JPH04262251A - Manufacture of electrochemical element - Google Patents

Manufacture of electrochemical element

Info

Publication number
JPH04262251A
JPH04262251A JP3010426A JP1042691A JPH04262251A JP H04262251 A JPH04262251 A JP H04262251A JP 3010426 A JP3010426 A JP 3010426A JP 1042691 A JP1042691 A JP 1042691A JP H04262251 A JPH04262251 A JP H04262251A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrodes
electrolyte layer
insulating substrate
macromolecular film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3010426A
Other languages
Japanese (ja)
Inventor
Takahiro Inoue
孝啓 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3010426A priority Critical patent/JPH04262251A/en
Publication of JPH04262251A publication Critical patent/JPH04262251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To manufacture an electrochemical element having high time stability by preventing the occurrence of peeling between a macromolecular film and a solid electrolyte layer on the electrochemical element provided with a plurality of electrodes including a working electrode formed on an insulating substrate, a water repellant macromolecular film formed on the electrodes, and the solid electrolyte layer formed on the macromolecular film. CONSTITUTION:An electrode plate 6 is provided with a plurality of electrodes 3 and 4 including a working electrode 2 which are formed out an insulating substrate 1 and a water-repellant macromolecular film 5 covering the electrodes 2, 3 and 4. The macromolecular film 5 of the electrode plate 6 undergoes plasma treatment which is effective for the reinforcement of chemical bonding power, etching effect and anchor effect. Thereafter, the macromolecular film 5 is covered with a solid electrolyte layer 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、酸化還元反応を利用し
てたとえば特定のガス成分を検出するのに用いる電気化
学素子の製法に関し、具体的には絶縁基板に作用極、対
極及び参照極が設けられ、これらの電極と電極間の絶縁
基板を覆う固体電解質膜が設けられた電気化学素子の製
法に関するものである。
[Field of Industrial Application] The present invention relates to a method for manufacturing an electrochemical element used for detecting a specific gas component by utilizing a redox reaction, and specifically relates to a method for manufacturing an electrochemical element that is used to detect a specific gas component by utilizing an oxidation-reduction reaction. The present invention relates to a method for manufacturing an electrochemical element including electrodes and a solid electrolyte membrane covering an insulating substrate between the electrodes.

【0002】0002

【従来の技術】酸化還元反応を電気化学的に利用して、
雰囲気中のガス、例えば一酸化炭素、水素、アルコール
、窒素酸化物、硫黄酸化物等を検出する電気化学式ガス
センサは、これまでに数多く提案されている。一般的に
、この種のガスセンサーは、高い感度を有していること
から、工業用のガス濃度検出器の分野において利用され
ている。
[Prior art] Using redox reactions electrochemically,
Many electrochemical gas sensors that detect gases in the atmosphere, such as carbon monoxide, hydrogen, alcohol, nitrogen oxides, sulfur oxides, etc., have been proposed so far. Generally, this type of gas sensor has high sensitivity and is therefore used in the field of industrial gas concentration detectors.

【0003】この種の電気化学素子は、特開平1−15
6657号公報に開示されているように、絶縁基板上に
、作用極、対極及びこの作用極に対する基準電位として
の働きをする参照極の3種の電極を並べて形成し、さら
にこれらの電極と電極間の絶縁基板をスルホン化パーフ
ルオロカーボン等の高分子の固体電解質膜で覆った構成
を備え、別名プレーナ型センサと呼ばれ、特に薄膜形成
技術や微細加工技術を用いて、極めて小型かつ精密で品
質性能の優れたセンサーとして期待されている。
[0003] This type of electrochemical device is disclosed in Japanese Unexamined Patent Publication No. 1-15
As disclosed in Japanese Patent No. 6657, three types of electrodes, a working electrode, a counter electrode, and a reference electrode that serves as a reference potential for the working electrode, are formed side by side on an insulating substrate, and these electrodes and the electrode The insulating substrate in between is covered with a solid electrolyte membrane made of a polymer such as sulfonated perfluorocarbon, and is also called a planar sensor.It is extremely small, precise, and has high quality by using thin film formation technology and microfabrication technology. It is expected to be a sensor with excellent performance.

【0004】ところで、絶縁基板に作用極、対極及び参
照極が設けられ、これらの電極と電極間の絶縁基板を覆
う固体電解質膜が設けられてなる電気化学素子の電極に
求められる活性を経時的に安定化するためには、電極と
固体電解質膜との間に撥水性の高分子膜を介在させるこ
とが有効である。しかしながら、この固体電解質膜は保
水状態で初めてプロトン伝導体として機能するものであ
るために、固体電解質膜と撥水性の高分子膜との密着性
が弱く、さらには温度、湿度の変化によって固体電解質
膜の膨潤や伸縮が起こると、固体電解質膜と高分子膜の
間に剥離が発生し、電気化学素子としての機能を失うこ
とになる。
By the way, it is difficult to determine the activity required for the electrodes of an electrochemical device in which a working electrode, a counter electrode, and a reference electrode are provided on an insulating substrate, and a solid electrolyte membrane is provided to cover these electrodes and the insulating substrate between the electrodes. In order to stabilize the electrolyte, it is effective to interpose a water-repellent polymer membrane between the electrode and the solid electrolyte membrane. However, since this solid electrolyte membrane functions as a proton conductor only when water is retained, the adhesion between the solid electrolyte membrane and the water-repellent polymer membrane is weak, and furthermore, changes in temperature and humidity can cause the solid electrolyte to deteriorate. When the membrane swells or expands and contracts, separation occurs between the solid electrolyte membrane and the polymer membrane, resulting in loss of function as an electrochemical element.

【0005】[0005]

【発明が解決しようとする課題】したがって、この発明
が解決する課題は、絶縁基板に形成された作用極を含む
複数の電極、この電極上に形成された撥水性の高分子膜
、及びこの高分子膜上に形成された固体電解質膜とを備
えた電気化学素子の高分子膜と固体電解質膜との間の剥
離の発生を防いで、経時的安定性を高めた電気化学素子
の製法を提供するものである。
Problems to be Solved by the Invention Therefore, the problems to be solved by the present invention are to provide a plurality of electrodes including a working electrode formed on an insulating substrate, a water-repellent polymer film formed on the electrodes, and a water-repellent polymer film formed on the electrodes. Provides a method for manufacturing an electrochemical device that prevents peeling between a polymer membrane and a solid electrolyte membrane of an electrochemical device that has a solid electrolyte membrane formed on a molecular membrane and improves stability over time. It is something to do.

【0006】[0006]

【課題を解決するための手段】本発明に係る電気化学素
子の製法は、絶縁基板に形成された作用極を含む複数の
電極とこれらの電極を覆う撥水性の高分子膜とを備えた
電極板の前記高分子膜をプラズマ処理した後に、この高
分子膜を固体電解質層で被覆することを特徴とするもの
である。
[Means for Solving the Problems] A method for manufacturing an electrochemical device according to the present invention includes an electrode comprising a plurality of electrodes including a working electrode formed on an insulating substrate and a water-repellent polymer film covering these electrodes. The method is characterized in that after the polymer membrane of the plate is subjected to plasma treatment, the polymer membrane is coated with a solid electrolyte layer.

【0007】以下、本発明を図面を援用して説明する。 図1は、本発明の電気化学素子の一実施例に係る電気化
学式ガスセンサの構造を示した断面図である。
The present invention will be explained below with reference to the drawings. FIG. 1 is a sectional view showing the structure of an electrochemical gas sensor according to an embodiment of the electrochemical element of the present invention.

【0008】図1において、絶縁基板1には、作用極2
と対極3と作用極2に対して基準電位として働く参照極
4が形成されている。これらの電極2、3、4は撥水性
の高分子膜5で被覆され、電極板6が構成されている。 そしてこの電極板6の高分子膜5はプラズマ処理をされ
た後に、この上にプロトン伝導性を有する固体電解質層
7が形成され、目的とする電気化学素子8ができあがる
In FIG. 1, an insulating substrate 1 has a working electrode 2.
A reference electrode 4 is formed that serves as a reference potential for the counter electrode 3 and the working electrode 2. These electrodes 2, 3, and 4 are covered with a water-repellent polymer film 5 to constitute an electrode plate 6. After the polymer film 5 of the electrode plate 6 is subjected to plasma treatment, a solid electrolyte layer 7 having proton conductivity is formed thereon, thereby completing the intended electrochemical device 8.

【0009】ここで、絶縁基板1は、例えばシリコン基
板、アルミナ基板、その他種々のセラミックス基板、そ
の他エポキシ樹脂等の有機質基板が用いられる。作用極
2と対極3と参照極4は、このような絶縁基板1の上に
白金、金などの各種電極材料を真空蒸着法やスパッタリ
ング法等により形成される。高分子膜5は、これらの電
極2、3、4にキャステング、ディップ、蒸着、スパッ
タリング等により、ポリテトラフルオロエチレンに代表
される弗素樹脂や、ポリエチレン、ポリプロピレン等の
炭化水素系ポリマー等の撥水性の高分子で構成される。
Here, as the insulating substrate 1, for example, a silicon substrate, an alumina substrate, various other ceramic substrates, and other organic substrates such as epoxy resin are used. The working electrode 2, the counter electrode 3, and the reference electrode 4 are formed of various electrode materials such as platinum and gold on the insulating substrate 1 by vacuum evaporation, sputtering, or the like. The polymer film 5 is made of water-repellent material such as fluororesin such as polytetrafluoroethylene or hydrocarbon polymer such as polyethylene and polypropylene by casting, dipping, vapor deposition, sputtering, etc. on these electrodes 2, 3, and 4. It is composed of polymers.

【0010】さらにこの高分子膜5はプラズマ処理され
る。このプラズマ処理の雰囲気ガスは、たとえばAr,
O2 ,CO,N2 等が適当である。このプラズマ処
理を高分子膜5に施すと、化学的な結合力の強化、エッ
チング効果、アンカー効果等により固体電解質層7との
密着力が向上し、固体電解質層7の剥離防止の効果が得
られる。
Further, this polymer film 5 is subjected to plasma treatment. The atmospheric gas for this plasma treatment is, for example, Ar,
O2, CO, N2, etc. are suitable. When this plasma treatment is applied to the polymer membrane 5, the adhesion with the solid electrolyte layer 7 is improved due to strengthening of chemical bond strength, etching effect, anchor effect, etc., and the effect of preventing the solid electrolyte layer 7 from peeling is obtained. It will be done.

【0011】固体電解質層7は、例えばポリスチレンス
ルホネートポリマー、パーフルオロスルホネートポリマ
ー等のプロトン伝導性を有する高分子電解質材料やアン
チモン酸化合物などで構成されるが、成膜性の良さとプ
ロトン伝導性の良さからパーフルオロスルホネートポリ
マー(デュポン社製  商標;Nafion)が最適で
ある。
The solid electrolyte layer 7 is composed of a polymer electrolyte material having proton conductivity such as polystyrene sulfonate polymer or perfluorosulfonate polymer, or an antimonic acid compound. Perfluorosulfonate polymer (trademark: Nafion, manufactured by DuPont) is most suitable because of its excellent properties.

【0012】0012

【作用】絶縁基板に形成された作用極を含む複数の電極
、この電極上に形成された撥水性の高分子膜、及びこの
高分子膜上に形成された固体電解質膜とを備えた電気化
学素子の高分子膜をプラズマ処理することにより、高分
子膜に固体電解質膜の剥離防止に有効な化学的な結合力
の強化、エッチング効果、アンカー効果等が与えられる
[Function] Electrochemistry comprising multiple electrodes including a working electrode formed on an insulating substrate, a water-repellent polymer film formed on this electrode, and a solid electrolyte film formed on this polymer film. Plasma treatment of the polymer film of the device imparts to the polymer film chemical bonding strength, etching effect, anchor effect, etc. that are effective in preventing peeling of the solid electrolyte membrane.

【0013】[0013]

【実施例1】と[Example 1]

【比較例1】酸化絶縁したシリコンからなる絶縁基板1
上にスパッタリングにより白金の作用極2と対極3を形
成し、真空蒸着法により参照極4を形成した。これらの
電極2、3、4上にポリパーフルオロフラン溶液をキャ
ステングすることにより、膜厚0. 01μmの高分子
膜5を形成した。このようにして得た電極板6の高分子
膜5をつぎの条件でプラズマ処理した。まず電極板6を
0.003Torrまで減圧したプラズマ処理装置内に
置き、Arガスを圧力が0. 1Torrになるまで導
入した。そして13. 56MHz,30Wの高周波を
10分間印加してプラズマ処理とした。つづいて、Ar
ガスを止めて、再び0. 003Torrまで減圧した
後、常圧に戻した。プラズマ処理の終わった電極板6の
高分子膜5の上にパーフルオロスルホネートポリマー(
デュポン社製  商標;Nafion)をプロトン置換
したもののn−2プロパノール溶液でキャステング、乾
燥して膜厚3μmの固体電解質層7を形成し、この発明
の実施例に係る電気化学式のCOガスセンサーとした。
[Comparative Example 1] Insulating substrate 1 made of oxidized silicon
A platinum working electrode 2 and a counter electrode 3 were formed thereon by sputtering, and a reference electrode 4 was formed by vacuum evaporation. By casting a polyperfluorofuran solution on these electrodes 2, 3, and 4, a film thickness of 0. A polymer film 5 having a thickness of 0.01 μm was formed. The polymer film 5 of the electrode plate 6 thus obtained was subjected to plasma treatment under the following conditions. First, the electrode plate 6 is placed in a plasma processing apparatus whose pressure is reduced to 0.003 Torr, and Ar gas is applied at a pressure of 0.003 Torr. It was introduced until the pressure reached 1 Torr. And 13. Plasma treatment was performed by applying a high frequency of 56 MHz and 30 W for 10 minutes. Next, Ar
Turn off the gas and return to 0. After reducing the pressure to 0.003 Torr, the pressure was returned to normal pressure. A perfluorosulfonate polymer (
A solid electrolyte layer 7 having a film thickness of 3 μm was formed by casting with an n-2 propanol solution of proton-substituted Nafion (trademark manufactured by DuPont) and drying to form a solid electrolyte layer 7 with a film thickness of 3 μm, thereby obtaining an electrochemical CO gas sensor according to an embodiment of the present invention. .

【0014】一方、プラズマ処理を除き、同一材料と同
一条件で作製した比較例に係る電気化学式のCOガスセ
ンサーを作製した。
On the other hand, an electrochemical CO gas sensor according to a comparative example was manufactured using the same materials and under the same conditions except for plasma treatment.

【0015】この2種のCOガスセンサーの密着性とガ
ス検出特性を評価するために、以下のヒートサイクル試
験を行った。 (1)20℃、60%R. Hの雰囲気に24hr(2
)50℃、20%R. Hの雰囲気に24hr(3)2
0℃、60%R. Hの雰囲気に24hr(4)−20
℃、100%R. Hの雰囲気に24hrの放置を1サ
イクルとし、これを5回繰り返した。
[0015] In order to evaluate the adhesion and gas detection characteristics of these two types of CO gas sensors, the following heat cycle test was conducted. (1) 20℃, 60%R. 24 hours (2
) 50°C, 20%R. 24 hours in H atmosphere (3) 2
0°C, 60%R. 24 hours (4)-20 in H atmosphere
°C, 100% R.C. One cycle consisted of leaving the sample in an H atmosphere for 24 hours, and this cycle was repeated five times.

【0016】その結果、プラズマ処理を施さなかった比
較例のCOガスセンサーでは、固体電解質層7に剥離の
発生が目視確認されたのに対し、実施例のCOガスセン
サーの高分子膜5と固体電解質層7間には、光学顕微鏡
、SEMで観察しても変化を確認できなかった。
As a result, in the CO gas sensor of the comparative example that was not subjected to plasma treatment, it was visually confirmed that the solid electrolyte layer 7 had peeled off, whereas the polymer film 5 and the solid electrolyte layer of the CO gas sensor of the example were visually confirmed to have peeled off. No change was observed between the electrolyte layers 7 even when observed using an optical microscope or SEM.

【0017】また、COガス1000ppmにおけるガ
ス検出特性の経時変化については、プラズマ処理を施さ
なかった比較例のCOガスセンサーは、上記5回のサイ
クル以内にすでに激減現象が認められたのに対し、実施
例のCOガスセンサーは、低下の現象すら認められなか
った。
[0017] Regarding the change over time in the gas detection characteristics at 1000 ppm of CO gas, the CO gas sensor of the comparative example that was not subjected to plasma treatment showed a drastic decrease phenomenon already within the above five cycles. In the CO gas sensor of the example, even a phenomenon of deterioration was not observed.

【0018】[0018]

【実施例2】実施例1で得た電極板6につぎの条件でプ
ラズマ処理を施した。まず電極板6を0. 003To
rrまで減圧したプラズマ重合装置内に置き、テトラフ
ルオロエチレンガスを1. 5ml/min,圧力0.
 1Torrになるように導入した。そして13. 5
6MHz,5Wの高周波を1分間印加して0. 01μ
mの高分子膜5を形成した。続いてこの高分子膜5の表
面を0. 1TorrのO2 雰囲気中で13. 56
MHz,30Wの高周波を10分間印加してプラズマ処
理とした。つづいて、Arガスを止めて、再び0. 0
03Torrまで減圧した後、常圧に戻した。プラズマ
処理の終わった電極板6の高分子膜5の上に実施例1 
と同一の条件でパーフルオロスルホネートポリマー(デ
ュポン社製  商標;Nafion)をプロトン置換し
たもののn−2プロパノール溶液でキャステング後、乾
燥して膜厚3μmの固体電解質層7を形成し、この発明
の実施例に係る電気化学式のCOガスセンサーとした。
Example 2 The electrode plate 6 obtained in Example 1 was subjected to plasma treatment under the following conditions. First, the electrode plate 6 was set at 0. 003To
Place it in a plasma polymerization apparatus reduced to rr, and add 1.0% tetrafluoroethylene gas. 5ml/min, pressure 0.
It was introduced so that the pressure was 1 Torr. And 13. 5
6MHz, 5W high frequency was applied for 1 minute. 01μ
A polymer film 5 of m was formed. Subsequently, the surface of this polymer membrane 5 was coated with 0. 13. In an O2 atmosphere of 1 Torr. 56
Plasma treatment was performed by applying a high frequency of MHz and 30 W for 10 minutes. Next, stop the Ar gas and return to 0. 0
After reducing the pressure to 0.03 Torr, the pressure was returned to normal pressure. Example 1 was applied on the polymer film 5 of the electrode plate 6 after plasma treatment.
After casting with an n-2 propanol solution of proton-substituted perfluorosulfonate polymer (trademark: Nafion, manufactured by DuPont) under the same conditions as described above, the solid electrolyte layer 7 with a thickness of 3 μm was formed by drying, and the solid electrolyte layer 7 with a thickness of 3 μm was formed. The electrochemical type CO gas sensor according to the example was used.

【0019】このガスセンサーを実施例1と同一の条件
で試験を行った結果、固体電解質層7の剥離は、認めら
れず、またガス検出特性の経時変化についても低下は認
められなかった。
When this gas sensor was tested under the same conditions as in Example 1, no peeling of the solid electrolyte layer 7 was observed, and no deterioration in the gas detection characteristics over time was observed.

【0020】[0020]

【発明の効果】この発明に係る電気化学素子の製法によ
ると、高分子膜と固体電解質層との間の剥離の発生を防
いで、経時的安定性の高い電気化学素子を得ることがで
きる。
According to the method for producing an electrochemical device according to the present invention, it is possible to prevent the occurrence of peeling between the polymer membrane and the solid electrolyte layer, and to obtain an electrochemical device with high stability over time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に係る電気化学素子の断面図
である。
FIG. 1 is a sectional view of an electrochemical device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  絶縁基板 2  作用極 3  対極 4  参照極 5  高分子膜 6  電極板 7  固体電解質層 8  電気化学素子 1 Insulating substrate 2 Working electrode 3. Opposite 4 Reference pole 5 Polymer membrane 6 Electrode plate 7 Solid electrolyte layer 8 Electrochemical element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  絶縁基板に形成された作用極を含む複
数の電極とこれらの電極を覆う撥水性の高分子膜とを備
えた電極板の前記高分子膜をプラズマ処理した後に、こ
の高分子膜を固体電解質層で被覆することを特徴とする
電気化学素子の製法。
1. After plasma-treating the polymer film of an electrode plate comprising a plurality of electrodes including a working electrode formed on an insulating substrate and a water-repellent polymer film covering these electrodes, the polymer film is A method for producing an electrochemical device characterized by coating a membrane with a solid electrolyte layer.
JP3010426A 1991-01-31 1991-01-31 Manufacture of electrochemical element Pending JPH04262251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3010426A JPH04262251A (en) 1991-01-31 1991-01-31 Manufacture of electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3010426A JPH04262251A (en) 1991-01-31 1991-01-31 Manufacture of electrochemical element

Publications (1)

Publication Number Publication Date
JPH04262251A true JPH04262251A (en) 1992-09-17

Family

ID=11749831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3010426A Pending JPH04262251A (en) 1991-01-31 1991-01-31 Manufacture of electrochemical element

Country Status (1)

Country Link
JP (1) JPH04262251A (en)

Similar Documents

Publication Publication Date Title
US6012327A (en) Gas sensor and method for manufacturing the same
Mu et al. A robust flexible electrochemical gas sensor using room temperature ionic liquid
US20100116682A1 (en) Electrochemical sensor with interdigitated microelectrodes and conducted polymer
WO1989008249A1 (en) Electrochemical gas sensor
Shim et al. Humidity Sensor Using Chemically Synthesized Poly (1, 5‐diaminonaphthalene) Doped with Carbon
US11167981B2 (en) Semiconductor device and method of producing a semiconductor device
JPH04262251A (en) Manufacture of electrochemical element
Wallgren et al. A Nafion®-based co-planar electrode amperometric sensor for methanol determination in the gas phase
JPH02268265A (en) Electrode cell having minute hole for electrochemical measurement and manufacture thereof
JPH0611478A (en) Electrochemical gas sensor and its manufacture
FI113806B (en) Moisture detection elements and method for making them
KR102273595B1 (en) Manufacturing Method of Electrode for Gas Sensor and Gas Sensor
JPH0445780B2 (en)
JPH04136748A (en) Carbon thin-film electrode for electrochemical measurement and manufacture thereof
JP2501856B2 (en) Electrochemical sensor
JPH02140655A (en) Electrochemical detector and production thereof
KR20130084376A (en) Semi-conductor gas sensor and formation method of the same
JPH02171651A (en) Electrochemical cell
JPH0664008B2 (en) Gas sensor and manufacturing method thereof
JPS60143755A (en) Humidity sensor
Madou et al. Multilayer ionic devices fabricated by thin-and thick-film technologies
JPH04357451A (en) Electrochemical element and its manufacture
JPH0772116A (en) Electrochemical type gas sensor
JPH03223648A (en) Thin film moisture sensitive element
JPH02196957A (en) Electrochemical element