , we plan to manufacture a gas sensor that can detect the introduced gas by electrochemically decomposing gas molecules adsorbed on the electrode surface when a gas such as ammonia is introduced, and measuring the current flowing between both metal electrodes. A manufacturing method for gas sensors that utilizes the cross-section of a characteristic multilayer thin film.
JP63047536A 1988-03-02 1988-03-02 Gas sensor and manufacturing method thereof Expired - Lifetime JPH0664008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047536A JPH0664008B2 (en) 1988-03-02 1988-03-02 Gas sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047536A JPH0664008B2 (en) 1988-03-02 1988-03-02 Gas sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01223339A true JPH01223339A (en) 1989-09-06
JPH0664008B2 JPH0664008B2 (en) 1994-08-22

Family

ID=12777852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047536A Expired - Lifetime JPH0664008B2 (en) 1988-03-02 1988-03-02 Gas sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0664008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261979A (en) * 1995-03-20 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> Electrode for sensor
US10222345B2 (en) * 2016-01-14 2019-03-05 Soochow University Acetic acid gas sensor based on azobenzene compound, preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261979A (en) * 1995-03-20 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> Electrode for sensor
US10222345B2 (en) * 2016-01-14 2019-03-05 Soochow University Acetic acid gas sensor based on azobenzene compound, preparation method and application thereof

Also Published As

Publication number Publication date
JPH0664008B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US6946197B2 (en) Semiconductor and device nanotechnology and methods for their manufacture
US20110308942A1 (en) Microelectrode array sensor for detection of heavy metals in aqueous solutions
KR100713289B1 (en) Formation of metal nanowires for use as variable-range hydrogen sensors
US8378694B2 (en) Organic chemical sensor comprising plasma-deposited microporous layer, and method of making and using
US8736000B1 (en) Capacitive chemical sensor
JP2002082082A (en) Odor sensor and its manufacturing method
JP5814173B2 (en) Carbon electrode for electrochemical measurement and manufacturing method thereof
JPH01223339A (en) Gas sensor utilizing section of multilayer thin film
JP2014224819A (en) Micromechanical sensor device
Buss et al. Modifications and characterization of a silicon-based microelectrode array
JPS5837907A (en) Method of producing anodic oxidized aluminum humidity sensitive film
RU2319953C1 (en) Method of manufacturing sensor for semiconductive gas transducer
JPH08261979A (en) Electrode for sensor
Gao et al. On-chip suspended gold nanowire electrode with a rough surface: Fabrication and electrochemical properties
JPH04136748A (en) Carbon thin-film electrode for electrochemical measurement and manufacture thereof
EP3726208A1 (en) High surface area electrode for electrochemical sensor
JP2501856B2 (en) Electrochemical sensor
JP2698647B2 (en) Electrochemical sensor
RU2775201C1 (en) Gas analysis multi-sensor chip based on graphene and method of its manufacturing
JP2004294127A (en) Humidity sensor
JPH0814553B2 (en) Humidity sensor
KR20100082512A (en) Gas sensor and manufacturing method thereof
Ilic¹ et al. Batch fabricated amperometric relative humidity sensor
JPH03202798A (en) Thin film moisture sensitive element
JPH04262251A (en) Manufacture of electrochemical element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term