JP2008304006A - Fixed type constant velocity universal joint and its outer ring manufacturing method - Google Patents

Fixed type constant velocity universal joint and its outer ring manufacturing method Download PDF

Info

Publication number
JP2008304006A
JP2008304006A JP2007152807A JP2007152807A JP2008304006A JP 2008304006 A JP2008304006 A JP 2008304006A JP 2007152807 A JP2007152807 A JP 2007152807A JP 2007152807 A JP2007152807 A JP 2007152807A JP 2008304006 A JP2008304006 A JP 2008304006A
Authority
JP
Japan
Prior art keywords
outer ring
constant velocity
velocity universal
universal joint
type constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007152807A
Other languages
Japanese (ja)
Other versions
JP5467710B2 (en
Inventor
Tomoshige Kobayashi
智茂 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007152807A priority Critical patent/JP5467710B2/en
Priority to PCT/JP2008/059922 priority patent/WO2008149775A1/en
Priority to CN2008800184898A priority patent/CN101680490B/en
Priority to EP08776984.0A priority patent/EP2154389B1/en
Priority to US12/602,197 priority patent/US8172962B2/en
Publication of JP2008304006A publication Critical patent/JP2008304006A/en
Application granted granted Critical
Publication of JP5467710B2 publication Critical patent/JP5467710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed type constant velocity universal joint having further lighter weight and compacter figure while maintaining basic performance. <P>SOLUTION: The fixed type constant velocity universal joint comprises an outer ring 10 having ball grooves 16 formed in a spherical inner peripheral face 14 at circumferential equal spaces, extending in the axial direction, an inner ring 20 having ball grooves 26 formed in a spherical outer peripheral face 24 at circumferential equal spaces, extending in the axial direction, balls 30 laid between the ball groove 16 of the outer ring and the ball groove 26 of the inner ring, paired with each other, and a cage 40 having pockets 46 formed at circumferential predetermined spaces to store the balls 30. The outer ring 10 is manufactured by cold forging and subjected to tempering treatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は固定式等速自在継手およびその外輪の製造方法に関する。   The present invention relates to a fixed type constant velocity universal joint and a method for manufacturing the outer ring thereof.

自動車や各種産業機械の動力伝達装置に利用される等速自在継手は、固定式としゅう動式に大別することができる。しゅう動式等速自在継手が角度変位だけでなく軸方向変位(プランジング)も可能であるのに対して、固定式等速自在継手は角度変位のみ可能で、たとえば自動車のドライブシャフトの車輪側(アウトボード側)に使用される。   Constant velocity universal joints used for power transmission devices of automobiles and various industrial machines can be roughly classified into fixed types and sliding types. A sliding type constant velocity universal joint can be displaced not only in an angular displacement but also in an axial direction (plunging), whereas a fixed type constant velocity universal joint can only be angularly displaced, for example, on the wheel side of a drive shaft of an automobile. Used for (outboard side).

図2〜図4に示すように、固定式等速自在継手の主要な構成要素は外輪10と内輪20とボール30とケージ40であるが、継手全体の軽量・コンパクト化のために、各構成要素の小型・軽量化が提案されている。図2の固定式等速自在継手に対して軽量・コンパクト化した固定式等速自在継手を図3に示す。   As shown in FIGS. 2 to 4, the main components of the fixed type constant velocity universal joint are an outer ring 10, an inner ring 20, a ball 30, and a cage 40. Elements have been proposed to be smaller and lighter. FIG. 3 shows a fixed type constant velocity universal joint that is lighter and more compact than the fixed type constant velocity universal joint of FIG.

固定式等速自在継手の軽量・コンパクト化は自動車の燃費や駆動系レイアウトの自由度の向上に寄与する。したがって、固定式等速自在継手は、必要とされる性能を満たした上で、できるかぎり小さくすることが望ましい。従来、固定式等速自在継手の性能を維持した上で軽量化を図るために次のような提案がされている。
(1)疲労強度対策として特殊材料を使用する(特許文献1)。
(2)ショットピーニングを施して疲労強度を向上させる(特許文献2)。
(3)冷間鍛造前に調質処理を施して材料組織を均一化し、冷間端造後の寸法精度や熱処理のばらつきを改善する。調質処理の効果で、破断延性、降伏強度、靭性が改善される(特許文献3)。
特開2005−60724号公報 特開平4−104418号公報 特開平10−148216号公報
The lighter and more compact fixed type constant velocity universal joint contributes to improving the fuel efficiency of automobiles and the flexibility of drivetrain layout. Therefore, it is desirable to make the fixed type constant velocity universal joint as small as possible while satisfying the required performance. Conventionally, the following proposals have been made to reduce the weight while maintaining the performance of the fixed type constant velocity universal joint.
(1) A special material is used as a measure for fatigue strength (Patent Document 1).
(2) Perform shot peening to improve fatigue strength (Patent Document 2).
(3) A tempering treatment is performed before cold forging to make the material structure uniform, and dimensional accuracy after cold end fabrication and variations in heat treatment are improved. Due to the effect of the tempering treatment, fracture ductility, yield strength, and toughness are improved (Patent Document 3).
JP-A-2005-60724 JP-A-4-104418 JP-A-10-148216

固定式等速自在継手の外輪はコストの面から冷間鍛造により製造するのが一般的である。そして、外輪の材料としては、鍛造の容易性、切削性、熱処理、経済性、強度等々の面から、機械構造用の中炭素鋼が採用されることが多い。固定式等速自在継手の軽量・コンパクト化に伴い、外輪も薄肉となっている。そのため、外輪自体の機械的強度が素材である中炭素鋼の疲労限に近付きつつあり、一層のコンパクト化・軽量化を図ることは困難になってきている。   The outer ring of the fixed type constant velocity universal joint is generally manufactured by cold forging from the viewpoint of cost. As a material for the outer ring, medium carbon steel for machine structure is often adopted from the viewpoint of ease of forging, machinability, heat treatment, economy, strength, and the like. As the fixed constant velocity universal joint becomes lighter and more compact, the outer ring is also thinner. For this reason, the mechanical strength of the outer ring itself is approaching the fatigue limit of medium carbon steel, which is a material, and it has become difficult to further reduce the size and weight.

強度の改善手段として、上記の提案(1)では特殊材料を使用するため、製造工場がグローバルに展開している場合に調達が困難となる。また、材料に合金を添加しているため、材料コストが増加し、冷間鍛造の加工性や切削性が悪化し、金型寿命や工具寿命が低下し、製造コストが上昇する。   As a means for improving the strength, the above proposal (1) uses a special material, which makes it difficult to procure when manufacturing factories are developing globally. Moreover, since an alloy is added to the material, the material cost increases, the workability and cutting performance of cold forging deteriorate, the die life and tool life decrease, and the manufacturing cost increases.

提案(2)でも、ショットピーニング加工を追加することにより工程が増加し、製造コストが上昇する。疲労強度には有効であるが、破断延性は改善されないため、コンパクト化により肉厚が減少した場合には静的な破損強度は改善されない。   Even in the proposal (2), the process is increased by adding the shot peening process, and the manufacturing cost is increased. Although effective for fatigue strength, the fracture ductility is not improved, and therefore static failure strength is not improved when the thickness is reduced by compactification.

提案(3)では、亜熱間鍛造後の調質処理の硬さにより、冷間鍛造での金型寿命の低下や鍛造成形割れを起こす可能性が予想される。   In Proposal (3), it is expected that the die life in cold forging may be reduced and forging cracks may occur due to the hardness of the tempering treatment after sub-hot forging.

また、固定式等速自在継手は作動角をとった状態でトルクが入力されると、位相によってトラックに負荷される荷重が変化する。図5に6個ボールの場合の、位相角とトラック荷重の関係を示す。基本的にはボール個数が変わっても同様の傾向が認められ、作動角が大きくなるとトラックの荷重が大きくなる。したがって、大トルクが瞬時に入力されると、作動角が小さい場合は各トラックで比較的均等に荷重を受けるが、作動角が大きくなるとトラックによって荷重が大きく異なる。   Further, when torque is input to the fixed type constant velocity universal joint at an operating angle, the load applied to the track changes depending on the phase. FIG. 5 shows the relationship between the phase angle and the track load in the case of 6 balls. Basically, the same tendency is observed even if the number of balls changes, and the load on the track increases as the operating angle increases. Therefore, when a large torque is instantaneously input, a load is received relatively evenly on each track when the operating angle is small, but the load varies greatly depending on the track when the operating angle increases.

そして、大荷重を受けるトラックでは応力が集中するため、素材の引っ張り強度が改善されると強度は向上する。また、作動角が大きくトルクが長時間入力されて回転している場合には、各トラックは荷重を大きく受ける位相と受けない位相が発生し、その応力により外輪が絶えず変形を繰り返し、疲労破損の原因となる。   Since the stress concentrates on a track that receives a heavy load, the strength increases when the tensile strength of the material is improved. In addition, when the operating angle is large and the torque is input for a long time, each track has a phase that receives a large load and a phase that does not receive a load. Cause.

そこで、この発明の目的は、固定式等速自在継手の基本性能を維持した上で一層の軽量化・コンパクト化を可能にすることにある。   Accordingly, an object of the present invention is to enable further weight reduction and compactness while maintaining the basic performance of the fixed type constant velocity universal joint.

この発明の固定式等速自在継手は、球面状の内周面に軸方向に延びるボール溝を円周方向に等間隔に形成した外輪と、球面状の外周面に軸方向に延びるボール溝を円周方向に等間隔に形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に介在させたボールと、ボールを収容するためのポケットを円周方向に所定間隔で形成したケージとを有し、前記外輪が冷間鍛造により製造したものであって調質処理が施してあることを特徴とするものである(請求項1)。   The fixed type constant velocity universal joint of the present invention includes an outer ring in which ball grooves extending in the axial direction are formed on the spherical inner peripheral surface at equal intervals in the circumferential direction, and a ball groove extending in the axial direction on the spherical outer peripheral surface. An inner ring formed at equal intervals in the circumferential direction, a ball interposed between a ball groove of a pair of outer rings and a ball groove of the inner ring, and a pocket for accommodating the balls are formed at predetermined intervals in the circumferential direction. The outer ring is manufactured by cold forging and is tempered (Claim 1).

ここで、外輪のコア部とは、外輪の球面状内周面とボール溝とステム部に形成した表面硬化層(請求項5)を除いた部分を意味する。外輪の内周面はケージと球面接触するため、ボール溝はボールの転走面となるため、ステム部はセレーション(またはスプライン。以下、同じ。)嵌合する部分であるため、それぞれ、たとえば高周波焼入れ・焼戻しからなる熱処理を施すことにより表面硬化層を形成する。   Here, the core part of the outer ring means a part excluding the spherical inner peripheral surface of the outer ring, the ball groove, and the hardened surface layer formed on the stem part (Claim 5). Since the inner peripheral surface of the outer ring is in spherical contact with the cage, the ball groove is the rolling surface of the ball, and the stem portion is a portion that fits serrations (or splines, the same applies hereinafter). A surface hardened layer is formed by applying a heat treatment comprising quenching and tempering.

調質処理により、外輪のコア部の硬さはビッカース硬さHV320以上とするのが好ましい(請求項2)。
調質処理は一種の焼戻し(tempering)であって、冷間鍛造後、800〜900℃に加熱した後急冷し、450〜650℃に再加熱して所望の焼戻し組織を得る(請求項3)。具体的には、調質処理によって鉄の金属組織をソルバイトやトルースタイトにする場合、鉄の金属組織を一度マルテンサイトにしなければならないため、マルテンサイト変態が生じる800〜900℃に加熱する。そして、急冷後に焼戻しをしてソルバイト組織にするために、450〜650℃から空冷する。
なお、冷間鍛造前の調質では素材が硬くなり、鍛造金型寿命や成形割れの可能性があるのに対し、冷間鍛造後の調質処理では従来の冷間鍛造加工が可能となり、金型寿命を考慮した設備、金型の変更は不要となる。
It is preferable that the hardness of the core portion of the outer ring is set to Vickers hardness HV320 or more by the tempering treatment (Claim 2).
The tempering is a kind of tempering, and after cold forging, it is heated to 800 to 900 ° C. and then rapidly cooled, and reheated to 450 to 650 ° C. to obtain a desired tempered structure (Claim 3). . Specifically, when the iron metal structure is made sorbite or troostite by tempering treatment, the iron metal structure has to be martensite once, and therefore, the steel is heated to 800 to 900 ° C. where martensitic transformation occurs. And it cools from 450-650 degreeC in order to temper and to make a sorbite structure after rapid cooling.
In addition, the material becomes hard in the tempering before cold forging, and there is a possibility of forging die life and molding cracking, whereas in the tempering treatment after cold forging, the conventional cold forging process becomes possible, It is not necessary to change the equipment and mold in consideration of the mold life.

述べたような熱処理を施すことから、外輪の材料としては、炭素0.40〜0.60wt%を含有する中炭素鋼が好ましい(請求項4)。この炭素量の範囲は等速自在継手に一般的に用いられる機械構造用炭素鋼ではS48C〜S55Cに相当する。この範囲よりも炭素量が低い場合、硬度が必要な部位に十分な焼入れができず、逆にこの範囲よりも炭素量が高い場合、鍛造での成形性や加工性が悪くなり、コスト高や加工不良の発生につながりやすい。   Since the heat treatment as described above is performed, a medium carbon steel containing 0.40 to 0.60 wt% of carbon is preferable as the material of the outer ring. This carbon content range corresponds to S48C to S55C in carbon steel for machine structures generally used for constant velocity universal joints. If the amount of carbon is lower than this range, it is not possible to sufficiently quench the part that requires hardness, and conversely if the amount of carbon is higher than this range, the forging formability and workability deteriorate, and the cost increases. It tends to lead to processing defects.

この発明の固定式等速自在継手の外輪の製造方法は、鋼材から亜熱間鍛造または温間鍛造によりほぼ所定寸法に予備成形を行い、冷間鍛造により仕上げ成形をした後、調質処理を行うことを特徴とするものである(請求項6)。   The method of manufacturing the outer ring of the fixed type constant velocity universal joint of the present invention is to perform preforming from a steel material to a substantially predetermined dimension by sub-hot forging or warm forging, and after finish forming by cold forging, tempering treatment is performed. (Claim 6).

この発明によれば、調質処理を施した外輪のコア部は、炭化物が球状化されたトルースタイトまたはソルバイト組織となり、調質前素材のフェライト・パーライト組織と比較すると微細化され、硬度も上昇している。したがって、外輪の引っ張り強度が改善され、破損強度が向上する。また、繰り返し応力が入力された場合でも、コア部の強度の上昇と組織の微細化により、疲労強度が改善される。このように外輪の強度が改善される結果、外輪の肉厚を冷間鍛造外輪よりも減少させることが可能になり、従来の固定式等速自在継手に比べて、一層の軽量・コンパクト化が達成できる。   According to the present invention, the core portion of the outer ring subjected to the tempering treatment has a troustite or sorbite structure in which carbides are spheroidized, and is refined and increased in hardness compared to the ferrite pearlite structure of the material before tempering. is doing. Therefore, the tensile strength of the outer ring is improved and the breaking strength is improved. Even when repeated stress is input, the fatigue strength is improved by the increase in the strength of the core and the refinement of the structure. As a result of improving the strength of the outer ring in this way, it becomes possible to reduce the wall thickness of the outer ring compared to the cold forged outer ring, and it is possible to further reduce the weight and size compared to conventional fixed type constant velocity universal joints. Can be achieved.

以下、図面に従ってこの発明の実施の形態を説明する。
まず、固定式等速自在継手の基本的構成について述べる。図2〜図4に示すように、固定式等速自在継手は、外側継手部材としての外輪10と、内側継手部材としての内輪20と、トルク伝達要素としてのボール30と、ボールを保持するケージ40とを主要な構成要素としている。
Embodiments of the present invention will be described below with reference to the drawings.
First, the basic configuration of the fixed type constant velocity universal joint will be described. As shown in FIGS. 2 to 4, the fixed type constant velocity universal joint includes an outer ring 10 as an outer joint member, an inner ring 20 as an inner joint member, a ball 30 as a torque transmission element, and a cage for holding the ball. 40 is a main component.

外輪10はマウス部12とステム部18とからなり、ステム部18のスプライン(またはセレーション。以下、同じ)軸部で、連結すべき2軸のうちの一方とトルク伝達可能に接続するようになっている。ここではマウス部12はベル型で、球面状の内周面14を有し、その球面状内周面14の円周方向に等間隔に、軸方向に延びるボール溝16が形成してある。   The outer ring 10 includes a mouse portion 12 and a stem portion 18, and is connected to one of two shafts to be coupled by a spline (or serration, hereinafter the same) shaft portion of the stem portion 18 so that torque can be transmitted. ing. Here, the mouth portion 12 is bell-shaped and has a spherical inner peripheral surface 14, and ball grooves 16 extending in the axial direction are formed at equal intervals in the circumferential direction of the spherical inner peripheral surface 14.

内輪20は、軸心部分に形成したスプライン孔22で、連結すべき2軸のうちのもう一方とトルク伝達可能に接続するようになっている。内輪20は球面状の外周面24を有し、その球面状外周面24の円周方向に等間隔に、軸方向に延びるボール溝26が形成してある。   The inner ring 20 is connected to the other of the two shafts to be coupled by a spline hole 22 formed in the shaft center portion so as to be able to transmit torque. The inner ring 20 has a spherical outer peripheral surface 24, and ball grooves 26 extending in the axial direction are formed at equal intervals in the circumferential direction of the spherical outer peripheral surface 24.

外輪10のボール溝16と内輪20のボール溝26は対をなし、各対のボール溝16,26間に1個のボール30が組み込んである。すべてのボール30はケージ40により同一平面内に保持される。一般に6個または8個のボール30が使用されるが、ボールの数はここでは特に限定するものでない。   The ball groove 16 of the outer ring 10 and the ball groove 26 of the inner ring 20 form a pair, and one ball 30 is incorporated between each pair of ball grooves 16 and 26. All the balls 30 are held in the same plane by the cage 40. In general, six or eight balls 30 are used, but the number of balls is not particularly limited here.

ケージ40は外輪10の内周面14と内輪20の外周面24との間に介在させてある。そして、ケージ40の外周面42は外輪10の内周面14と球面接触し、ケージ40の内周面44は内輪20の外周面24と球面接触している。ケージ40は、ボール30を収容するためのポケット46が円周方向に所定間隔で形成してある。   The cage 40 is interposed between the inner peripheral surface 14 of the outer ring 10 and the outer peripheral surface 24 of the inner ring 20. The outer peripheral surface 42 of the cage 40 is in spherical contact with the inner peripheral surface 14 of the outer ring 10, and the inner peripheral surface 44 of the cage 40 is in spherical contact with the outer peripheral surface 24 of the inner ring 20. In the cage 40, pockets 46 for accommodating the balls 30 are formed at predetermined intervals in the circumferential direction.

外輪10のボール溝16の中心と、内輪20のボール溝26の中心は、継手中心から互いに反対方向に等距離だけ軸方向にオフセットさせてある。したがって、対をなす外輪10のボール溝16と内輪20のボール溝26とで形成されるボールトラックが、軸方向の一方から他方に向かって次第に狭くなったくさび形状を呈する。継手が作動角をとると、ボール30は2軸の二等分面内に保持され、ボール30の中心から各軸へ下ろした垂線の長さが相等しくなる。したがって、2軸は常に等角速度で回転する。   The center of the ball groove 16 of the outer ring 10 and the center of the ball groove 26 of the inner ring 20 are offset in the axial direction by equal distances from the joint center in opposite directions. Therefore, the ball track formed by the ball groove 16 of the outer ring 10 and the ball groove 26 of the inner ring 20 that form a pair has a wedge shape that becomes gradually narrower from one to the other in the axial direction. When the joint takes an operating angle, the ball 30 is held in the biaxial bisector, and the lengths of the perpendiculars extending from the center of the ball 30 to the respective axes become equal. Therefore, the two axes always rotate at an equiangular speed.

外輪10の材料としては、炭素0.40〜0.60wt%を含有する中炭素鋼を採用し、外輪10の製造方法としては冷間鍛造を採用する。そして、球面状の内周面14、ボール溝16、そしてステム部18には、通常の高周波焼入れ・焼戻しからなる高周波熱処理により表面硬化層を形成させる。内周面14はケージ40との球面嵌合部となり、ボール溝16はボール30の転走面となり、ステム部18はハブ輪とのスプライン嵌合部となるため、それぞれ高周波熱処理を施してマルテンサイトを主な組織とし、ボール転走面の転動耐久性、ケージ嵌合部の擦れに対する耐久性、スプライン嵌合の強度・耐久性およびステム強度を確保する。   As the material of the outer ring 10, medium carbon steel containing 0.40 to 0.60 wt% of carbon is adopted, and as a method for manufacturing the outer ring 10, cold forging is adopted. Then, a hardened surface layer is formed on the spherical inner peripheral surface 14, the ball groove 16, and the stem portion 18 by an induction heat treatment including normal induction hardening and tempering. The inner peripheral surface 14 becomes a spherical fitting portion with the cage 40, the ball groove 16 becomes a rolling surface of the ball 30, and the stem portion 18 becomes a spline fitting portion with the hub wheel. The site is the main organization, ensuring the rolling durability of the ball rolling surface, the durability against scuffing of the cage fitting, the strength and durability of the spline fitting, and the stem strength.

上述の高周波熱処理の前に、次に述べる調質処理を施すのであるが、表面硬化層が形成されていない部分をコア部と呼ぶこととする。図1は外輪10を一部破断面にしたもので、狭幅の平行斜線が表面硬化層を、広幅の平行斜線がコア部を示している。   Prior to the above-described high-frequency heat treatment, the following tempering treatment is performed, and the portion where the surface hardened layer is not formed is referred to as a core portion. FIG. 1 is a partially broken cross section of the outer ring 10. A narrow parallel oblique line indicates a hardened surface layer, and a wide parallel oblique line indicates a core part.

なお、冷間鍛造の場合、通常は鍛造仕上げのままとするところ、加工精度が必要な場合にはさらに旋削を行うことがある。調質処理はこの旋削加工の前に行ってもよく、あるいは、加工の容易性を考慮して旋削加工の後に調質処理を行ってもよい。   In the case of cold forging, the forging finish is usually left, but turning may be further performed if machining accuracy is required. The tempering process may be performed before the turning process, or the tempering process may be performed after the turning process in consideration of ease of processing.

調質処理により、外輪10の組織を、フェライトが混ざった一般的な組織からトルースタイトまたはソルバイト組織に変化させる、組織を微細化させ、硬度を上げる。具体的には、冷間鍛造により製造した外輪の硬度はビッカース硬さHV270〜340程度であるが、調質処理を施すことにより硬度をHV320以上とする。   By the tempering treatment, the structure of the outer ring 10 is changed from a general structure mixed with ferrite to a troostite or sorbite structure, the structure is refined and the hardness is increased. Specifically, the hardness of the outer ring manufactured by cold forging is about Vickers hardness HV270 to 340, but the hardness is set to HV320 or more by applying a tempering treatment.

調質処理は一種の焼戻し(tempering)であって、800〜900℃に加熱した後急冷し(焼入れ)、450〜650℃に再加熱(焼戻し)して所望の焼戻し組織を得る。
調質処理の具体例を挙げるならば次のとおりである。
焼入れは、バッチ型焼入れ炉で、焼入れ温度850℃で約1.5時間保持した後、冷却液(例:コスモクェンチA212)を用いて急冷する。炉内雰囲気はCP(カーボンポテンシャル)0.5%とする。
焼戻しは、焼戻し炉で、焼戻し温度500〜550℃で約2時間保持した後、空冷する。
The tempering process is a kind of tempering, which is heated to 800 to 900 ° C., then rapidly cooled (quenched), and reheated to 450 to 650 ° C. (tempered) to obtain a desired tempered structure.
A specific example of the tempering process is as follows.
Quenching is performed in a batch-type quenching furnace at a quenching temperature of 850 ° C. for about 1.5 hours, and then rapidly cooled using a cooling liquid (eg, Cosmo Quench A212). The furnace atmosphere is CP (carbon potential) 0.5%.
Tempering is carried out in a tempering furnace at a tempering temperature of 500 to 550 ° C. for about 2 hours and then air-cooled.

調質処理を施した外輪10の組織はトルースタイトまたはソルバイトになって微細化され、さらに硬度も高まるため、外輪10の引っ張り強度が改善され、破損強度が向上する。また、繰り返し応力に対しても、強度の向上と組織の微細化により疲労強度が改善される。   The structure of the tempered outer ring 10 becomes troostite or sorbite and is refined, and the hardness is further increased, so that the tensile strength of the outer ring 10 is improved and the breakage strength is improved. In addition, the fatigue strength can be improved by increasing the strength and refining the structure against repeated stress.

調質処理を終えた外輪10に高周波熱処理を施す。すなわち、既に述べたように、ケージ40と接触する内周面14、ボール30と接触するボール溝16、そしてステム部18に、局部的に高周波焼入れを施してマルテンサイト組織からなる表面硬化層を形成させる。   The outer ring 10 that has been subjected to the tempering treatment is subjected to high-frequency heat treatment. That is, as already described, the inner peripheral surface 14 in contact with the cage 40, the ball groove 16 in contact with the ball 30, and the stem portion 18 are subjected to induction hardening locally to form a surface hardened layer made of a martensite structure. Let it form.

なお、アンダーカットフリー型等速自在継手(UJ)の場合を例にとって説明したが、この発明はバーフィールド型(BJ)等の他の等速自在継手にも適用することができる。   The undercut-free type constant velocity universal joint (UJ) has been described as an example, but the present invention can also be applied to other constant velocity universal joints such as a barfield type (BJ).

固定式等速自在継手の外輪の一部破断正面図である。It is a partially broken front view of the outer ring of a fixed type constant velocity universal joint. 一般的な固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of a general fixed type constant velocity universal joint. コンパクト化した固定式等速自在継手の縦断面図である。It is a longitudinal section of a fixed type constant velocity universal joint made compact. 固定式等速自在継手の端面図である。It is an end view of a fixed type constant velocity universal joint. 位相角とトラック荷重の関係を示す線図である。It is a diagram which shows the relationship between a phase angle and a track load.

符号の説明Explanation of symbols

10 外輪(外側継手部材)
12 マウス部
14 内周面
16 ボール溝
18 ステム部
20 内輪(内側継手部材)
22 スプライン孔
24 外周面
26 ボール溝
30 ボール(トルク伝達要素)
40 ケージ
42 外周面
44 内周面
46 ポケット
10 Outer ring (outer joint member)
12 Mouse part 14 Inner peripheral surface 16 Ball groove 18 Stem part 20 Inner ring (inner joint member)
22 spline hole 24 outer peripheral surface 26 ball groove 30 ball (torque transmission element)
40 Cage 42 Outer peripheral surface 44 Inner peripheral surface 46 Pocket

Claims (6)

球面状の内周面に軸方向に延びるボール溝を円周方向に等間隔に形成した外輪と、
球面状の外周面に軸方向に延びるボール溝を円周方向に等間隔に形成した内輪と、
対をなす外輪のボール溝と内輪のボール溝との間に介在させたボールと、
ボールを収容するためのポケットを円周方向に所定間隔で形成したケージと
を有し、前記外輪は冷間鍛造により製造したものであって調質処理が施してある固定式等速自在継手。
An outer ring in which ball grooves extending in the axial direction are formed at equal intervals in the circumferential direction on a spherical inner peripheral surface;
An inner ring in which ball grooves extending in the axial direction are formed at equal intervals in the circumferential direction on a spherical outer peripheral surface;
A ball interposed between the ball groove of the outer ring and the ball groove of the inner ring,
A fixed type constant velocity universal joint having a cage for accommodating balls to be formed at predetermined intervals in the circumferential direction, wherein the outer ring is manufactured by cold forging and is subjected to a tempering treatment.
前記外輪のコア部の硬さがHV320以上である請求項1の固定式等速自在継手。   The fixed constant velocity universal joint according to claim 1, wherein the hardness of the core portion of the outer ring is HV320 or more. 前記調質処理は、焼入れ温度800〜900℃、焼戻し温度450〜650℃で行う請求項1または2の固定式等速自在継手。   The fixed constant velocity universal joint according to claim 1 or 2, wherein the tempering treatment is performed at a quenching temperature of 800 to 900 ° C and a tempering temperature of 450 to 650 ° C. 前記外輪は、炭素0.40〜0.60wt%を含有する中炭素鋼からなる請求項1から3のいずれか1項の固定式等速自在継手。   The fixed outer constant velocity universal joint according to any one of claims 1 to 3, wherein the outer ring is made of medium carbon steel containing 0.40 to 0.60 wt% of carbon. 前記外輪の前記内周面および前記ボール溝ならびにステム部に局部的な表面硬化層を形成させた請求項4の固定式等速自在継手。   The fixed type constant velocity universal joint according to claim 4, wherein a locally hardened layer is formed on the inner peripheral surface of the outer ring, the ball groove, and the stem portion. 請求項1の固定式等速自在継手における外輪を製造するに当たり、鋼材から亜熱間鍛造または温間鍛造によりほぼ所定寸法に予備成形を行い、冷間鍛造により仕上げ成形をした後、調質処理を行う、固定式等速自在継手の外輪の製造方法。   In manufacturing the outer ring of the fixed type constant velocity universal joint according to claim 1, after pre-forming from steel material to approximately a predetermined size by sub-hot forging or warm forging, and after finish forming by cold forging, tempering treatment A method for manufacturing an outer ring of a fixed type constant velocity universal joint.
JP2007152807A 2007-06-04 2007-06-08 Method for manufacturing fixed type constant velocity universal joint and outer ring thereof Active JP5467710B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007152807A JP5467710B2 (en) 2007-06-08 2007-06-08 Method for manufacturing fixed type constant velocity universal joint and outer ring thereof
PCT/JP2008/059922 WO2008149775A1 (en) 2007-06-04 2008-05-29 Fixed constant velocity universal joint and method of producing outer ring of the joint
CN2008800184898A CN101680490B (en) 2007-06-04 2008-05-29 Fixed constant velocity universal joint and method of producing outer ring of joint
EP08776984.0A EP2154389B1 (en) 2007-06-04 2008-05-29 Fixed constant velocity universal joint and method of producing outer ring of the joint
US12/602,197 US8172962B2 (en) 2007-06-04 2008-05-29 Fixed constant velocity universal joint and method for manufacturing outer race thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152807A JP5467710B2 (en) 2007-06-08 2007-06-08 Method for manufacturing fixed type constant velocity universal joint and outer ring thereof

Publications (2)

Publication Number Publication Date
JP2008304006A true JP2008304006A (en) 2008-12-18
JP5467710B2 JP5467710B2 (en) 2014-04-09

Family

ID=40232901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152807A Active JP5467710B2 (en) 2007-06-04 2007-06-08 Method for manufacturing fixed type constant velocity universal joint and outer ring thereof

Country Status (1)

Country Link
JP (1) JP5467710B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200200224A1 (en) * 2018-12-25 2020-06-25 Jtekt Corporation Method of manufacturing constituent member of constant-velocity joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280262A (en) * 1995-10-17 1997-10-28 Ntn Corp Outer ring for high strength uniform coupling and its manufacture
JP2002317823A (en) * 2001-04-20 2002-10-31 Metalart Corp Manufacturing method for outer ring for cross groove joint
JP2007107695A (en) * 2005-10-17 2007-04-26 Ntn Corp Outer member of tripod-type constant velocity universal joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280262A (en) * 1995-10-17 1997-10-28 Ntn Corp Outer ring for high strength uniform coupling and its manufacture
JP2002317823A (en) * 2001-04-20 2002-10-31 Metalart Corp Manufacturing method for outer ring for cross groove joint
JP2007107695A (en) * 2005-10-17 2007-04-26 Ntn Corp Outer member of tripod-type constant velocity universal joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200200224A1 (en) * 2018-12-25 2020-06-25 Jtekt Corporation Method of manufacturing constituent member of constant-velocity joint
US11859676B2 (en) * 2018-12-25 2024-01-02 Jtekt Corporation Method of manufacturing constituent member of constant-velocity joint

Also Published As

Publication number Publication date
JP5467710B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5718003B2 (en) Outer joint member of constant velocity universal joint and friction welding method thereof
JP5231266B2 (en) Outer member of constant velocity universal joint
JP4731945B2 (en) Constant velocity universal joint, cage for constant velocity universal joint, and manufacturing method thereof
CN106312479A (en) Internal spline sleeve machining technology
EP2881605B1 (en) Cage for constant-velocity universal joint, fixed type constant-velocity universal joint incorporating same, and drive shaft incorporating said fixed type constant-velocity universal joint
EP2154389B1 (en) Fixed constant velocity universal joint and method of producing outer ring of the joint
US8226489B2 (en) Constant velocity universal joint
JP2007255461A (en) Constant velocity universal joint
JP5398965B2 (en) Fixed constant velocity universal joint
JP5467710B2 (en) Method for manufacturing fixed type constant velocity universal joint and outer ring thereof
JP5917249B2 (en) Inner member of constant velocity universal joint and manufacturing method thereof
EP2749783B1 (en) Constant velocity universal joint and method for producing same
JP2010043691A (en) Constant velocity universal joint and method for manufacturing the same
JP2009275878A (en) Spline shaft, power transmission shaft, and outer ring of constant velocity universal joint
JP2009191901A (en) Cage of constant speed universal joint, propeller shaft assembly, and drive shaft assembly
JP2018200109A (en) Tripod-type constant velocity universal joint
WO2016076051A1 (en) Tripod-type constant velocity universal joint and manufacturing method for tripod member thereof
WO2020195487A1 (en) Tripod-type constant-velocity universal joint
JP4855369B2 (en) Outer joint member for constant velocity universal joint and fixed constant velocity universal joint
JP2020159546A (en) Tripod type constant velocity universal joint
JP2011208674A (en) Constant velocity universal joint
WO2007125844A1 (en) Constant velocity universal joint
JP2009052656A (en) Outer coupling member of constant velocity universal joint and manufacturing method of the same
JP2010025317A (en) Constant velocity universal joint

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R150 Certificate of patent or registration of utility model

Ref document number: 5467710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250