JP2018044225A - Outer side joint member of constant velocity universal joint and manufacturing method of outer side joint member - Google Patents

Outer side joint member of constant velocity universal joint and manufacturing method of outer side joint member Download PDF

Info

Publication number
JP2018044225A
JP2018044225A JP2016181477A JP2016181477A JP2018044225A JP 2018044225 A JP2018044225 A JP 2018044225A JP 2016181477 A JP2016181477 A JP 2016181477A JP 2016181477 A JP2016181477 A JP 2016181477A JP 2018044225 A JP2018044225 A JP 2018044225A
Authority
JP
Japan
Prior art keywords
joint member
constant velocity
velocity universal
shaft
outer joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016181477A
Other languages
Japanese (ja)
Other versions
JP6685871B2 (en
Inventor
祐一 淺野
Yuichi Asano
祐一 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2016181477A priority Critical patent/JP6685871B2/en
Publication of JP2018044225A publication Critical patent/JP2018044225A/en
Application granted granted Critical
Publication of JP6685871B2 publication Critical patent/JP6685871B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an outer side joint member of a constant velocity universal joint capable of lightening weight and compacting a stem shaft and optimal for automobile drive shaft and a manufacturing method of the outer side joint member.SOLUTION: There is provided a carbon steel having a construction material with a basic component with percentage content of alloy elements by wt.% of, C:0.45 to 0.60%, Si:0.4 to 1.5%, Mn:0.4 to 1.0%, S:0.025% or less, Al:0.01 to 0.1%, B:0.001 to 0.004%, Ti:0.02 to 0.05% and N:0.008% or less with Ti/N ratio of 3.4 or more and the balance Fe with inevitable impurities. Ferrite grain size of the carbon steel of 7 or more and the carbon steel has a thermosetting layer with hardening setting ratio of 0.3 to 0.6 at at least the weakest part of a smooth part and a spline part of the stem shaft.SELECTED DRAWING: Figure 1

Description

本発明は、自動車や各種産業機械の動力伝達装置で利用される等速自在継手の外側継手部材および外側継手部材の製造方法に関する。   The present invention relates to an outer joint member of a constant velocity universal joint used in a power transmission device of an automobile or various industrial machines, and a method for manufacturing the outer joint member.

等速自在継手には、角度変位だけを許容する固定式等速自在継手と、角度変位だけでなく軸方向変位(プランジング)も可能である摺動式等速自在継手とがある。固定式等速自在継手には、トラック溝の溝底が円弧部のみからなるバーフィールド型等速自在継手(BJ)と、トラック溝の溝底が円弧部と直線部とからなるアンダーカットフリー型等速自在継手(UJ)等がある。また、摺動式等速自在継手には、トリポード型等速自在継手、ダブルオフセット型等速自在継手、クロスグルーブ型等速自在継手などがある。   The constant velocity universal joint includes a fixed type constant velocity universal joint that allows only angular displacement, and a sliding type constant velocity universal joint that allows not only angular displacement but also axial displacement (plunging). For fixed type constant velocity universal joints, the bar groove type constant velocity universal joint (BJ) in which the groove bottom of the track groove consists only of an arc portion and the undercut free type in which the groove bottom of the track groove consists of an arc portion and a straight portion There are constant velocity universal joints (UJ). The sliding type constant velocity universal joint includes a tripod type constant velocity universal joint, a double offset type constant velocity universal joint, a cross groove type constant velocity universal joint, and the like.

ところで、自動車のドライブシャフトは、一対の等速自在継手と、この一対の等速自在継手を連結するシャフトとを備えたものである。そして、一般的には、一対の等速自在継手の一方の等速自在継手を固定式等速自在継手とし、他方の等速自在継手を摺動式等速自在継手としている(特許文献1)。   By the way, a drive shaft of an automobile includes a pair of constant velocity universal joints and a shaft connecting the pair of constant velocity universal joints. In general, one constant velocity universal joint of a pair of constant velocity universal joints is a fixed constant velocity universal joint, and the other constant velocity universal joint is a sliding constant velocity universal joint (Patent Document 1). .

近年、自動車の低燃費化や車両足回りのスペース確保のため、ドライブシャフトの軽量・コンパクト化の要求が高まっており、トルク伝達部材としてボールを用いた等速自在継手において、ボール個数を8個にして軽量・コンパクト化したり、シャフトの材料を焼入れ性が高いものに変更したりしていた。このように構成することで、焼入れ性の向上、高強度化により、軽量・コンパクト化が進んでいる。   In recent years, there has been an increasing demand for lighter and more compact drive shafts in order to reduce the fuel consumption of automobiles and to secure space around the vehicle's undercarriage. In a constant velocity universal joint that uses balls as torque transmission members, the number of balls is eight. As a result, it was made lighter and more compact, and the shaft material was changed to one with high hardenability. By comprising in this way, weight reduction and compactization are progressing by the improvement of hardenability and high intensity | strength.

ところで、図10にトラック溝の溝底が円弧部のみからなるバーフィールド型等速自在継手(BJ)を示している。この等速自在継手は、内径面1にトラック溝2が形成された外側継手部材3と、外径面4にトラック溝5が形成された内側継手部材6と、外側継手部材3のトラック溝2と内側継手部材6のトラック溝5との間に介在されるトルク伝達部材としてのボール7と、このボール7を収容するポケット9を有するとともに外側継手部材3と内側継手部材6との間に介装されるケージ8とを備える。ケージ8の外径面8aは外側継手部材3の内径面1と、ケージ8の内径面8bは内側継手部材6の外径面4とそれぞれ嵌合している。   FIG. 10 shows a Burfield type constant velocity universal joint (BJ) in which the groove bottom of the track groove is composed only of an arc portion. This constant velocity universal joint includes an outer joint member 3 having a track groove 2 formed on the inner diameter surface 1, an inner joint member 6 having a track groove 5 formed on the outer diameter surface 4, and the track groove 2 of the outer joint member 3. And a ball 7 as a torque transmitting member interposed between the outer joint member 6 and the track groove 5 of the inner joint member 6, and a pocket 9 for accommodating the ball 7 and interposed between the outer joint member 3 and the inner joint member 6. And a cage 8 to be mounted. The outer diameter surface 8 a of the cage 8 is fitted with the inner diameter surface 1 of the outer joint member 3, and the inner diameter surface 8 b of the cage 8 is fitted with the outer diameter surface 4 of the inner joint member 6.

外側継手部材3は、内径面1にトラック溝2が形成されたカップ部10と、このカップ部10の底壁10aから突設されるステム軸11とからなる。ステム軸11は、中間部に設けられるスプライン部(雄スプライン)11aと、先端側に設けられるネジ部11bとを有する。   The outer joint member 3 includes a cup portion 10 having a track groove 2 formed on the inner diameter surface 1 and a stem shaft 11 protruding from a bottom wall 10a of the cup portion 10. The stem shaft 11 has a spline part (male spline) 11a provided at the intermediate part and a screw part 11b provided at the tip side.

内側継手部材6の軸心孔には、雌スプライン12が形成され、内側継手部材6の軸心孔にシャフト13の端部が嵌入される。シャフト13の端部には雄スプライン14が形成され、シャフト13の端部が内側継手部材6の軸心孔に嵌入された際に、雌スプライン12と雄スプライン14とが嵌合する。なお、雄スプライン14の端部には周方向溝16が形成され、この周方向溝16に止め輪17が嵌着されている。これによって、シャフト13の抜け止めが構成される。   A female spline 12 is formed in the axial hole of the inner joint member 6, and the end of the shaft 13 is fitted into the axial hole of the inner joint member 6. A male spline 14 is formed at the end of the shaft 13, and the female spline 12 and the male spline 14 are fitted when the end of the shaft 13 is fitted into the axial hole of the inner joint member 6. A circumferential groove 16 is formed at the end of the male spline 14, and a retaining ring 17 is fitted into the circumferential groove 16. Thereby, the shaft 13 is prevented from coming off.

外側継手部材3の開口部がブーツ20にて塞がれている。ブーツ20は、一方の開口部を構成する大径部20aと、他方の開口部を構成する小径部20bと、大径部20aと小径部20bとを連結する蛇腹部20cとを備える。そして、ブーツ20の大径部20aが、外側継手部材3の開口部に外嵌された状態で装着される。また、ブーツ20の小径部20bが、シャフト13のブーツ装着部13aに外嵌された状態で装着される。   The opening of the outer joint member 3 is closed by the boot 20. The boot 20 includes a large diameter portion 20a that constitutes one opening, a small diameter portion 20b that constitutes the other opening, and a bellows portion 20c that connects the large diameter portion 20a and the small diameter portion 20b. And the large diameter part 20a of the boot 20 is mounted | worn in the state externally fitted by the opening part of the outer joint member 3. FIG. Further, the small diameter portion 20 b of the boot 20 is mounted in a state of being externally fitted to the boot mounting portion 13 a of the shaft 13.

等速自在継手の外側継手部材3のカップ部10は、トラック溝2とボール7との接触部の寿命を確保するため、C量0.45%〜0.60%の炭素鋼を高周波焼入れしたり、肌焼鋼を浸炭焼入れすることで、表面硬度を高めている。外側継手部材3のステム軸11はカップ部10と一体のものが多く、カップ部10と同じ材料、熱処理となるが、軸の強度を高めるには、C量0.35〜0.45%の炭素鋼に高周波焼入れで深く焼入れするのが最適である。   The cup portion 10 of the outer joint member 3 of the constant velocity universal joint is induction-hardened carbon steel having a C amount of 0.45% to 0.60% in order to ensure the life of the contact portion between the track groove 2 and the ball 7. Or surface hardness is increased by carburizing and quenching the case-hardened steel. The stem shaft 11 of the outer joint member 3 is often integrated with the cup portion 10 and is made of the same material and heat treatment as the cup portion 10. However, in order to increase the strength of the shaft, the C amount is 0.35 to 0.45%. It is optimal to quench the carbon steel deeply by induction hardening.

しかしながら、カップ部10の材料と熱処理では、高強度化が難しいため、軸径を上げて強度を確保する必要があり、軽量・コンパクト化を図ることができない。ところで、従来には、C:0.50〜0.80%、Si:0.15%以下、Mn:0.60%以下、B:0.0005〜0.0050%, Ti:0.05%以下の被削性に優れた高強度高周波焼入用鋼が提案されている(特許文献2)。   However, since it is difficult to increase the strength with the material of the cup portion 10 and heat treatment, it is necessary to increase the shaft diameter to ensure the strength, and it is not possible to reduce the weight and size. By the way, conventionally, C: 0.50 to 0.80%, Si: 0.15% or less, Mn: 0.60% or less, B: 0.0005 to 0.0050%, Ti: 0.05% The following high strength induction hardening steels with excellent machinability have been proposed (Patent Document 2).

特開2000−240669号公報JP 2000-240669 A 特開平8−81733号公報JP-A-8-81733

特許文献2に記載の高強度高周波焼入用鋼を外側継手部材に用いれば、Mn及び Siを少なくでき、切削性を確保することができる。しかも、Mn及びSiを低減させることによって、焼入れ性が低下するが、Bの添加で焼入れ性の低下を防止している、しかしながら、ステム軸の軽量・コンパクト化には十分な対策ではない。   If the high-strength induction hardening steel described in Patent Document 2 is used for the outer joint member, Mn and Si can be reduced, and machinability can be ensured. Moreover, the hardenability is reduced by reducing Mn and Si, but the addition of B prevents the hardenability from being lowered. However, this is not a sufficient measure for reducing the weight and size of the stem shaft.

そこで、本発明は、ステム軸の軽量・コンパクト化が可能で、自動車用ドライブシャフトに最適な等速自在継手の外側継手部材及び外側継手部材の製造方法を提供する。   Therefore, the present invention provides an outer joint member of a constant velocity universal joint and a method for manufacturing the outer joint member which are capable of reducing the weight and size of a stem shaft and are optimal for an automobile drive shaft.

本発明の等速自在継手の外側継手部材は、内径面にトラック溝が形成されたカップ部と、このカップ部の底壁から突出するステム軸とが同一材質で一体に成形されてなり、ステム軸には平滑部及びスプライン部が形成された等速自在継手の外側継手部材であって、前記材質が、合金元素の含有率が重量%で、C:0.45〜0.60%、Si:0.4〜1.5%、Mn:0.4〜1.0%、S:0.025%以下、Al:0.01〜0.1%、B:0.001〜0.004%, Ti:0.02〜0.05%、およびN:0.008%以下、かつTi/N比3.4以上を基本成分とし、残部がFeおよび不可避的不純物からなる炭素鋼であり、この炭素鋼のフェライト結晶粒度番号が7以上であり、ステム軸の平滑部及びスプライン部のうち、少なくとも最弱となる部位において、焼入れ硬化比が0.3〜0.6となる熱硬化層を有するものである。   In the outer joint member of the constant velocity universal joint of the present invention, the cup portion having a track groove formed on the inner diameter surface and the stem shaft protruding from the bottom wall of the cup portion are integrally formed of the same material. An outer joint member of a constant velocity universal joint having a smooth portion and a spline portion formed on a shaft, wherein the material has an alloy element content of% by weight, C: 0.45 to 0.60%, Si : 0.4-1.5%, Mn: 0.4-1.0%, S: 0.025% or less, Al: 0.01-0.1%, B: 0.001-0.004% , Ti: 0.02 to 0.05%, N: 0.008% or less, and a Ti / N ratio of 3.4 or more as a basic component, and the balance being carbon steel made of Fe and inevitable impurities. Carbon steel ferrite grain size number is 7 or more, among the smooth portion and spline portion of the stem shaft, At the site to be even without weakest, those having thermosetting layer hardened ratio is 0.3 to 0.6.

焼入れ硬化比は、有効硬化層深さ/軸半径比であらわされ、これが0.3未満では、焼入れ硬化比が不足し、通常の炭素鋼に高周波焼入れしたステム軸の強度と変わらず、軽量・コンパクト化が達成できない。一方、0.60%を超えると、スプライン部等の切欠き部に焼割れが発生する。   The quench hardening ratio is expressed by the effective hardened layer depth / shaft radius ratio. When this is less than 0.3, the quench hardening ratio is insufficient, and the strength of the stem shaft that is induction-hardened into ordinary carbon steel is not changed. Compactness cannot be achieved. On the other hand, if it exceeds 0.60%, a burning crack occurs in a notch part such as a spline part.

Cが0.45%未満であると、熱処理後の表面硬さが低すぎて、外輪カップ部のトラックにおいて、十分な耐久性が得られず、0.60%を超えると、表面硬さが高すぎるため、切欠き部の切欠き感受性が増し、強度低下を招く。   If C is less than 0.45%, the surface hardness after heat treatment is too low, and sufficient durability cannot be obtained in the track of the outer ring cup portion. If it exceeds 0.60%, the surface hardness is too high. Since it is too high, the notch sensitivity of a notch part will increase and a strength fall will be caused.

Siは、製鋼段階での脱酸剤として、さらには粒界強化のために添加される。これが、0.40%未満であると、粒界強化の効果が得られず、1.5%を超えると冷間加工性(鍛造性、切削性)が著しく低下する。   Si is added as a deoxidizer in the steelmaking stage and further for strengthening grain boundaries. If this is less than 0.40%, the effect of strengthening the grain boundary cannot be obtained, and if it exceeds 1.5%, the cold workability (forgeability, machinability) is remarkably lowered.

Mnは、焼入れ性を向上(焼入れ硬化比向上)させたり、鋼中の硫黄をMnSとして固定・分散させるために必要であり、これが、0.4%未満であると、焼入れ性が低下し、焼入れ深さが得られない。1.0%を超えると、焼入れ性が飽和して冷間加工性を低下させる。   Mn is necessary for improving the hardenability (improving the quench hardening ratio) and fixing / dispersing sulfur in the steel as MnS. If this is less than 0.4%, the hardenability decreases. The quenching depth cannot be obtained. If it exceeds 1.0%, the hardenability is saturated and the cold workability is lowered.

Sは、Mnと結合してMnS介在物として存在するが、冷間加工時の焼割れ発生の起点となるので、0.025%以下とする。また、Pは、鋼中において粒界に析出して熱間加工性を著しく損ない、かつ素材強度を著しく低下させるため、0.02%以下とする。   S is combined with Mn and exists as MnS inclusions. However, since S serves as a starting point for occurrence of cracking during cold working, it is set to 0.025% or less. Further, P is 0.02% or less because it precipitates at grain boundaries in steel and remarkably impairs hot workability and remarkably reduces material strength.

Alは脱酸剤で、製鋼段階で鋼中酸素を酸化物介在物として除去し、粒界を調整するため、0.01%以上とするが、酸化物介在物が多すぎると靱性が低下し、冷間加工時の焼割れ発生起点となるため、0.10%以下とする。   Al is a deoxidizing agent. In order to remove oxygen in the steel as oxide inclusions and adjust grain boundaries in the steelmaking stage, the content is adjusted to 0.01% or more. However, if there are too many oxide inclusions, the toughness decreases. In order to become a starting point of occurrence of cracks during cold working, the content is made 0.10% or less.

Bは焼入れ性の向上、粒界強化、焼割れ感受性の低下などを目的として添加される。0.001%未満であると、これらの効果が十分に得られず、0.004%を超えると、粒界にBCが生成されて強度低下を招く。   B is added for the purpose of improving hardenability, strengthening grain boundaries, lowering susceptibility to fire cracking, and the like. If it is less than 0.001%, these effects cannot be sufficiently obtained, and if it exceeds 0.004%, BC is generated at the grain boundary, causing a decrease in strength.

Tiは、TiNの生成によりNを固定し、TiNの生成を防止するために添加される。0.02%未満ではBNの生成を防止できず、0.05%を超えると清浄度が低下し、強度低下を招く。Nは、不純物として鋼中に含まれるが、0.08%を超えると、BNが生成されてBを添加した効果が無くなる。   Ti is added to fix N by generation of TiN and prevent formation of TiN. If it is less than 0.02%, the formation of BN cannot be prevented, and if it exceeds 0.05%, the cleanliness is lowered and the strength is lowered. N is contained in the steel as an impurity, but if it exceeds 0.08%, BN is generated and the effect of adding B is lost.

Ti/N比は、TiとNの重量比で、TiによってどれだけのNが固定されるかを表す。これが大きい程BNの生成量が少なくなる。Ti/N比が3.4未満であると、有効なBの確保が困難となる。   The Ti / N ratio is a weight ratio of Ti and N and represents how much N is fixed by Ti. The larger this is, the smaller the amount of BN produced. If the Ti / N ratio is less than 3.4, it is difficult to ensure effective B.

鋼組織中のフェライト粒度が大きすぎると、焼割れ感受性が著しく増加するので、炭素鋼のフェライト結晶粒度番号は7以上とする。   If the ferrite grain size in the steel structure is too large, the susceptibility to fire cracks increases remarkably, so the ferrite crystal grain size number of the carbon steel is 7 or more.

最弱となる部位が、ステム軸に設けられるスプライン部であったり、ステム軸に設けられる平滑部であったりする。また、熱硬化層の表面の圧縮残留応力を500MPa以上とするのが好ましい。圧縮残留応力を500MPa以上することによって、疲労強度の向上を図ることができる。   The weakest part may be a spline portion provided on the stem shaft or a smooth portion provided on the stem shaft. Moreover, it is preferable that the compressive residual stress of the surface of a thermosetting layer shall be 500 Mpa or more. The fatigue strength can be improved by increasing the compressive residual stress to 500 MPa or more.

本発明の外側継手部材の製造方法は、前記等速自在継手の外側継手部材を製造する外側継手部材製造方法であって、ステム軸の平滑部及びスプライン部のうち、少なくとも最弱となる部位に高周波焼入れ・焼戻しを行って焼入れ部を形成した後、この焼入れ部にショットピーニングを施して、表面の圧縮残留応力を1000MPa以上となる熱硬化層を形成するものである。   The outer joint member manufacturing method of the present invention is an outer joint member manufacturing method for manufacturing the outer joint member of the constant velocity universal joint, and at least the weakest portion of the smooth portion and the spline portion of the stem shaft. After induction hardening and tempering to form a quenched portion, this quenched portion is subjected to shot peening to form a thermosetting layer having a surface compressive residual stress of 1000 MPa or more.

本発明の等速自在継手の外側継手部材では、従来品より高強度のステム軸を提供することができ、ステム軸の負荷容量の増大や軽量・コンパクト化を図ることができ、このような外側継手部材を用いた等速自在継手は、ドライブシャフトに最適な等速自在継手となる。また、この外側継手部材は、炭素鋼をベースとするため、コスト的にも安価となる利点がある。   The outer joint member of the constant velocity universal joint of the present invention can provide a stem shaft having higher strength than the conventional product, and can increase the load capacity of the stem shaft and reduce the weight and size. A constant velocity universal joint using a joint member is a constant velocity universal joint optimum for a drive shaft. Moreover, since this outer joint member is based on carbon steel, there is an advantage that the cost is low.

本発明の等速自在継手の外側継手部材を用いたドライブシャフトの断面図である。It is sectional drawing of the drive shaft using the outer joint member of the constant velocity universal joint of this invention. 図1に示すドライブシャフトの固定式等速自在継手の断面図である。It is sectional drawing of the fixed type constant velocity universal joint of the drive shaft shown in FIG. 図1に示すドライブシャフトの摺動式等速自在継手の断面図である。It is sectional drawing of the sliding-type constant velocity universal joint of the drive shaft shown in FIG. 前記摺動式等速自在継手の横断面図である。It is a cross-sectional view of the sliding type constant velocity universal joint. 焼入れ硬化比と捩り強度比との関係を示すグラフ図である。It is a graph which shows the relationship between quench hardening ratio and torsional strength ratio. アンダーカットフリータイプの固定式等速自在継手の断面図である。It is sectional drawing of a fixed type constant velocity universal joint of an undercut free type. ダブルオフセットタイプの摺動式等速自在継手の断面図である。It is sectional drawing of a sliding type constant velocity universal joint of a double offset type. クロスグルーブタイプの摺動式等速自在継手の断面図である。It is sectional drawing of a cross-groove type sliding constant velocity universal joint. 図8に示すクロスグルーブ型等速自在継手のトラック溝(ボール溝)の展開図である。FIG. 9 is a development view of a track groove (ball groove) of the cross groove type constant velocity universal joint shown in FIG. 8. 従来の固定式等速自在継手の断面図である。It is sectional drawing of the conventional fixed type constant velocity universal joint.

以下本発明の実施の形態を図1〜図9に基づいて説明する。図1はドライブシャフトを示し、このドライブシャフトは、一対の等速自在継手31,32と、この一対の等速自在継手31,32を連結するシャフトSとを備えたものである。この図例では、一方の等速自在継手31がバーフィールドタイプの固定式等速自在継手であり、他方の等速自在継手32がトリポードタイプの摺動式等速自在継手である。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a drive shaft, which is provided with a pair of constant velocity universal joints 31 and 32 and a shaft S connecting the pair of constant velocity universal joints 31 and 32. In this example, one constant velocity universal joint 31 is a Barfield type fixed constant velocity universal joint, and the other constant velocity universal joint 32 is a tripod type sliding constant velocity universal joint.

固定式等速自在継手31は、図2に示すように、軸方向に延びる複数のトラック溝33が内径面34に形成された外側継手部材35と、軸方向に延びる複数のトラック溝36が外径面37に円周方向等間隔に形成された内側継手部材38と、外側継手部材35のトラック溝33と内側継手部材38のトラック溝36との間に介在してトルクを伝達する複数のボール39と、外側継手部材35の内径面34と内側継手部材38の外径面37との間に介在してボール39を保持するケージ40とを備えている。   As shown in FIG. 2, the fixed type constant velocity universal joint 31 includes an outer joint member 35 in which a plurality of track grooves 33 extending in the axial direction are formed on the inner diameter surface 34, and a plurality of track grooves 36 extending in the axial direction. A plurality of balls that transmit torque by being interposed between the inner joint member 38 formed on the radial surface 37 at equal intervals in the circumferential direction, the track groove 33 of the outer joint member 35, and the track groove 36 of the inner joint member 38. 39 and a cage 40 that is interposed between an inner diameter surface 34 of the outer joint member 35 and an outer diameter surface 37 of the inner joint member 38 and holds the ball 39.

摺動式等速自在継手(トリポード型等速自在継手)は、図3と図4に示すように、外側継手部材42と、内側継手部材としてのトリポード部材44と、トルク伝達部材48とを備える。外側継手部材42は一端にて開口したカップ状のマウス部75を有し、内周の円周方向三等分位置に軸方向に延びるトラック溝41が形成してある。マウス部75は、横断面で見ると、大径部75aと小径部75bが交互に現れる非円筒形状である。すなわち、マウス部75は、大径部75aと小径部75bとを形成することによって、その内周面に、軸方向に延びる3本の前記トラック溝41が形成される。   As shown in FIGS. 3 and 4, the sliding type constant velocity universal joint (tripod type constant velocity universal joint) includes an outer joint member 42, a tripod member 44 as an inner joint member, and a torque transmission member 48. . The outer joint member 42 has a cup-shaped mouth portion 75 opened at one end, and a track groove 41 extending in the axial direction is formed at a circumferentially equally divided position of the inner periphery. The mouse portion 75 has a non-cylindrical shape in which a large diameter portion 75a and a small diameter portion 75b appear alternately when viewed in cross section. That is, the mouse portion 75 is formed with the large-diameter portion 75a and the small-diameter portion 75b, whereby the three track grooves 41 extending in the axial direction are formed on the inner peripheral surface thereof.

各トラック溝41の円周方向で向き合った側壁にローラ案内面(ローラ摺接面)41a、41aが形成される。また、内径面においては、円周方向に交互に現れる小内径部42bと大内径部42aをローラ案内面41aで接続した3弁の花冠状を呈している。すなわち、外側継手部材42は、円周方向に向き合ったローラ案内面41a,41aと両ローラ案内面41a,41a間に設けられた大内径部42aからなるトラック溝41が内周の三箇所に形成されるものである。   Roller guide surfaces (roller sliding contact surfaces) 41a and 41a are formed on the side walls of each track groove 41 facing in the circumferential direction. In addition, the inner diameter surface has a three-valve corollary shape in which small inner diameter portions 42b and large inner diameter portions 42a that appear alternately in the circumferential direction are connected by a roller guide surface 41a. That is, in the outer joint member 42, the track grooves 41 including the roller guide surfaces 41a and 41a facing each other in the circumferential direction and the large inner diameter portion 42a provided between the roller guide surfaces 41a and 41a are formed at three locations on the inner periphery. It is what is done.

トリポード部材44はボス47と脚軸43とを備える。ボス47にはシャフトSとトルク伝達可能に結合するスプライン孔44aが形成してある。脚軸43はボス47の円周方向三等分位置から半径方向に突出している。   The tripod member 44 includes a boss 47 and a leg shaft 43. The boss 47 is formed with a spline hole 44a coupled to the shaft S so as to be able to transmit torque. The leg shaft 43 protrudes in the radial direction from the circumferentially divided position of the boss 47.

また、トルク伝達部材(ローラ部材)48は、その外径面が凸球面とされたリング状体からなるローラ46と、このローラ46に複数のころ49を介してリング45とを備える。すなわち、ローラ46とリング45とが複数のころ49を介してユニット化され、これら等でローラアセンブリ(ローラ部材)を構成している。この場合、ローラ46を外側ローラと呼び、リング45を内側ローラと呼ぶことができる。   Further, the torque transmission member (roller member) 48 includes a roller 46 formed of a ring-shaped body whose outer diameter surface is a convex spherical surface, and a ring 45 via a plurality of rollers 49 on the roller 46. That is, the roller 46 and the ring 45 are unitized via a plurality of rollers 49, and these constitute a roller assembly (roller member). In this case, the roller 46 can be called an outer roller and the ring 45 can be called an inner roller.

すなわち、リング(内側ローラ)45は脚軸43の外周面に外嵌している。内側ローラ45の円筒形外周面を内側軌道面とし、外側ローラ46の円筒形内周面を外側軌道面として、これらの内外軌道面間に針状ころ49が転動自在に介在する。針状ころ49は、できるだけ多くのころを入れた、保持器のない、いわゆる総ころ状態で組み込まれている。なお、外側ローラ46の端部内周面に形成した環状溝には、針状ころ49の抜け止め用のワッシャ50a、50bが装着されている。   That is, the ring (inner roller) 45 is fitted on the outer peripheral surface of the leg shaft 43. The cylindrical outer peripheral surface of the inner roller 45 is an inner raceway surface, and the cylindrical inner peripheral surface of the outer roller 46 is an outer raceway surface, and needle rollers 49 are interposed between these inner and outer raceway surfaces so as to roll freely. The needle roller 49 is incorporated in a so-called full roller state in which as many rollers as possible are inserted and no cage is provided. In addition, washers 50 a and 50 b for preventing the needle rollers 49 from coming off are attached to the annular groove formed on the inner peripheral surface of the end portion of the outer roller 46.

図2に示すように、固定式等速自在継手31における内側継手部材38の軸孔38aにトルク伝達可能にシャフトSの一方に端部の雄スプライン51を嵌入し、図3に示すように、摺動式等速自在継手32における内側継手部材であるトリポード部材44の軸孔44aにトルク伝達可能にシャフトSの他方の端部に雄スプライン52を嵌入している。この場合、図2に示すように、固定式等速自在継手31の内側継手部材38の軸孔38aの内径面には雌スプライン53が設けられ、図4に示すように、摺動式等速自在継手32のトリポード部材44の軸孔44aの内径面には雌スプライン54が設けられている。   As shown in FIG. 2, a male spline 51 at one end of the shaft S is fitted into the shaft hole 38a of the inner joint member 38 of the fixed type constant velocity universal joint 31 so that torque can be transmitted. A male spline 52 is fitted to the other end of the shaft S so that torque can be transmitted to the shaft hole 44a of the tripod member 44, which is an inner joint member in the sliding type constant velocity universal joint 32. In this case, as shown in FIG. 2, a female spline 53 is provided on the inner diameter surface of the shaft hole 38a of the inner joint member 38 of the fixed type constant velocity universal joint 31, and as shown in FIG. A female spline 54 is provided on the inner diameter surface of the shaft hole 44 a of the tripod member 44 of the universal joint 32.

このため、シャフトSの一方に端部の雄スプライン51を内側継手部材38の軸孔38aに嵌入させることによって、シャフトSの雄スプライン51が内側継手部材38の雌スプライン53に嵌合する。また、シャフトSの他方に端部の雄スプライン52をトリポード部材44の軸孔44aに嵌入させることによって、シャフトSの雄スプライン52がトリポード部材44の雌スプライン54に嵌合する。なお、シャフトSの両端部は、スナップリング等の止め輪55,55によりそれぞれ抜け止めされている。すなわち、シャフトSの両端部に周方向溝56、56が形成され、この周方向溝56、56に止め輪55,55が嵌合されている。   For this reason, the male spline 51 of the shaft S is fitted to the female spline 53 of the inner joint member 38 by fitting the male spline 51 at one end of the shaft S into the shaft hole 38 a of the inner joint member 38. Further, the male spline 52 at the end is fitted into the shaft hole 44 a of the tripod member 44 on the other side of the shaft S, so that the male spline 52 of the shaft S is fitted to the female spline 54 of the tripod member 44. Note that both ends of the shaft S are prevented from coming off by retaining rings 55, 55 such as snap rings. That is, circumferential grooves 56 and 56 are formed at both ends of the shaft S, and retaining rings 55 and 55 are fitted into the circumferential grooves 56 and 56.

シャフトSと各外側継手部材35、42との間には、外部からの異物の侵入および内部からのグリースの漏洩を防止するためのブーツ60A,60Bがそれぞれ装着されている。ブーツ60A,60Bは、大径部60aと、小径部60bと、大径部60aと小径部60bとを連結する蛇腹部60cとからなる。ブーツ60A,60Bの大径部60a,60aは外側継手部材の開口端でブーツバンド61A,61Bにより締め付け固定され、その小径部60bはシャフトSのブーツ装着部58,59でブーツバンド62A、62Bにより締め付け固定されている。   Boots 60A and 60B are installed between the shaft S and the outer joint members 35 and 42, respectively, for preventing entry of foreign matter from the outside and leakage of grease from the inside. The boots 60A and 60B include a large diameter portion 60a, a small diameter portion 60b, and a bellows portion 60c that connects the large diameter portion 60a and the small diameter portion 60b. The large diameter portions 60a and 60a of the boots 60A and 60B are fastened and fixed by the boot bands 61A and 61B at the open ends of the outer joint members, and the small diameter portions 60b are formed by the boot bands 62A and 62B at the boot mounting portions 58 and 59 of the shaft S. Tightened and fixed.

ところで、固定式等速自在継手31の外側継手部材35は、トラック溝33が内径面34に形成されたカップ部70とこのカップ部70の底壁70aから突設されるステム軸71とからなる。ステム軸71は、カップ部70の底壁70aから平滑部71aを介してカップ部70に連設されるスプライン部(雄スプライン)71bと、このスプライン部71bにくびれ部71cを介して連設されるネジ部71dと、このネジ部71dの端面から突設される端部軸部71eとからなる。   By the way, the outer joint member 35 of the fixed type constant velocity universal joint 31 includes a cup part 70 having a track groove 33 formed on the inner diameter surface 34 and a stem shaft 71 protruding from the bottom wall 70a of the cup part 70. . The stem shaft 71 is connected to a spline portion (male spline) 71b connected to the cup portion 70 from the bottom wall 70a of the cup portion 70 via the smooth portion 71a, and connected to the spline portion 71b via a constricted portion 71c. A threaded portion 71d and an end shaft portion 71e protruding from the end face of the threaded portion 71d.

この固定式等速自在継手31の外側継手部材35の材質は、合金元素の含有率が重量%で、C:0.45〜0.60%、Si:0.4〜1.5%、Mn:0.4〜1.0%、S:0.025%以下、Al:0.01〜0.1%、B:0.001〜0.004%, Ti:0.02〜0.05%、およびN:0.008%以下、かつTi/N比3.4以上を基本成分とし、残部がFeおよび不可避的不純物からなる炭素鋼である。この場合の炭素鋼のフェライト結晶粒度番号(JISG0552(鋼のフェライト結晶粒度試験方法)の比較法により測定した結晶粒度番号)が7以上である。   The material of the outer joint member 35 of the fixed type constant velocity universal joint 31 is such that the alloy element content is% by weight, C: 0.45 to 0.60%, Si: 0.4 to 1.5%, Mn : 0.4-1.0%, S: 0.025% or less, Al: 0.01-0.1%, B: 0.001-0.004%, Ti: 0.02-0.05% And N: 0.008% or less and a Ti / N ratio of 3.4 or more as a basic component, and the balance being Fe and inevitable impurities. The ferrite grain size number of the carbon steel in this case (the crystal grain size number measured by the comparison method of JISG 0552 (steel ferrite grain size test method)) is 7 or more.

そして、ステム軸71の平滑部71a及びスプライン部71bのうち、少なくとも最弱となる部位においてクロスハッチングで示すように熱硬化層H1を有する。この場合、ステム軸71の平滑部71a及びスプライン部71bのうち、最弱となる部位はスプライン部71bである。このため、少なくとも、スプライン部71bに熱硬化層H1を設ければよいが、この実施形態では、カップ部70の底壁70aからスプライン部(雄スプライン)71bにわたって熱硬化層H1が形成されている。そして、この熱硬化層H1は焼入れ硬化比が0.3〜0.6となる。ここで、焼入れ硬化比とは、焼入れ深さ/軸半径である。すなわち、図2に示すように、焼入れ深さをt1とし、軸半径をR1としたときに、焼入れ硬化比は、t1/R1となり、軸半径は、スプライン部71bの小径(直径)の半径であり、R1=D2/2となる。このため、0.3≦t1/R1≦0.6となる。熱硬化層Hの表面の圧縮残留応力を500MPa以上とするのが好ましい。   And in the smooth part 71a and the spline part 71b of the stem axis | shaft 71, it has the thermosetting layer H1, as shown by cross hatching in the weakest part at least. In this case, the weakest part of the smooth part 71a and the spline part 71b of the stem shaft 71 is the spline part 71b. For this reason, at least the thermosetting layer H1 may be provided on the spline portion 71b. In this embodiment, the thermosetting layer H1 is formed from the bottom wall 70a of the cup portion 70 to the spline portion (male spline) 71b. . And this thermosetting layer H1 becomes quenching hardening ratio 0.3-0.6. Here, the quench hardening ratio is the quench depth / axial radius. That is, as shown in FIG. 2, when the quenching depth is t1 and the shaft radius is R1, the quench hardening ratio is t1 / R1, and the shaft radius is the radius of the small diameter (diameter) of the spline portion 71b. Yes, R1 = D2 / 2. For this reason, 0.3 ≦ t1 / R1 ≦ 0.6. The compressive residual stress on the surface of the thermosetting layer H is preferably 500 MPa or more.

ところで、外側継手部材35は、カップ部70とステム軸71とが一体に成形されており、前記炭素鋼を用いて、熱間鍛造でカップ部70とステム軸71を一体に成形した後、冷間鍛造を行うことで、カップ部70内およびステム軸71の寸法精度を向上させている。鍛造後、旋削加工で所定の形状に成形し、ステム軸71にはハブ輪(図示省略)と嵌合するためのスプライン部71bを転造加工やプレス加工などで形成し、ステム軸71の軸端にはハブ輪とナットで締結するためのネジ部71dが転造形成される。その後、ステム軸71には高周波焼入れ焼戻しを施し、前記熱硬化層H1を設けることになる。   By the way, the outer joint member 35 has a cup part 70 and a stem shaft 71 integrally formed. After the cup part 70 and the stem shaft 71 are integrally formed by hot forging using the carbon steel, the outer joint member 35 is cooled. By performing the forging, the dimensional accuracy of the inside of the cup part 70 and the stem shaft 71 is improved. After forging, it is formed into a predetermined shape by turning, and the stem shaft 71 is formed with a spline portion 71b for fitting with a hub wheel (not shown) by rolling or pressing. At the end, a threaded portion 71d for fastening with a hub wheel and a nut is formed by rolling. Thereafter, the stem shaft 71 is subjected to induction hardening and tempering to provide the thermosetting layer H1.

高周波焼入れ焼き戻しは、高周波電流の流れているコイル中に焼入れに必要な部分を入れると、電磁誘導作用により誘導起電力が生ずる。この電磁誘導作用により、ジュール熱が発生することを利用して、伝導性物体を過熱する原理を応用した焼入れ方法である。このため、高周波焼入れは必要な部分だけに選択的に硬化層を設けることが可能であり、外側継手部材のステム軸の硬化層形成には最適となる。   In the induction hardening and tempering, when a portion necessary for quenching is placed in a coil through which a high frequency current flows, an induced electromotive force is generated by electromagnetic induction. This is a quenching method applying the principle of overheating a conductive object by utilizing the generation of Joule heat by this electromagnetic induction action. For this reason, induction hardening can selectively provide a hardened layer only at a necessary portion, and is optimal for forming a hardened layer of the stem shaft of the outer joint member.

また、摺動式等速自在継手32の外側継手部材42は、内周に軸線方向に延びる三本のトラック溝41を有するカップ部75と、このカップ部75の底壁75cから突設されるステム軸76とからなる。ステム軸76は、底壁75cに連設される大径ボス部76aと、この大径ボス部76aよりも小径の中間軸部(平滑部)76bと、この平滑部76bに連設されるスプライン部(雄スプライン)76cとを有するものである。   The outer joint member 42 of the sliding type constant velocity universal joint 32 protrudes from a cup portion 75 having three track grooves 41 extending in the axial direction on the inner periphery and a bottom wall 75 c of the cup portion 75. It consists of a stem shaft 76. The stem shaft 76 includes a large-diameter boss portion 76a continuously provided on the bottom wall 75c, an intermediate shaft portion (smooth portion) 76b having a smaller diameter than the large-diameter boss portion 76a, and a spline continuously provided on the smooth portion 76b. Part (male spline) 76c.

この外側継手部材42の材質も、固定式等速自在継手31の外側継手部材35と同様、合金元素の含有率が重量%で、C:0.45〜0.60%、Si:0.4〜1.5%、Mn:0.4〜1.0%、S:0.025%以下、Al:0.01〜0.1%、B:0.001〜0.004%, Ti:0.02〜0.05%、およびN:0.008%以下、かつTi/N比3.4以上を基本成分とし、残部がFeおよび不可避的不純物からなる炭素鋼である。この場合の炭素鋼のフェライト結晶粒度番号が7以上である。   Similarly to the outer joint member 35 of the fixed type constant velocity universal joint 31, the material of the outer joint member 42 has an alloy element content of% by weight, C: 0.45 to 0.60%, Si: 0.4 -1.5%, Mn: 0.4-1.0%, S: 0.025% or less, Al: 0.01-0.1%, B: 0.001-0.004%, Ti: 0 Carbon steel having 0.02 to 0.05% and N: 0.008% or less and a Ti / N ratio of 3.4 or more as a basic component, the balance being Fe and inevitable impurities. The ferrite grain size number of the carbon steel in this case is 7 or more.

外側継手部材42のステム軸76には、大径ボス76aからスプライン部76cにわたって、クロスハッチングで示すように熱硬化層H2が形成されている。この熱硬化層H2においても、焼入れ硬化比が0.3〜0.6となる。焼入れ深さをt2とし、軸半径をR2としたときに、焼入れ硬化比は、t2/R2となり、軸半径は、スプライン部76cの小径(直径)の半径であり、R2=D4/2となる。このため、0.3≦t2/R2≦0.6となる。熱硬化層Hの表面の圧縮残留応力を500MPa以上とするのが好ましい。   A thermosetting layer H2 is formed on the stem shaft 76 of the outer joint member 42 from the large-diameter boss 76a to the spline portion 76c as shown by cross hatching. Also in this thermosetting layer H2, the quench hardening ratio is 0.3 to 0.6. When the quenching depth is t2 and the shaft radius is R2, the quench hardening ratio is t2 / R2, and the shaft radius is the radius of the small diameter (diameter) of the spline portion 76c, and R2 = D4 / 2. . For this reason, 0.3 ≦ t2 / R2 ≦ 0.6. The compressive residual stress on the surface of the thermosetting layer H is preferably 500 MPa or more.

この場合も、外側継手部材42は、カップ部75とステム軸76とが一体に成形されており、前記炭素鋼を用いて、熱間鍛造でカップ部75とステム軸76を一体に成形した後、冷間鍛造を行うことで、カップ部75内およびステム軸76の寸法精度を向上させている。鍛造後、旋削加工で所定の形状に成形し、ステム軸76にはスプライン部76cを転造加工やプレス加工などで形成し、その後、ステム軸76には高周波焼入れ焼戻しを施し、前記熱硬化層H2を設けることになる。   Also in this case, in the outer joint member 42, the cup portion 75 and the stem shaft 76 are integrally formed, and after the cup portion 75 and the stem shaft 76 are integrally formed by hot forging using the carbon steel. The dimensional accuracy of the cup portion 75 and the stem shaft 76 is improved by performing cold forging. After forging, it is formed into a predetermined shape by turning, and the stem shaft 76 is formed with a spline portion 76c by rolling or pressing, and then the stem shaft 76 is subjected to induction hardening and tempering, and the thermosetting layer H2 is provided.

また、外側継手部材35、42のカップ部70,75内においても高周波焼入れ焼き戻しの熱処理を施して、所定の硬さ、焼入れ深さの熱硬化層を設けるのが好ましい。しかしながら、カップ部70,75内においては、外表面まで焼抜けすると強度低下を招くことになる。このため、ステム軸71,76のような高い焼入れ硬化比は不要である。   In addition, it is preferable to perform heat treatment of induction hardening and tempering in the cup portions 70 and 75 of the outer joint members 35 and 42 to provide a thermosetting layer having a predetermined hardness and a quenching depth. However, in the cup portions 70 and 75, when the outer surface is burned out, the strength is reduced. For this reason, the high hardening hardening ratio like the stem shafts 71 and 76 is unnecessary.

ステム軸において、熱硬化層H1,H2を形成する場合、高周波焼入れ焼き戻し後にショットピーニングを行って、その熱硬化層H1,H2の表面の圧縮残留応力を1000MPa以上とすることも可能である。   When the thermosetting layers H1 and H2 are formed on the stem axis, shot peening is performed after induction hardening and tempering, and the compressive residual stress on the surfaces of the thermosetting layers H1 and H2 can be 1000 MPa or more.

図1に示すドライブシャフトにおいて、シャフト(中間シャフト)Sに対しても、クロスハッチングで示すように熱硬化層H3を形成している。シャフトSとしては、前記外側継手部材35、42と同じ炭素鋼を用いても、従来のドライブシャフトのシャフトに一般的に用いられている炭素鋼であってもよい。   In the drive shaft shown in FIG. 1, the thermosetting layer H3 is also formed on the shaft (intermediate shaft) S as shown by cross hatching. As the shaft S, the same carbon steel as that of the outer joint members 35 and 42 may be used, or carbon steel generally used for a shaft of a conventional drive shaft may be used.

また、熱硬化層H3を高周波焼入れ焼き戻しの熱処理を施すことによって形成することができ、この場合、図例のように、ほぼ全長にわたってこの熱硬化層H3が形成されている。この場合も、焼入れ深さ/軸半径で表される焼入れ硬化比を0.3〜0.6に設定できるが、これに限るものではない。   Moreover, the thermosetting layer H3 can be formed by performing heat treatment of induction hardening and tempering. In this case, as shown in the figure, the thermosetting layer H3 is formed over almost the entire length. Also in this case, the quench hardening ratio represented by the quench depth / axial radius can be set to 0.3 to 0.6, but is not limited thereto.

このため、本発明の等速自在継手の外側継手部材では、従来品より高強度のステム軸を提供することができ、ステム軸の負荷容量の増大や軽量・コンパクト化を図ることができ、このような外側継手部材を用いた等速自在継手は、ドライブシャフトに最適な等速自在継手となる。また、この外側継手部材は、炭素鋼をベースとするため、コスト的にも安価となる利点がある。   For this reason, the outer joint member of the constant velocity universal joint of the present invention can provide a stem shaft having higher strength than the conventional product, and can increase the load capacity of the stem shaft and reduce the weight and size. A constant velocity universal joint using such an outer joint member is an optimum constant velocity universal joint for a drive shaft. Moreover, since this outer joint member is based on carbon steel, there is an advantage that the cost is low.

すなわち、焼入れ硬化比は、有効硬化層深さ/軸半径比で表され、これが0.3未満では、焼入れ硬化比が不足し、通常の炭素鋼に高周波焼入れしたステム軸の強度と変わらず、軽量・コンパクト化が達成できない。一方、0.60%を超えると、スプライン部等の切欠き部に焼割れが発生する。   That is, the quench hardening ratio is expressed by the effective hardened layer depth / shaft radius ratio, and if this is less than 0.3, the quench hardening ratio is insufficient, and the strength of the stem shaft induction-hardened in ordinary carbon steel is not changed, Light weight and compactness cannot be achieved. On the other hand, if it exceeds 0.60%, a burning crack occurs in a notch part such as a spline part.

Cが0.45%未満であると、熱処理後の表面硬さが低すぎて、外輪カップ部のトラックにおいて、十分な耐久性が得られず、0.60%を超えると、表面硬さが高すぎるため、切欠き部の切欠き感受性が増し、強度低下を招く。   If C is less than 0.45%, the surface hardness after heat treatment is too low, and sufficient durability cannot be obtained in the track of the outer ring cup portion. If it exceeds 0.60%, the surface hardness is too high. Since it is too high, the notch sensitivity of a notch part will increase and a strength fall will be caused.

Siは、製鋼段階での脱酸剤として、さらには粒界強化のために添加される。これが、0.40%未満であると、粒界強化の効果が得られず、1.5%を超えると冷間加工性(鍛造性、切削性)が著しく低下する。   Si is added as a deoxidizer in the steelmaking stage and further for strengthening grain boundaries. If this is less than 0.40%, the effect of strengthening the grain boundary cannot be obtained, and if it exceeds 1.5%, the cold workability (forgeability, machinability) is remarkably lowered.

Mnは、焼入れ性を向上(焼入れ硬化比向上)させたり、鋼中の硫黄をMnSとして固定・分散させるために必要であり、これが、0.4%未満であると、焼入れ性が低下し、焼入れ深さが得られない。1.0%を超えると、焼入れ性が飽和して冷間加工性を低下させる。   Mn is necessary for improving the hardenability (improving the quench hardening ratio) and fixing / dispersing sulfur in the steel as MnS. If this is less than 0.4%, the hardenability decreases. The quenching depth cannot be obtained. If it exceeds 1.0%, the hardenability is saturated and the cold workability is lowered.

Sは、Mnと結合してMnS介在物として存在するが、冷間加工時の焼割れ発生の起点となるので、0.025%以下とする。また、Pは、鋼中において粒界に析出して熱間加工性を著しく損ない、かつ素材強度を著しく低下させるため、0.02%以下とする。   S is combined with Mn and exists as MnS inclusions. However, since S serves as a starting point for occurrence of cracking during cold working, it is set to 0.025% or less. Further, P is 0.02% or less because it precipitates at grain boundaries in steel and remarkably impairs hot workability and remarkably reduces material strength.

Alは脱酸剤で、製鋼段階で鋼中酸素を酸化物介在物として除去し、粒界を調整するため、0.01%以上とするが、酸化物介在物が多すぎると靱性が低下し、冷間加工時の焼割れ発生起点となるため、0.10%以下とする。   Al is a deoxidizing agent. In order to remove oxygen in the steel as oxide inclusions and adjust grain boundaries in the steelmaking stage, the content is adjusted to 0.01% or more. However, if there are too many oxide inclusions, the toughness decreases. In order to become a starting point of occurrence of cracks during cold working, the content is made 0.10% or less.

Bは焼入れ性の向上、粒界強化、焼割れ感受性の低下などを目的として添加される。0.001%未満であると、これらの効果が十分に得られず、0.004%を超えると、粒界にBCが生成されて強度低下を招く。 B is added for the purpose of improving hardenability, strengthening grain boundaries, lowering susceptibility to fire cracking, and the like. If it is less than 0.001%, these effects cannot be sufficiently obtained, and if it exceeds 0.004%, BC is generated at the grain boundary, causing a decrease in strength.

Tiは、TiNの生成によりNを固定し、TiNの生成を防止するために添加される。0.02%未満ではBNの生成を防止できず、0.05%を超えると清浄度が低下し、強度低下を招く。Nは、不純物として鋼中に含まれるが、0.08%を超えると、BNが生成されてBを添加した効果が無くなる。   Ti is added to fix N by generation of TiN and prevent formation of TiN. If it is less than 0.02%, the formation of BN cannot be prevented, and if it exceeds 0.05%, the cleanliness is lowered and the strength is lowered. N is contained in the steel as an impurity, but if it exceeds 0.08%, BN is generated and the effect of adding B is lost.

Ti/N比は、TiとNの重量比で、TiによってどれだけのNが固定されるかを表す。これが大きい程BNの生成量が少なくなる。Ti/N比が3.4未満であると、有効なBの確保が困難となる。   The Ti / N ratio is a weight ratio of Ti and N and represents how much N is fixed by Ti. The larger this is, the smaller the amount of BN produced. If the Ti / N ratio is less than 3.4, it is difficult to ensure effective B.

鋼組織中のフェライト粒度が大きすぎると、焼割れ感受性が著しく増加するので、炭素鋼のフェライト結晶粒度番号は7以上とする。   If the ferrite grain size in the steel structure is too large, the susceptibility to fire cracks increases remarkably, so the ferrite crystal grain size number of the carbon steel is 7 or more.

ところで、従来の固定式等速自在継手や摺動式等速自在継手の外側継手部材に用いる炭素鋼は、通常、合金元素の含有率が重量%で、C:0.45〜0.60%、Si:0.15〜0.35%、Mn:0.6〜0.9%、S:0.035%以下を基本成分とし、残部がFeおよび不可避的不純物からなる。   By the way, the carbon steel used for the outer joint member of the conventional fixed type constant velocity universal joint and the sliding type constant velocity universal joint usually has an alloy element content of% by weight, and C: 0.45 to 0.60%. , Si: 0.15 to 0.35%, Mn: 0.6 to 0.9%, S: 0.035% or less as basic components, with the balance being Fe and inevitable impurities.

このような炭素鋼を用いた場合、Bの添加が無いので、焼入れ硬化比が0.2〜0.4の範囲でばらつくことになる。そのため捩り強度を検討する際には焼入れ硬化比が小さい0.2を採用することになる。図5に示すように、焼入れ硬化比が0.2の時の捩り強度を1.0とすると、本発明のような炭素鋼の場合、焼入れ性が向上するため、焼入れ硬化比が硬化範囲全域においてばらつくことなく0.3〜0.6にすることができるので捩り強度比1.25〜1.65に向上する。   When such carbon steel is used, since B is not added, the quench hardening ratio varies in the range of 0.2 to 0.4. Therefore, when examining the torsional strength, 0.2, which has a small quench hardening ratio, is adopted. As shown in FIG. 5, when the torsional strength when the quench hardening ratio is 0.2 is 1.0, in the case of the carbon steel as in the present invention, the hardenability is improved, so that the quench hardening ratio is within the entire curing range. Therefore, the torsional strength ratio is improved to 1.25 to 1.65.

図6は、固定式等速自在継手として、アンダーカットフリー型であって、内径面81に複数のトラック溝82が形成された外側継手部材83と、外径面84に外側継手部材83のトラック溝82と対をなす複数のトラック溝85が形成された内側継手部材86と、外側継手部材83のトラック溝82と内側継手部材86のトラック溝85との間に介在してトルクを伝達する複数のボール87と、外側継手部材83の内径面81と内側継手部材86の外径面84との間に介在してボール87を保持するケージ88とを備えている。ケージ88にはボール87が収容される窓部88aが周方向に沿って複数配設されている。   FIG. 6 shows an undercut-free type fixed-type constant velocity universal joint, an outer joint member 83 having a plurality of track grooves 82 formed on the inner diameter surface 81, and a track of the outer joint member 83 on the outer diameter surface 84. A plurality of inner joint members 86 formed with a plurality of track grooves 85 paired with the grooves 82, and a plurality of torque transmissions interposed between the track grooves 82 of the outer joint members 83 and the track grooves 85 of the inner joint members 86. And a cage 88 that is interposed between the inner diameter surface 81 of the outer joint member 83 and the outer diameter surface 84 of the inner joint member 86 and holds the ball 87. The cage 88 is provided with a plurality of windows 88a for accommodating the balls 87 along the circumferential direction.

この固定式等速自在継手は、外側継手部材83のトラック溝82の溝底は、開口側のストレート部82a(外側継手部材83の軸線方向と平行な直線部)と、奥側の円弧部82bとからなる。内側継手部材86のトラック溝85の溝底は、開口部側の円弧部85aと、奥側のストレート部85b(内側継手部材86の軸線方向と平行な直線部)とからなる。この場合、外側継手部材83のトラック溝82の中心O1と内側継手部材86のトラック溝85の中心O2とが、それぞれ、軸方向に継手中心Oから等距離f、fだけ反対側にオフセットされている。なお、内側継手部材86の軸孔には、シャフトSの端部の雄スプライン51(図2参照)が嵌合する雌スプライン86aが形成されている。   In this fixed type constant velocity universal joint, the groove bottom of the track groove 82 of the outer joint member 83 has an opening-side straight portion 82a (a straight portion parallel to the axial direction of the outer joint member 83) and a back-side arc portion 82b. It consists of. The groove bottom of the track groove 85 of the inner joint member 86 includes an arc portion 85a on the opening side and a straight portion 85b on the back side (a straight portion parallel to the axial direction of the inner joint member 86). In this case, the center O1 of the track groove 82 of the outer joint member 83 and the center O2 of the track groove 85 of the inner joint member 86 are offset from the joint center O in the axial direction by the equal distances f and f, respectively. Yes. A female spline 86 a into which the male spline 51 (see FIG. 2) at the end of the shaft S is fitted is formed in the shaft hole of the inner joint member 86.

この場合の外側継手部材83も図2等に示す外側継手部材35と同様の炭素鋼からなり、カップ部89と、このカップ部89の底壁89aから突設されるステム軸90とからなり、これらは一体成形されている。そして、ステム軸90には、スプライン部(雄スプライン)90aとネジ部90bとが形成されている。   The outer joint member 83 in this case is also made of the same carbon steel as the outer joint member 35 shown in FIG. 2 and the like, and includes a cup part 89 and a stem shaft 90 protruding from the bottom wall 89a of the cup part 89. These are integrally molded. The stem shaft 90 is formed with a spline portion (male spline) 90a and a screw portion 90b.

この場合も、外側継手部材83はカップ部89の底壁89aからスプライン部(雄スプライン)90aにわたって熱硬化層H1が形成されている。熱硬化層H1は焼入れ硬化比が0.3〜0.6となる。焼入れ深さをt1とし、軸半径をR1としたときに、焼入れ硬化比は、t1/R1となり、軸半径は、スプライン部90aの小径(直径)の半径であり、R1=D2/2となる。このため、0.3≦t1/R1≦0.6となる。熱硬化層Hの表面の圧縮残留応力を500MPa以上とするのが好ましい。   Also in this case, the outer joint member 83 has the thermosetting layer H1 formed from the bottom wall 89a of the cup part 89 to the spline part (male spline) 90a. The thermosetting layer H1 has a quench hardening ratio of 0.3 to 0.6. When the quenching depth is t1 and the shaft radius is R1, the quench hardening ratio is t1 / R1, and the shaft radius is the radius of the small diameter (diameter) of the spline portion 90a, and R1 = D2 / 2. . For this reason, 0.3 ≦ t1 / R1 ≦ 0.6. The compressive residual stress on the surface of the thermosetting layer H is preferably 500 MPa or more.

図7は、ダブルオフセットタイプの摺動式等速自在継手を示し、摺動式等速自在継手は、内径面91にトラック溝92が形成された外側継手部材93と、外径面94にトラック溝95が形成された内側継手部材96と、外側継手部材93のトラック溝92と内側継手部材96のトラック溝95との間に介在してトルクを伝達するトルク伝達部材としてのボール97と、このボール97を収容するポケット99を有するとともに外側継手部材93と内側継手部材96との間に介装されるケージ98とを備えたものである。ケージ98の外周面98aの曲率中心と内周面98bの曲率中心とが、継手の角度中心に対し、軸方向に逆方向にオフセットしている。   FIG. 7 shows a double offset type sliding constant velocity universal joint. The sliding constant velocity universal joint includes an outer joint member 93 having a track groove 92 formed on the inner diameter surface 91 and a track on the outer diameter surface 94. An inner joint member 96 in which a groove 95 is formed; a ball 97 as a torque transmission member that is interposed between the track groove 92 of the outer joint member 93 and the track groove 95 of the inner joint member 96; It has a pocket 99 for accommodating a ball 97 and a cage 98 interposed between the outer joint member 93 and the inner joint member 96. The center of curvature of the outer peripheral surface 98a of the cage 98 and the center of curvature of the inner peripheral surface 98b are offset in the axial direction opposite to the angular center of the joint.

内側継手部材96の軸心孔には、雌スプライン96aが形成され、内側継手部材96の軸心孔にシャフトSの端部が嵌入される。シャフトSの端部が内側継手部材96の軸心孔に嵌入された際に、雌スプライン96aと雄スプライン52とが嵌合する。なお、雄スプライン52の端部には周方向溝56が形成され、この周方向溝に止め輪55が嵌着されている。これによって、シャフトSの抜け止めが構成される。   A female spline 96 a is formed in the axial hole of the inner joint member 96, and the end of the shaft S is fitted into the axial hole of the inner joint member 96. When the end of the shaft S is fitted into the axial hole of the inner joint member 96, the female spline 96a and the male spline 52 are fitted. A circumferential groove 56 is formed at the end of the male spline 52, and a retaining ring 55 is fitted in the circumferential groove. Thereby, the shaft S is prevented from coming off.

外側継手部材93の開口部がブーツ100にて塞がれている。このため、ブーツ100は、一方の開口部を構成する大径部100aと、他方の開口部を構成する小径部100bと、大径部100aと小径部100bとを連結する蛇腹部100cとを備える。そして、ブーツ100の大径部100aが、外側継手部材93の開口部に外嵌された状態で装着される。また、ブーツ100の小径部100bが、シャフトSのブーツ装着部59に外嵌された状態で装着される。すなわち、ブーツ100の大径部100aは外側継手部材の開口端でブーツバンド101により締め付け固定され、その小径部100bはシャフトSのブーツ装着部59でブーツバンド102により締め付け固定されている。   The opening of the outer joint member 93 is closed by the boot 100. For this reason, the boot 100 includes a large-diameter portion 100a that constitutes one opening, a small-diameter portion 100b that constitutes the other opening, and a bellows portion 100c that connects the large-diameter portion 100a and the small-diameter portion 100b. . And the large diameter part 100a of the boot 100 is mounted | worn in the state externally fitted by the opening part of the outer joint member 93. FIG. Further, the small diameter portion 100b of the boot 100 is mounted in a state of being externally fitted to the boot mounting portion 59 of the shaft S. That is, the large-diameter portion 100a of the boot 100 is fastened and fixed by the boot band 101 at the open end of the outer joint member, and the small-diameter portion 100b is fastened and fixed by the boot band 102 at the boot mounting portion 59 of the shaft S.

外側継手部材93も図4等に示す外側継手部材と同様の炭素鋼からなり、カップ部103と、このカップ部103の底壁103aから突設されるステム軸104とからなり、これらは一体成形されている。そして、ステム軸104は、カップ部103の底壁103aに連設されるボス部104aと、ボス部104aに連設される平滑部104bと、この平滑部104bに連設されるスプライン部(雄スプライン)104cとを備える。   The outer joint member 93 is also made of carbon steel similar to the outer joint member shown in FIG. 4 and the like, and is composed of a cup portion 103 and a stem shaft 104 protruding from the bottom wall 103a of the cup portion 103, which are integrally formed. Has been. The stem shaft 104 includes a boss part 104a provided continuously with the bottom wall 103a of the cup part 103, a smooth part 104b provided continuously with the boss part 104a, and a spline part (male male) provided with the smooth part 104b. Spline) 104c.

この場合も、ステム軸104には、平滑部104bからスプライン部(雄スプライン)104cにわたって熱硬化層H2が形成されている。熱硬化層H2は焼入れ硬化比が0.3〜0.6となる。焼入れ深さをt2とし、軸半径をR2としたときに、焼入れ硬化比は、t2/R2となり、軸半径は、スプライン部104cの小径(直径)の半径であり、R2=D4/2となる。このため、0.3≦t2/R2≦0.6となる。熱硬化層H2の表面の圧縮残留応力を500MPa以上とするのが好ましい。   Also in this case, the thermosetting layer H2 is formed on the stem shaft 104 from the smooth portion 104b to the spline portion (male spline) 104c. The thermosetting layer H2 has a quench hardening ratio of 0.3 to 0.6. When the quenching depth is t2 and the shaft radius is R2, the quench hardening ratio is t2 / R2, and the shaft radius is the radius of the small diameter (diameter) of the spline portion 104c, and R2 = D4 / 2. . For this reason, 0.3 ≦ t2 / R2 ≦ 0.6. The compressive residual stress on the surface of the thermosetting layer H2 is preferably 500 MPa or more.

図8はカップタイプのクロスグルーブ型の摺動式等速自在継手を示し、この摺動式等速自在継手は、外周面105に軸線に対して互いに逆方向にねじれたボール溝106(106a、106b)(図9参照)を円周方向に交互に形成した内側継手部材107と、内周面108に軸線に対して互いに逆方向にねじれたボール溝109(109a、109b)を円周方向に交互に形成した外側継手部材110と、軸線に対して互いに逆方向にねじれた内側継手部材107のボール溝106と外側継手部材110のボール溝109との交差部に組み込んだ複数個のトルク伝達ボール111と、内側継手部材107の外周面105と外側継手部材110の内周面108との間に介装してトルク伝達ボール111を円周方向で所定間隔に保持する窓部112aを有するケージ112とを有する。   FIG. 8 shows a cup-type cross groove type sliding constant velocity universal joint. The sliding type constant velocity universal joint has a ball groove 106 (106a, 106a, 106b) Inner joint members 107 (see FIG. 9) alternately formed in the circumferential direction and ball grooves 109 (109a, 109b) twisted in the opposite directions with respect to the axis on the inner circumferential surface 108 in the circumferential direction. A plurality of torque transmission balls incorporated at the intersections of the alternately formed outer joint members 110 and the ball grooves 106 of the inner joint members 107 and the ball grooves 109 of the outer joint members 110 twisted in opposite directions with respect to the axis. 111, a window portion 1 that is interposed between the outer peripheral surface 105 of the inner joint member 107 and the inner peripheral surface 108 of the outer joint member 110 and holds the torque transmission balls 111 at a predetermined interval in the circumferential direction. And a cage 112 having a 2a.

図9におけるβは、軸線に対する各ボール溝106a、106b、109a、109bの交差角を示している。トルク伝達ボール111は、各ボール溝106a、106b、109a、109bの交差部に組み込まれている。   In FIG. 9, β indicates the crossing angle of each ball groove 106a, 106b, 109a, 109b with respect to the axis. The torque transmission ball 111 is incorporated at the intersection of each ball groove 106a, 106b, 109a, 109b.

外側継手部材110も図4等に示す外側継手部材と同様の炭素鋼からなり、カップ部115と、このカップ部115の底壁115aから突設されるステム軸116とからなり、これらは一体成形されている。そして、ステム軸116は、カップ部115の底壁115aに連設される平滑部116aと、この平滑部116aに連設されるスプライン部(雄スプライン)116bとを備える。なお、内側継手部材107の軸心孔には、シャフトSの雄スプライン52(図3参照)が嵌合する雌スプライン107aが形成されている。   The outer joint member 110 is also made of carbon steel similar to the outer joint member shown in FIG. 4 and the like, and includes a cup portion 115 and a stem shaft 116 protruding from the bottom wall 115a of the cup portion 115, which are integrally formed. Has been. The stem shaft 116 includes a smoothing portion 116a provided continuously with the bottom wall 115a of the cup portion 115, and a spline portion (male spline) 116b provided continuously with the smoothing portion 116a. A female spline 107 a into which the male spline 52 (see FIG. 3) of the shaft S is fitted is formed in the shaft hole of the inner joint member 107.

この場合も、ステム軸116には、平滑部116aからスプライン部116bに亘って熱硬化層H2が形成されている。熱硬化層H2は、少なくとも最弱部となる平滑部116aにおいて焼入れ硬化比が0.3〜0.6となる(スプライン部116bの焼入れ硬化比は0.3以下でも構わない)。焼入れ深さをt2´とし、軸半径をR2´としたときに、焼入れ硬化比は、t2´/R2´となり、軸半径は、平滑部116aの小径(直径)の半径であり、R2´=D4´/2となる。このため、0.3≦t2´/R2´≦0.6となる。熱硬化層H2の表面の圧縮残留応力を500MPa以上とするのが好ましい。   Also in this case, the thermosetting layer H2 is formed on the stem shaft 116 from the smooth portion 116a to the spline portion 116b. The thermosetting layer H2 has a quench hardening ratio of 0.3 to 0.6 at least in the smooth part 116a which is the weakest part (the quench hardening ratio of the spline part 116b may be 0.3 or less). When the quenching depth is t2 ′ and the shaft radius is R2 ′, the quench hardening ratio is t2 ′ / R2 ′, and the shaft radius is the radius of the small diameter (diameter) of the smooth portion 116a, and R2 ′ = D4 ′ / 2. For this reason, 0.3 ≦ t2 ′ / R2 ′ ≦ 0.6. The compressive residual stress on the surface of the thermosetting layer H2 is preferably 500 MPa or more.

このように、図6〜図9に示す等速自在継手の外側継手部材も、図2及び図4等に示す外側継手部材と同様の炭素鋼からなり、しかも、熱硬化層Hの焼入れ硬化比が0.3〜0.6としている。このため、図2及び図4等に示す外側継手部材と同様の作用効果を奏することになる。   As described above, the outer joint member of the constant velocity universal joint shown in FIGS. 6 to 9 is also made of the same carbon steel as the outer joint member shown in FIGS. 2 and 4 and the quench hardening ratio of the thermosetting layer H. Is 0.3 to 0.6. For this reason, there exists an effect similar to the outer joint member shown in FIG.2 and FIG.4 etc. FIG.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、トルク伝達部材としてボールを用いたもの(固定式等速自在継手であっても、摺動式等速自在継手であっても)では、そのボールの数としては、6個や8個であってもよく、増減は任意である。クロスグローブ型等速自在継手として、フロートタイプ(ケージの最小内径よりも内側継手部材の最大外径を大きく設定し、内側継手部材とケージの干渉によって軸方向変位を規制するもの)であっても、ノンフロートタイプ(ケージの最小内径よりも内側継手部材の最大外径を小さく設定し、ボールとケージの干渉によって軸方向変位を規制するもの)であってもよい。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible, and a ball is used as a torque transmission member (a fixed constant velocity universal joint). Or even a sliding constant velocity universal joint), the number of balls may be 6 or 8, and the increase or decrease is arbitrary. As a cross-glove type constant velocity universal joint, even if it is a float type (the maximum outer diameter of the inner joint member is set larger than the minimum inner diameter of the cage and the axial displacement is regulated by interference between the inner joint member and the cage) The non-float type may be used (the maximum outer diameter of the inner joint member is set smaller than the minimum inner diameter of the cage and the axial displacement is regulated by the interference between the ball and the cage).

また、本発明に係る外側継手部材を備えた等速自在継手において、ドライブシャフトの固定式等速自在継手や摺動式等速自在継手に用いるのが好ましいが、ドライブシャフト以外のプロペラシャフトや、さらには、車両用以外の各種産業機械の動力伝達装置に利用できる。   Further, in the constant velocity universal joint provided with the outer joint member according to the present invention, it is preferably used for a fixed constant velocity universal joint of a drive shaft or a sliding constant velocity universal joint, but a propeller shaft other than the drive shaft, Furthermore, it can be used for power transmission devices of various industrial machines other than those for vehicles.

図2や図6に示す外側継手部材35,83において、熱硬化層H1が、カップ部70,89の底壁70a、89aからスプライン部(雄スプライン)71b、90aにわたって形成されているが、スプライン部71b、90aのみであってもよい。また、図4や図7に示す外側継手部材42、93において、熱硬化層H2が、平滑部76b、104bからスプライン部76c、104cのほぼ全長に至る範囲に設けられているが、スプライン部76c、104cのみであってもよい。   In the outer joint members 35 and 83 shown in FIGS. 2 and 6, the thermosetting layer H1 is formed from the bottom walls 70a and 89a of the cup portions 70 and 89 to the spline portions (male splines) 71b and 90a. Only the portions 71b and 90a may be provided. Further, in the outer joint members 42 and 93 shown in FIGS. 4 and 7, the thermosetting layer H2 is provided in a range extending from the smooth portions 76b and 104b to almost the entire length of the spline portions 76c and 104c, but the spline portion 76c. 104c only.

33 トラック溝
34 内径面
35 外側継手部材
41 トラック溝
42 外側継手部材
70,75 カップ部
71、76 ステム軸
71a 平滑部
71b スプライン部
76b 平滑部
76c スプライン部
33 Track groove 34 Inner diameter surface 35 Outer joint member 41 Track groove 42 Outer joint member 70, 75 Cup portion 71, 76 Stem shaft 71a Smooth portion 71b Spline portion 76b Smooth portion 76c Spline portion

Claims (5)

内径面にトラック溝が形成されたカップ部と、このカップ部の底壁から突出するステム軸とが同一材質で一体に成形されてなり、ステム軸には平滑部及びスプライン部が形成された等速自在継手の外側継手部材であって、
前記材質が、合金元素の含有率が重量%で、C:0.45〜0.60%、Si:0.4〜1.5%、Mn:0.4〜1.0%、S:0.025%以下、Al:0.01〜0.1%、B:0.001〜0.004%, Ti:0.02〜0.05%、およびN:0.008%以下、かつTi/N比3.4以上を基本成分とし、残部がFeおよび不可避的不純物からなる炭素鋼であり、この炭素鋼のフェライト結晶粒度番号が7以上であり、ステム軸の平滑部及びスプライン部のうち、少なくとも最弱となる部位において、焼入れ硬化比が0.3〜0.6となる熱硬化層を有することを特徴とする等速自在継手の外側継手部材。
A cup portion having a track groove formed on the inner diameter surface and a stem shaft protruding from the bottom wall of the cup portion are integrally formed of the same material, and a smooth portion and a spline portion are formed on the stem shaft. An outer joint member of a universal joint,
The material has an alloy element content of% by weight, C: 0.45-0.60%, Si: 0.4-1.5%, Mn: 0.4-1.0%, S: 0 0.025% or less, Al: 0.01 to 0.1%, B: 0.001 to 0.004%, Ti: 0.02 to 0.05%, and N: 0.008% or less, and Ti / Carbon steel having N ratio of 3.4 or more as a basic component, the balance being Fe and inevitable impurities, the ferrite crystal grain size number of this carbon steel being 7 or more, among the smooth part and spline part of the stem shaft, An outer joint member of a constant velocity universal joint having a thermosetting layer having a quench hardening ratio of 0.3 to 0.6 at least at the weakest part.
最弱となる部位が、ステム軸に設けられるスプライン部であることを特徴とする請求項1に記載の等速自在継手の外側継手部材。   The outer joint member of the constant velocity universal joint according to claim 1, wherein the weakest part is a spline portion provided on the stem shaft. 最弱となる部位が、ステム軸に設けられる平滑部であることを特徴とする請求項1に記載の等速自在継手の外側継手部材。   The outer joint member of the constant velocity universal joint according to claim 1, wherein the weakest portion is a smooth portion provided on the stem shaft. 前記熱硬化層の表面の圧縮残留応力を500MPa以上としたことを特徴とする請求項1〜請求項3のいずれか1項に記載の等速自在継手の外側継手部材。   The outer joint member of the constant velocity universal joint according to any one of claims 1 to 3, wherein the compressive residual stress on the surface of the thermosetting layer is 500 MPa or more. 前記請求項1〜請求項4のいずれか1項に記載の等速自在継手の外側継手部材を製造する外側継手部材製造方法であって、
ステム軸の平滑部及びスプライン部のうち、少なくとも最弱となる部位に高周波焼入れ・焼戻しを行って焼入れ部を形成した後、この焼入れ部にショットピーニングを施して、表面の圧縮残留応力を1000MPa以上となる熱硬化層を形成することを特徴とする外側継手部材製造方法。
An outer joint member manufacturing method for manufacturing an outer joint member of a constant velocity universal joint according to any one of claims 1 to 4,
After forming the quenching part by induction hardening and tempering at least the weakest part of the smooth part and the spline part of the stem shaft, this quenching part is subjected to shot peening, and the surface compressive residual stress is 1000 MPa or more. The outer joint member manufacturing method characterized by forming the thermosetting layer used as this.
JP2016181477A 2016-09-16 2016-09-16 Outer joint member of constant velocity universal joint and method of manufacturing outer joint member Expired - Fee Related JP6685871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016181477A JP6685871B2 (en) 2016-09-16 2016-09-16 Outer joint member of constant velocity universal joint and method of manufacturing outer joint member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181477A JP6685871B2 (en) 2016-09-16 2016-09-16 Outer joint member of constant velocity universal joint and method of manufacturing outer joint member

Publications (2)

Publication Number Publication Date
JP2018044225A true JP2018044225A (en) 2018-03-22
JP6685871B2 JP6685871B2 (en) 2020-04-22

Family

ID=61693602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181477A Expired - Fee Related JP6685871B2 (en) 2016-09-16 2016-09-16 Outer joint member of constant velocity universal joint and method of manufacturing outer joint member

Country Status (1)

Country Link
JP (1) JP6685871B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790379A (en) * 1993-09-24 1995-04-04 Kobe Steel Ltd Production of induction-hardened shaft part improved in twisting fatigue property
JP2000234141A (en) * 1999-02-10 2000-08-29 Ntn Corp Power transmission shaft
US20020017343A1 (en) * 1999-02-10 2002-02-14 Ntn Corporation Power transmission shaft
JP2004124190A (en) * 2002-10-03 2004-04-22 Jfe Steel Kk Induction-tempered steel having excellent twisting property
JP2011038185A (en) * 2010-11-05 2011-02-24 Nippon Steel Corp Steel material for high frequency induction contour hardening having excellent low cycle fatigue property and induction contour hardened component
US20110269555A1 (en) * 2009-01-19 2011-11-03 Hiroo Morimoto Outer member of constant speed universal joint
KR101685489B1 (en) * 2015-06-16 2016-12-12 현대자동차주식회사 The Alloy Steel Which Is Used as The High Tough Outer Wheel of Constant Velocity Joint And The Method of The Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790379A (en) * 1993-09-24 1995-04-04 Kobe Steel Ltd Production of induction-hardened shaft part improved in twisting fatigue property
JP2000234141A (en) * 1999-02-10 2000-08-29 Ntn Corp Power transmission shaft
US20020017343A1 (en) * 1999-02-10 2002-02-14 Ntn Corporation Power transmission shaft
JP2004124190A (en) * 2002-10-03 2004-04-22 Jfe Steel Kk Induction-tempered steel having excellent twisting property
US20110269555A1 (en) * 2009-01-19 2011-11-03 Hiroo Morimoto Outer member of constant speed universal joint
JP2011038185A (en) * 2010-11-05 2011-02-24 Nippon Steel Corp Steel material for high frequency induction contour hardening having excellent low cycle fatigue property and induction contour hardened component
KR101685489B1 (en) * 2015-06-16 2016-12-12 현대자동차주식회사 The Alloy Steel Which Is Used as The High Tough Outer Wheel of Constant Velocity Joint And The Method of The Same

Also Published As

Publication number Publication date
JP6685871B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
US4173501A (en) Steel torsional element and method for making
US6319337B1 (en) Power transmission shaft
US8435125B2 (en) Power transmission shaft, drive shaft, and propeller shaft
EP2881605B1 (en) Cage for constant-velocity universal joint, fixed type constant-velocity universal joint incorporating same, and drive shaft incorporating said fixed type constant-velocity universal joint
US8226489B2 (en) Constant velocity universal joint
CN102597547A (en) Hollow shaft and constant velocity universal joint
JP2006275171A (en) Stationary type constant velocity universal joint
JP6685871B2 (en) Outer joint member of constant velocity universal joint and method of manufacturing outer joint member
JP3949863B2 (en) Constant velocity universal joint
JP2007211926A (en) Inner member of constant velocity universal joint and its manufacturing method
JP2013217478A (en) Inner member of constant velocity universal joint, and method for producing same
JP3859382B2 (en) Power transmission shaft
JP2007224981A (en) Outward member for constant speed universal joint and its manufacturing method
JP3949864B2 (en) Constant velocity universal joint
JP5085465B2 (en) Tripod type constant velocity universal joint
JP2000213553A (en) Constant velocity universal joint
US6666931B2 (en) Rolling part and power transmission part
JP2009264535A (en) Fixed type constant velocity universal joint
JP5148384B2 (en) Constant velocity universal joint shaft and constant velocity universal joint
JP2008196013A (en) Power transfer shaft
JP2000220654A (en) Constant velocity universal joint
JP2002213477A (en) Tripod constant velocity universal joint
JPH0874874A (en) Outer ring of fixed type constant velocity ball joint
JP2008304006A (en) Fixed type constant velocity universal joint and its outer ring manufacturing method
RU2234428C1 (en) Ground vehicle propeller shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6685871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees