JP2992603B2 - Wall jet type electrochemical detector and method of manufacturing the same - Google Patents

Wall jet type electrochemical detector and method of manufacturing the same

Info

Publication number
JP2992603B2
JP2992603B2 JP3177815A JP17781591A JP2992603B2 JP 2992603 B2 JP2992603 B2 JP 2992603B2 JP 3177815 A JP3177815 A JP 3177815A JP 17781591 A JP17781591 A JP 17781591A JP 2992603 B2 JP2992603 B2 JP 2992603B2
Authority
JP
Japan
Prior art keywords
electrode
concentric
jet type
electrodes
electrochemical detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3177815A
Other languages
Japanese (ja)
Other versions
JPH052007A (en
Inventor
雅也 高橋
雅夫 森田
久男 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3177815A priority Critical patent/JP2992603B2/en
Publication of JPH052007A publication Critical patent/JPH052007A/en
Application granted granted Critical
Publication of JP2992603B2 publication Critical patent/JP2992603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はフローセルあるいは 液
相クロマトグラフィ等に適用されるウォールジェット型
電気化学的検出器およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wall jet type electrochemical detector applicable to a flow cell or a liquid phase chromatography and a method for producing the same.

【0002】[0002]

【従来の技術】一般に血糖値測定等では一定流速で流れ
るキャリア溶媒に検体試料を注入し、これを流路中に配
置した検出器により測定するフローセルと呼ばれる装置
が使われている。また、液相クロマトグラフィでは、試
料注入口と検出器との間にクロマトグラフィのためのカ
ラムが挿入されており、ここで注入試料が分離され、各
成分毎に検出されるようになっている。
2. Description of the Related Art In general, a device called a flow cell, in which a sample is injected into a carrier solvent flowing at a constant flow rate and measured by a detector arranged in a flow path, is used in blood glucose measurement and the like. In the liquid phase chromatography, a column for chromatography is inserted between a sample inlet and a detector, where the injected sample is separated and detected for each component.

【0003】この試料の検出法としては、紫外・可視等
の分光学的方法,屈折率測定,電導度測定,電気化学的
方法等が知られている。電気化学的方法では、流路中に
電極を配置し、そこに一定の電位を印加しておき、キャ
リアに乗って流れる試料が電極に到達した際、電極との
間で起こる酸化還元電流をモニタすることで検出を行っ
ている。このように電気化学的検出器は、装置が単純で
比較的高感度であり、しかも電気化学的に不活性な物質
や印加した電位より低い酸化還元電位を持つ物質には応
答しないので、特定物質を選択的に検出できるという特
徴を有する。
As a method for detecting this sample, there are known a spectroscopic method such as ultraviolet and visible light, a refractive index measurement, a conductivity measurement, and an electrochemical method. In the electrochemical method, an electrode is placed in a flow channel, a certain potential is applied to the electrode, and when a sample flowing on a carrier reaches the electrode, the redox current generated between the electrode and the electrode is monitored. To perform detection. As described above, the electrochemical detector is simple and relatively sensitive, and does not respond to substances that are electrochemically inactive or substances having a redox potential lower than the applied potential. Can be selectively detected.

【0004】電気化学的検出器には、薄層型,円筒型,
ウォールジェット型等の各種の形状があるが、その中で
電極面に対してその上面から垂直にキャリア溶液を吹き
付ける構造を持つウォールジェット型電気化学的検出器
は、電極表面上に形成される目的物質の拡散層の厚さが
薄く、検出感度の点で他の構造の検出器より優れた特性
を示す。
[0004] Electrochemical detectors include thin-layer type, cylindrical type,
There are various shapes such as the wall jet type. Among them, the wall jet type electrochemical detector, which has a structure in which the carrier solution is sprayed vertically from the upper surface to the electrode surface, is intended to be formed on the electrode surface. The thickness of the diffusion layer of the substance is small, and it shows characteristics superior to detectors of other structures in terms of detection sensitivity.

【0005】[0005]

【発明が解決しようとする課題】しかし、現在病理学あ
るいは 生物学的に検出を要求されている生体中の医薬
品や神経伝達物質等は、その存在量が微量である上に、
測定に使用しうる試料の量も限られているため、より高
感度な検出器の開発が必要とされている。一方、電気化
学的検出器の作用電極に微小櫛形電極を用いると、検出
物質と電極との接触時間が短くなり、鋭い電極応答が得
られるようになる。また、噛み合わせた少なくとも1組
の櫛形作用電極を用い、その一方の電極を目的物質の酸
化電位に、他方を還元電位に設定することにより、2つ
の電極間で酸化と還元とを繰り返させるレドックスサイ
クルと呼ばれる現象を利用すると、検出感度や選択性を
より高めることができる。したがってウォールジェット
型電気化学的検出器に微小電極を組み込むことで極めて
検出感度の高い検出器が開発されるものと期待される。
しかしながら、前述したウォールジェット型電気化学
的検出器では、キャリア溶液は電極の存在する壁面に吹
き付けられた後、壁面に沿って同心円状に広がり流れる
ため、従来の直線的な櫛形電極では、電極を構成するそ
れぞれの帯状導電性薄膜上を垂直に横断する方向にのみ
キャリア溶液を流すことは不可能であった。このため、
フロー方向が帯状電極に垂直な方向からずれるにつれて
フロー方向に対する電極の長さが長くなり、それに伴
い、検出物質と電極との接触時間が長くなるために電極
での応答が鈍化してしまうこと、また噛み合った2つの
櫛形電極を用いてレドックスサイクリングによる検出感
度の向上を図った場合、従来の直線的な電極では、酸化
電極と還元電極との配列の方向とフロー方向とが一致し
ていないため、一方の電極で生成した試料の酸化体はも
う一方の電極で効率良く還元されず、検出感度の大幅な
向上が達成できなかった。
However, the amount of pharmaceuticals and neurotransmitters in living organisms currently required to be detected pathologically or biologically is very small,
Due to the limited amount of sample that can be used for measurement, the development of a more sensitive detector is needed. On the other hand, when a micro-comb electrode is used as the working electrode of the electrochemical detector, the contact time between the detection substance and the electrode is shortened, and a sharp electrode response can be obtained. Also, at least one set of interdigitated comb-shaped working electrodes is used, and one of the electrodes is set to the oxidation potential of the target substance and the other is set to the reduction potential, so that the oxidation and reduction are repeated between the two electrodes. By utilizing a phenomenon called a cycle, detection sensitivity and selectivity can be further improved. Therefore, it is expected that a detector having extremely high detection sensitivity will be developed by incorporating a microelectrode into a wall jet type electrochemical detector.
However, in the above-described wall-jet type electrochemical detector, the carrier solution is sprayed onto the wall surface where the electrode is present, and then concentrically spreads and flows along the wall surface. It was impossible to flow the carrier solution only in the direction perpendicular to the respective strip-shaped conductive thin films constituting the belt. For this reason,
As the flow direction deviates from the direction perpendicular to the strip electrode, the length of the electrode with respect to the flow direction becomes longer, and accordingly, the response time at the electrode becomes slower due to the longer contact time between the detection substance and the electrode, When the detection sensitivity is improved by redox cycling using two interdigitated comb-shaped electrodes, the alignment direction of the oxidation electrode and the reduction electrode does not match the flow direction of the conventional linear electrode. On the other hand, the oxidized product of the sample generated at one electrode was not efficiently reduced at the other electrode, and a significant improvement in detection sensitivity could not be achieved.

【0006】したがって本発明は、前述した従来の課題
を解決するためになされたものであり、その目的は、高
い検出感度が得られるウォールジェット型電気化学的検
出器およびその製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a wall jet type electrochemical detector capable of obtaining high detection sensitivity and a method of manufacturing the same. It is in.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るために本発明によるウォールジェット型電気化学的検
出器は、少なくとも2つの同心円状電極からなるウォー
ルジェット型電気化学的検出器において、絶縁性基板上
に形成された複数の同心円状の薄膜電極からなり、各電
極は微小な平面的間隔および/または絶縁層を介した立
体的段差による微小間隔によって分離され、各電極表面
の少なくともその一部を露出させて構成するものであ
る。また、本発明によるウォールジェット型電気化学的
検出器の製造方法は、絶縁性基板上に電極パターン,リ
ードおよび接続パッドを形成し、次いで電極パターンお
よび接続パッドの部分のみを残して絶縁膜で覆って形成
するものである。さらに微小電極の形成は、絶縁性基板
上に同心円状のパターン形状を有する互いに平面的間隔
で絶縁された複数の下部導電性薄膜を形成し、この下部
導電性薄膜を絶縁性膜で被覆した後、同心円状のパター
ン形状を互いに平面的間隔で絶縁された複数の上部導電
性薄膜を絶縁性膜上に再び形成し、次いでこの上部導電
性薄膜をマスクにして絶縁性膜を下部導電性薄膜が現れ
るまでエッチングを行うものである。
In order to achieve the above object, a wall jet type electrochemical detector according to the present invention comprises a wall-shaped electrochemical detector comprising at least two concentric electrodes.
In a Rujet-type electrochemical detector, it consists of a plurality of concentric thin-film electrodes formed on an insulating substrate, and each electrode is formed by a minute planar interval and / or a minute interval due to a three-dimensional step through an insulating layer. It is configured to be separated and expose at least a part of each electrode surface. Further, in the method of manufacturing a wall jet type electrochemical detector according to the present invention, an electrode pattern, a lead and a connection pad are formed on an insulating substrate, and then the electrode pattern and the connection pad are covered with an insulating film except for a part of the electrode pattern and the connection pad. It is formed. Further, the formation of the microelectrode is performed by forming a plurality of lower conductive thin films having a concentric pattern shape and insulated at a planar interval on an insulating substrate, and covering the lower conductive thin film with the insulating film. A plurality of upper conductive thin films in which concentric pattern shapes are insulated at planar intervals from each other are formed again on the insulating film, and then the lower conductive thin film is formed by using the upper conductive thin film as a mask. Etching is performed until it appears.

【0008】[0008]

【作用】本発明においては、ウォールジェット型セルの
試料導入ノズルを中心として櫛形電極を同心円状に配列
することにより、電極および電極の配列がセル内全域に
おいてフロー方向に対して直交するような構造を有して
いる。このため、通常のウォールジェット型電気化学的
検出器の持つ優れた検出感度に加えて電極と目的物質と
の接触時間が短く、なおかつレドックサイクルが効率的
に行なわれるという櫛形微小電極による高感度化の効果
を合わせ持つ電気化学的検出器が製作された。このた
め、このウォールジェット型電気化学的検出器は、従来
のフローセル用電気化学的検出器に比べ、高い検出感度
を有している。
In the present invention, the comb electrodes are arranged concentrically around the sample introduction nozzle of the wall jet type cell, so that the electrodes and the electrode arrangement are orthogonal to the flow direction in the whole area of the cell. have. For this reason, in addition to the excellent detection sensitivity of a normal wall-jet type electrochemical detector, the high sensitivity by the comb-shaped microelectrode that the contact time between the electrode and the target substance is short and the redock cycle is performed efficiently Electrochemical detectors have been fabricated that combine the effects of chemical conversion. For this reason, this wall jet type electrochemical detector has higher detection sensitivity than the conventional electrochemical detector for flow cells.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。なお、本発明は以下の実施例のみに限定さ
れるものではない。 (実施例1)図1(a)〜(f)は、本発明によるウォ
ールジェット型電気化学的検出器の一実施例による構成
をその製造方法に基づいて説明する工程の断面図であ
る。同図において、まず、図1(a)に示すように表面
に厚さ1μmのシリコン酸化膜1を付着したシリコンウ
エハ(大阪チタニウム社製)2上に5nm厚のチタンを
挟んで100nm厚の白金薄膜3を電子線加熱蒸着装置
(アネルバ製:VI451)を用いて形成した。このシ
リコンウエハ2上に形成された白金薄膜3上にフォトレ
ジスト(シップレー社製:MP1400−27)を1μ
mの厚みに塗布した。このフォトレジスト塗布シリコン
ウエハ2をホットプレート上で80℃,2分の条件でベ
ークした。その後、クロムマスクを用いて同心円状の電
極パターンを、マスクアライナー(キャノン製:PLA
−501)により15秒間密着露光した。露光したシリ
コンウエハ2は、レジスト現像液(シップレー社製:M
F319)中で20℃,60秒間現像を行い、水洗,乾
燥してマスクパターンをレジストに転写してレジストパ
ターン4を形成した(図1(b))。次にこのシリコン
ウエハ2をイオンミリング装置(Commonwealth Scienti
fic社製:Millatron)内の所定位置に取付け、アルゴン
ガス圧2×10-4Torr,引き出し電圧550Vでミ
リングを行い、レジストに覆われていない部分び白金お
よびその下層のチタンを取り除いた後、アッシング装置
(東京応化製:プラズマアッシャー)にてレジストを除
去して同心円状の作用電極5,6を形成した(図1
(c))。次にこのシリコンウエハ2をプラズマCVD
装置(Applied Materials社製:AMP−3300)に
入れ、シランガス23SSCM,アンモニアガス48S
CCMの流量で各ガスを流し、ガス圧0.2Torr,
投入電力500W,シリコンウエハ温度300℃で10
分間堆積を行い、400nm厚の窒化シリコン膜7でこ
のシリコンウエハ2上を被覆した(図1(d))。次に
再びレジストをスピンコートし、マスクアライナーで露
光後、現像してレジストパターン8を得た(図1
(e))。次にこのシリコンウエハ2を反応性イオンエ
ッチング装置(アネルバ製:DEM451)中に入れ、
CF4ガス、流量:25SCCM,圧力:0.25P
a,150Wの条件でレジストパターン8をマスクにし
て15分間、窒化シリコン膜7のエッチングを行って同
心円状の作用電極5,6および図示しないその接続パッ
ドを露出させた(図1(f))。製作した同心円状の作
用電極5,6の形状は、各電極の幅1.0μm、電極間
隔1.0μm,最外周電極の半径2.5mm,電極の本
数各625本であった。このようにして製作した電気化
学測定用セルの概略を図2に示す。
Embodiments of the present invention will be described below in detail with reference to the drawings. The present invention is not limited only to the following examples. (Embodiment 1) FIGS. 1A to 1F are cross-sectional views illustrating steps of a configuration of a wall jet type electrochemical detector according to an embodiment of the present invention based on a manufacturing method thereof. In the figure, first, as shown in FIG. 1 (a), a 100 nm-thick platinum is placed on a silicon wafer (manufactured by Osaka Titanium Co., Ltd.) 2 having a 1 μm-thick silicon oxide film 1 adhered to the surface thereof with a 5-nm thick titanium sandwiched therebetween. The thin film 3 was formed using an electron beam evaporation apparatus (manufactured by Anelva: VI451). On the platinum thin film 3 formed on the silicon wafer 2, a photoresist (manufactured by Shipley Co., Ltd .: MP1400-27) is applied to a thickness of 1 μm.
m. The photoresist-coated silicon wafer 2 was baked on a hot plate at 80 ° C. for 2 minutes. Then, a concentric electrode pattern is formed using a chrome mask by a mask aligner (PLA manufactured by Canon Inc.).
-501) for 15 seconds. The exposed silicon wafer 2 is coated with a resist developing solution (Shipley: M
In F319), development was performed at 20 ° C. for 60 seconds, followed by washing and drying, and the mask pattern was transferred to a resist to form a resist pattern 4 (FIG. 1B). Next, this silicon wafer 2 is ion milled (Commonwealth Scienti
fic: Millatron), milling at an argon gas pressure of 2 × 10 −4 Torr and an extraction voltage of 550 V to remove the parts not covered with the resist, platinum and the titanium underneath. The resist was removed by an ashing apparatus (manufactured by Tokyo Ohka: plasma asher) to form concentric working electrodes 5 and 6 (FIG. 1).
(C)). Next, this silicon wafer 2 is subjected to plasma CVD.
Put into a device (Applied Materials: AMP-3300), silane gas 23SSCM, ammonia gas 48S
Each gas is flowed at the flow rate of CCM, and the gas pressure is 0.2 Torr,
Input power 500W, 10 at silicon wafer temperature 300 ° C
Then, the silicon wafer 2 was covered with a 400 nm thick silicon nitride film 7 (FIG. 1D). Next, the resist was spin-coated again, exposed with a mask aligner, and developed to obtain a resist pattern 8 (FIG. 1).
(E)). Next, this silicon wafer 2 is put into a reactive ion etching apparatus (DEM451 manufactured by Anelva),
CF 4 gas, flow rate: 25 SCCM, pressure: 0.25P
a, the silicon nitride film 7 was etched for 15 minutes using the resist pattern 8 as a mask under the conditions of 150 W to expose the concentric working electrodes 5 and 6 and their connection pads (not shown) (FIG. 1F). . The shape of the manufactured concentric working electrodes 5 and 6 was such that the width of each electrode was 1.0 μm, the interval between the electrodes was 1.0 μm, the radius of the outermost electrode was 2.5 mm, and the number of electrodes was 625. FIG. 2 shows an outline of the electrochemical measurement cell manufactured in this manner.

【0010】次にこの電気化学的検出器をBAS社製P
M−60ポンプ,LC−4CコントローラーおよびRHEO
DYNE社製:8125インジェクターと組み合わせてフロ
ーセルシステムを形成した。このシステムのブロックダ
イヤグラムを図3に示す。同図において、31はキャリ
ア容器、32は無脈流ポンプ、33は試料注入口、34
はカラム、35はコントローラー、36は廃液だめ、3
7は参照電極、38は対極、39は電気化学的検出器、
40はその同心円状の作用電極である。
Next, this electrochemical detector is manufactured by PAS manufactured by BAS.
M-60 pump, LC-4C controller and RHEO
DYNE: A flow cell system was formed in combination with an 8125 injector. FIG. 3 shows a block diagram of this system. In the figure, 31 is a carrier container, 32 is a non-pulsating pump, 33 is a sample inlet, 34
Is a column, 35 is a controller, 36 is a waste liquid reservoir, 3
7 is a reference electrode, 38 is a counter electrode, 39 is an electrochemical detector,
Reference numeral 40 denotes the concentric working electrode.

【0011】このような構成において、参照電極37に
対して同心円状作用電極40の一方の電極の電位を0.
6Vに、他方の電極の電位を0.0Vに設定し、1μm
ol/lのフェロセン100μlを流速0.5ml/m
inのもとで注入したところ、注入後、9秒で応答電流
が流れ始め、12秒でピーク電流値82nAを示し、1
5秒で元に戻った。一方、片方の電極の電位を0.6V
に設定し、他方の電極の電位を規制しない条件で同様の
実験を行ったところ、注入後、9秒で応答電流が流れ始
め、12秒でピーク電流値23nAを示し、15秒で元
に戻った。さらに同一面積の円形電極を用いて同様の実
験を行ったところ、注入後、9秒で応答電流が流れ始
め、15秒でピーク電流値7nAを示し、25秒で元に
戻った。
In such a configuration, the potential of one of the concentric working electrodes 40 with respect to the reference electrode 37 is set to 0.
6 V, the potential of the other electrode was set to 0.0 V, and 1 μm
ol / l of ferrocene at a flow rate of 0.5 ml / m
When injection was performed under “in”, a response current started to flow at 9 seconds after injection, and showed a peak current value of 82 nA at 12 seconds.
It returned in 5 seconds. On the other hand, the potential of one electrode is set to 0.6 V
, And the same experiment was performed under the condition that the potential of the other electrode was not regulated. After injection, a response current started to flow at 9 seconds, showed a peak current value of 23 nA at 12 seconds, and returned to the original value at 15 seconds. Was. Further, when a similar experiment was performed using a circular electrode having the same area, a response current started to flow at 9 seconds after injection, showed a peak current value of 7 nA at 15 seconds, and returned to its original state at 25 seconds.

【0012】(実施例2)図4(a)〜(f)は、本発
明によるウォールジェット型電気化学的検出器の製造方
法の他の実施例を説明する工程の断面図であり、前述の
図と同一部分には同一符号を付してある。同図におい
て、まず、図4(a)に示すように表面に厚さ1μmの
シリコン酸化膜1を付着したシリコンウエハ(大阪チタ
ニウム社製)2上にフォトレジスト(シップレー社製:
MP1400−27)を1μmの厚みに塗布した。この
フォトレジスト塗布シリコンウエハ2をオーブン中に入
れ、80℃,30分の条件でベークした。その後、レチ
クルを用いてステッパー(ニコン製:NSR1010
G)により0.3秒間縮小投影露光した。露光したシリ
コンウエハ2は、レジスト現像液(シップレー社製:M
F319)中で20℃,60秒間現像を行い、水洗,乾
燥してレチクルパターンをレジストに転写してレジスト
パターン4を形成した(図4(b))。次にこのレジス
トパターン4が形成されたシリコンウエハ2をスパッタ
装置(アネルバ製:SPF−332H)内の所定位置に
取付け、圧力:1.3Pa,アルゴン中、パワー:50
Wでクロムのスパッタを10秒間行い、真空を破ること
なく、引き続いてパワー:70Wで1分間白金のスパッ
タを行い、膜厚100nmのクロム−白金薄膜3を形成
した(図4(c))。その後、このシリコンウエハ2を
メチルエチルケトン中に浸漬して超音波処理を行い、電
極形成部分以外のレジストを剥離して同心円状作用電極
5,6の電極パターンを形成した(図4(d))。次に
この同心円状作用電極5,6の電極パターンを形成した
シリコン酸化膜1上にパワー:50W,10分のスパッ
タを行い、膜厚300nmの二酸化シリコン膜9を形成
した。次に再びレジストを塗布し、露光,現像を行い、
電極間の二酸化シリコン膜9上にレジストパターン8を
形成した(図4(e))。引き続き反応性イオンエッチ
ング装置(アネルバ製:DEM451)中に入れ、CF
4ガス、流量:25SCCM,圧力:0.25Pa,1
50Wの条件で10分間、二酸化シリコン膜9のエッチ
ングを行って同心円状の作用電極5,6の電極パターン
を露出させた(図4(f))。製作した同心円状の作用
電極5,6の形状は、各電極の幅2.0μm,電極間隔
2.0μm,最外周の電極の半径2.5mm,電極の本
数312本であった。
(Embodiment 2) FIGS. 4 (a) to 4 (f) are cross-sectional views of steps for explaining another embodiment of a method of manufacturing a wall jet type electrochemical detector according to the present invention. The same parts as those in the drawings are denoted by the same reference numerals. Referring to FIG. 4A, first, a photoresist (manufactured by Shipley Company:
MP1400-27) was applied to a thickness of 1 μm. The photoresist-coated silicon wafer 2 was placed in an oven and baked at 80 ° C. for 30 minutes. Then, using a reticle, a stepper (Nikon: NSR1010)
G) for 0.3 seconds of reduced projection exposure. The exposed silicon wafer 2 is coated with a resist developing solution (Shipley: M
In F319), development was performed at 20 ° C. for 60 seconds, washed with water and dried, and the reticle pattern was transferred to a resist to form a resist pattern 4 (FIG. 4B). Next, the silicon wafer 2 on which the resist pattern 4 is formed is mounted at a predetermined position in a sputtering apparatus (manufactured by Anelva: SPF-332H), at a pressure of 1.3 Pa, in argon, at a power of 50.
The chromium-platinum thin film 3 having a film thickness of 100 nm was formed by sputtering chromium with W for 10 seconds and then breaking the vacuum without breaking the vacuum for 1 minute at a power of 70 W (FIG. 4C). Thereafter, the silicon wafer 2 was immersed in methyl ethyl ketone and subjected to ultrasonic treatment, and the resist other than the electrode forming portions was peeled off to form electrode patterns of the concentric working electrodes 5 and 6 (FIG. 4D). Next, sputtering was performed at a power of 50 W for 10 minutes on the silicon oxide film 1 on which the electrode patterns of the concentric working electrodes 5 and 6 were formed to form a silicon dioxide film 9 having a thickness of 300 nm. Next, the resist is applied again, exposed and developed,
A resist pattern 8 was formed on the silicon dioxide film 9 between the electrodes (FIG. 4E). Subsequently, it is put into a reactive ion etching apparatus (DEM451 manufactured by Anelva) and CF
4 gases, flow rate: 25 SCCM, pressure: 0.25 Pa, 1
The silicon dioxide film 9 was etched under the condition of 50 W for 10 minutes to expose the concentric electrode patterns of the working electrodes 5 and 6 (FIG. 4F). The shape of the manufactured concentric working electrodes 5 and 6 was such that the width of each electrode was 2.0 μm, the interval between the electrodes was 2.0 μm, the radius of the outermost electrode was 2.5 mm, and the number of electrodes was 312.

【0013】このようにして製作した電気化学測定用セ
ルを実施例1と同一のフローセルシステムに組み込み、
参照電極に対して一方の電極の電位を0.6Vに、他方
の電極の電位を0.0Vに設定し、1μmol/lのフ
ェロセン100μlを流速0.5ml/minのもとで
注入したところ、注入後、9秒で応答電流が流れ始め、
12秒でピーク電流値57nAを示し、15秒で元に戻
った。
The electrochemical measurement cell manufactured in this manner is incorporated in the same flow cell system as in the first embodiment.
The potential of one electrode was set to 0.6 V and the potential of the other electrode was set to 0.0 V with respect to the reference electrode, and 100 μl of 1 μmol / l ferrocene was injected at a flow rate of 0.5 ml / min. 9 seconds after the injection, the response current began to flow,
The peak current value was 57 nA at 12 seconds, and returned to the original value at 15 seconds.

【0014】(実施例3)図5(a)〜(g)は、本発
明によるウォールジェット型電気化学的検出器の製造方
法のさらに他の実施例を説明する工程の断面図であり、
前述の図と同一部分には同一符号を付してある。同図に
おいて、まず、図5(a)に示すように表面に厚さ1μ
mのシリコン酸化膜1を付着したシリコンウエハ(大阪
チタニウム社製)2上にスパッタ装置(アネルバ製:S
PF332H)内の所定位置に取付け、クロム,白金を
順次スパッタデポを行った。圧力10-2Torr,アル
ゴン雰囲気中でクロム:50W,10秒、白金:70
W,1分間のスパッタを行い、膜厚100nmの白金/
クロム薄膜を得た。その後、このシリコンウエハ2上に
フォトレジスト(シップレー社製:MP1400−2
7)を1.0μmの厚みに塗布した。このフォトレジス
ト塗布シリコンウエハ2をホットプレート上で80℃,
2分の条件でベークした。その後、マスクアライナー
(キャノン製:PLA−501)により15秒間密着露
光した。露光したシリコンウエハ2は、レジスト現像液
(シップレー社製:MF319)中で20℃,60秒間
現像を行い、水洗,乾燥してマスクパターンをレジスト
に転写した。次にこのシリコンウエハ2をイオンミリン
グ装置(Commonwealth Scientific社製:Millatron)内
の所定位置に取付け、アルゴンガス圧2×10-4Tor
r,引き出し電圧550Vで白金/クロム薄膜のミリン
グを2分間行い、アッシング装置(東京応化製:プラズ
マアッシャー)にてレジストを除去して下部櫛形電極1
0の電極パターンを形成した(図5(b))。次にこの
シリコンウエハ2を再びスパッタ装置(アネルバ製:S
PF−332H)中に入れ、シリコンウエハ2の全面を
膜厚100nmの二酸化シリコン膜9で覆った(図5
(c))。その後、再びこのシリコンウエハ2をスパッ
タ装置に取り付け、クロム,白金のスパッタデポを順次
行い、膜厚100nmの白金/クロム薄膜を形成した。
その後、このシリコンウエハ2上にフォトレジスト(シ
ップレー社製:MP1400−27)を1.0μmの厚
みに塗布し、位置合わせを行って櫛形電極パターンを密
着露光した。現像後、再び白金/クロム膜のミリングを
行い、レジストをアッシングで剥離して上部櫛形電極1
1の電極パターンを形成した(図5(d))。次にこの
シリコンウエハ2を再びスパッタ装置(アネルバ製:S
PF−332H)中に入れ、シリコンウエハ2の全面を
膜厚100nmの二酸化シリコン膜9で覆った(図5
(e))。次にこのシリコンウエハ2上にフォトレジス
ト(シップレー社製:AZ1400−27)を1.0μ
mの厚みに塗布し、クロムマスクを用いて上下に噛み合
った櫛形電極部分(半径2.5mm)および図示しない
パット部分のみを露光,現像し、その部分を露出させた
(図5(f))。次にこのシリコンウエハ2を反応性イ
オンエッチング装置(アネルバ製:DEM−451)中
に入れ、CF4ガス、流量:25SCCM,圧力:0.
25Pa,150Wの条件でレジストパターン8をマス
クにして5分間、二酸化シリコン膜9のエッチングを行
って上部櫛形電極11および下部櫛形電極10を露出さ
せた。この結果、上下に分かれた2つの作用電極の間が
極めて小さい同心円状の噛み合った櫛形電気化学測定セ
ルが得られた(図5(g))。
(Embodiment 3) FIGS. 5 (a) to 5 (g) are cross-sectional views showing steps for explaining still another embodiment of the method for manufacturing a wall jet type electrochemical detector according to the present invention.
The same parts as those in the above-mentioned figures are denoted by the same reference numerals. In the figure, first, as shown in FIG.
m on a silicon wafer (manufactured by Osaka Titanium Co.) 2 on which a silicon oxide film 1 is adhered.
PF332H), and chromium and platinum were sequentially sputter deposited. Chromium: 50 W, 10 seconds, platinum: 70 in an argon atmosphere at a pressure of 10 -2 Torr.
W, sputtered for 1 minute to form a 100 nm thick platinum /
A chromium thin film was obtained. Then, a photoresist (MP1400-2 manufactured by Shipley Co., Ltd.) is formed on the silicon wafer 2.
7) was applied to a thickness of 1.0 μm. The photoresist coated silicon wafer 2 is placed on a hot plate at 80 ° C.
Baking was performed for 2 minutes. After that, contact exposure was performed for 15 seconds using a mask aligner (PLA-501, manufactured by Canon Inc.). The exposed silicon wafer 2 was developed in a resist developing solution (MF319, manufactured by Shipley) at 20 ° C. for 60 seconds, washed with water and dried to transfer the mask pattern to the resist. Next, this silicon wafer 2 is mounted at a predetermined position in an ion milling apparatus (Millatron, manufactured by Commonwealth Scientific), and an argon gas pressure of 2 × 10 −4 Torr is applied.
r, milling of the platinum / chromium thin film was performed for 2 minutes at an extraction voltage of 550 V, and the resist was removed by an ashing device (manufactured by Tokyo Ohka: plasma asher).
No. 0 electrode pattern was formed (FIG. 5B). Next, this silicon wafer 2 is again subjected to a sputtering apparatus (manufactured by Anelva: S
PF-332H), and the entire surface of the silicon wafer 2 was covered with a silicon dioxide film 9 having a thickness of 100 nm (FIG. 5).
(C)). Thereafter, the silicon wafer 2 was mounted again on the sputtering apparatus, and chromium and platinum were sequentially deposited by sputtering to form a platinum / chromium thin film having a thickness of 100 nm.
Thereafter, a photoresist (manufactured by Shipley Co., Ltd., MP1400-27) was applied to the silicon wafer 2 to a thickness of 1.0 μm, alignment was performed, and the comb-shaped electrode pattern was exposed in close contact. After the development, the platinum / chromium film is milled again, the resist is peeled off by ashing, and the upper comb-shaped electrode 1 is removed.
One electrode pattern was formed (FIG. 5D). Next, this silicon wafer 2 is again subjected to a sputtering apparatus (manufactured by Anelva: S
PF-332H), and the entire surface of the silicon wafer 2 was covered with a silicon dioxide film 9 having a thickness of 100 nm (FIG. 5).
(E)). Next, a photoresist (manufactured by Shipley: AZ1400-27) was applied to the silicon wafer 2 by 1.0 μm.
m, and only a comb-shaped electrode portion (radius 2.5 mm) and a pad portion (not shown) meshed up and down with a chrome mask were exposed and developed to expose the portion (FIG. 5 (f)). . Next, this silicon wafer 2 is put into a reactive ion etching apparatus (DEM-451, manufactured by Anelva), and CF 4 gas, flow rate: 25 SCCM, pressure: 0.1.
The silicon dioxide film 9 was etched for 5 minutes under the conditions of 25 Pa and 150 W using the resist pattern 8 as a mask to expose the upper comb electrode 11 and the lower comb electrode 10. As a result, a concentric intermeshing comb-shaped electrochemical measurement cell having an extremely small space between the upper and lower working electrodes was obtained (FIG. 5 (g)).

【0015】このように製作した同心円状電極の形状
は、各櫛の電極幅2.0μm,櫛形電極間の段差0.3
μm,最外周の電極の半径2.5mm,櫛の本数各62
5本づつであった。このようにして製作した電気化学測
定用セルの概略を図6に示す。
The shape of the concentric electrodes manufactured as described above is such that the electrode width of each comb is 2.0 μm and the step between the comb electrodes is 0.3.
μm, radius of outermost electrode 2.5 mm, number of combs 62 each
There were five each. FIG. 6 shows an outline of the electrochemical measurement cell manufactured in this manner.

【0016】この電気化学的検出器を高速液体クロマト
グラフィ装置(BAS社製:LC−4C,PM−60に
カラムとしてカテコールパックを取付け)に装着し、上
部櫛形電極の電位を飽和カロメル電極に対して0.0
V,下部作用電極の電位を0.7Vに設定した。ノルア
ドレナリン、エピネフリン,ドーパミン,ドーパを各4
00pgづつpH3.1のリン酸緩衝液1mlに溶か
し、溶液100μlを流速0.7ml/minのもとで
注入したところ、各試料はカラムにより分離され、各試
料とも9nAのピーク電流を示した。通常のグラッシー
カーボンを電極とした場合には、ピーク電流は0.5n
Aであった。
This electrochemical detector is mounted on a high performance liquid chromatography apparatus (manufactured by BAS: LC-4C, PM-60, with a catechol pack as a column), and the potential of the upper comb-shaped electrode is set with respect to the saturated calomel electrode. 0.0
V, the potential of the lower working electrode was set to 0.7V. Noradrenaline, epinephrine, dopamine, dopa for 4 each
Each 100 pg was dissolved in 1 ml of a pH 3.1 phosphate buffer, and 100 μl of the solution was injected at a flow rate of 0.7 ml / min. Each sample was separated by a column, and each sample showed a peak current of 9 nA. When ordinary glassy carbon is used as an electrode, the peak current is 0.5 n
A.

【0017】(実施例4〜実施例5)実施例1と同様な
方法により各電極の幅:5μm,電極間隔:5μm(実
施例4),各電極の幅:10μm,電極間隔:10μm
(実施例5)の同心円状ウォールジェット型電気化学的
検出器を作製した。
(Embodiments 4 and 5) By the same method as in Embodiment 1, the width of each electrode: 5 μm, the interval between electrodes: 5 μm (Example 4), the width of each electrode: 10 μm, the interval between electrodes: 10 μm
A concentric wall jet type electrochemical detector of (Example 5) was produced.

【0018】これらの電極を用いて参照電極に対して一
方の電極の電位を0.6Vに、他方の電位を0.0Vに
設定して実施例1と同様な方法で測定した応答電流と同
心円状微小櫛形電極サイズとの関係を実施例1,実施例
2の電極を用いて測定した結果と併せて表1に示す。
Using these electrodes, the potential of one electrode is set to 0.6 V and the other potential is set to 0.0 V with respect to the reference electrode, and the response current measured in the same manner as in Example 1 is concentric with the response current. Table 1 shows the relationship with the size of the small comb-shaped electrodes together with the results measured using the electrodes of Examples 1 and 2.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例6〜実施例8)実施例1と同様な
方法により各電極の幅を1μmに固定して電極間隔:2
μm(実施例6),電極間隔:5μm(実施例7),電
極間隔:10μm(実施例8)の同心円状ウォールジェ
ット型電気化学的検出器を作製した。
(Embodiments 6 to 8) In the same manner as in Embodiment 1, the width of each electrode is fixed at 1 μm, and the electrode spacing is 2
A concentric wall jet type electrochemical detector having a thickness of 5 μm (Example 6), an electrode interval of 5 μm (Example 7), and an electrode interval of 10 μm (Example 8) was produced.

【0021】これらの電極を用いて参照電極に対して一
方の電極の電位を0.6Vに、他方の電位を0.0Vに
設定して実施例1と同様な方法で測定した応答電流と同
心円状微小櫛形電極の電極間隔との関係を実施例1の電
極を用いて測定した結果と併せて表2に示す。
Using these electrodes, the potential of one electrode is set to 0.6 V with respect to the reference electrode, and the other is set to 0.0 V with respect to the response current measured in the same manner as in the first embodiment. Table 2 shows the relationship between the electrode pitch of the small micro-comb electrodes and the measurement results using the electrodes of Example 1.

【0022】[0022]

【表2】 [Table 2]

【0023】(実施例9〜実施例11)実施例1と同様
な方法により電極間隔を1μmに固定して各電極の幅:
2μm(実施例9),各電極の幅:5μm(実施例1
0)、各電極の幅:10μm(実施例11)の同心円状
ウォールジェット型電気化学的検出器を作製した。
(Embodiments 9 to 11) In the same manner as in Embodiment 1, the electrode spacing is fixed at 1 μm, and the width of each electrode is as follows:
2 μm (Example 9), width of each electrode: 5 μm (Example 1)
0), a concentric wall jet type electrochemical detector having a width of each electrode of 10 μm (Example 11) was produced.

【0024】これらの電極を用いて参照電極に対して一
方の電極の電位を0.6Vに、他方の電位を0.0Vに
設定して実施例1と同様な方法で測定した応答電流と同
心円状微小櫛形電極の各電極の幅との関係を実施例1の
電極を用いて測定した結果と併せて表3に示す。
Using these electrodes, the potential of one electrode was set to 0.6 V and the other potential was set to 0.0 V with respect to the reference electrode, and the response current and the concentric circle measured in the same manner as in Example 1 were used. Table 3 shows the relationship between the width of each electrode of the micro comb-shaped electrode and the results measured using the electrode of Example 1.

【0025】[0025]

【表3】 [Table 3]

【0026】(実施例12)実施例3と同様な方法によ
り中心の下部電極の半径および隣接した上部電極の幅を
50μmとし、隣接した1組の上部電極および下部電極
の幅は等しくしつつ、中心から離れるにしたがって電極
の幅が49μm,48μm,と1μmずつ次第に狭くな
り、最外周では上部電極および下部電極の電極幅がそれ
ぞれ1μmとなるような同心円状ウォールジェット型電
気化学的検出器を作製した。
(Embodiment 12) In the same manner as in Embodiment 3, the radius of the center lower electrode and the width of the adjacent upper electrode are set to 50 μm, and the width of a pair of adjacent upper and lower electrodes is made equal. A concentric wall-jet electrochemical detector is fabricated in which the width of the electrode gradually decreases by 1 μm each at 49 μm, 48 μm, and 1 μm at the outermost periphery, and the electrode width of the upper electrode and the lower electrode becomes 1 μm at the outermost periphery. did.

【0027】この電極を用いて参照電極に対して一方の
電極の電位を0.6Vに、他方の電位を0.0Vに設定
して実施例1と同様な方法で測定した結果、試料注入
後、9秒で応答電流が流れ始め、12秒でピーク電流5
0nAを示し、15秒で元に戻った。
Using this electrode, the potential of one electrode was set to 0.6 V with respect to the reference electrode, and the other potential was set to 0.0 V. Measurement was performed in the same manner as in Example 1. , Response current starts to flow in 9 seconds, peak current 5 in 12 seconds
It showed 0 nA and returned in 15 seconds.

【0028】なお、前述した実施例において、表面ある
いは 全体が絶縁性の基板としては、酸化膜付きのシリ
コンウエハを用いたが、この他に石英板,酸化アルミニ
ウム基板,ガラス基板,プラスチック基板等を挙げるこ
とができる。また、電極の金属としては、金,白金,
銀,クロム,チタン,ステンレス等を挙げることができ
る。さらに電極用の半導体としてはpおよびn型シリコ
ン,pおよびn型ゲルマニウム,硫化カドミウム,ニ酸
化チタン,酸化亜鉛,ガリウムリン,ガリウム砒素,イ
ンジウムリン,カドミウムセレン,カドミウムテルル,
ニ酸化モリブデン,セレン化タングステン,ニ酸化銅,
酸化錫、酸化インジウム,インジウム錫酸化物等を挙げ
ることができる。また、半金属としては、導電性カーボ
ンを挙げることができる。絶縁膜としては、酸化シリコ
ン,ニ酸化シリコン,窒化シリコン,シリコン樹脂,ポ
リイミドおよびその誘導体,エポキシ樹脂,高分子熱硬
化物等を挙げることができる。
In the above-described embodiment, a silicon wafer with an oxide film is used as the substrate having an insulating surface or the entire surface. In addition, a quartz plate, an aluminum oxide substrate, a glass substrate, a plastic substrate, or the like may be used. Can be mentioned. In addition, gold, platinum,
Silver, chromium, titanium, stainless steel and the like can be mentioned. Semiconductors for electrodes include p- and n-type silicon, p and n-type germanium, cadmium sulfide, titanium dioxide, zinc oxide, gallium phosphide, gallium arsenide, indium phosphide, cadmium selenium, cadmium tellurium,
Molybdenum dioxide, tungsten selenide, copper dioxide,
Examples thereof include tin oxide, indium oxide, and indium tin oxide. In addition, conductive carbon can be used as the semimetal. Examples of the insulating film include silicon oxide, silicon dioxide, silicon nitride, silicon resin, polyimide and its derivatives, epoxy resin, and thermosetting polymer.

【0029】微小電極の作製は、薄膜形成法,レジスト
パターン形成法,エッチング法等のリソグラフィ技術を
組み合わせて行う。また、薄膜形成法としては、蒸着
法,スパッタ法,CVD法または塗布法を挙げることが
できる。さらにレジストパターン形成法としては、フォ
トリソグラフィ,電子線リソグラフィ,X線リソグラフ
ィ等を利用することができる。また、パターン形成法と
しては、まず、基板全面に薄膜を形成し、そこにレジス
トパターンを形成し、これをマスクに下層の薄膜をエッ
チングするエッチング法またはレジストパターンを形成
後、その上に薄膜を堆積させ、レジストを剥離すること
により、レジストに覆われていなかった部分のみに薄膜
パターンを形成するリフトオフ法等が利用できる。さら
に電極形状としては、同心円の他に同心の四角形,六角
形等の多角形あるいは同一の焦点を有する楕円等等の形
状を挙げることができる。
The fabrication of the microelectrode is performed by a combination of lithography techniques such as a thin film forming method, a resist pattern forming method, and an etching method. Examples of the thin film forming method include a vapor deposition method, a sputtering method, a CVD method, and a coating method. Furthermore, as a resist pattern forming method, photolithography, electron beam lithography, X-ray lithography, or the like can be used. In addition, as a pattern forming method, first, a thin film is formed on the entire surface of the substrate, a resist pattern is formed thereon, and using this as a mask, an etching method or a resist pattern is formed by etching a lower thin film, and then a thin film is formed thereon. By depositing and removing the resist, a lift-off method or the like for forming a thin film pattern only on a portion not covered with the resist can be used. Further, examples of the electrode shape include concentric polygons such as a quadrangle and a hexagon, and shapes such as an ellipse having the same focal point, in addition to concentric circles.

【0030】[0030]

【発明の効果】以上説明したように本発明によるウォー
ルジェット型電気化学的検出器によれば、少なくとも2
つの同心円状の電極を組み込んで構成したことにより、
レドックスサイクルによる電流増幅が起こり、円形電極
を用いた従来の検出器に比べて10倍以上の感度を向上
させることができた。また、リソグラフィ技術を用いて
製作するため、任意のサイズ,形状,電極間距離の電極
を持つ測定セルを安価で多量に得ることができる。した
がってフローセルや液相クロマトグラフィ用の電気化学
的検出器として極めて利用価値が大きい等の極めて優れ
た効果が得られる。
As described above, according to the wall jet type electrochemical detector of the present invention, at least two
By incorporating two concentric electrodes,
Current amplification by the redox cycle occurred, and the sensitivity was improved by a factor of 10 or more as compared with a conventional detector using a circular electrode. In addition, since it is manufactured by using the lithography technique, a large number of measurement cells having electrodes of any size, shape, and distance between electrodes can be obtained at low cost. Therefore, extremely excellent effects such as extremely high use value as a flow cell and an electrochemical detector for liquid phase chromatography can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(f)は本発明による電気化学的検出
器の製造方法の一実施例を説明する工程の断面図であ
る。
1 (a) to 1 (f) are cross-sectional views illustrating steps of an embodiment of a method for manufacturing an electrochemical detector according to the present invention.

【図2】本発明による電気化学的検出器の一実施例によ
る構成を示す斜視図である。
FIG. 2 is a perspective view illustrating a configuration of an electrochemical detector according to an embodiment of the present invention.

【図3】測定に使用したフローセルシステムのブロック
ダイヤグラムを示す図である。
FIG. 3 is a diagram showing a block diagram of a flow cell system used for measurement.

【図4】(a)〜(f)は本発明による電気化学的検出
器の製造方法の他の実施例を説明する工程の断面図であ
る。
FIGS. 4A to 4F are cross-sectional views illustrating steps of another embodiment of the method for manufacturing an electrochemical detector according to the present invention.

【図5】(a)〜(g)は本発明による電気化学的検出
器の製造方法のさらに他の実施例を説明する工程の断面
図である。
5 (a) to 5 (g) are cross-sectional views illustrating steps for explaining still another embodiment of the method for manufacturing an electrochemical detector according to the present invention.

【図6】本発明による電気化学的検出器の他の実施例に
よる構成を示す斜視図である。
FIG. 6 is a perspective view showing a configuration of another embodiment of the electrochemical detector according to the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン酸化膜 2 シリコンウエハ 3 白金薄膜 4 レジストパターン 5 同心円状作用電極 6 同心円状作用電極 7 窒化シリコン膜 8 レジストパターン 9 ニ酸化シリコン膜 10 下部櫛形電極 11 上部櫛形電極 REFERENCE SIGNS LIST 1 silicon oxide film 2 silicon wafer 3 platinum thin film 4 resist pattern 5 concentric working electrode 6 concentric working electrode 7 silicon nitride film 8 resist pattern 9 silicon dioxide film 10 lower comb electrode 11 upper comb electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Anal.Chem,55[8],p. 1409−1414(1983) (58)調査した分野(Int.Cl.6,DB名) G01N 27/30 G01N 27/28 321 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (56) References Anal. Chem, 55 [8], p. 1409-1414 (1983) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 27/30 G01N 27/28 321 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも2つの同心円状電極からなる
ウォールジェット型電気化学的検出器において、 絶縁性基板上に形成された複数の同心円状の薄膜電極か
らなり、各電極は微小な平面的間隔および/または絶縁
層を介した立体的段差による微小間隔によって分離さ
れ、各電極表面の少なくともその一部が露出しているこ
とを特徴としたウォールジェット型電気化学的検出器。
1. An apparatus comprising at least two concentric electrodes.
In a wall-jet type electrochemical detector, multiple concentric thin-film electrodes formed on an insulating substrate
Each electrode has a small planar spacing and / or insulation
Separated by minute gaps due to three-dimensional steps through layers
That at least a part of each electrode surface is exposed.
A wall jet type electrochemical detector characterized by the following.
【請求項2】 表面または全体が絶縁性の基板上に同心
円状のパターン形状を有する互いに平面的間隙で絶縁さ
れた複数の金属,半金属または半導体の下部導電性薄膜
を形成し、この下部導電性薄膜を絶縁性膜で被覆した
後、所望の同心円状のパターン形状を有する互いに平面
的間隙で絶縁された複数の上部導電性薄膜を絶縁性膜上
に再び形成し、次いで前記上部導電性薄膜パターンをマ
スクにして絶縁性膜を下部導電性薄膜が現れるまでエッ
チングすることを特徴としたウォールジェット型電気化
学的検出器の製造方法。
2. A concentric surface or insulated substrate.
Insulated with planar gaps between each other with a circular pattern shape
Lower conductive thin film of multiple metals, semi-metals or semiconductors
Was formed, and the lower conductive thin film was covered with an insulating film.
After that, the desired concentric pattern shape with each other plane
Multiple upper conductive thin films insulated by a gap on the insulating film
Again, and then the upper conductive thin film pattern is patterned.
The insulating film until the lower conductive thin film appears.
Wall-jet type electrification characterized by
Method of manufacturing a biological detector.
JP3177815A 1991-06-24 1991-06-24 Wall jet type electrochemical detector and method of manufacturing the same Expired - Lifetime JP2992603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177815A JP2992603B2 (en) 1991-06-24 1991-06-24 Wall jet type electrochemical detector and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177815A JP2992603B2 (en) 1991-06-24 1991-06-24 Wall jet type electrochemical detector and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH052007A JPH052007A (en) 1993-01-08
JP2992603B2 true JP2992603B2 (en) 1999-12-20

Family

ID=16037582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177815A Expired - Lifetime JP2992603B2 (en) 1991-06-24 1991-06-24 Wall jet type electrochemical detector and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2992603B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284294B2 (en) * 1995-01-19 2002-05-20 日本電信電話株式会社 Electrochemical detector and manufacturing method thereof
JP3244249B2 (en) * 1995-03-20 2002-01-07 日本電信電話株式会社 Electrode for sensor
US6413410B1 (en) 1996-06-19 2002-07-02 Lifescan, Inc. Electrochemical cell
AUPN363995A0 (en) * 1995-06-19 1995-07-13 Memtec Limited Electrochemical cell
JP3902156B2 (en) * 2003-06-03 2007-04-04 日本電信電話株式会社 Online catecholamine sensing device
US8192599B2 (en) 2005-05-25 2012-06-05 Universal Biosensors Pty Ltd Method and apparatus for electrochemical analysis
US8323464B2 (en) 2005-05-25 2012-12-04 Universal Biosensors Pty Ltd Method and apparatus for electrochemical analysis
US8016154B2 (en) 2005-05-25 2011-09-13 Lifescan, Inc. Sensor dispenser device and method of use
CN101595381B (en) 2007-07-20 2012-11-14 松下电器产业株式会社 Electrode plate for electrochemical measurement, electrochemical measuring apparatus having the electrode plate, and method for determining target substance by using the electrode plate
US8001825B2 (en) 2007-11-30 2011-08-23 Lifescan, Inc. Auto-calibrating metering system and method of use
US8603768B2 (en) 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
KR101379007B1 (en) * 2011-12-30 2014-03-27 주식회사 트루윈 Signal Processing Method for Wide Angle Realization of Inductive Angle Sensor
EP3173778B1 (en) * 2014-07-23 2019-06-12 National Institute for Materials Science Dryness/wetness response sensor having high-speed response and high sensitivity
JP2017173014A (en) * 2016-03-22 2017-09-28 大日本印刷株式会社 Method for manufacturing electrode structure, method for manufacturing electrochemical sensor, electrode structure and electrochemical sensor
EP3584571A4 (en) * 2017-02-14 2020-12-16 National Institute for Materials Science Method and system for preventing dew formation and light scattering associated with dew formation
JP7279260B2 (en) * 2020-03-27 2023-05-22 子誠 朱 Electrodes and electrode tips

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Anal.Chem,55[8],p.1409−1414(1983)

Also Published As

Publication number Publication date
JPH052007A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
JP2992603B2 (en) Wall jet type electrochemical detector and method of manufacturing the same
US6198051B1 (en) Display substrate electrodes with auxiliary metal layers for enhanced conductivity
JPH01500946A (en) T-gate electrode for field effect transistor and field effect transistor forming it
JPS6049669A (en) Thin-film transistor and manufacture thereof
JPS61263172A (en) Manufacture of thin-film solar cell
US6843899B2 (en) 2D/3D chemical sensors and methods of fabricating and operating the same
WO2001007934A1 (en) Solid state radiation detector with tissue equivalent response
JPH03179248A (en) Fine pore array electrode for electrochemical analysis and manufacture thereof
Duan et al. Geometry-on-demand fabrication of conductive microstructures by photoetching and application in hemostasis assessment
JP3047048B2 (en) Wall jet type electrochemical detector and method of manufacturing the same
JP2566173B2 (en) Electrochemical detector
JPH02268265A (en) Electrode cell having minute hole for electrochemical measurement and manufacture thereof
JP2622589B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JP2590004B2 (en) Comb-shaped modified microelectrode cell and method for producing the same
JPH03246460A (en) Electrochemical detector
JP2590002B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JP2577045B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JPH02139972A (en) Manufacture of semiconductor device
JP2501856B2 (en) Electrochemical sensor
JPH0251055A (en) Electrode cell for electrochemical measurement and manufacture thereof
JPS62152174A (en) Manufacture of thin-film transistor
JPS6230385A (en) Photoconductive detector
JPH01269044A (en) Miniature electrode cell for electrochemical measurement and its production
JPH0298147A (en) Manufacture of semiconductor device
JPH0580008A (en) Thin-type junction type chemical sensor and sample detection method using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12