JP2000234141A - Power transmission shaft - Google Patents
Power transmission shaftInfo
- Publication number
- JP2000234141A JP2000234141A JP11033070A JP3307099A JP2000234141A JP 2000234141 A JP2000234141 A JP 2000234141A JP 11033070 A JP11033070 A JP 11033070A JP 3307099 A JP3307099 A JP 3307099A JP 2000234141 A JP2000234141 A JP 2000234141A
- Authority
- JP
- Japan
- Prior art keywords
- power transmission
- transmission shaft
- carbon steel
- less
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車や産業機械
などにおいてトルク伝達用に使用される動力伝達軸であ
って、詳しくは等速自在継手に使用される動力伝達軸に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission shaft used for transmitting torque in automobiles and industrial machines, and more particularly to a power transmission shaft used for a constant velocity universal joint.
【0002】[0002]
【従来の技術】動力伝達軸、例えば自動車の駆動軸で
は、素材として通常炭素鋼が用いられ、さらに熱処理に
より表面を硬化させて所定の強度が確保されている。2. Description of the Related Art In a power transmission shaft, for example, a drive shaft of an automobile, carbon steel is usually used as a material, and the surface is hardened by heat treatment to secure a predetermined strength.
【0003】近年では自動車の高出力化、あるいは安全
性指向による車両重量の増加等に対応して駆動軸のさら
なる高強度化が望まれている。また、燃費向上の観点か
ら駆動軸の軽量化要求が顕在化しており、これを達成す
る上でも駆動軸の高強度化が急務である。In recent years, it has been desired to further increase the strength of a drive shaft in response to an increase in the output of an automobile or an increase in the weight of a vehicle due to safety. In addition, a demand for a lighter drive shaft has become apparent from the viewpoint of improving fuel efficiency, and in order to achieve this, it is urgently necessary to increase the strength of the drive shaft.
【0004】[0004]
【発明が解決しようとする課題】軸の負荷容量向上のた
めには、素材の炭素濃度を高めるなどして素材強度を向
上させる方法が一般的である。しかしながら、この方法
では、平滑部では強度アップが達成され得るが、セレー
ションなどの切欠き部では焼割れ等が発生しやすく、逆
に強度低下を招く場合があり、強度面で不安が残る。セ
レーション軸を捩り試験に供して破壊モードを解析した
結果、炭素濃度が低い場合はせん断面破壊であるが、炭
素濃度が高い場合は主応力が支配的となり、主応力が破
壊(粒界破面率増加)することが明らかとなっており、
この結果からも鋼組織のさらなる粒界強化が望まれる。In order to improve the load capacity of the shaft, it is general to increase the strength of the material by increasing the carbon concentration of the material. However, in this method, although the strength can be increased in the smooth portion, the cracks and the like are easily generated in the notch portion such as the serration, and the strength may be reduced, and the strength is uneasy. When the fracture mode was analyzed by subjecting the serration axis to a torsional test, the shear plane fracture was observed when the carbon concentration was low, but the principal stress became dominant when the carbon concentration was high, and the principal stress was destroyed (grain boundary fracture surface). Rate increase).
From these results, further strengthening of the grain boundary of the steel structure is desired.
【0005】また、高炭素量化は、鍛造性や被削性など
の機械加工性も損なう。[0005] Higher carbon content also impairs machinability such as forgeability and machinability.
【0006】そこで、本発明は、加工性を損なうことな
く、動力伝達軸のさらなる高強度化、軽量化を図ること
を目的とする。Accordingly, an object of the present invention is to further increase the strength and weight of the power transmission shaft without impairing workability.
【0007】[0007]
【課題を解決するための手段】本発明にかかる動力伝達
軸は、トルク伝達用歯部などの切欠き部を有する動力伝
達軸に好適なもので、炭素鋼に焼入れ硬化比0.25〜
0.50で高周波焼入れして形成される。上記炭素鋼と
しては、重量%で、C:0.39〜0.49%、Si:
0.4〜1.5%、Mn:0.4〜1.0%、S:0.
025%以下、P:0.02%以下、Al:0.01〜
0.1%を基本成分とし、残部がFeおよび不可避的不
純物からなるものを使用する。A power transmission shaft according to the present invention is suitable for a power transmission shaft having a notch portion such as a torque transmission tooth portion, and has a quench hardening ratio of 0.25 to carbon steel.
It is formed by induction hardening at 0.50. As the carbon steel, C: 0.39 to 0.49% by weight, Si:
0.4-1.5%, Mn: 0.4-1.0%, S: 0.
025% or less, P: 0.02% or less, Al: 0.01 to
0.1% is used as a basic component, and the balance consists of Fe and unavoidable impurities.
【0008】焼入れ硬化比は、有効硬化層深さ/軸半径
比で表わされ、これが0.25未満では破損の起点が軸
の内部(芯部)に発生するため、強度が低下する。一
方、0.50を越えると、セレーション部等の切欠き部
に焼割れが発生する。The quench hardening ratio is represented by the ratio of effective hardened layer depth / shaft radius. If the hardening ratio is less than 0.25, the starting point of damage occurs inside the shaft (core portion), so that the strength is reduced. On the other hand, if it exceeds 0.50, burning cracks will occur in the notches such as serrations.
【0009】 上記各元素のうち、Cが0.39%未満で
あると、熱処理後の表面硬さが低すぎて十分な強度が得
られず、0.49%を越えると、表面硬さが高すぎるた
めに切欠き部の切欠き感受性が増し、強度低下を招く。
図3は、静捩り強度に及ぼす炭素量の影響を測定したも
ので、この結果からも上記範囲内の炭素量であれば、十
分な静的強度(破損応力1600MPa程度)を得られ
ると考えられる。[0009] Of the above elements, C is less than 0.39%
In some cases, the surface hardness after heat treatment is too low to obtain sufficient strength.
If it exceeds 0.49%, the surface hardness is too high.
This increases the notch sensitivity of the notch, resulting in a decrease in strength.
Figure 3 shows the effect of carbon content on static torsional strength.
Therefore, from this result, if the carbon content is within the above range, it is sufficient.
Good static strength (breakage stress about 1600MPa)
It is thought that.
【0010】 Siは、製鋼段階での脱酸剤として、さら
には粒界強化のために添加される。これが0.4%未満
であると、粒界強化の効果が得られず、1.5%を越え
ると冷間加工性(鍛造性、旋削性)が著しく低下する。[0010] Si is further used as a deoxidizer in the steelmaking stage.
Is added for strengthening the grain boundaries. This is less than 0.4%
, The effect of strengthening the grain boundaries cannot be obtained, and exceeds 1.5%.
Then, the cold workability (forgeability, turning property) is significantly reduced.
【0011】 Mnは、鋼中硫黄をMnSとして固定・分
散させるために必要であり、これが、0.4%未満であ
ると、焼入れ性が低下し(焼入れ深さが得られない)、
1.0%を越えると、焼入れ性が飽和して冷間加工性を
低下させる。[0011] Mn fixes and separates sulfur in steel as MnS.
Required to disperse, this is less than 0.4%
Then, hardenability decreases (hardening depth cannot be obtained),
If it exceeds 1.0%, the hardenability is saturated and the cold workability is reduced.
Lower.
【0012】 Sは、Mnと結合してMnS介在物として
存在するが、冷間加工時の割れ発生の起点となるので
0.025%以下とする。また、Pは、鋼中において粒
界に析出して熱間加工性を著しく損ない、かつ素材強度
を著しく低下させるので0.02%以下とする。[0012] S combines with Mn to form MnS inclusions
Although it is present, it becomes the starting point of crack generation during cold working
0.025% or less. P is a particle in steel.
Precipitates at the boundaries to significantly impair hot workability and material strength
Is significantly reduced, so the content is made 0.02% or less.
【0013】 Alは脱酸剤で、製鋼段階で鋼中酸素を酸
化物介在物として除去し、粒径を調整するために0.0
1%以上とするが、酸化物介在物が多すぎると靭性が低
下し、冷間加工時の割れ発生起点となるので、0.10
%以下とする。[0013] Al is a deoxidizing agent that oxidizes oxygen in steel during steelmaking.
0.03 to adjust the particle size.
1% or more, but too much oxide inclusions cause poor toughness
0.10% as the starting point of cracking during cold working.
% Or less.
【0014】鋼組織中のフェライト粒度が大きすぎる
と、焼割れ感受性が著しく増加するので、炭素鋼のフェ
ライト結晶粒度番号(JISに規定)は7以上とする。
なお、結晶粒度の測定は、高周波焼入れによる熱影響が
及んでいない例えば軸芯部で行うことができる。If the ferrite grain size in the steel structure is too large, the susceptibility to quenching cracking increases significantly. Therefore, the ferrite grain size number (defined in JIS) of carbon steel is set to 7 or more.
The measurement of the crystal grain size can be performed at, for example, a shaft core portion which is not affected by heat due to induction hardening.
【0015】炭素鋼は、重量%でB:0.001〜0.
004%、Ti:0.02〜0.05%、およびN:
0.008%以下を含むものとし、かつTi/N比が
3.4以上のものとする。The carbon steel is B: 0.001-0.
004%, Ti: 0.02-0.05%, and N:
It should contain 0.008% or less and the Ti / N ratio should be 3.4 or more.
【0016】Bは焼入れ性の向上、粒界強化、焼割れ感
受性の低下等を目的として添加される。0.001%未
満であると、これらの効果が十分に得られず、0.00
4%を越えると、粒界にBCが生成されて強度低下を招
く。Tiは、TiNの生成によりNを固定し、BNの生
成を防止するために添加される。0.02%未満ではB
Nの生成を防止できず、0.05%を越えると清浄度を
害して強度低下を招く。Nは不純物として鋼中に含まれ
るが、0.008%を越えると、BNが生成されてBを
添加した効果が減失する。Ti/N比は、TiとNの重
量比で、TiによってどれだけのNが固定されるかを表
わす。これが大きいほどBNの生成量が少なくなる。T
i/N比が3.4未満であると、有効なBの確保が困難
となる。B is added for the purpose of improving hardenability, strengthening grain boundaries, and reducing susceptibility to quenching. If the content is less than 0.001%, these effects cannot be sufficiently obtained, and
If it exceeds 4%, BC is generated at the grain boundary, which causes a decrease in strength. Ti is added in order to fix N by generating TiN and to prevent generation of BN. B is less than 0.02%
The generation of N cannot be prevented, and if it exceeds 0.05%, the cleanliness is impaired and the strength is reduced. N is contained in steel as an impurity, but if it exceeds 0.008%, BN is generated and the effect of adding B is diminished. The Ti / N ratio is a weight ratio of Ti to N and indicates how much N is fixed by Ti. The larger this is, the smaller the amount of BN generated. T
If the i / N ratio is less than 3.4, it becomes difficult to secure effective B.
【0017】炭素鋼として、Mo:0.4重量%以下を
含むものを使用すれば、焼入れ性が改善される。0.4
%を越えて添加しても焼入れ性の改善効果が飽和する。If a carbon steel containing Mo: 0.4% by weight or less is used, the hardenability is improved. 0.4
%, The effect of improving hardenability is saturated.
【0018】炭素鋼が、Nb、V、Zrのうちの何れか
1種または2種以上を含むものであれば、結晶粒の微細
化により靭性が向上するので、より過酷な使用条件が予
想される場合に有効である。これらの割合が0.01重
量%未満では靭性向上効果が不十分であり、0.3重量
%を越えると逆に靭性が低下する。If the carbon steel contains one or more of Nb, V and Zr, the toughness is improved by the refinement of the crystal grains, so that more severe use conditions are expected. This is effective when If these proportions are less than 0.01% by weight, the effect of improving toughness is insufficient, and if they exceed 0.3% by weight, on the contrary, toughness decreases.
【0019】高周波焼入れ後の表面の圧縮残留応力を6
0kgf/mm2 以上とすれば、疲労強度の向上が達成
される。高周波焼入れ後のショットピーニングにより表
面の圧縮残留応力を100kgf/mm2 以上とすれ
ば、さらなる疲労強度の向上が図れる。The compressive residual stress on the surface after induction hardening is 6
When it is 0 kgf / mm 2 or more, improvement in fatigue strength is achieved. If the compressive residual stress on the surface is set to 100 kgf / mm 2 or more by shot peening after induction hardening, the fatigue strength can be further improved.
【0020】[0020]
【発明の実施の形態】以下、本発明の実施形態を添付図
面に基いて説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.
【0021】図1に等速自在継手の一例として、ツェッ
パー型等速自在継手(ボールフィクストジョイント)を
示す。この等速自在継手は、球面状の内径面1aに複数
(通常は6本)の曲線状の案内溝1bを軸方向に形成し
た外側部材1(外輪)と、球面状の外径面2aに複数
(通常は6本)の曲線状の案内溝2bを軸方向に形成し
た内側部材2(内輪)と、外側部材1の案内溝1bと内
側部材2の案内溝2bとが協働して形成されるボールト
ラックに配された複数(通常は6個)のトルク伝達ボー
ル3と、トルク伝達ボール3を保持する保持器4とで構
成される。FIG. 1 shows a Zepper type constant velocity universal joint (ball fixed joint) as an example of a constant velocity universal joint. This constant velocity universal joint includes an outer member 1 (outer ring) having a plurality of (usually six) curved guide grooves 1b formed in the axial direction on a spherical inner surface 1a and a spherical outer surface 2a. An inner member 2 (inner ring) in which a plurality (usually six) of curved guide grooves 2b are formed in the axial direction, and a guide groove 1b of the outer member 1 and a guide groove 2b of the inner member 2 are formed in cooperation. A plurality of (usually six) torque transmitting balls 3 arranged on a ball track to be formed and a retainer 4 for holding the torque transmitting balls 3.
【0022】外側部材1の案内溝1bの中心Aと内側部
材2の案内溝2bの中心Bとは、トルク伝達ボール3の
中心を含む継手中心面Oに対して軸方向に等距離だけ反
対側にオフセットされ、そのため、ボールトラックは開
口側が広く、奥部側に向かって漸次縮小した形状(くさ
び状)になっている。保持器4の案内面となる外側部材
1の内径面1aおよび内側部材2の外径面2aの球面中
心は何れも継手中心面Oと一致する。外側部材1と内側
部材2とが角度θだけ角度変位すると、保持器4に案内
されたトルク伝達ボール3は常にどの作動角θにおいて
も、角度θの二等分面(θ/2)内に維持され、継手の
等速性が確保される。The center A of the guide groove 1b of the outer member 1 and the center B of the guide groove 2b of the inner member 2 are opposite to each other by an equal distance in the axial direction with respect to the joint center plane O including the center of the torque transmitting ball 3. Therefore, the ball track has a wide opening side and a shape (wedge shape) gradually reduced toward the back side. The center of the spherical surface of the outer diameter surface 1a of the outer member 1 and the outer diameter surface 2a of the inner member 2 that serve as the guide surfaces of the retainer 4 coincide with the joint center plane O. When the outer member 1 and the inner member 2 are angularly displaced by the angle θ, the torque transmitting ball 3 guided by the retainer 4 always stays within the bisecting plane (θ / 2) of the angle θ at any operating angle θ. It is maintained and the constant velocity of the joint is ensured.
【0023】外側部材1のマウス底部には、第1軸部1
1が一体に形成され、あるいは別体の軸部が適宜の手段
で接合される。また、内側部材2の内周部には、第2軸
部12がセレーション等のトルク伝達用歯部13を介し
て結合される。この両軸部11、12は、何れか一方が
原動軸となり、その動力はトルク伝達ボール3を介し
て、従動軸となる他方の軸部に伝達される。At the bottom of the mouse of the outer member 1, a first shaft 1
1 is formed integrally, or a separate shaft portion is joined by an appropriate means. Further, a second shaft portion 12 is coupled to an inner peripheral portion of the inner member 2 via a torque transmitting tooth portion 13 such as a serration. Either of the two shaft portions 11 and 12 serves as a driving shaft, and the power is transmitted to the other shaft portion serving as a driven shaft via a torque transmission ball 3.
【0024】内側部材2にセレーション結合された第2
軸部12の素材としては、C:0.39〜0.49%、
Si:0.4〜1.5%、Mn:0.4〜1.0%、
S:0.025%以下、P:0.02%以下、Al:
0.01〜0.1%(何れも重量%)を基本成分とし、
残部がFeおよび不可避的不純物からなる炭素鋼(中炭
素鋼)が用いられる。A second serration connected to the inner member 2
As a material of the shaft portion 12, C: 0.39 to 0.49%,
Si: 0.4 to 1.5%, Mn: 0.4 to 1.0%,
S: 0.025% or less, P: 0.02% or less, Al:
0.01 to 0.1% (all by weight) as a basic component,
Carbon steel (medium carbon steel) whose balance is composed of Fe and unavoidable impurities is used.
【0025】前述した通り、上記炭素鋼としては、B:
0.001〜0.004%、Ti:0.02〜0.05
%、およびN:0.008%以下を含み、かつTi/N
比が3.4以上のものが望ましく、また、フェライト結
晶粒度番号が7以上のものが望ましい。その他、必要に
応じて、Mo:0.4重量%以下を添加したり、Nb、
V、Zrのうちの何れか1種または2種以上を0.01
〜0.3重量%添加してもよい。As described above, as the carbon steel, B:
0.001-0.004%, Ti: 0.02-0.05
% And N: not more than 0.008%, and Ti / N
A ratio of 3.4 or more is desirable, and a ferrite grain size number of 7 or more is desirable. In addition, if necessary, Mo: 0.4% by weight or less may be added, Nb,
Any one or more of V and Zr are 0.01
~ 0.3% by weight may be added.
【0026】この炭素鋼は、所定形状に鍛造後、焼入れ
硬化比0.25〜0.50で高周波焼入れされ、表面圧
縮残留応力が60kgf/mm2 以上となるまで硬化さ
れる。この圧縮残留応力値は、焼戻し温度を調整した
り、焼入れ冷却液(水、油等)を変更、あるいは調節す
ることによって達成することができる。さらに、高周波
焼入れ後のショットピーニングにより表面の圧縮残留応
力を100kgf/mm 2 以上まで高め、更なる疲労強
度の向上を図るのが望ましい。この圧縮残留応力値は、
例えばショットピーニングを2回行うことによって実現
され得る。ショットピーニングは、トルク伝達用歯部1
3に施すことを基本とするが、それ以外の平滑部12a
に施しても良い。This carbon steel is forged into a predetermined shape and then quenched.
Induction hardened at a curing ratio of 0.25 to 0.50, surface pressure
Shrinkage residual stress is 60kgf / mmTwoCured until
It is. This compressive residual stress value adjusted the tempering temperature
Change or adjust the quenching coolant (water, oil, etc.)
Can be achieved by Furthermore, high frequency
Surface compression residual stress by shot peening after quenching
Force 100kgf / mm TwoIncreased to above, further fatigue strength
It is desirable to improve the degree. This compressive residual stress value is
For example, by performing shot peening twice
Can be done. Shot peening is performed on the torque transmitting tooth 1
3, but the other smoothing portions 12a
May be applied.
【0027】以上の説明は、第2軸部12についてのも
のであるが、第1軸部11を外側部材1と別体に構成す
る場合は、当該第1軸部にも上記構成を適用することが
できる。また、軸部11、12に限らず、圧接スタブや
溶接スタブなど、等速自在継手に連結、結合される動力
伝達軸にも広く適用することができ、軸形状も中空、中
実を問わない。図2は、圧接用スタブを例示するもの
で、一端に内側部材2などと結合するためのトルク伝達
用歯部13(セレーション)が設けられ、他端に鋼管を
圧接固定するためのフランジ部14が設けられている。While the above description has been made with respect to the second shaft portion 12, when the first shaft portion 11 is formed separately from the outer member 1, the above structure is applied to the first shaft portion. be able to. Further, the present invention can be widely applied to not only the shaft portions 11 and 12 but also a power transmission shaft connected to and coupled to a constant velocity universal joint such as a pressure welding stub or a welding stub, and the shaft shape may be hollow or solid. . FIG. 2 exemplifies a pressure contact stub, in which a torque transmission tooth portion 13 (serration) for coupling to the inner member 2 or the like is provided at one end, and a flange portion 14 for press-fixing the steel pipe at the other end. Is provided.
【0028】本発明にかかる動力伝達軸は、図1に示す
ツェッパー型等速自在継手に限らず、ダブルオフセット
型等速自在継手やトリポード型等速自在継手など、他タ
イプの等速自在継手にも広く使用することができる。The power transmission shaft according to the present invention is not limited to the Zepper type constant velocity universal joint shown in FIG. 1, but may be applied to other types of constant velocity universal joints such as a double offset type constant velocity universal joint and a tripod type constant velocity universal joint. Can also be widely used.
【0029】[0029]
【発明の効果】以上のように本発明によれば、従来品よ
り高強度の動力伝達軸を提供することができ、その結
果、負荷容量の増大や軽量化を図ることができる。ま
た、炭素鋼を使用するのでコスト的にも安価である。さ
らに、高強度化のために高炭素化する必要もなく、機械
加工性を損なうこともない。As described above, according to the present invention, a power transmission shaft having higher strength than conventional products can be provided, and as a result, the load capacity can be increased and the weight can be reduced. Further, since carbon steel is used, the cost is low. Furthermore, there is no need to increase the carbon for higher strength, and there is no loss in machinability.
【図1】図(a)はツェッパー型等速自在継手の縦断面
図(図(b)中のC−C断面)、図(b)はその横断面
図である。FIG. 1 (a) is a longitudinal sectional view of a Zepper type constant velocity universal joint (CC section in FIG. 1 (b)), and FIG. 1 (b) is a transverse sectional view thereof.
【図2】圧接用スタブの側面図である。FIG. 2 is a side view of a pressure contact stub.
【図3】静捩り強度に及ぼす炭素量の影響を表わす図で
ある。FIG. 3 is a diagram showing the effect of carbon content on static torsional strength.
1 外側部材 1b 案内溝 2 内側部材 2b 案内溝 3 トルク伝達ボール 4 保持器 11 軸部 12 軸部 13 トルク伝達用歯部 DESCRIPTION OF SYMBOLS 1 Outer member 1b Guide groove 2 Inner member 2b Guide groove 3 Torque transmitting ball 4 Cage 11 Shaft portion 12 Shaft portion 13 Torque transmitting tooth portion
フロントページの続き (72)発明者 脇田 明 静岡県磐田市東貝塚1578番地 エヌティエ ヌ株式会社内 Fターム(参考) 3J033 AA01 AB03 AC01 BA15 BA20Continuation of the front page (72) Inventor Akira Wakita 1578 Higashikaizuka, Iwata-shi, Shizuoka F-term in NTN Corporation (reference) 3J033 AA01 AB03 AC01 BA15 BA20
Claims (7)
あって、炭素鋼に焼入れ硬化比0.25〜0.50で高
周波焼入れして形成され、上記炭素鋼が重量%で、C:
0.39〜0.49%、Si:0.4〜1.5%、M
n:0.4〜1.0%、S:0.025%以下、P:
0.02%以下、Al:0.01〜0.1%を基本成分
とし、残部がFeおよび不可避的不純物からなることを
特徴とする動力伝達軸。1. A power transmission shaft used for a constant velocity universal joint, wherein the power transmission shaft is formed by induction hardening carbon steel at a quench hardening ratio of 0.25 to 0.50. :
0.39 to 0.49%, Si: 0.4 to 1.5%, M
n: 0.4 to 1.0%, S: 0.025% or less, P:
A power transmission shaft characterized by having 0.02% or less, Al: 0.01 to 0.1% as a basic component, and the balance being Fe and unavoidable impurities.
上である請求項1記載の動力伝達軸。2. The power transmission shaft according to claim 1, wherein the ferrite grain size number of the carbon steel is 7 or more.
〜0.004%、Ti:0.02〜0.05%、および
N:0.008%以下を含み、かつTi/N比が3.4
以上である請求項1または2記載の動力伝達軸。3. The carbon steel in weight%, B: 0.001
-0.004%, Ti: 0.02-0.05%, and N: 0.008% or less, and the Ti / N ratio is 3.4.
The power transmission shaft according to claim 1 or 2, which is as described above.
を含む請求項1記載の動力伝達軸。 4. The power transmission shaft according to claim 1, wherein the carbon steel contains Mo: 0.4% by weight or less.
何れか1種または2種以上を0.01〜0.3重量%含
む請求項1記載の動力伝達軸。5. The power transmission shaft according to claim 1, wherein the carbon steel contains 0.01 to 0.3% by weight of one or more of Nb, V, and Zr.
2 以上とした請求項1記載の動力伝達軸。6. A compressive residual stress on a surface of 60 kgf / mm.
The power transmission shaft according to claim 1, wherein the number is two or more.
留応力を100kgf/mm2 以上にした請求項1記載
の等速自在継手。7. The constant velocity universal joint according to claim 1, wherein the compressive residual stress on the surface is increased to 100 kgf / mm 2 or more by shot peening.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03307099A JP3859382B2 (en) | 1999-02-10 | 1999-02-10 | Power transmission shaft |
US09/493,189 US6319337B1 (en) | 1999-02-10 | 2000-01-28 | Power transmission shaft |
FR0001634A FR2789402B1 (en) | 1999-02-10 | 2000-02-10 | POWER TRANSMISSION SHAFT |
US09/972,945 US6673167B2 (en) | 1999-02-10 | 2001-10-10 | Power transmission shaft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03307099A JP3859382B2 (en) | 1999-02-10 | 1999-02-10 | Power transmission shaft |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000234141A true JP2000234141A (en) | 2000-08-29 |
JP3859382B2 JP3859382B2 (en) | 2006-12-20 |
Family
ID=12376476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03307099A Expired - Lifetime JP3859382B2 (en) | 1999-02-10 | 1999-02-10 | Power transmission shaft |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3859382B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1262671A1 (en) * | 2001-05-28 | 2002-12-04 | Ntn Corporation | Power transmission shaft |
JP2005330562A (en) * | 2004-05-21 | 2005-12-02 | Nippon Steel Corp | Hollow parts superior in fatigue characteristic |
CN100463827C (en) * | 2004-12-04 | 2009-02-25 | 浙江福林国润汽车零部件有限公司 | Automobile electric booster sterring system and its treating method for rotary shaft |
JP2018044225A (en) * | 2016-09-16 | 2018-03-22 | Ntn株式会社 | Outer side joint member of constant velocity universal joint and manufacturing method of outer side joint member |
US11077709B2 (en) | 2019-03-28 | 2021-08-03 | Honda Motor Co., Ltd. | Drive shaft and method for producing drive shaft |
-
1999
- 1999-02-10 JP JP03307099A patent/JP3859382B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1262671A1 (en) * | 2001-05-28 | 2002-12-04 | Ntn Corporation | Power transmission shaft |
US7252721B2 (en) | 2001-05-28 | 2007-08-07 | Ntn Corporation | Power transmission shaft |
JP2005330562A (en) * | 2004-05-21 | 2005-12-02 | Nippon Steel Corp | Hollow parts superior in fatigue characteristic |
JP4510515B2 (en) * | 2004-05-21 | 2010-07-28 | 新日本製鐵株式会社 | Hollow parts with excellent fatigue characteristics |
CN100463827C (en) * | 2004-12-04 | 2009-02-25 | 浙江福林国润汽车零部件有限公司 | Automobile electric booster sterring system and its treating method for rotary shaft |
JP2018044225A (en) * | 2016-09-16 | 2018-03-22 | Ntn株式会社 | Outer side joint member of constant velocity universal joint and manufacturing method of outer side joint member |
US11077709B2 (en) | 2019-03-28 | 2021-08-03 | Honda Motor Co., Ltd. | Drive shaft and method for producing drive shaft |
Also Published As
Publication number | Publication date |
---|---|
JP3859382B2 (en) | 2006-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6673167B2 (en) | Power transmission shaft | |
EP1743950B1 (en) | Seamless steel pipe and method for production thereof | |
JP4687712B2 (en) | Induction hardening hollow drive shaft | |
JP4771745B2 (en) | Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft | |
JP2004353005A (en) | Steel bar for steering rack | |
JP3859382B2 (en) | Power transmission shaft | |
US20080190165A1 (en) | Hollow Power Transmission Shaft | |
JP2006275171A (en) | Stationary type constant velocity universal joint | |
JP4320589B2 (en) | Mechanical structure shaft parts and manufacturing method thereof | |
JP2000097244A (en) | Motive power transmission mechanism | |
JP2000204432A (en) | Power transmission shaft | |
JPH059583A (en) | Outer ring of uniform-speed universal joint reinforced in stem part | |
JP4618189B2 (en) | High strength case hardening steel pipe for ball cage | |
JPH0953169A (en) | Carburized and quenched parts for driving shaft coupling and its production | |
JPS63225714A (en) | Rotary driving shaft | |
JPH0942303A (en) | Constant velocity universal joint | |
JP2020100861A (en) | Machine component for automobiles made of steel material for induction hardening excellent in static torsional strength and torsional fatigue strength | |
JPH05117806A (en) | High strength and high toughness case hardening steel for ball cage | |
JPH0637687B2 (en) | High-strength, high-toughness case-hardening steel for ball cages | |
JP4127143B2 (en) | Constant velocity joint outer ring having excellent fatigue characteristics and method of manufacturing the same | |
JP2008196592A (en) | Power transmission shaft | |
JP2008196013A (en) | Power transfer shaft | |
JP2006083987A (en) | Hollow power transmission shaft | |
US8070890B2 (en) | Induction hardened hollow driving shaft | |
JPH06336650A (en) | Driving transmission system parts excellent in twisting property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060919 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090929 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |