JP2001207288A - Method for electrodeposition into pore and structure - Google Patents

Method for electrodeposition into pore and structure

Info

Publication number
JP2001207288A
JP2001207288A JP2000019243A JP2000019243A JP2001207288A JP 2001207288 A JP2001207288 A JP 2001207288A JP 2000019243 A JP2000019243 A JP 2000019243A JP 2000019243 A JP2000019243 A JP 2000019243A JP 2001207288 A JP2001207288 A JP 2001207288A
Authority
JP
Japan
Prior art keywords
electrodeposition
pores
electrode
substrate
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000019243A
Other languages
Japanese (ja)
Inventor
Hiroshi Okura
央 大倉
Toru Den
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000019243A priority Critical patent/JP2001207288A/en
Publication of JP2001207288A publication Critical patent/JP2001207288A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of electrodeposition into pores having high uniformity over a large area without being affected by the convection or potential distribution of an electrolyte. SOLUTION: In the method of electrodeposition on the electrode surface on a substrate, the method of electrodeposition into pores has a stage for mounting a porous body 11 having pores 15 on the surface of an electrode 12 on a substrate, a stage for filling an electrolyte 16 and an electrodeposition material into the pores 15, a stage for arranging a counter electrode 13 on the porous body which is closed and a stage for imparting a potential difference between the counter electrode 13 and electrode 12 to electrodeposit the electrodeposition material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、細孔内への電着方
法及び構造体に関するものであり、特に析出量を制御し
た均一電着に関する電着方法及び構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a structure for electrodeposition into pores, and more particularly to an electrodeposition method and a structure for uniform electrodeposition with a controlled deposition amount.

【0002】[0002]

【従来の技術】金属をはじめとする様々な材料の電着方
法には今までにも各種報告が為されている。また、現代
技術の傾向として、より微細な構造体への高精度の電着
を広い面積に渡って実施することが挙げられる。
2. Description of the Related Art Various reports have been made on electrodeposition methods of various materials including metals. Also, a trend of modern technology is to carry out high-precision electrodeposition on finer structures over a large area.

【0003】例えば、スルーホールめっきと呼ばれる電
着技術が開発されている。このスルーホールめっきは、
プリント配線板の作製時によく使われる方法である。こ
のプリント配線板は、半導体集積回路の急激な発達に伴
って高密度化、多層化が進められてきた。パターン幅、
間隔は細く狭くなり、スルーホールの孔径、ランド径は
小さく、さらに多層化によりアスベクト比が増大してい
る。
For example, an electrodeposition technique called through-hole plating has been developed. This through-hole plating
This method is often used when manufacturing printed wiring boards. With the rapid development of semiconductor integrated circuits, this printed wiring board has been increasingly densified and multilayered. Pattern width,
The interval is small and narrow, the hole diameter and land diameter of the through hole are small, and the aspect ratio is increased by the multi-layer structure.

【0004】このスルーホールめっきを用いた製造方法
では、サブトラクティブ法で製造されることが多い。そ
の工程は、(銅張積層板)−孔明け−無電解銅めっき−
パネル銅めっき(一次電気銅)−フォトレジスト処理−
パターン銅めっき(二次電気銅)−表面めっき−エッチ
ング−端子めっき−仕上げ、である。
[0004] In a manufacturing method using this through-hole plating, it is often manufactured by a subtractive method. The process is (copper clad laminate)-Drilling-Electroless copper plating-
Panel copper plating (primary electrolytic copper)-Photoresist treatment-
Pattern copper plating (secondary electric copper) -surface plating-etching-terminal plating-finish.

【0005】また、このスルーホール部を電着する方法
も種々報告されている。例えば、特開平10−5626
1号公報が挙げられる。その他にも、あらかじめ作製さ
れている細孔内に金属を電着する方法が種々報告されて
いる。例として、“J.Electrochem.So
c.”,Vol.144,No.6,l923頁(19
97年6月)が挙げられる。
[0005] Various methods of electrodepositing the through-hole have also been reported. For example, Japanese Patent Application Laid-Open No. 10-5626
No. 1 publication. In addition, various methods have been reported for electrodepositing a metal in pores prepared in advance. As an example, “J. Electrochem. So
c. Vol. 144, No. 6, page l923 (19)
June 1997).

【0006】また、電着方法としても、色々な工夫が成
されてきた。その例としてパルス電着が挙げられる。こ
の電着方法の特徴は、カソード界面の電解液濃度の変化
が直流法に比ベて小さいことから、直流法の電着に比べ
て析出物の組成が電解液に近づくという効果が期待され
る。またこの方法で得られる電着の特徴は、核発生が高
密度になり粒子が微細になることである。粒子が微細で
欠陥密度が小さいパルス法電着皮膜の構造上の特徴は、
電着皮膜の引張強さ、延び、密度を高め、硬さや耐摩耗
性を向上させ、有効度を減少させることである。
[0006] Also, various devices have been devised as an electrodeposition method. An example is pulse electrodeposition. The feature of this electrodeposition method is that the change in the concentration of the electrolyte at the cathode interface is smaller than that of the DC method, so that the effect of the composition of the precipitate approaching the electrolyte is expected as compared with the electrodeposition of the DC method. . The feature of electrodeposition obtained by this method is that nucleation is high density and particles are fine. The structural features of pulsed electrodeposition coatings with fine particles and low defect density are:
To increase the tensile strength, elongation, and density of an electrodeposited film, to improve hardness and abrasion resistance, and to reduce its effectiveness.

【0007】また、超音波及び振動をかけながら、電着
をする方法も多々報告されている。その例として、特開
平5−59594号公報が挙げられる。様々な形態で、
細孔内の電着に関して様々な分野で発展している。応用
例としては、微小アレイ電極、プリント基板、GMR、
電子源、種々のマスク等数多く挙げることができる。さ
らなる性質の向上によって、多方面への応用も期待され
ている。
[0007] Also, there have been reported many methods for performing electrodeposition while applying ultrasonic waves and vibration. As an example thereof, JP-A-5-59594 is cited. In various forms,
It has been developed in various fields for electrodeposition in pores. Applications include microarray electrodes, printed circuit boards, GMR,
Many examples include an electron source and various masks. With further improvement in properties, applications in various fields are also expected.

【0008】[0008]

【発明が解決しようとする課題】先に延べた細孔内への
電着方法及び電着技術に関しては、ほとんどがめっき浴
中に2電極式、もしくは3電極式の電極を溶液中に漬け
込み、電位をかけることにより細孔底等に所望の物質が
電着される方法である。この様な方法を用いたときに
は、電着量を制御する手段としてはクーロン量より算出
するか若しくは時間で制御するのが現状である。
Regarding the electrodeposition method and the electrodeposition technique in the previously extended pores, most of the two-electrode or three-electrode electrodes are immersed in a solution in a plating bath. This is a method in which a desired substance is electrodeposited on the bottom of a pore or the like by applying an electric potential. When such a method is used, at present, the means for controlling the amount of electrodeposition is to calculate from the amount of coulomb or to control by time.

【0009】また、細孔内の電着を行う場合は電位分布
が重要なポイントとなってくる。定常状態における電着
量はもちろん、核発生においても印加電圧が大きな影響
を及ぼし、一般的には電位が集中するエッジ部分への電
着量が多くなる傾向がある。均一な電位分布を達成する
には被電着物の周囲にフレームを設置する方法も開発さ
れているが、十分に均一な状態を作製するのは大変困難
である。
[0009] Further, when performing electrodeposition in the pores, the potential distribution is an important point. The applied voltage has a great effect not only on the amount of electrodeposition in the steady state but also on nucleation, and the amount of electrodeposition on the edge portion where the potential is concentrated generally tends to increase. In order to achieve a uniform potential distribution, a method of installing a frame around the electrodeposit has been developed, but it is very difficult to produce a sufficiently uniform state.

【0010】また、溶液内の拡散も大きく関与してく
る。普通、電着を行うに際し、超音波による振動印加、
撹拌子による撹拌、溶液内における電着基板やその周辺
の振動など、対流をむらなく発生させる必要性がある。
しかし、この対流を制御することは困難であり、電着量
に差が出てくる間題点があった。
[0010] Diffusion in a solution also plays a significant role. Usually, when performing electrodeposition, vibration application by ultrasonic waves,
It is necessary to uniformly generate convection such as stirring by a stirrer and vibration of the electrodeposited substrate in and around the solution.
However, it is difficult to control this convection, and there is a problem in that the amount of electrodeposition is different.

【0011】本発明の目的は、電解液の対流や電位分布
に影響されずに大面積にわたる高い均一性を持った細孔
内へ電着方法を提供することである。また本発明の目的
は、細孔内への極微小量の電着や積層電着の制御性の良
い電着方法を提供することである。また本発明の別の目
的は、使用電解液が少なく、また電解液の管理も容易で
ありコストダウンが可能である電着方法を提供すること
である。また本発明の別の目的は、所望の細孔に容易に
電着することができる電着方法を提供することである。
更には、これらの電着技術を適用して作製した電着部を
有するナノ構造体を提供することである。
An object of the present invention is to provide a method for electrodeposition into pores having high uniformity over a large area without being affected by convection and potential distribution of an electrolytic solution. It is another object of the present invention to provide an electrodeposition method having excellent controllability of an extremely minute amount of electrodeposition into a pore or lamination electrodeposition. Another object of the present invention is to provide an electrodeposition method that uses a small amount of electrolyte solution, is easy to manage the electrolyte solution, and can reduce the cost. Another object of the present invention is to provide an electrodeposition method capable of easily electrodepositing desired pores.
Further, it is another object of the present invention to provide a nanostructure having an electrodeposition part manufactured by applying these electrodeposition techniques.

【0012】[0012]

【課題を解決するための手段】本発明は上記したような
技術的要求に鑑みなされたものであり、その目的の―つ
はこれらの間題点を解決することにあり、基板上電極表
面への電着方法において、該基板上電極表面に細孔を有
する細孔体を設ける工程、該細孔内に電解液及び電着材
料を充填する工程、該細孔体の上に対向電極を密閉配置
する工程、該対向電極と基板上電極間に電解液を介して
電位差を与えることにより電着材料を電着する工程を有
することを特徴とする細孔内への電着方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned technical requirements, and one of its objects is to solve these problems. In the electrodeposition method, a step of providing a pore body having pores on the surface of the electrode on the substrate, a step of filling the pores with an electrolytic solution and an electrodeposition material, and sealing an opposing electrode on the pore body. Providing a method for electrodeposition into pores, comprising a step of disposing, and a step of electrodepositing an electrodeposition material by applying a potential difference between the counter electrode and the electrode on the substrate via an electrolytic solution. It is.

【0013】ここで前記電着材料は、対向電極に接触さ
せた固体もしくは電解液内の溶質により供給可能であ
る。また、本発明は該細孔の直径が1000μm以下で
ある構造体の場合に特に有効であり、この例として該細
孔が陽極酸化アルミナナノホールであることが挙げられ
る。また、より多くの電着量を必要とする場合や、異種
材料を逐次電着したい場合には、該電解液もしくは該電
着材料を入れ替える工程を有することが有効である。
Here, the electrodeposition material can be supplied by a solid in contact with the counter electrode or by a solute in the electrolytic solution. Further, the present invention is particularly effective in the case of a structure having a diameter of the pores of 1000 μm or less, and an example thereof is that the pores are anodized alumina nanoholes. When a larger amount of electrodeposition is required or when it is desired to sequentially deposit different materials, it is effective to have a step of replacing the electrolytic solution or the electrodeposition material.

【0014】また、特定領域へ電着する場合には、該電
解液もしくは該電着材料を細孔内への特定領域にのみ供
給することが有効であり、この方法として電解液の注入
を、液滴吐出方法で行うことが挙げられる。また、特定
領域へ電着する別の方法として、該対向電極が導電部及
び絶縁部にパターニングしておく方法がある。
When electrodeposition is performed on a specific area, it is effective to supply the electrolytic solution or the electrodeposition material only to the specific area in the pores. This can be performed by a droplet discharging method. As another method of electrodepositing a specific region, there is a method in which the counter electrode is patterned on a conductive portion and an insulating portion.

【0015】また、本発明により上記電着方法により作
製した構造体がある。
Further, there is a structure produced by the electrodeposition method according to the present invention.

【0016】すなわち、本発明の構造細孔体に、金属、
半導体等の機能材料を埋め込むことにより、新たな電子
デバイスヘと応用できる可能性がある。本発明の構造細
孔体は、量子細線、MIM素子、分子センサー、着色、
磁気記録媒体、EL発光素子、エレクトロクロミック素
子、フォトニックバンドを始めとする光学素子、電子放
出素子、太陽電池、ガスセンサ、耐摩耗性、耐絶縁性皮
膜、フィルターをはじめとするさまざまな形態で応用す
ることが可能であり、その応用範囲を著しく広げるもの
である。
That is, a metal,
By embedding a functional material such as a semiconductor, there is a possibility that it can be applied to a new electronic device. The structural porous body of the present invention includes a quantum wire, an MIM element, a molecular sensor, coloring,
Application in various forms including magnetic recording media, EL elements, electrochromic elements, optical elements such as photonic bands, electron-emitting devices, solar cells, gas sensors, abrasion-resistant and insulating films, filters This greatly expands its application range.

【0017】[0017]

【発明の実施の形態】本発明の細孔内への電着方法は、
基体上電極表面への電着方法において、該基板上電極表
面に細孔体を設け、該細孔体の細孔内に電解液及び電着
材料を配置し、対向電極を基板上電極と細孔体を挟んで
密閉配置し、該基板上電極と対向電極間に電解液を介し
て電位差を与えることにより電着することを特徴とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION The method for electrodeposition into pores according to the present invention comprises:
In the method of electrodeposition on the electrode surface on the substrate, a pore body is provided on the electrode surface on the substrate, an electrolytic solution and an electrodeposition material are arranged in the pores of the pore body, and the counter electrode and the electrode on the substrate are finely arranged. It is characterized in that it is arranged in a closed manner with a hole interposed therebetween, and electrodeposition is performed by applying a potential difference between the electrode on the substrate and the counter electrode via an electrolytic solution.

【0018】次に、本発明の概念および具体的な方法に
ついて、以下に図1、図2および図10を用いて説明す
る。ここで図1は本発明の細孔内への電着方法の工程の
一実施態様を示す断面図、および図2は図1のAA’線
平面図を示す。また、図1(a)〜(c)は図2のB
B’線断面図、図2(a)〜(c)は図1のAA’線平
面図を示す。図10は従来の電着方法を示す概略図であ
る。
Next, the concept and specific method of the present invention will be described below with reference to FIGS. 1, 2 and 10. Here, FIG. 1 is a cross-sectional view showing one embodiment of the process of the method for electrodeposition into pores of the present invention, and FIG. 2 is a plan view taken along the line AA ′ in FIG. FIGS. 1 (a) to 1 (c) show B in FIG.
2 (a) to 2 (c) are cross-sectional views taken along the line B ', and FIGS. FIG. 10 is a schematic view showing a conventional electrodeposition method.

【0019】(A)電着前工程 まず、図1(a)、図2(a)に示すように、作用電極
12を設けた基板15上に細孔15を有する細孔体11
を設置する。この細孔体11は基板とは別個のフィルム
上の材料でもあってもよいし、また基板上に作製した構
造体でもよい。ここで細孔体11の表面は対向電極で密
閉できる程度に平坦であることが望ましい。
(A) Step before electrodeposition First, as shown in FIGS. 1 (a) and 2 (a), a pore body 11 having pores 15 on a substrate 15 on which a working electrode 12 is provided.
Is installed. The porous body 11 may be a material on a film separate from the substrate, or may be a structure formed on the substrate. Here, it is desirable that the surface of the porous body 11 be flat enough to be sealed with the counter electrode.

【0020】(B)電着工程I 次に、図1(b)、図2(b)に示すように、細孔内に
めっき液もしくは電解液16を注入する。このとき電着
材料が電解液に溶解されている場合にはめっき液を供給
し、電着材料が固体で供給される場合には電解液を注入
する。その後、細孔体11の上に対向電極13を密閉配
置する。
(B) Electrodeposition Step I Next, as shown in FIGS. 1B and 2B, a plating solution or an electrolytic solution 16 is injected into the pores. At this time, when the electrodeposition material is dissolved in the electrolytic solution, the plating solution is supplied, and when the electrodepositing material is supplied as a solid, the electrolytic solution is injected. Thereafter, the counter electrode 13 is hermetically arranged on the porous body 11.

【0021】ここで、電解液とは電気化学反応を起こす
為に支持電解質等の溶質が存在し、電気が流れる状態に
ある溶液のことを指し、めっき液とは前記電解液中の溶
質に電着されるものが含まれた溶液を意味する。
Here, the electrolytic solution refers to a solution in which a solute such as a supporting electrolyte is present to cause an electrochemical reaction and electricity is flowing, and a plating solution is a solution to the solute in the electrolytic solution. Means a solution containing what is to be deposited.

【0022】原料の供給方法例を図5に詳しく示す。図
5(a)は原料を溶液で供給する場合であり、一般的な
めっき液が使用できる。但し、細孔の材料と反応しない
ようなめっき液を利用するのが好ましい。この場合電着
量は細孔内に注入するめっき液の濃度や量により制御で
きる。これは本発明ではめっき液内の電着原料をほば使
用することから可能になっている。すなわち電位分布や
電着時間、印加電圧にほとんど依存しないで均一電着が
可能になる。もちろん印加電圧は電着材料が析出する電
位である必要がある。
FIG. 5 shows an example of a method for supplying raw materials in detail. FIG. 5A shows a case where the raw material is supplied as a solution, and a general plating solution can be used. However, it is preferable to use a plating solution that does not react with the material of the pores. In this case, the amount of electrodeposition can be controlled by the concentration and amount of the plating solution injected into the pores. This is made possible in the present invention by using the electrodeposition raw material in the plating solution. In other words, uniform electrodeposition can be performed almost independently of the potential distribution, electrodeposition time, and applied voltage. Of course, the applied voltage needs to be a potential at which the electrodeposition material is deposited.

【0023】固体での供給方法を図5(b),(c)に
示す。図5(b)では固体原料34を対向電極31上
に、図5(c)では固体原料36を対向電極31に接し
た細孔体上に設けてある。この固体原料としては対向電
極の電位を印加する必要性があるので、ある程度の電気
伝導度が必要である。この電着過程では、細孔内の泡の
発生が電着過程を妨害する可能性もあるので、超音波印
加や電解液への界面活性剤の添加なども有効な手段とな
る。
FIGS. 5 (b) and 5 (c) show a method of supplying a solid. In FIG. 5B, the solid raw material 34 is provided on the counter electrode 31, and in FIG. 5C, the solid raw material 36 is provided on the pore body in contact with the counter electrode 31. Since it is necessary to apply the potential of the counter electrode as this solid raw material, a certain degree of electrical conductivity is required. In this electrodeposition process, the generation of bubbles in the pores may interfere with the electrodeposition process, so that application of ultrasonic waves or addition of a surfactant to the electrolyte is also an effective means.

【0024】従来例である図10の様に、溶液内のめっ
き溶液83への被電着物である基板(作用電極)81、
対向電極82を浸す方法では、対流が避けられないため
電着量に分布ができやすい。また対向電極と基板上の電
極間はエッジ部分の存在の影響で不均一な電位分布が形
成され、電着量へも大きな影響を与える。
As shown in FIG. 10, which is a conventional example, a substrate (working electrode) 81 which is an object to be deposited on a plating solution 83 in a solution,
In the method of immersing the counter electrode 82, the convection is inevitable, so that the electrodeposition amount can be easily distributed. In addition, a non-uniform potential distribution is formed between the counter electrode and the electrode on the substrate due to the presence of the edge portion, which has a large effect on the amount of electrodeposition.

【0025】(C)電着工程II 上記の電着工程I(B)の状態で電着を行うと、電着原
料が電極上に電着され、図1(c),図2(c)に示し
た様な電着物14が形成された構造体が得られる。電着
後に細孔部分を除去して使用することももちろん可能で
ある。
(C) Electrodeposition step II When electrodeposition is performed in the state of the above-mentioned electrodeposition step I (B), the electrodeposition raw material is electrodeposited on the electrode, and FIG. 1 (c) and FIG. As a result, a structure on which the electrodeposit 14 is formed is obtained. Of course, it is also possible to remove the pores after electrodeposition before use.

【0026】上記の電着工程I(B),II(C)の工
程を電解液を変えながら数回繰り返すことにより、図8
(b)に示した様な積層膜を得ることができる。特にG
MR膜のように1nm程度の膜厚の膜を積層する場合に
は、電着量の制御が重要なファクターとなるので、本発
明が有効である。また本発明により微小量の電着が可能
なので、図8(c)に示した様に電着の核発生部分を制
限しておけば、数nmの超微粒子の作製も可能である。
By repeating the above electrodeposition steps I (B) and II (C) several times while changing the electrolyte, FIG.
A laminated film as shown in (b) can be obtained. Especially G
When a film having a thickness of about 1 nm is laminated like an MR film, control of the amount of electrodeposition is an important factor, and the present invention is effective. Further, since a very small amount of electrodeposition can be performed according to the present invention, ultrafine particles of several nanometers can be produced if the nucleation generating portion of the electrodeposition is limited as shown in FIG.

【0027】本発明において、細孔は上記したような直
線および均一径に限るものではなく、目的によっては図
9(a)に示したような異なる径を有する細孔17aへ
の電着や、図9(b)に示したような径が変化している
細孔17b、図9(c)に示したような細孔が直線的で
はない細孔17cにも利用可能である。
In the present invention, the pores are not limited to the straight and uniform diameters described above, but may be electrodeposited on the pores 17a having different diameters as shown in FIG. The present invention can also be used for the fine pores 17b whose diameter changes as shown in FIG. 9 (b), and the fine pores 17c where the fine pores are not linear as shown in FIG. 9 (c).

【0028】また、細孔内への電着をパターニングする
には、図7(a)に示した様に電解液やめっき液51を
特定領域に注入する方法や、図7(b)に示した様に対
向電極52を電極部分と絶縁部分にパターニングしてお
く方法などが挙げられる。
In order to pattern the electrodeposition into the pores, a method of injecting an electrolytic solution or a plating solution 51 into a specific region as shown in FIG. 7A or a method shown in FIG. As described above, there is a method of patterning the counter electrode 52 into an electrode portion and an insulating portion.

【0029】また細孔と基板上電極の配置には図1およ
び図6(a)に示した以外にも、例えば図6(b)に示
したように細孔材料が導電性材料43であり、細孔が基
板上電極と対向電極と絶縁層を挟んで絶縁されている構
成が挙げられる。また別の例として、図6(c)に示し
たように、細孔内部に電極部分を有する構成も可能であ
る。
In addition to the arrangement of the pores and the electrodes on the substrate, as shown in FIG. 1A and FIG. 6A, for example, as shown in FIG. And a configuration in which the pores are insulated from the electrode on the substrate, the counter electrode, and the insulating layer. As another example, as shown in FIG. 6C, a configuration having an electrode portion inside a fine hole is also possible.

【0030】[0030]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0031】実施例1 本実施例は、下地層にPtを用いて陽極酸化アルミナナ
ノホールを作製し、その細孔内にCoを電着した実施例
を図3および図4に示す工程により説明する。石英基板
上にRFスパッタ法により厚さ100nmのTi及びP
tを成膜した後、厚さ500nmのAl膜を成膜した。
この時ガスはArとし、ガス圧は30mTorr、RF
パワーは300Wとした。
Example 1 In this example, an example in which anodized alumina nanoholes were formed using Pt as a base layer and Co was electrodeposited in the pores will be described with reference to the steps shown in FIGS. . Ti and P having a thickness of 100 nm on a quartz substrate by RF sputtering
After the formation of t, an Al film having a thickness of 500 nm was formed.
At this time, the gas was Ar, the gas pressure was 30 mTorr, and the RF was
The power was 300 W.

【0032】上記を陽極酸化装置を用い陽極酸化処理を
施した。電解液として0.3mol/l(0.3M)の
シュウ酸水溶液を使用し、恒温水槽により電解質を17
℃に保持した。ここで陽極酸化電圧はDC40Vであ
り、電流値をモニターに表示し、電流値が小さくなった
時点で下地層に貫通することを確認した。
The above was subjected to anodizing treatment using an anodizing apparatus. A 0.3 mol / l (0.3 M) aqueous solution of oxalic acid was used as the electrolytic solution, and the electrolyte was placed in a constant-temperature water bath to remove
C. was maintained. Here, the anodic oxidation voltage was DC 40 V, and the current value was displayed on a monitor, and it was confirmed that the current penetrated into the underlayer when the current value became small.

【0033】陽極酸化処理後、純粋及びイソプロピルア
ルコールによる洗浄を行った。その後、5wt%リン酸
溶液中に浸すポアワイド処理を40分行うことにより、
ナノホールの径を広げ、図3(a)に示すナノ構造体を
作製した。
After the anodic oxidation treatment, cleaning with pure and isopropyl alcohol was performed. Thereafter, by performing a pore widening process of dipping in a 5 wt% phosphoric acid solution for 40 minutes,
By expanding the diameter of the nanohole, a nanostructure shown in FIG. 3A was produced.

【0034】上記のナノ構造体(アルミナ)21のナノ
ホール27に、硫酸コバルト1mol/l(1M)のめ
っき液23を滴下し(図3(b))、ナノホール上部を
対向電極24で密閉した(図3(c))。そして対向電
極24に対して基板上電極22を−2Vに設定して10
秒間電着を行った(図4(d))。そして、対向電極2
4をはがし(図4(e))、洗浄後、アルミナを酸で溶
解することにより、に示すナノ構造体を作製した。(図
4(f)) 上記の方法で作製したナノ構造体をFE−SEMで観察
した。規則的にハニカム状配列したCoが基板全面に渡
り均一に形成されているのが確認できた。
A plating solution 23 of 1 mol / l (1 M) of cobalt sulfate was dropped into the nanoholes 27 of the nanostructure (alumina) 21 (FIG. 3B), and the upper part of the nanoholes was sealed with a counter electrode 24 (FIG. 3B). FIG. 3 (c)). Then, the on-substrate electrode 22 is set to −2 V with respect to the counter electrode 24 to 10
Electrodeposition was performed for 2 seconds (FIG. 4D). And the counter electrode 2
4 was peeled off (FIG. 4 (e)), and after washing, alumina was dissolved with an acid to produce the nanostructure shown in FIG. (FIG. 4F) The nanostructure produced by the above method was observed by FE-SEM. It was confirmed that Cos regularly arranged in a honeycomb shape were uniformly formed over the entire surface of the substrate.

【0035】実施例2 本実施例においては、実施例1と同様に陽極酸化アルミ
ナナノホールを作製した。ただし、下地層はn−Siと
し陽極酸化の終了は陽極酸化が小さくなつた時点で終了
した。そして、実施例1と同様にポアワイド処理をリン
酸を用いて20℃で40分行った。
Example 2 In this example, anodized alumina nanoholes were produced in the same manner as in Example 1. However, the underlying layer was made of n-Si, and the anodic oxidation was terminated when the anodic oxidation became smaller. Then, in the same manner as in Example 1, the pore widening treatment was performed using phosphoric acid at 20 ° C. for 40 minutes.

【0036】上記の試料に、Cuを約50nm斜入射の
抵抗加熱蒸着することにより成膜し、図5(c)に示す
ナノ構造体を作製した。そしてナノホール内に硫酸1m
ol/l(1M)の電解液を滴下してナノホール上部を
対向電極で密閉した。そして対向電極に対して基板上電
極を−2Vに設定して10秒間電着を行った。
On the above sample, Cu was deposited by oblique incidence resistance heating evaporation of about 50 nm to form a nanostructure shown in FIG. 5C. And 1m of sulfuric acid in the nanohole
ol / l (1M) of the electrolytic solution was dropped, and the upper portion of the nanohole was sealed with a counter electrode. Then, the electrode on the substrate was set to -2 V with respect to the counter electrode, and electrodeposition was performed for 10 seconds.

【0037】上記の方法で作製したナノ構造体をFE−
SEMで観察した。規則的にハニカム状配列したCuが
基板全面にわたり均一に形成されているのが確認でき
た。
The nanostructure produced by the above method was converted to FE-
Observed by SEM. It was confirmed that Cu arranged regularly in a honeycomb shape was uniformly formed over the entire surface of the substrate.

【0038】実施例3 本実施例においては、細孔としてSiO2 を用いて、半
導体プロセスにより規則的細孔を作製し、その細孔内に
Coを電着した結果を説明する。
Example 3 In this example, the results of forming regular pores by a semiconductor process using SiO 2 as pores and electrodepositing Co in the pores will be described.

【0039】酸化層が厚さ約500nmに形成された表
面酸化Si基板をアセトン、IPAによる洗浄、乾燥の
後、スピンコート法によリレジスト膜(膜厚200n
m)を塗布、乾燥(90℃、20分)させた。
The surface-oxidized Si substrate on which the oxide layer was formed to a thickness of about 500 nm was washed with acetone and IPA, dried, and then spin-coated to form a resist film (200 nm thick).
m) was applied and dried (90 ° C., 20 minutes).

【0040】次に、ステッパー露光装置を用いて、ハニ
カム状の周期構造(間隔230nm)を持ったレジスト
による凹凸パターンを作製した。現像液を純水で1対1
に希釈し、30秒ほど現像することで、SiO2 表面ま
で貫通したハニカム状の規則的凹凸パターンを形成し
た。そして上記の試料をCF4 ガスを用いてドライエッ
チングし、Si基板まで貫通させた。ドライエッチング
の条件は150W、5Pa、2分である。
Next, using a stepper exposure apparatus, a concave / convex pattern made of a resist having a honeycomb-shaped periodic structure (interval of 230 nm) was prepared. 1: 1 developer in pure water
And developed for about 30 seconds to form a honeycomb-shaped regular uneven pattern penetrating to the SiO 2 surface. Then, the sample was dry-etched using CF 4 gas, and penetrated to the Si substrate. Dry etching conditions are 150 W, 5 Pa, and 2 minutes.

【0041】上記の試料に、ある所定の位置にのみ硫酸
コバルト1mol/l(1M)のめっき液を液滴吐出方
法を用いて注入して、図7(a)に示すナノ構造体を作
製した。そしてナノホール上部を対向電極で密開し、対
向電極に対して基板上電極を−2Vに設定して10秒間
電着を行った。
A plating solution of 1 mol / l (1M) of cobalt sulfate was injected into the above-mentioned sample only at a predetermined position by using a droplet discharging method to produce a nanostructure shown in FIG. . Then, the upper portion of the nanohole was densely opened with a counter electrode, and the electrode on the substrate was set to −2 V with respect to the counter electrode, and electrodeposition was performed for 10 seconds.

【0042】上記の方法で作製したナノ構造体をFE−
SEMで観察した。規則的に電着したCoが領域51に
均一に形成されているのが確認できた。
The nanostructure produced by the above method was converted to FE-
Observed by SEM. It was confirmed that the regularly electrodeposited Co was uniformly formed in the region 51.

【0043】実施例4 本実施例においては、下地層にSiO2 基板を用いて、
FIB(集束イオンビーム)により規則的細孔を作製
し、その細孔内にCoを電着した実施例を説明する。
Embodiment 4 In this embodiment, an SiO 2 substrate is used as a base layer,
An example in which regular pores are formed by FIB (focused ion beam) and Co is electrodeposited in the pores will be described.

【0044】SiO2 基板をアセトン、IPAによる洗
浄、乾燥させた。そしてTiを100nm、SiO2
500nm逐次スパッタして積層膜を形成した。そして
集束イオンビーム加工装置を用いて被加工物に集束イオ
ンビーム照射を行い、表面SiO2 層をエッチングしT
i下地層まで貫通させた。集束イオンビーム加工装置の
イオン種はGa,加速電圧は30kVである。そして図
9(b)に示したような構造体を作製した。
The SiO 2 substrate was washed with acetone and IPA and dried. Then, a laminated film was formed by successively sputtering 100 nm of Ti and 500 nm of SiO 2 . Then, the workpiece is irradiated with a focused ion beam using a focused ion beam processing apparatus, and the surface SiO 2 layer is etched and T
i was penetrated to the underlayer. The ion type of the focused ion beam processing apparatus is Ga, and the acceleration voltage is 30 kV. Then, a structure as shown in FIG. 9B was manufactured.

【0045】上記の試料に、硫酸コバルト1mol/l
(1M)のめっき液を滴下した。そしてナノホール上部
を絶縁体上にPt52を蒸着させてパターニングした図
7(b)の対向電極で密閉して、対向電極に対して基板
上電極を−2Vに設定して10秒間電着を行った。
To the above sample, 1 mol / l of cobalt sulfate was added.
The plating solution of (1M) was dropped. Then, the upper portion of the nanohole was sealed with the counter electrode of FIG. 7B in which Pt52 was deposited and patterned on the insulator, and the electrode on the substrate was set to −2 V with respect to the counter electrode, and electrodeposition was performed for 10 seconds. .

【0046】上記の方法で作製したナノ構造体をFE−
SEMで観察した。表面にPt電極があった領域にのみ
規則的に電着したCoが均一に形成されているのが確認
できた。
The nanostructure produced by the above-described method was
Observed by SEM. It was confirmed that the regularly electrodeposited Co was uniformly formed only in the region where the Pt electrode was present on the surface.

【0047】実施例5 本実施例においては、実施例1と同様に陽極酸化アルミ
ナナノホールを作製した。ただし、基板は石英基板であ
り、基板上にTiとCuを逐次10nmスパッタ成膜し
陽極酸化した。陽極酸化はシュウ酸0.3mol/l
(0.3M)、DC40V、浴温10℃で行い、陽極酸
化電流が小さくなった時点で終了した。そして実施例1
と同様にボアワイド処理をりん酸20℃で40分間行っ
た。
Example 5 In this example, anodized alumina nanoholes were produced in the same manner as in Example 1. However, the substrate was a quartz substrate, and Ti and Cu were sequentially formed on the substrate by sputtering to a thickness of 10 nm and anodized. Anodizing is oxalic acid 0.3mol / l
(0.3 M), DC 40 V, bath temperature 10 ° C., and ended when the anodic oxidation current became small. And Example 1
In the same manner as in the above, bore widening treatment was performed at 20 ° C. for 40 minutes with phosphoric acid.

【0048】上記の試料に、硫酸コバルト1mol/l
(1M)のめっき液を滴下してナノホール上部を対向電
極で密閉した。そして対向電極に対して基板上電極を−
2Vに設定して10秒間電着を行った。そして対向電極
をはがして基板を洗浄した後、硫酸銅1mol/l(1
M)からなるめっき液を滴下してナノホール上部を対向
電極で密閉した。そして対向電極に対して基板上電極を
−2Vに設定して10秒間電着を行った。この作業を1
0回繰り返した後、最後にCuをナノホール上部まで電
着して図8(b)に示すナノ構造体を作製した。
To the above sample, cobalt sulfate 1 mol / l
The plating solution of (1M) was dropped, and the upper portion of the nanohole was sealed with a counter electrode. And the electrode on the substrate is-
Electrodeposition was performed at 2 V for 10 seconds. After removing the counter electrode and cleaning the substrate, copper sulfate 1 mol / l (1
The plating solution composed of M) was dropped, and the upper portion of the nanohole was sealed with a counter electrode. Then, the electrode on the substrate was set to -2 V with respect to the counter electrode, and electrodeposition was performed for 10 seconds. This work 1
After repeating 0 times, Cu was finally electrodeposited to the upper portion of the nanohole to produce a nanostructure shown in FIG. 8B.

【0049】この試料の断面を観察した結果、CoとC
uが各々約1nmの厚みで積層されていた。そして、本
実施例のナノ構造体の上部に電極を付け、下地の基板上
電極と上部電極間の抵抗の磁場依存性を調べたところ、
負の磁気抵抗変化を示した。以上のことから本発明がG
MR磁気センサーとして利用可能なことが分かる。
Observation of the cross section of this sample showed that Co and C
u were each laminated with a thickness of about 1 nm. Then, an electrode was attached to the upper part of the nanostructure of this example, and the magnetic field dependency of the resistance between the underlying substrate electrode and the upper electrode was examined.
It showed a negative magnetoresistance change. From the above, the present invention provides G
It turns out that it can be used as an MR magnetic sensor.

【0050】[0050]

【発明の効果】以上説明した様に、本発明には以下のよ
うな効果がある。 (1)本発明の電着方法は、電解液の対流や電位分布に
影響されずに容易に大面積にわたる高い均一性を持った
電着が可能である。 (2)本発明の電着方法は、細孔内への電着材料の初期
供給量で電着量を制御できるので大面積にわたる均一性
の高い電着、および極微小量の電着や積層電着の制御性
が容易になる。 (3)本発明の電着方法は、電解液を必要量細孔内部へ
供給すればよいので、使用電解液が少なく、また電解液
も管理も容易となリコストダウンが可能である。 (4)また本発明の電着構造の作成方法は、所望の電解
液を各細孔内に注入したり、対向電極をパターニングし
ておくことにより所望の細孔に容易に電着することがで
きる。また本発明は、細孔内を用いた電着に広く応用で
きるものであり、この方法で作製された電着構造体の応
用範囲も広い。
As described above, the present invention has the following effects. (1) The electrodeposition method of the present invention enables electrodeposition with high uniformity over a large area easily without being affected by convection and potential distribution of the electrolytic solution. (2) According to the electrodeposition method of the present invention, the electrodeposition amount can be controlled by the initial supply amount of the electrodeposition material into the pores. The controllability of electrodeposition is facilitated. (3) In the electrodeposition method of the present invention, since a required amount of the electrolytic solution may be supplied to the inside of the pores, the amount of the electrolytic solution used is small, and the cost of the electrolytic solution can be easily controlled and the cost can be reduced. (4) In the method of forming an electrodeposition structure according to the present invention, a desired electrolytic solution is injected into each pore, or the counter electrode is patterned to easily electrodeposit the desired pore. it can. The present invention can be widely applied to electrodeposition using pores, and the electrodeposition structure produced by this method has a wide range of application.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の細孔内への電着方法の工程の一実施態
様を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of the steps of the method for electrodeposition into pores according to the present invention.

【図2】図1のAA’線平面図である。FIG. 2 is a plan view taken along the line AA ′ of FIG. 1;

【図3】本発明の細孔内への電着方法の工程の他の実施
態様の前半を示す平面図である。
FIG. 3 is a plan view showing the first half of another embodiment of the steps of the method for electrodeposition into pores according to the present invention.

【図4】本発明の細孔内への電着方法の工程の他の実施
態様の後半を示す平面図である。
FIG. 4 is a plan view showing the latter half of another embodiment of the process of the method for electrodeposition into pores of the present invention.

【図5】本発明における固体原料供給方法を示す断面図
である。
FIG. 5 is a cross-sectional view illustrating a method for supplying a solid raw material according to the present invention.

【図6】本発明における電極構成を示す断面図である。FIG. 6 is a sectional view showing an electrode configuration according to the present invention.

【図7】本発明のパターニング電着方法を示す平面図で
ある。
FIG. 7 is a plan view showing a patterning electrodeposition method of the present invention.

【図8】本発明における電着状態を示す断面図である。FIG. 8 is a sectional view showing an electrodeposited state in the present invention.

【図9】本発明における細孔を示す断面図である。FIG. 9 is a cross-sectional view showing pores according to the present invention.

【図10】従来の電着方法を示す概略図である。FIG. 10 is a schematic view showing a conventional electrodeposition method.

【符号の説明】[Explanation of symbols]

11 細孔体 12 作用電極 13 対向電極 14 電着物 15 細孔 16 電解液 21 アルミナ 22 電極 23 Coめっき液 24 対向電極 25 電解液 26 Co 27 ナノホール 31 対向電極 32 基板上電極 33 めっき液 34 対向電極上の固体原料 35 電解液 36 細孔上の固体原料;Cu 37 基板上電極;n−Si 38 細孔体 41 電極 42 絶縁層 43 導電性材料 44 絶縁性材料 51 Coめっき液 52 絶縁性材料上のPt対向電極 61:アルミナ 62 Co 63 Cu/Ti/石英基板 64 Cu 65 核発生部 71a,71b,71c 細孔 81 作用電極 82 対向電極 83 めっき液 DESCRIPTION OF SYMBOLS 11 Porous body 12 Working electrode 13 Counter electrode 14 Electrodeposit 15 Pores 16 Electrolyte 21 Alumina 22 Electrode 23 Co plating solution 24 Counter electrode 25 Electrolyte 26 Co 27 Nanohole 31 Counter electrode 32 On-substrate electrode 33 Plating solution 34 Counter electrode Solid raw material on top 35 Electrolyte solution 36 Solid raw material on pores; Cu 37 Electrode on substrate; n-Si 38 Porous body 41 Electrode 42 Insulating layer 43 Conductive material 44 Insulating material 51 Co plating solution 52 On insulating material Pt counter electrode 61: alumina 62 Co 63 Cu / Ti / quartz substrate 64 Cu 65 nucleus generator 71 a, 71 b, 71 c pore 81 working electrode 82 counter electrode 83 plating solution

フロントページの続き Fターム(参考) 4K024 AA03 AB02 AB08 BA06 BA09 BB09 BC02 CA01 CB01 CB08 CB11 DA02 DA04 DA10 DB05 GA01 5E317 AA24 BB04 CC25 CC31 GG16Continued on the front page F term (reference) 4K024 AA03 AB02 AB08 BA06 BA09 BB09 BC02 CA01 CB01 CB08 CB11 DA02 DA04 DA10 DB05 GA01 5E317 AA24 BB04 CC25 CC31 GG16

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 基板上電極表面への電着方法において、
該基板上電極表面に細孔を有する細孔体を設ける工程、
該細孔内に電解液及び電着材料を充填する工程、該細孔
体の上に対向電極を密閉配置する工程、該対向電極と基
板上電極間に電解液を介して電位差を与えることにより
電着材料を電着する工程を有することを特徴とする細孔
内への電着方法。
1. A method for electrodeposition on an electrode surface on a substrate, comprising:
Providing a pore body having pores on the electrode surface on the substrate,
A step of filling the pores with an electrolytic solution and an electrodeposition material, a step of sealingly arranging a counter electrode on the pore body, and applying a potential difference between the counter electrode and the electrode on the substrate via an electrolytic solution. A method for electrodepositing pores, comprising the step of electrodepositing an electrodeposition material.
【請求項2】 前記電着材料は固体であることを特徴と
する請求項1に記載の電着方法。
2. The electrodeposition method according to claim 1, wherein the electrodeposition material is a solid.
【請求項3】 前記電着材料は電解液内の溶質であるこ
とを特徴とする請求項1に記載の電着方法。
3. The electrodeposition method according to claim 1, wherein the electrodeposition material is a solute in an electrolytic solution.
【請求項4】 該細孔の直径が1000μm以下である
ことを特徴とする請求項1記載の電着方法。
4. The electrodeposition method according to claim 1, wherein the diameter of the fine pore is 1000 μm or less.
【請求項5】 該細孔が陽極酸化アルミナナノホールで
あることを特徴とする請求項4に記載の電着方法。
5. The electrodeposition method according to claim 4, wherein said pores are anodized alumina nanoholes.
【請求項6】 該電解液もしくは電着材料を入れ替えて
電着する工程を有する請求項1乃至5のいずれかの項に
記載の電着方法。
6. The electrodeposition method according to claim 1, further comprising a step of replacing the electrolytic solution or the electrodeposition material and performing electrodeposition.
【請求項7】 該少なくとも2種以上の電解液もしくは
該電着材料を入れ替えて電着する工程を有する請求項6
に記載の電着方法。
7. The method according to claim 6, further comprising the step of replacing said at least two kinds of electrolytes or said electrodeposition material and performing electrodeposition.
Electrodeposition method described in 1.
【請求項8】 該電解液もしくは該電着材料を細孔内へ
の特定領域にのみ供給することを特徴とする請求項1乃
至7のいずれかの項に記載の電着方法。
8. The electrodeposition method according to claim 1, wherein the electrolytic solution or the electrodeposition material is supplied only to a specific region in the pore.
【請求項9】 電解液の注入を液滴吐出方法で行うこと
を特徴とする請求項8記載の電着方法。
9. The electrodeposition method according to claim 8, wherein the electrolyte is injected by a droplet discharging method.
【請求項10】 該対向電極が導電部及び絶縁部にパタ
ーニングされていることを特徴とする請求項1に記載の
電着方法。
10. The electrodeposition method according to claim 1, wherein the counter electrode is patterned on a conductive portion and an insulating portion.
【請求項11】 請求項1乃至10のいずれかの電着方
法により作製した構造体。
11. A structure produced by the electrodeposition method according to claim 1.
JP2000019243A 2000-01-27 2000-01-27 Method for electrodeposition into pore and structure Pending JP2001207288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019243A JP2001207288A (en) 2000-01-27 2000-01-27 Method for electrodeposition into pore and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000019243A JP2001207288A (en) 2000-01-27 2000-01-27 Method for electrodeposition into pore and structure

Publications (1)

Publication Number Publication Date
JP2001207288A true JP2001207288A (en) 2001-07-31

Family

ID=18545976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019243A Pending JP2001207288A (en) 2000-01-27 2000-01-27 Method for electrodeposition into pore and structure

Country Status (1)

Country Link
JP (1) JP2001207288A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076332A1 (en) * 2002-03-08 2003-09-18 Communications Research Laboratory, Independent Administrative Institution Production device and production method for conductive nano-wire
JP2008545881A (en) * 2005-05-18 2008-12-18 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Electrolytic production of self-supporting nanocomposite elements
US7683266B2 (en) 2005-07-29 2010-03-23 Sanyo Electric Co., Ltd. Circuit board and circuit apparatus using the same
JP2010085722A (en) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd Optical element and pattern formation method
JP2010093292A (en) * 2005-07-29 2010-04-22 Sanyo Electric Co Ltd Circuit device
US7713768B2 (en) 2006-06-14 2010-05-11 Kanagawa Academy Of Science And Technology Anti-reflective film and production method thereof, and stamper for producing anti-reflective film and production method thereof
JP2010283056A (en) * 2009-06-03 2010-12-16 Shinko Electric Ind Co Ltd Wiring board
JP2015531816A (en) * 2012-06-29 2015-11-05 ノースイースタン ユニバーシティ Three-dimensional crystalline, homogeneous and composite nanostructures prepared by field-induced assembly of nanoelements

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918982B2 (en) 2002-03-08 2011-04-05 National Institute Of Information And Communications Technology Incorporated Administrative Agency Production device and production method for conductive nano-wire
US7351313B2 (en) 2002-03-08 2008-04-01 National Institute Of Information And Communications Technology, Incorporated Administrative Agency Production device and production method for conductive nano-wire
WO2003076332A1 (en) * 2002-03-08 2003-09-18 Communications Research Laboratory, Independent Administrative Institution Production device and production method for conductive nano-wire
JP2008545881A (en) * 2005-05-18 2008-12-18 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Electrolytic production of self-supporting nanocomposite elements
US7683266B2 (en) 2005-07-29 2010-03-23 Sanyo Electric Co., Ltd. Circuit board and circuit apparatus using the same
US8166643B2 (en) 2005-07-29 2012-05-01 Sanyo Electric Co., Ltd. Method of manufacturing the circuit apparatus, method of manufacturing the circuit board, and method of manufacturing the circuit device
JP2010093292A (en) * 2005-07-29 2010-04-22 Sanyo Electric Co Ltd Circuit device
US7713768B2 (en) 2006-06-14 2010-05-11 Kanagawa Academy Of Science And Technology Anti-reflective film and production method thereof, and stamper for producing anti-reflective film and production method thereof
US8062915B2 (en) 2006-06-14 2011-11-22 Kanagawa Academy Of Science And Technology Anti-reflective film and production method thereof, and stamper for producing anti-reflective film and production method thereof
US8071402B2 (en) 2006-06-14 2011-12-06 Kanagawa Academy Of Science And Technology Anti-reflective film and production method thereof, and stamper for producing anti-reflective film and production method thereof
US8097479B2 (en) 2006-06-14 2012-01-17 Kanagawa Academy Of Science And Technology Anti-reflective film and production method thereof, and stamper for producing anti-reflective film and production method thereof
JP2010085722A (en) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd Optical element and pattern formation method
JP2010283056A (en) * 2009-06-03 2010-12-16 Shinko Electric Ind Co Ltd Wiring board
JP2015531816A (en) * 2012-06-29 2015-11-05 ノースイースタン ユニバーシティ Three-dimensional crystalline, homogeneous and composite nanostructures prepared by field-induced assembly of nanoelements

Similar Documents

Publication Publication Date Title
JP3610293B2 (en) Structure having pores and device using the structure having pores
US7214418B2 (en) Structure having holes and method for producing the same
JP3886082B2 (en) Nanostructure and manufacturing method thereof
CN102965719B (en) The low rate chemical etching of film metal and alloy
US6914008B2 (en) Structure having pores and its manufacturing method
JP2002020892A (en) Structure having pore, and manufacturing method
US20090229989A1 (en) Method for the preparation of nanostructures and nanowires
JP2008507630A (en) Manufacturing process of micro and nano devices
JP3729449B2 (en) Structure and device having pores
Takano et al. Nickel deposition behavior on n-type silicon wafer for fabrication of minute nickel dots
US20100086733A1 (en) Aluminum alloy substrate and a method of manufacturing the same
JP2001207288A (en) Method for electrodeposition into pore and structure
KR100747074B1 (en) Method for fabricating the nanorod by aao template and the nanorod using the method
JP3899413B2 (en) Nanomaterial fabrication method
JP4708596B2 (en) Method for producing nanostructure
KR101233621B1 (en) Method of manufacturing electrical parts
KR100973522B1 (en) Manufacturing method for ruthenium nano-structures by anodic aluminum oxide and atomic layer deposition
US6986838B2 (en) Nanomachined and micromachined electrodes for electrochemical devices
JP2004285404A (en) Anodically oxidized porous alumina and manufacturing method therefor
JP2005256071A (en) Method for producing anodized film
Graham et al. Nanostructured electrodes for biocompatible CMOS integrated circuits
JP2001213700A (en) Nano-structure and its manufacturing method
Gumowska et al. The morphology of the alumina films formed tn the anodization process of aluminium in the orthophosphoric acid solution. The Co-Fe alloys electrodeposition into obtained alumina pores
KR100999255B1 (en) Manufacturing nano-pillars magnetism-membrane with perpendicular anisotropy
JP4110341B2 (en) How to create a structure