JPH0611478A - Electrochemical gas sensor and its manufacture - Google Patents

Electrochemical gas sensor and its manufacture

Info

Publication number
JPH0611478A
JPH0611478A JP4168689A JP16868992A JPH0611478A JP H0611478 A JPH0611478 A JP H0611478A JP 4168689 A JP4168689 A JP 4168689A JP 16868992 A JP16868992 A JP 16868992A JP H0611478 A JPH0611478 A JP H0611478A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte membrane
fluorine
electrode
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4168689A
Other languages
Japanese (ja)
Inventor
Noriyuki Yamaga
範行 山鹿
Takashi Hatai
崇 幡井
Shigekazu Kusanagi
繁量 草薙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4168689A priority Critical patent/JPH0611478A/en
Publication of JPH0611478A publication Critical patent/JPH0611478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To provide an electrochemical gas sensor and a method of manufacture of the same, whose sensitivity is stable against secular change, by forming a solid electrolyte film which is free from exfoliation of or crack initiation in the solid electrolyte film and which is equipped with a surface having ion conductivity holding effect. CONSTITUTION:An electrochemical gas sensor concerned is equipped with a bunch 8 of electrodes installed on an insulative base board 1 and a solid electrolyte film 9 which covers this electrode bunch 8 in continuity, wherein the solid electrolyte film 9 consists in a gradient film in which the fluorine content is substantially incremental over the surfaces from the electrode bunch 8 to the solid electrolyte film 9. The solid electrolyte film 9 is plasma polymerized according to the rate at which fluoric monomers A are gradually incremental relative to monomers B having functional group giving ion conductivity from the electrode bunch 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学式ガスセンサ
およびその製法に関し、詳しくは絶縁基板に作用極を含
む複数の電極が設けられ、さらにこれらの電極を一連に
被覆する固体電解質膜を備え、作用極と対極上で起こる
ガスの電気化学反応を利用して、雰囲気中に含まれる、
例えば一酸化炭素、水素、アルコール、窒素酸化物など
の被検ガスを検知する電気化学式ガスセンサ、およびそ
の製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical gas sensor and a method for producing the same, more specifically, a plurality of electrodes including working electrodes are provided on an insulating substrate, and a solid electrolyte membrane is provided to cover these electrodes in series. Included in the atmosphere by utilizing the electrochemical reaction of gas that occurs on the working electrode and the counter electrode,
For example, the present invention relates to an electrochemical gas sensor that detects a test gas such as carbon monoxide, hydrogen, alcohol, and nitrogen oxide, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】例えば特開昭53−115293号、さ
らには特開昭64−88354号公報に開示されている
如く、絶縁基板上に複数の電極を形成し、これらの電極
を固体電解質膜で被覆して構成した電気化学式ガスセン
サは、電極において起こる被検ガス、例えば一酸化炭
素、水素、アルコール、窒素酸化物等の電気化学反応に
ともなって流れる電流をもって、雰囲気中の被検ガスを
検知するもので、火報、工業用、環境保全と広い分野で
利用できる。
2. Description of the Related Art As disclosed in, for example, JP-A-53-115293 and JP-A-64-88354, a plurality of electrodes are formed on an insulating substrate and these electrodes are formed by a solid electrolyte membrane. The electrochemical gas sensor configured by coating detects the test gas in the atmosphere by using the test gas that occurs at the electrode, for example, the current that flows with the electrochemical reaction of carbon monoxide, hydrogen, alcohol, nitrogen oxides, etc. It can be used in a wide range of fields such as fire alarm, industrial, environmental protection.

【0003】従来の電気化学式ガスセンサを図3に示す
と、絶縁基板1の上に作用極2、この作用極2との間に
電流が流れる対極3、および上記作用極2に対する基準
電位として働く参照極4を備え、これら電極群8を固体
電解質膜9で被覆し、この固体電解質膜9の電解質を長
期にわたり保持するために、さらに、固体電解質膜9を
通気性を有する保護膜10で覆っている。固体電解質膜
9の材料として、電解質のポリスチレンスルホネート、
ポリビニルスルホネート、パーフルオロスルホネートポ
リマー、パーフルオロカルボキシレートポリマー等が知
られているが、これらの中でもパーフルオロスルホネー
トポリマー(デュポン社製の商標ナフィオン)が実用的
であり、これらの材料は絶縁基板1上にキャステングす
ることによって、電極群8を一連に被覆する。保護膜1
0の材料としては撥水性を有するフッ素系のポリマーか
らなる膜が用いられる。この構成では、固体電解質膜9
と保護膜10とは温度、湿度の変化に対して膨張率に差
が有るため、保護膜10が固体電解質膜9より剥がれた
り、割れたりし、保護膜10による固体電解質膜9の電
解質を保持する機能が損なわれ、固体電解質膜9の経時
に伴うイオン伝導性の低下が避けられず、その結果、電
気化学式ガスセンサの検知感度が低下するという問題点
がある。
A conventional electrochemical gas sensor is shown in FIG. 3, which serves as a working electrode 2 on an insulating substrate 1, a counter electrode 3 through which a current flows between the working electrode 2, and a reference potential for the working electrode 2. The electrode group 8 is provided with a pole 4, and the electrode group 8 is covered with a solid electrolyte membrane 9. In order to retain the electrolyte of the solid electrolyte membrane 9 for a long period of time, the solid electrolyte membrane 9 is further covered with a protective film 10 having air permeability. There is. As a material of the solid electrolyte membrane 9, polystyrene sulfonate of an electrolyte,
Polyvinyl sulfonate, perfluoro sulfonate polymer, perfluoro carboxylate polymer and the like are known. Among them, perfluoro sulfonate polymer (trademark Nafion manufactured by DuPont) is practical and these materials are used on the insulating substrate 1. Then, the electrode group 8 is covered in series by casting. Protective film 1
As the material of 0, a film made of a fluorine-based polymer having water repellency is used. In this configuration, the solid electrolyte membrane 9
Since there is a difference in expansion coefficient between the protective film 10 and the protective film 10 with respect to changes in temperature and humidity, the protective film 10 is peeled or cracked from the solid electrolyte membrane 9, and the electrolyte of the solid electrolyte membrane 9 is retained by the protective film 10. However, the ionic conductivity of the solid electrolyte membrane 9 is unavoidably deteriorated over time, and as a result, the detection sensitivity of the electrochemical gas sensor is deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述の問題点
を解決するためになされたもので、その目的とするとこ
ろは、剥離や割れが発生せず、且つイオン伝導性の保持
効果の有る表面を備えた固体電解質膜を形成することに
より、検知感度の経時的安定性を有する電気化学式ガス
センサおよびその製法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is not to cause peeling or cracking and to have an effect of maintaining ion conductivity. An object of the present invention is to provide an electrochemical gas sensor having a time-dependent stability of detection sensitivity by forming a solid electrolyte membrane having a surface, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明に請求項1および
2に係る電気化学式ガスセンサは、絶縁基板1に設けら
れた作用極2、対極3を含む電極群8と、この電極群8
を一連に被覆してなる固体電解質膜9とを備え、上記固
体電解質膜9が電極群8から固体電解質膜9の表面に渡
って、フッ素の含有量が実質的に増大する傾斜膜で構成
されたことを特徴とし、さらに、上記固体電解質膜9は
イオン伝導性を有するフッ素系ポリマーで構成されるこ
とを特徴とする。
An electrochemical gas sensor according to claims 1 and 2 of the present invention comprises an electrode group 8 including a working electrode 2 and a counter electrode 3 provided on an insulating substrate 1, and an electrode group 8 of the electrode group 8.
And a solid electrolyte membrane 9 formed by covering the solid electrolyte membrane 9 in series, and the solid electrolyte membrane 9 is composed of a gradient membrane in which the fluorine content substantially increases from the electrode group 8 to the surface of the solid electrolyte membrane 9. Furthermore, the solid electrolyte membrane 9 is characterized by being composed of a fluorine-based polymer having ion conductivity.

【0006】本発明に請求項3に係る電気化学式ガスセ
ンサの製法は、電極群8に単独でもプラズマ重合するフ
ッ素系モノマーAと、このフッ素系モノマーAと重合す
る、官能基を有するモノマーBを、このモノマーBに対
して、フッ素系モノマーAが順次に増大する割合でプラ
ズマ重合することにより生成されるイオン伝導性を有す
るポリマーからなる固体電解質膜9を形成することを特
徴とする。
In the method of manufacturing an electrochemical gas sensor according to a third aspect of the present invention, a fluorine-based monomer A that is plasma-polymerized alone in the electrode group 8 and a monomer B having a functional group that is polymerized with the fluorine-based monomer A are used. The solid electrolyte membrane 9 is formed of a polymer having ion conductivity, which is generated by plasma polymerization of the fluorine-based monomer A with respect to the monomer B in a sequentially increasing ratio.

【0007】[0007]

【作用】本発明によると、固体電解質膜9は電極群8か
ら表面に渡って、フッ素の含有量が実質的に増大する傾
斜膜で構成されているので、固体電解質膜9の電極群8
と表面側との間で急激な組成変化を起こす境界面が存在
しない。したがって、温度、湿度の変化による膨張率が
厚み方向で著しく差がないので、固体電解質膜9内に剥
離や割れが起こらない。そのうえ、固体電解質膜9の表
面は撥水性をあるフッ素系のポリマーで構成されている
ので、撥水性を有する。
According to the present invention, the solid electrolyte membrane 9 is composed of an inclined membrane in which the content of fluorine increases substantially from the electrode group 8 to the surface, so that the electrode group 8 of the solid electrolyte membrane 9 is formed.
There is no boundary surface that causes a rapid composition change between the surface and the surface side. Therefore, the expansion coefficient due to changes in temperature and humidity is not significantly different in the thickness direction, so that peeling or cracking does not occur in the solid electrolyte membrane 9. Moreover, since the surface of the solid electrolyte membrane 9 is made of a water-repellent fluorine-based polymer, it has water repellency.

【0008】本発明の製法によると、固体電解質膜9は
単独でもプラズマ重合するフッ素系モノマーAと、この
フッ素系モノマーAと重合する、イオン伝導性を付与す
る官能基を有するモノマーBを、このモノマーBに対し
てフッ素系モノマーAの割合が順次に増大するように調
製し、電極群8にプラズマ重合することにより、フッ素
の含有量が実質的に増大する傾斜膜を構成する。従っ
て、電極群8側はイオン伝導性が高く、表面は撥水性が
付与され、その間は急激な組成変化のない固体電解質膜
9が得られる。
According to the manufacturing method of the present invention, the solid electrolyte membrane 9 comprises a fluorine-based monomer A which is plasma-polymerized alone and a monomer B which is polymerized with the fluorine-based monomer A and has a functional group imparting ion conductivity. The gradient film in which the fluorine content is substantially increased is formed by preparing the electrode group 8 by plasma polymerization so that the ratio of the fluorine-based monomer A to the monomer B is sequentially increased. Therefore, the ionic conductivity is high on the electrode group 8 side, and the surface is provided with water repellency, and the solid electrolyte membrane 9 in which the composition does not change suddenly can be obtained.

【0009】以下、本発明を詳細に説明する。図1は本
発明の電気化学式ガスセンサに係る断面図、図2は図1
の平面図である。
The present invention will be described in detail below. 1 is a cross-sectional view of an electrochemical gas sensor of the present invention, and FIG. 2 is FIG.
FIG.

【0010】この電気化学式ガスセンサは図1および図
2に示す如く、絶縁基板1に形成された作用極2、対極
3、および作用極4を含む電極群8を有する。作用極2
は被検ガスが接触すると電気化学反応に伴う酸化還元反
応が生じ、この反応と同時に対極3では作用極2におけ
る反応と対をなす酸化還元反応が発生し、参照極4は作
用極2と対極3の酸化還元反応の基準電位として機能す
る。ここで、絶縁基板1は、アルミナ等のセラミック基
板や酸化絶縁処理したシリコン基板が用いられ、作用極
2、対極3及び参照極4は、白金、あるいは金等の通常
の電極材料が用いられる。上記電極群8は信号処理する
外部機器に接続する、上記電極の各端部に形成された作
用極2の端子21、対極3の端子31、及び参照極4の
端子41を除いて、固体電解質膜9により一連に被覆さ
れている。この固体電解質膜9は電極群8から表面に渡
って、フッ素の含有量が実質的に増大する傾斜膜で構成
されている。ここで実質的に増大する傾斜膜とは、固体
電解質膜9の電極群8と表面のフッ素含有量を比較した
場合に相対的に増大していることを意味するものであっ
て、必ずしも連続的にフッ素含有量が増大することを意
味するものではない。上記固体電解質膜9は、例えばイ
オン伝導性を有するフッ素系ポリマーで構成される。さ
らに具体的には、このフッ素系ポリマーには、フッ素系
モノマーAと、このフッ素系モノマーAと重合し、イオ
ン伝導性を付与する官能基を有するモノマーBとのプラ
ズマ重合体が適用される。
As shown in FIGS. 1 and 2, this electrochemical gas sensor has an electrode group 8 formed on an insulating substrate 1 and including a working electrode 2, a counter electrode 3 and a working electrode 4. Working pole 2
Causes a redox reaction associated with the electrochemical reaction when the test gas comes into contact with the reaction gas. At the same time, a redox reaction paired with the reaction in the working electrode 2 occurs in the counter electrode 3, and the reference electrode 4 and the working electrode 2 counter electrode. It functions as a reference potential for the redox reaction of 3. Here, the insulating substrate 1 is a ceramic substrate such as alumina or a silicon substrate subjected to oxidation insulation treatment, and the working electrode 2, the counter electrode 3 and the reference electrode 4 are ordinary electrode materials such as platinum or gold. The electrode group 8 is a solid electrolyte except terminals 21 of the working electrode 2, a terminal 31 of the counter electrode 3 and a terminal 41 of the reference electrode 4 which are connected to an external device for signal processing and which are formed at each end of the electrodes. A series of coatings is provided by the membrane 9. The solid electrolyte membrane 9 is composed of an inclined membrane in which the content of fluorine increases substantially from the electrode group 8 to the surface. Here, the gradient film that substantially increases means that the fluorine content on the surface of the electrode group 8 of the solid electrolyte membrane 9 is relatively increased when it is compared, and is not necessarily continuous. It does not mean that the fluorine content increases. The solid electrolyte membrane 9 is made of, for example, a fluorinated polymer having ion conductivity. More specifically, a plasma polymer of a fluorine-based monomer A and a monomer B having a functional group that polymerizes with the fluorine-based monomer A and imparts ion conductivity is applied to the fluorine-based polymer.

【0011】このように構成された電気化学式ガスセン
サの本来機能について説明すると、一酸化炭素、水素、
アルコール、窒素酸化物等の被検ガスが、作用極2を被
覆する固体電解質膜9を透過して作用極2に到達する
と、作用極2において電気化学反応が起きる。対極3に
おいては、この反応と対になる反応が起き、その結果固
体電解質膜9の電解質の作用により、電圧を印加した作
用極2と対極3との間に電流が流れる。作用極2と対極
3との間に流れる上記の電流が、被検ガスを検知する出
力信号として上記の外部機器に入力する。この外部機器
の光学的、音声的手段、その他の表示手段により被検ガ
スの存在が報知される。
Explaining the essential functions of the electrochemical gas sensor thus constructed, carbon monoxide, hydrogen,
When a test gas such as alcohol or nitrogen oxide passes through the solid electrolyte membrane 9 covering the working electrode 2 and reaches the working electrode 2, an electrochemical reaction occurs in the working electrode 2. In the counter electrode 3, a reaction that is paired with this reaction occurs, and as a result, the action of the electrolyte of the solid electrolyte membrane 9 causes a current to flow between the working electrode 2 to which a voltage is applied and the counter electrode 3. The current flowing between the working electrode 2 and the counter electrode 3 is input to the external device as an output signal for detecting the test gas. The presence of the test gas is notified by the optical and audio means of this external device and other display means.

【0012】以下、上記の電気化学式ガスセンサを例に
して、本発明の製法について説明する。
The manufacturing method of the present invention will be described below by taking the above electrochemical gas sensor as an example.

【0013】絶縁基板1の面に電極材料を、例えばスパ
ッタリングで薄膜に析出させることにより作用極2、対
極3、及び作用極4を形成するが、特にこれら電極2,
3,4を絶縁基板1に形成する手段に制限はない。これ
ら電極群8を被覆する固体電解質膜9は単独でもプラズ
マ重合するフッ素系モノマーAと、このフッ素系モノマ
ーAと重合し、イオン伝導性を付与する官能基を有する
モノマーBとをプラズマ重合して傾斜膜で構成される。
このフッ素系モノマーAは異なるモノマーとは勿論、単
独でもプラズマ重合により、フッ素系ポリマーを析出す
るモノマーである。上記フッ素系モノマーAとしては、
具体的にはテトラフルオロエチレン、ヘキサフルオロプ
ロピレン、トリフルオロモノクロルエチレン等が用いら
れる。上記モノマーBとしては、トリフルオロメタンス
ルホン酸、ベンゼンスルホン酸、及びこれらの誘導体等
が用いられる。上記固体電解質膜9は、電極群8よりモ
ノマーBに対して、フッ素系モノマーAが時間毎に、順
次増大する割合となるよう、フッ素系モノマーAとモノ
マーBの液量の割合を調製して、プラズマ重合を行うこ
とにより形成される。
The working electrode 2, the counter electrode 3 and the working electrode 4 are formed on the surface of the insulating substrate 1 by depositing an electrode material in a thin film by, for example, sputtering.
There is no limitation on the means for forming 3, 4 on the insulating substrate 1. The solid electrolyte membrane 9 that covers these electrode groups 8 is plasma-polymerized with a fluorine-based monomer A that is plasma-polymerized alone and a monomer B that has a functional group that imparts ion conductivity by polymerizing with the fluorine-based monomer A. It is composed of a gradient film.
The fluorine-based monomer A is not only a different monomer but also a monomer that deposits a fluorine-based polymer by plasma polymerization alone. As the fluorine-based monomer A,
Specifically, tetrafluoroethylene, hexafluoropropylene, trifluoromonochloroethylene or the like is used. As the monomer B, trifluoromethanesulfonic acid, benzenesulfonic acid, derivatives thereof, or the like are used. The solid electrolyte membrane 9 is prepared by adjusting the ratio of the liquid amounts of the fluorine-based monomer A and the monomer B so that the fluorine-based monomer A gradually increases with time from the electrode group 8 to the monomer B. , Plasma polymerization is performed.

【0014】[0014]

【実施例】以下、本発明の実施例および比較例を挙げ
る。
EXAMPLES Examples and comparative examples of the present invention will be given below.

【0015】実施例1 シリコン基板を絶縁基板1として用い、この表面にスパ
ッタリングで白金からなる作用極2、対極3、および金
からなる参照極4を形成し電極群8とした。この電極群
8と絶縁基板1に付着した水分を除去するために、アル
ゴン雰囲気中でプラズマに10分間曝した。次に、フッ
素系モノマーAとしてヘキサフルオロプロピレンを用
い、モノマーBとしてスルホン基を官能基とするトリフ
ルオロメタンスルホン酸を用い、プラズマ重合をするこ
とによりポリマーを析出せしめ、上記電極群8を一連に
被覆する固体電解質膜9を形成した。この固体電解質膜
9のプラズマ重合の条件は下記のとおりであって、トリ
フルオロメタンスルホン酸の液量を経時的に変化させな
がら固体電解質膜9を形成し、フッ素の含有量が電極群
8から表面に渡って実質的に増大するように傾斜をつけ
た。 ・ ラジオ周波数の出力:25W ・ チャンバー内圧力:1.7Pa ・ プラズマ重合時間:180分間 ・ モノマー流量: 下記のとおり。 順序 実施時間 トリフルオロメタンスルホン 酸量 ヘキサフルオロフ゜ロヒ゜レン量 1 60分間 0.50cc/min 5.0cc/min 2 10分間 0.45cc/min 5.0cc/min 3 10分間 0.40cc/min 5.0cc/min 4 10分間 0.30cc/min 5.0cc/min 5 10分間 0.20cc/min 5.0cc/min 6 10分間 0.10cc/min 5.0cc/min 7 10分間 0.05cc/min 5.0cc/min 8 60分間 0 cc/min 5.0cc/min 得られた電気化学式ガスセンサを70℃の水中に1時間
浸漬し、固体電解質膜9の外観を目視で確認したとこ
ろ、固体電解質膜9内の剥離および割れの発生は全く認
められなかった。
Example 1 A silicon substrate was used as an insulating substrate 1, and a working electrode 2 made of platinum, a counter electrode 3 and a reference electrode 4 made of gold were formed on this surface by sputtering to form an electrode group 8. In order to remove the water adhering to the electrode group 8 and the insulating substrate 1, it was exposed to plasma for 10 minutes in an argon atmosphere. Next, hexafluoropropylene is used as the fluorine-based monomer A, and trifluoromethanesulfonic acid having a sulfone group as a functional group is used as the monomer B to deposit a polymer by plasma polymerization, and the electrode group 8 is coated in series. The solid electrolyte membrane 9 was formed. The conditions for plasma polymerization of the solid electrolyte membrane 9 are as follows. The solid electrolyte membrane 9 is formed while changing the liquid amount of trifluoromethanesulfonic acid over time, and the fluorine content from the electrode group 8 to the surface is increased. Was ramped to increase substantially over -Radio frequency output: 25 W-Chamber pressure: 1.7 Pa-Plasma polymerization time: 180 minutes-Monomer flow rate: As shown below. Order Execution time Trifluoromethanesulfonic acid amount Hexafluoropropylene amount 1 60 minutes 0.50 cc / min 5.0 cc / min 2 10 minutes 0.45 cc / min 5.0 cc / min 3 10 minutes 0.40 cc / min 5.0 cc / min 4 10 minutes 0.30 cc / min 5.0 cc / min 5 10 minutes 0.20 cc / min 5.0 cc / min 6 10 minutes 0.10 cc / min 5.0 cc / min 7 10 minutes 0.05 cc / min 5. 0 cc / min 8 60 minutes 0 cc / min 5.0 cc / min The obtained electrochemical gas sensor was immersed in water at 70 ° C. for 1 hour, and the appearance of the solid electrolyte membrane 9 was visually confirmed. No peeling or cracking was observed at all.

【0016】実施例2 実施例1と同様にアルゴン雰囲気中でプラズマに10分
間曝し、水分を除去した後、フッ素系モノマーAとし
て、テトラフルオロエチレンを用いた以外は、実施例1
と同様の条件でプラズマ重合により固体電解質膜9を形
成した。
Example 2 Example 1 was repeated except that, as in Example 1, the film was exposed to plasma in an argon atmosphere for 10 minutes to remove water, and then tetrafluoroethylene was used as the fluorine-based monomer A.
The solid electrolyte membrane 9 was formed by plasma polymerization under the same conditions as in.

【0017】得られた電気化学式ガスセンサを実施例1
と同様に70℃の水中に1時間浸漬し、固体電解質膜9
の外観を目視で確認したところ、固体電解質膜9内の剥
離および割れの発生は全く認められなかった。
The electrochemical gas sensor obtained was used in Example 1.
In the same manner as above, immersing in water at 70 ° C for 1 hour, the solid electrolyte membrane 9
When the appearance of the above was visually confirmed, neither peeling nor cracking in the solid electrolyte membrane 9 was observed at all.

【0018】実施例3 実施例1と同様にアルゴン雰囲気中でプラズマに10分
間曝し、水分を除去した後、フッ素系モノマーAとし
て、トリフルオロモノクロルエチレンを用いた以外は、
実施例1と同様の条件でプラズマ重合により固体電解質
膜9を形成した。
Example 3 As in Example 1, except that trifluoromonochloroethylene was used as the fluorinated monomer A after exposure to plasma for 10 minutes in an argon atmosphere to remove water.
The solid electrolyte membrane 9 was formed by plasma polymerization under the same conditions as in Example 1.

【0019】得られた電気化学式ガスセンサを実施例1
と同様に70℃の水中に1時間浸漬し、固体電解質膜9
の外観を目視で確認したところ、固体電解質膜9内の剥
離および割れの発生は全く認められなかった。
The electrochemical gas sensor obtained was used in Example 1.
In the same manner as above, immersing in water at 70 ° C for 1 hour, the solid electrolyte membrane 9
When the appearance of the above was visually confirmed, neither peeling nor cracking in the solid electrolyte membrane 9 was observed at all.

【0020】実施例4 実施例1と同様にアルゴン雰囲気中でプラズマに10分
間曝し、水分を除去した後、フッ素系モノマーAとし
て、トリフルオロモノクロルエチレンを用い、モノマー
Bとして、ベンゼンスルホン酸を用いた以外は、実施例
1と同様の条件でプラズマ重合により固体電解質膜9を
形成した。
Example 4 As in Example 1, after exposure to plasma for 10 minutes in an argon atmosphere to remove water, trifluoromonochloroethylene was used as the fluorine-based monomer A, and benzenesulfonic acid was used as the monomer B. The solid electrolyte membrane 9 was formed by plasma polymerization under the same conditions as in Example 1 except that the above was used.

【0021】得られた電気化学式ガスセンサを実施例1
と同様に70℃の水中に1時間浸漬し、固体電解質膜9
の外観を目視で確認したところ、固体電解質膜9内の剥
離および割れの発生は全く認められなかった。
The electrochemical gas sensor obtained was used in Example 1.
In the same manner as above, immersing in water at 70 ° C for 1 hour, the solid electrolyte membrane 9
When the appearance of the above was visually confirmed, neither peeling nor cracking in the solid electrolyte membrane 9 was observed at all.

【0022】実施例5 実施例1と同様にアルゴン雰囲気中でプラズマに10分
間曝し、水分を除去した。次にフッ素系モノマーAとし
て、ヘキサフルオロプロピレンを用い、モノマーBとし
て、トリフルオロメタンスルホン酸を用いた。この固体
電解質膜9を形成するプラズマ重合の条件は下記のとお
りであって、トリフルオロメタンスルホン酸の液量を経
時的に変化させながら固体電解質膜9を形成し、フッ素
の含有量が電極群8から表面に渡って実質的に増大する
ように傾斜をつけた。 ・ ラジオ周波数の出力:25W ・ チャンバー内圧力:1.7Pa ・ プラズマ重合時間:150分間 ・ モノマー流量: 下記のとおり。 順序 実施時間 トリフルオロメタンスルホン 酸量 ヘキサフルオロフ゜ロヒ゜レン量 1 30分間 0.50cc/min 5.0cc/min 2 20分間 0.45cc/min 5.0cc/min 3 15分間 0.40cc/min 5.0cc/min 4 10分間 0.30cc/min 5.0cc/min 5 10分間 0.20cc/min 5.0cc/min 6 15分間 0.10cc/min 5.0cc/min 7 20分間 0.05cc/min 5.0cc/min 8 30分間 0 cc/min 5.0cc/min 得られた電気化学式ガスセンサを実施例1と同様に70
℃の水中に1時間浸漬し、固体電解質膜9の外観を目視
で確認したところ、固体電解質膜9内の剥離および割れ
の発生は全く認められなかった。
Example 5 As in Example 1, the sample was exposed to plasma for 10 minutes in an argon atmosphere to remove water. Next, hexafluoropropylene was used as the fluorine-based monomer A, and trifluoromethanesulfonic acid was used as the monomer B. The conditions of the plasma polymerization for forming the solid electrolyte membrane 9 are as follows, and the solid electrolyte membrane 9 is formed while changing the liquid amount of trifluoromethanesulfonic acid with time, and the fluorine content is the electrode group 8: Was ramped so that it increased substantially over the surface. -Radio frequency output: 25W-Chamber pressure: 1.7Pa-Plasma polymerization time: 150 minutes-Monomer flow rate: As shown below. Order Execution time Trifluoromethanesulfonic acid amount Hexafluoropropylene amount 1 30 minutes 0.50 cc / min 5.0 cc / min 2 20 minutes 0.45 cc / min 5.0 cc / min 3 15 minutes 0.40 cc / min 5.0 cc / min 4 10 minutes 0.30 cc / min 5.0 cc / min 5 10 minutes 0.20 cc / min 5.0 cc / min 6 15 minutes 0.10 cc / min 5.0 cc / min 7 20 minutes 0.05 cc / min 5. 0 cc / min 8 30 minutes 0 cc / min 5.0 cc / min The obtained electrochemical gas sensor was used in the same manner as in Example 1 70
When the solid electrolyte membrane 9 was immersed in water at 0 ° C. for 1 hour and the appearance of the solid electrolyte membrane 9 was visually confirmed, no peeling or cracking in the solid electrolyte membrane 9 was observed.

【0023】[0023]

【比較例】[Comparative example]

比較例1 実施例1と同様にアルゴン雰囲気中でプラズマに10分
間曝し、水分を除去した。次にフッ素系モノマーAとし
て、ヘキサフルオロプロピレンを用い、モノマーBとし
て、トリフルオロメタンスルホン酸を用い、次の条件で
プラズマ重合を行い固体電解質膜9を形成した。 ・ ラジオ周波数の出力:25W ・ トリフルオロメタンスルホン酸流量:0.5cc/
min ・ ヘキサフルオロプロピレン流量:5.0cc/mi
n ・ チャンバー内圧力:1.7Pa ・ プラズマ重合時間:90分 そして、保護膜10を次の条件でプラズマ重合を行い固
体電解質膜9の表面に形成した。 ・ ラジオ周波数の出力:25W ・ ヘキサフルオロプロピレン流量:5.0cc/mi
n ・ チャンバー内圧力:1.7Pa ・ プラズマ重合時間:90分 得られた電気化学式ガスセンサを実施例1と同様に70
℃の水中に1時間浸漬し、固体電解質膜9と保護膜10
の外観を目視で確認したところ、固体電解質膜9と保護
膜10の間で剥離の発生が認められた。
Comparative Example 1 As in Example 1, water was removed by exposing to plasma for 10 minutes in an argon atmosphere. Next, hexafluoropropylene was used as the fluorine-based monomer A, trifluoromethanesulfonic acid was used as the monomer B, and plasma polymerization was performed under the following conditions to form the solid electrolyte membrane 9.・ Radio frequency output: 25W ・ Trifluoromethanesulfonic acid flow rate: 0.5cc /
min ・ Hexafluoropropylene flow rate: 5.0 cc / mi
n. Chamber pressure: 1.7 Pa. Plasma polymerization time: 90 minutes Then, the protective film 10 was formed on the surface of the solid electrolyte membrane 9 by plasma polymerization under the following conditions.・ Radio frequency output: 25 W ・ Hexafluoropropylene flow rate: 5.0 cc / mi
n ・ Chamber pressure: 1.7 Pa ・ Plasma polymerization time: 90 minutes The electrochemical gas sensor thus obtained was used in the same manner as in Example 1
Immersion in water at ℃ for 1 hour, solid electrolyte membrane 9 and protective membrane 10
When the appearance of the above was visually confirmed, peeling was observed between the solid electrolyte membrane 9 and the protective film 10.

【0024】実施例1〜4に係る電気化学式ガスセンサ
は固体電解質膜9に、70℃の水中に1時間浸漬後に固
体電解質膜9内に剥離や割れを生じないとともに、プラ
ズマ重合により形成された固体電解質膜9は従来のパー
フルオロスルホネートポリマー等をキャステングするこ
とによって形成された場合よりも、上記電極群8との密
着性が良くなる効果もあった。
The electrochemical gas sensors according to Examples 1 to 4 are such that the solid electrolyte membrane 9 does not peel or crack in the solid electrolyte membrane 9 after being immersed in water at 70 ° C. for 1 hour, and is formed by plasma polymerization. The electrolyte membrane 9 also had the effect of improving the adhesion to the electrode group 8 as compared with the case where the electrolyte membrane 9 was formed by casting a conventional perfluorosulfonate polymer or the like.

【0025】[0025]

【発明の効果】本発明の製法によると、フッ素系モノマ
ーAと、このフッ素系モノマーAと重合する、イオン伝
導性を付与する官能基を有するモノマーBを、このモノ
マーBに対してフッ素系モノマーAの割合が順次に増大
するように調製し、電極群8にプラズマ重合することに
より、フッ素の含有量が実質的に増大する固体電解質膜
9が形成できる。上記製法により、電極群8側はイオン
伝導性が高く、表面は撥水性が付与され、その間は急激
な組成変化のない固体電解質膜9が得られる。
According to the production method of the present invention, the fluorine-based monomer A and the monomer B having a functional group imparting ion conductivity, which polymerizes with the fluorine-based monomer A, are added to the monomer B. The solid electrolyte membrane 9 in which the content of fluorine is substantially increased can be formed by preparing the electrode group 8 by plasma polymerization so that the proportion of A increases sequentially. According to the above-described manufacturing method, the electrode group 8 side has high ionic conductivity, the surface is given water repellency, and the solid electrolyte membrane 9 in which the composition does not change suddenly can be obtained.

【0026】本発明の電気化学式ガスセンサは、固体電
解質膜9が電極群8から表面に渡って、フッ素の含有量
が実質的に増大する傾斜膜で構成されることにより、急
激な組成変化を起こす境界面が存在しないため、温度、
湿度の変化に対して固体電解質膜9内の剥離や割れが発
生なく、且つ表面に撥水性が備わっているため、固体電
解質膜9の電極群8側のイオン伝導性が保持される。従
って、本発明の電気化学式ガスセンサは検知感度の低下
がなく、経時的安定性を有する。
In the electrochemical gas sensor of the present invention, the solid electrolyte membrane 9 is composed of an inclined membrane in which the content of fluorine increases substantially from the electrode group 8 to the surface, so that a rapid compositional change occurs. Since there is no boundary surface, the temperature,
Since the solid electrolyte membrane 9 does not peel or crack in response to changes in humidity and the surface is water repellent, the ion conductivity of the solid electrolyte membrane 9 on the electrode group 8 side is maintained. Therefore, the electrochemical gas sensor of the present invention has no deterioration in detection sensitivity and has stability over time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気化学式ガスセンサの一例を示す断
面図である。
FIG. 1 is a sectional view showing an example of an electrochemical gas sensor of the present invention.

【図2】図1の電気化学式ガスセンサの平面図である。FIG. 2 is a plan view of the electrochemical gas sensor of FIG.

【図3】従来例を示す電気化学式ガスセンサの断面図で
ある。
FIG. 3 is a cross-sectional view of an electrochemical gas sensor showing a conventional example.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 作用極 3 対極 4 参照極 8 電極群 9 固体電解質膜 21 端子 31 端子 41 端子 1 Insulating Substrate 2 Working Electrode 3 Counter Electrode 4 Reference Electrode 8 Electrode Group 9 Solid Electrolyte Membrane 21 Terminal 31 Terminal 41 Terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板1に設けられた作用極2、対極
3を含む電極群8と、この電極群8を一連に被覆してな
る固体電解質膜9とを備え、上記固体電解質膜9が電極
群8から固体電解質膜9の表面に渡って、フッ素の含有
量が実質的に増大する傾斜膜で構成されたことを特徴と
する電気化学式ガスセンサ。
1. An electrode group 8 including a working electrode 2 and a counter electrode 3 provided on an insulating substrate 1, and a solid electrolyte membrane 9 formed by coating the electrode group 8 in series, wherein the solid electrolyte membrane 9 is An electrochemical gas sensor characterized by comprising a gradient film in which the fluorine content is substantially increased from the electrode group 8 to the surface of the solid electrolyte membrane 9.
【請求項2】 上記固体電解質膜9はイオン伝導性を有
するフッ素系ポリマーで構成される請求項1に記載の電
気化学式ガスセンサ。
2. The electrochemical gas sensor according to claim 1, wherein the solid electrolyte membrane 9 is composed of a fluorine-based polymer having ion conductivity.
【請求項3】 電極群8に単独でもプラズマ重合するフ
ッ素系モノマーAと、このフッ素系モノマーAと重合す
る、イオン伝導性を付与する官能基を有するモノマーB
を、このモノマーBに対して、フッ素系モノマーAが順
次に増大する割合でプラズマ重合することにより生成さ
れるイオン伝導性を有するポリマーからなる固体電解質
膜9を形成することを特徴とする請求項1、又は2記載
の電気化学式ガスセンサの製法。
3. A fluorine-based monomer A that is plasma-polymerized alone in the electrode group 8 and a monomer B that is polymerized with the fluorine-based monomer A and has a functional group that imparts ion conductivity.
The solid electrolyte membrane 9 made of a polymer having ion conductivity, which is generated by plasma-polymerizing the fluorine-based monomer A with respect to the monomer B at a sequentially increasing rate. 1. The method for producing the electrochemical gas sensor according to 1 or 2.
JP4168689A 1992-06-26 1992-06-26 Electrochemical gas sensor and its manufacture Pending JPH0611478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4168689A JPH0611478A (en) 1992-06-26 1992-06-26 Electrochemical gas sensor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4168689A JPH0611478A (en) 1992-06-26 1992-06-26 Electrochemical gas sensor and its manufacture

Publications (1)

Publication Number Publication Date
JPH0611478A true JPH0611478A (en) 1994-01-21

Family

ID=15872644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4168689A Pending JPH0611478A (en) 1992-06-26 1992-06-26 Electrochemical gas sensor and its manufacture

Country Status (1)

Country Link
JP (1) JPH0611478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012147249A1 (en) * 2011-04-28 2014-07-28 パナソニック株式会社 Biosensor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012147249A1 (en) * 2011-04-28 2014-07-28 パナソニック株式会社 Biosensor device

Similar Documents

Publication Publication Date Title
US5036704A (en) Moisture sensor
US4795543A (en) Spin coating of electrolytes
KR20100014816A (en) Fluorine-containing polymer thin film and method for producing the same
JPH03167464A (en) Humidity-sensitive element and its manufacture
RU2602489C1 (en) Gaseous medium capacitive moisture content sensor
JPS59142451A (en) Ion sensor
JPH0611478A (en) Electrochemical gas sensor and its manufacture
JPS58176538A (en) Humidity-sensitive resistor element
JPS59173743A (en) Humidity sensible element
JPH06207923A (en) Manufacture of electrochemical gas sensor element
JPH05249076A (en) Electrochemical gas sensor
JPH04262251A (en) Manufacture of electrochemical element
JP2959085B2 (en) Humidity sensor
GB2237291A (en) Method of bridging gaps in a substrate by electrodeposited film, for use in gas sensor manufacture
JPS61281958A (en) Moisture sensitive element of thin film
JPH06213853A (en) Manufacture of gas detecting element
JPH06109697A (en) Electrochemical gas sensor
JPS63313047A (en) Gas sensor and its production
Wallgren et al. A Nafion®-based co-planar electrode amperometric sensor for methanol determination in the gas phase
Filipovic et al. Processing of integrated gas sensor devices
CN115201284A (en) Capacitive humidity sensor and preparation method thereof
JPS6222401A (en) Thermosensitive element
JPH0514863B2 (en)
JPS60117684A (en) Manufacture of amorphous si solar battery
JPH05273175A (en) Electrochemical gas sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees