JP2000204432A - Power transmission shaft - Google Patents

Power transmission shaft

Info

Publication number
JP2000204432A
JP2000204432A JP11005574A JP557499A JP2000204432A JP 2000204432 A JP2000204432 A JP 2000204432A JP 11005574 A JP11005574 A JP 11005574A JP 557499 A JP557499 A JP 557499A JP 2000204432 A JP2000204432 A JP 2000204432A
Authority
JP
Japan
Prior art keywords
power transmission
transmission shaft
graphite
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11005574A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yoshida
和彦 吉田
Akira Wakita
明 脇田
Hiroaki Makino
弘昭 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP11005574A priority Critical patent/JP2000204432A/en
Priority to US09/468,328 priority patent/US6390924B1/en
Priority to FR0000216A priority patent/FR2788821B1/en
Priority to FR0008723A priority patent/FR2796685B1/en
Publication of JP2000204432A publication Critical patent/JP2000204432A/en
Priority to FR0103585A priority patent/FR2808311B1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22303Details of ball cages

Abstract

PROBLEM TO BE SOLVED: To provide a power transmission shaft excellent in workability such as forgeability and machinability and having high strength. SOLUTION: In a power transmission shaft using a constant velocity universal joint, graphite steel is subjected to induction hardening to harden the surface layer, and moreover, in the core part, a two phase structure of ferrite and martensite is formed. The graphite steel has a compsn. contg., as fundamental components, 0.35 to 0.70% C, 0.4 to 2.0% Si, 0.3 to 1.5% Mn, <=0.025% S, <=0.02% P, 0.01 to 0.1% Al, 0.001 to 0.004% B and 0.002 to 0.008% N, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車や産業機械
などにおいて等速自在継手を介してトルク伝達を行う動
力伝達軸に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission shaft for transmitting torque through a constant velocity universal joint in an automobile, an industrial machine, or the like.

【0002】[0002]

【従来の技術】動力伝達軸、例えば自動車の駆動軸で
は、素材として通常炭素鋼もしくは浸炭鋼が用いられ、
さらに熱処理による表面硬化と有効硬化層深さとを適宜
選択して所定の強度が確保されている。
2. Description of the Related Art In a power transmission shaft, for example, a drive shaft of an automobile, carbon steel or carburized steel is usually used as a material,
Further, a predetermined strength is secured by appropriately selecting the surface hardening by the heat treatment and the effective hardened layer depth.

【0003】近年では自動車の高出力化、あるいは安全
性指向による車両重量の増加等に対応して駆動軸のさら
なる高強度化が望まれている。また、燃費向上の観点か
ら駆動軸の軽量化要求が顕在化しており、これを達成す
る上でも駆動軸の高強度化が急務である。
In recent years, it has been desired to further increase the strength of a drive shaft in response to an increase in the output of an automobile or an increase in the weight of a vehicle due to safety. In addition, a demand for a lighter drive shaft has become apparent from the viewpoint of improving fuel efficiency, and in order to achieve this, it is urgently necessary to increase the strength of the drive shaft.

【0004】[0004]

【発明が解決しようとする課題】軸の負荷容量向上のた
めには、素材の炭素濃度を高めるなどして素材強度を向
上させるか、有効硬化層深さを深くする方法が一般的で
ある。しかしながら、前者の場合、切欠き等のある部品
では強度が低下し、また、素材硬さの増大による鍛造性
や被削性などの機械加工性の低下につながる。一方、後
者の場合、浸炭材では硬化層深さの選択範囲が非常に狭
くなる。また、炭素鋼では軸径が太くなるに従って深焼
入れが困難となり、有効硬化層深さ/軸半径比(以下、
γで表わす)=0.4を超える深焼入れは、焼割れ発生
等の懸念があり、かなり難しい。近年では、深焼きを可
能にするためにホウ素Bを添加した炭素鋼が使用されて
いるが、有効硬化層深さを増加させても、静的強度はγ
>0.65、捩り疲労強度はγ>0.5で飽和する傾向
にあるため(特開平5−320825号)、15%程度
の強度向上が達成されているにすぎない。また、B添加
材では、TiNなどの硬い窒素化合物が形成されるた
め、切削加工性の低下を招くおそれがある。
In order to improve the load capacity of the shaft, it is common to increase the carbon strength of the material to improve the material strength or to increase the effective hardened layer depth. However, in the former case, the strength of a part having a notch or the like is reduced, and the machinability such as forgeability and machinability is reduced due to an increase in hardness of the material. On the other hand, in the latter case, the selection range of the depth of the hardened layer is extremely narrow in the case of the carburized material. In carbon steel, deep quenching becomes more difficult as the shaft diameter increases, and the effective hardened layer depth / shaft radius ratio (hereinafter, referred to as
Deep quenching exceeding 0.4) is considerably difficult due to concerns such as the occurrence of quenching cracks. In recent years, carbon steel added with boron B has been used to enable deep baking, but even if the effective hardened layer depth is increased, the static strength is γ.
> 0.65, and the torsional fatigue strength tends to saturate when γ> 0.5 (JP-A-5-320825), so that only about 15% strength improvement is achieved. In addition, in the case of the B additive, a hard nitrogen compound such as TiN is formed, which may cause a decrease in machinability.

【0005】 そこで、本発明は、鍛造性や被削性などの
加工性に優れ、かつ高強度の動力伝達軸の提供を目的と
する。
[0005] Therefore, the present invention provides a method for improving forgeability and machinability.
To provide a power transmission shaft with excellent workability and high strength
I do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、等速自在継手を使用した動力伝達軸に
おいて、黒鉛鋼を高周波焼入れして表層を硬化させると
共に、芯部にフェライトとマルテンサイトの2相組織を
生成させた。黒鉛鋼は炭素鋼中のセメンタイトを黒鉛化
焼鈍により黒鉛化したもので、快削元素である黒鉛を含
むために被削性に優れ、また、軟らかいために冷間、温
間鍛造性に優れるという特徴を有する。従って、高強度
化のために高炭素化した場合でも、良好な機械加工性を
確保することができる。
In order to achieve the above object, according to the present invention, in a power transmission shaft using a constant velocity universal joint, graphite steel is induction hardened to harden a surface layer, and ferrite is added to a core portion. A two phase structure of martensite was formed. Graphite steel is graphitized from cementite in carbon steel by graphitizing annealing.It contains graphite, a free-cutting element, and has excellent machinability, and because it is soft, it has excellent cold and warm forgeability. Has features. Therefore, good machinability can be ensured even when carbon is increased for higher strength.

【0007】 従来の動力伝達軸の多くは、炭素鋼に高周
波焼入れ処理して製作されているが、焼割れ防止等の観
点から芯部には熱影響を与えないものが多い。また、芯
部まで熱影響を与えたものも、芯部のほとんど全てがマ
ルテンサイト化しているため、表面の残留圧縮応力が消
失している。これに対し、本発明では、高周波焼入れに
より、表層を硬化させるだけでなく、さらに熱影響を芯
部にまで及ぼし、黒鉛をフェライトに固溶させて芯部を
フェライトとマルテンサイトの2相組織にしているの
で、表面に残留圧縮応力が残り、従って、高強度化、高
疲労強度化が達成される。熱影響を芯部まで及ぼすため
には、複数回(例えば2回)の高周波焼入れを行うのが
よい。
[0007] Many conventional power transmission shafts use carbon steel
It is manufactured by wave quenching.
From the point of view, there are many things which do not give a heat influence to a core part. Also wick
Almost all of the core, even those that have affected the heat
Rutensite reduces residual compressive stress on the surface
Have lost. In contrast, in the present invention, induction hardening is used.
Not only hardens the surface layer, but also
Part of the core, and dissolve graphite in ferrite to form a core.
It has a two phase structure of ferrite and martensite
The residual compressive stress remains on the surface, thus increasing the strength and
Fatigue strength is achieved. To apply heat effects to the core
Is to perform induction hardening multiple times (for example, twice)
Good.

【0008】 上記黒鉛鋼としては、重量%で、C:0.
35〜0.70%、Si:0.4〜2.0%、Mn:
0.3〜1.5%、S:0.025%以下、P:0.0
2%以下、Al:0.01〜0.1%、B:0.001
〜0.004%、N:0.002〜0.008%を基本
成分とし、残部がFeおよび不可避的不純物からなるも
のを使用する。
[0008] As the above graphite steel, C: 0.
35 to 0.70%, Si: 0.4 to 2.0%, Mn:
0.3-1.5%, S: 0.025% or less, P: 0.0
2% or less, Al: 0.01 to 0.1%, B: 0.001
~ 0.004%, N: 0.002-0.008%
Component, the balance being Fe and unavoidable impurities
Use of

【0009】 上記各元素のうち、Cは黒鉛を生成するた
めに不可欠の元素である。これが0.35%より小さい
と高周波焼入れ後の表面硬さが低すぎて十分な強度が得
られず、0.70%より大きいと、芯部にセメンタイト
が析出し、芯部が硬く(脆く)なって強度が低下する。
[0009] Of the above elements, C produces graphite.
Element indispensable for This is less than 0.35%
And the surface hardness after induction hardening is too low to obtain sufficient strength
If not greater than 0.70%, cementite is present in the core
Precipitates, the core becomes hard (brittle) and the strength decreases.

【0010】 Siは、製鋼段階での脱酸剤、黒鉛化促進
剤として、さらには粒界強化のために添加される。これ
が0.4%より小さいと、炭化物が黒鉛化しにくくなる
と共に、粒界強化の効果が減じられ、2.0%より大き
いと冷間加工性(鍛造性、旋削性)が著しく低下する。
[0010] Si is a deoxidizer at the steel making stage and promotes graphitization
It is added as an agent and for strengthening the grain boundaries. this
Is less than 0.4%, it is difficult for the carbide to be graphitized.
At the same time, the effect of strengthening the grain boundaries is reduced, and is greater than 2.0%.
In this case, the cold workability (forgeability, turning property) is significantly reduced.

【0011】 Mnは、鋼中硫黄をMnSとして固定・分
散させるために必要であり、これが、0.3%より小さ
いと、焼入れ性が低下し(焼入れ深さが得られない)、
1.5%より大きいと黒鉛化を著しく阻害して冷間加工
性を低下させる。
[0011] Mn fixes and separates sulfur in steel as MnS.
Required to disperse, this is less than 0.3%
If this is the case, the hardenability will decrease (hardening depth cannot be obtained),
If it is more than 1.5%, it significantly inhibits graphitization and cold work
Reduce the quality.

【0012】 Sは、Mnと結合してMnS介在物として
存在するが、冷間加工時の割れ発生の起点となるので
0.025%よりも小さくする。また、Pは、鋼中にお
いて粒界に析出して粒界を脆化させ、強度を低下させた
り焼割れ感受性を増大させたりするので0.02%以下
とする。
[0012] S combines with Mn to form MnS inclusions
Although it is present, it becomes the starting point of crack generation during cold working
Make it smaller than 0.025%. In addition, P
Precipitates at the grain boundaries, embrittles the grain boundaries and reduces the strength
0.02% or less, because it increases the susceptibility to burning cracking
And

【0013】 Alは脱酸剤で、製鋼段階で鋼中酸素を酸
化物介在物として除去し、粒径を小さくするために0.
01%よりも大きくするが、酸化物介在物が多すぎると
靭性が低下し、冷間加工時の割れ発生起点となるので、
0.10%以下とする。
[0013] Al is a deoxidizing agent that oxidizes oxygen in steel during steelmaking.
In order to reduce the particle size by removing them as oxide inclusions.
Greater than 01%, but too much oxide inclusions
Since the toughness decreases and becomes the starting point of cracking during cold working,
0.10% or less.

【0014】 BとNは、BNの生成により黒鉛化焼鈍時
間を短縮させるために添加される。短縮効果を十分に得
るためには、0.001%よりも大きいBを添加しなけ
ればならないが、0.004%を越えて添加しても焼鈍
時間短縮効果は飽和する。Nは0.001%〜0.00
4%のBをBNとするために、0.002%以上で0.
008%以下とした。
[0014] B and N are formed during graphitizing annealing due to the formation of BN.
It is added to shorten the interval. Get enough shortening effect
To do this, B must be added in an amount greater than 0.001%.
Must be added, but if added over 0.004%, annealing
The time reduction effect saturates. N is 0.001% to 0.00
In order to convert 4% of B into BN, 0.002% or more of 0.1%.
008% or less.

【0015】 上記黒鉛鋼には、Ni:0.3〜1.0重
量%、Mo:0.2重量%以上を一種または二種(何れ
か一方または双方)添加する。Niを添加すると、フェ
ライトの延性が増すために冷間加工性や強度が向上す
る。これが0.3%より小さいと冷間加工性や強度の向
上に不十分であり、1.0%よりも大きいと旋削性が著
しく低下する。Moを添加すると、靭性を向上させるこ
とができるが、0.2%より多く添加すると黒鉛化を低
下させる。
[0015] Ni: 0.3 to 1.0 weight of the graphite steel
%, Mo: 0.2% by weight or more of one or two
Or both). When Ni is added,
Increased cold workability and strength due to increased ductility of light
You. If this is less than 0.3%, the cold workability and strength tend to increase.
On the other hand, if it is larger than 1.0%, the turning property is remarkable.
Lowers. The addition of Mo can improve toughness.
However, adding more than 0.2% reduces graphitization.
Let it down.

【0016】 表面の硬さ(ビッカース硬さ)の最大値と
最小値の差が200Hv以下であれば強度バランスを保
ち、強度低下を防止することができる。この範囲の強度
バラツキは、黒鉛の粒径が15μm以下の黒鉛鋼を使用
することによって実現することができる。黒鉛粒径が1
5μmよりも大きいと、焼入れ後に生じる、黒鉛の溶け
込みによるボイド(空孔)が大きくなり、また、焼ムラ
が生じて表面硬さが大きくばらつき、強度低下を招く。
[0016] Maximum surface hardness (Vickers hardness)
If the difference between the minimum values is 200 Hv or less, maintain the intensity balance.
That is, a decrease in strength can be prevented. Strength in this range
Variations use graphite steel with a graphite particle size of 15 μm or less
This can be achieved by doing Graphite particle size is 1
If it is larger than 5 μm, graphite melts after quenching.
Voids (voids) due to the
Occurs, and the surface hardness varies greatly, leading to a decrease in strength.

【0017】 上記動力伝達軸においては、芯部の硬さ
(ロックウェル硬さ)を25〜45HRCとする。25
よりも小さいと、マルテンサイトが少ないために強度向
上効果が不十分となり、45よりも大きいとフルマルテ
ンサイトが多くなり、軸の切欠き部(例えばセレーショ
ン部)に焼割れが生じ易くなる。
[0017] In the above power transmission shaft, the hardness of the core is
(Rockwell hardness) is 25 to 45 HRC. 25
If it is smaller than the above, strength is reduced due to less martensite.
The effect is insufficient.
The shaft notch (for example, serration)
Portion) tends to be cracked.

【0018】表面の圧縮残留応力を60kgf/mm2
以上とすれば、疲労強度の向上が達成される。一般に黒
鉛鋼を高周波焼入れする場合、黒鉛部分がγ化時に固溶
しにくいため、焼入れ性が低く、そのため高炭素鋼と同
様に水焼入れを行っても焼割れ等が生じにくい。水焼き
であれば、60kgf/mm2 程度の高い表面圧縮残留
応力を実現することができる。
The compressive residual stress on the surface is 60 kgf / mm 2
With the above, improvement in fatigue strength is achieved. In general, when induction hardening is performed on graphite steel, the graphite portion hardly forms a solid solution at the time of gamma conversion, so that the hardenability is low. Therefore, hardening cracks and the like are unlikely to occur even when water quenching is performed similarly to high carbon steel. With water firing, a high surface compressive residual stress of about 60 kgf / mm 2 can be realized.

【0019】高周波焼入れ後のショットピーニングによ
り表面の圧縮残留応力を90kgf/mm2 以上とすれ
ば、さらなる疲労強度の向上が図れる。これを実現する
ためには、ショットピーニングを2回行うのが望まし
い。
If the compressive residual stress on the surface is made to be 90 kgf / mm 2 or more by shot peening after induction hardening, the fatigue strength can be further improved. In order to realize this, it is desirable to perform shot peening twice.

【0020】[0020]

【発明の実施の形態】図1は自動車のプロペラシャフト
やドライブシャフトとして使用される等速自在継手用圧
接スタブ1を示す。このスタブ1は黒鉛鋼で形成され、
一端部にトルク伝達用の歯部2(セレーション等)を有
する。この歯部2に等速自在継手が固定される。他端に
は鋼管を圧接固定するためのフランジ部3が設けられて
いる。
FIG. 1 shows a pressure welding stub 1 for a constant velocity universal joint used as a propeller shaft or a drive shaft of an automobile. This stub 1 is formed of graphite steel,
One end has a tooth portion 2 (for example, serration) for transmitting torque. A constant velocity universal joint is fixed to the tooth portion 2. The other end is provided with a flange portion 3 for pressing and fixing the steel pipe.

【0021】黒鉛鋼としては、黒鉛粒径が15μm以下
のものが使用される。この種の黒鉛鋼は、例えば特開平
8−283847号に開示された方法で製造することが
できる。すなわち、熱間圧延後に、冷却開始温度をAr1
点以上、冷却終了温度をMs点以下、平均冷却速度を3
0〜100℃/sとして水冷却後、さらに自然冷却し、
次いで加熱温度600〜720℃で黒鉛化処理した後、
減面率30%以上の伸線加工、引抜き加工、または押出
し加工を行って棒鋼とするのである。
As the graphite steel, one having a graphite particle size of 15 μm or less is used. This type of graphite steel can be produced, for example, by the method disclosed in Japanese Patent Application Laid-Open No. 8-283847. That is, after hot rolling, the cooling start temperature is set to A r1.
Temperature, the cooling end temperature is below the Ms point, and the average cooling rate is 3
After water cooling at 0 to 100 ° C./s, further natural cooling is performed,
Next, after a graphitization treatment at a heating temperature of 600 to 720 ° C,
A steel bar is formed by performing wire drawing, drawing, or extrusion with a surface reduction rate of 30% or more.

【0022】上記の工程において、棒鋼表面で測定した
冷却開始温度は、マルテンサイト変態歪と圧延歪とを同
時に発生させて黒鉛生成サイト数を多くするため、Ar1
点以上でなければならない。冷却終了温度はマルテンサ
イト変態組織を得て黒鉛生成を容易にするためにMs点
以下でなければならない。平均冷却速度の下限値を30
℃/sとしたのは、マルテンサイト変態組織を得るため
と加工歪を残留させて黒鉛化を容易にすためであり、上
限を100℃/sとしたのは、これ以上急冷してもマル
テンサイト変態が増加しないためである。焼鈍温度を6
00〜720℃にしたのは、この温度範囲における黒鉛
化時間がもっとも短いからである。黒鉛化した後に伸線
加工等を行うのは、棒鋼の真円度並びに所定の強度を確
保すると共に、黒鉛を分解させ、冷間鍛造後に行う焼入
れ、焼戻しの際に発生する空孔を小さくし、靭性を向上
させるためである。特に冷間鍛造では、デッドメタルと
称される未変形部が生じる。この未変形部では黒鉛が分
解されておらず、冷間鍛造後の焼入れ、焼戻しで生じる
空孔が大きく、靭性が低い。そこで、冷間鍛造前に伸線
加工等で黒鉛を分解しておくことが必要であり、その
際、減面率が30%よりも小さいと黒鉛が十分に分解さ
れないために冷間鍛造後の焼入れ・焼戻しで生じる空孔
が大きく、靭性値が向上しない。
In the above process, the cooling start temperature measured on the surface of the steel bar is set to A r1 because the martensitic transformation strain and the rolling strain are simultaneously generated to increase the number of graphite forming sites.
Must be above the point. The cooling end temperature must be below the Ms point in order to obtain a martensitic transformation structure and facilitate graphite formation. Set the lower limit of the average cooling rate to 30
° C / s is for obtaining a martensitic transformation structure and for facilitating graphitization by retaining working strain. This is because site transformation does not increase. Annealing temperature 6
The reason for setting the temperature to 00 to 720 ° C. is that the graphitization time in this temperature range is the shortest. After graphitization, wire drawing is performed to ensure the roundness and the specified strength of the steel bar, to decompose the graphite, and to reduce the pores generated during quenching and tempering after cold forging. , In order to improve toughness. Particularly in cold forging, an undeformed portion called dead metal occurs. In this undeformed portion, graphite is not decomposed, the pores generated by quenching and tempering after cold forging are large, and the toughness is low. Therefore, it is necessary to decompose the graphite by wire drawing or the like before cold forging. In this case, if the area reduction ratio is smaller than 30%, the graphite is not sufficiently decomposed, so the graphite after cold forging is required. Voids generated by quenching and tempering are large, and the toughness value does not improve.

【0023】このようにして得られた黒鉛鋼の棒鋼は、
冷間鍛造等で上記スタブ形状に成形された後、高周波焼
入れされる。高周波焼入れは、セレーション部2を含
み、かつフランジ部3に至るまでの領域Aに施される。
高周波焼入れにより、スタブ1の領域Aの表層は50H
RC以上に硬化される。この時、高周波焼入れの熱影響
を芯部まで及ぼし、芯部にフェライトとマルテンサイト
の2相組織を生成する。芯部に熱影響を与えるため、焼
入れは2回に分けて行うのが好ましいが、1回の焼入れ
でも、例えば低い周波数で加熱する、高周波数の場合は
加熱時間を長くする、加熱終了時から冷却までの時間
(遅延時間)を長くする等の手段により、芯部に上記2
相組織を形成することができる。
The graphite steel bar thus obtained is
After being formed into the stub shape by cold forging or the like, induction hardening is performed. The induction hardening is performed on the region A including the serration portion 2 and reaching the flange portion 3.
Due to induction hardening, the surface layer in the area A of the stub 1 is 50H
Hardened to more than RC. At this time, the thermal influence of the induction hardening is exerted on the core, and a two-phase structure of ferrite and martensite is generated in the core. It is preferable that the quenching be performed in two steps because the core has a thermal effect. However, even with one quenching, heating is performed at a low frequency, for example, in the case of a high frequency, the heating time is increased. By means such as increasing the time until cooling (delay time),
A phase structure can be formed.

【0024】高周波焼入れ終了後、焼戻しを行い、さら
に必要に応じて研削加工等の仕上げ加工を行うことによ
り、上記スタブ1が製品化される。
After the induction hardening, the stub 1 is commercialized by performing tempering and, if necessary, finishing such as grinding.

【0025】本発明は、上記圧接用スタブ1に限らず、
溶接スタブ、あるいは等速自在継手に連結されるシャフ
ト(中空、中実を問わない)など、等速自在継手を使用
する動力伝達軸に広く適用することができる。
The present invention is not limited to the pressing stub 1 described above.
The present invention can be widely applied to a power transmission shaft using a constant velocity universal joint, such as a welding stub or a shaft (whether hollow or solid) connected to the constant velocity universal joint.

【0026】[0026]

【実施例】本発明の効果を確認するため、以下の試験を
行った。
EXAMPLES The following tests were performed to confirm the effects of the present invention.

【0027】先ず、素材径φ30のS53C相当の黒鉛
鋼(C:0.53%、Si:1.2%、Mn:0.4
%、P:0.010%、S:0.015%、Al:0.
03%、B:0.0018%、N:0.0055%)を
用いた長さ170mmのトルク伝達用の軸の両端部に
D.P.=32/64、歯数N=30の嵌合用スプライ
ンを設け、軸中央部にφ20、形状係数α=1.33の
段付き切欠きをつけた形状に加工し、その後高周波加熱
により焼入れを施した。比較例として、S53C(C:
0.53%、Si:0.25%、Mn:0.75%、
P:0.015%、S:0.017%、Al:0.02
5%、Cr:0.10%)の炭素鋼を用いて同形状の軸
を成形後、同様の焼入れ方法にて焼入れした。何れのサ
ンプルも表面硬度58〜62HRC、有効硬化層深さま
での焼入れ深さを2.5mmになるように熱処理した。
その時、軸の芯部の硬さは黒鉛鋼で25HRC程度、炭
素鋼で18HRC程度とした。但し、芯部の金属組織
は、S53C相当黒鉛鋼はフェライトとマルテンサイト
を含む組織とし、S53C炭素鋼はフェライトとパーラ
イトを含む組織とした。
First, graphite steel equivalent to S53C having a material diameter of φ30 (C: 0.53%, Si: 1.2%, Mn: 0.4
%, P: 0.010%, S: 0.015%, Al: 0.
No. 03%, B: 0.0018%, N: 0.0055%) at both ends of a 170 mm long shaft for torque transmission. P. = 32/64, number of teeth N = 30, a spline for fitting is provided, and the shaft is machined into a shape with a stepped notch of φ20 and shape coefficient α = 1.33 at the center, and then quenched by high frequency heating. did. As a comparative example, S53C (C:
0.53%, Si: 0.25%, Mn: 0.75%,
P: 0.015%, S: 0.017%, Al: 0.02
Shafts of the same shape were formed using carbon steel (5%, Cr: 0.10%) and then quenched by the same quenching method. All samples were heat-treated so that the surface hardness was 58 to 62 HRC and the quenching depth to the effective hardened layer depth was 2.5 mm.
At this time, the hardness of the shaft core was about 25 HRC for graphite steel and about 18 HRC for carbon steel. However, the metal structure of the core was a structure containing ferrite and martensite for S53C equivalent graphite steel, and a structure containing ferrite and pearlite for S53C carbon steel.

【0028】このサンプルついて、捩り強度試験を実施
した。静捩り試験では、黒鉛鋼、炭素鋼とも同等強度で
あったが、繰返しによる両捩り捩り試験では、黒鉛鋼は
炭素鋼より5%以上強度アップした。
This sample was subjected to a torsional strength test. In the static torsion test, both the graphite steel and the carbon steel had the same strength, but in the double torsion test by repetition, the graphite steel increased the strength by 5% or more than the carbon steel.

【0029】また、同様の形状にてS45C相当黒鉛鋼
(C:0.45%、Si:1.41%、Mn:0.31
%、P:0.015%、S:0.010%、Al:0.
027%、B:0.0014%、N:0.005%)
と、S45C炭素鋼(C:0.45%、Si:0.20
%、Mn:0.9%、P:0.016%、S:0.01
5%、Al:0.025%、Cr:0.10%)の比較
実験を実施した。同様に高周波加熱により焼入れを実施
したが、この場合は、表面硬度56〜61HRC、有効
硬化層深さまでの焼入れ深さを4.0mmになるように
熱処理した。その時、軸の芯部の硬さは、黒鉛鋼で28
HRC程度、炭素鋼で12HRC程度とした。また、芯
部の金属組織は、S45C相当黒鉛鋼はフェライトとマ
ルテンサイトを含む組織とし、S45C炭素鋼はフェラ
イトとパーライトを含む組織とした。
In a similar shape, graphite steel equivalent to S45C (C: 0.45%, Si: 1.41%, Mn: 0.31%)
%, P: 0.015%, S: 0.010%, Al: 0.
027%, B: 0.0014%, N: 0.005%)
And S45C carbon steel (C: 0.45%, Si: 0.20
%, Mn: 0.9%, P: 0.016%, S: 0.01
5%, Al: 0.025%, Cr: 0.10%). Similarly, quenching was performed by high-frequency heating. In this case, heat treatment was performed so that the surface hardness was 56 to 61 HRC and the quenching depth to the effective hardened layer depth was 4.0 mm. At that time, the hardness of the shaft core was 28% for graphite steel.
About HRC and about 12 HRC for carbon steel. The metal structure of the core was a structure containing ferrite and martensite for S45C equivalent graphite steel, and a structure containing ferrite and pearlite for S45C carbon steel.

【0030】このサンプルついて捩り強度試験を実施し
たところ、静捩り試験では黒鉛鋼、炭素鋼とも同強度で
あったが、繰返しによる両捩り捩り疲労試験では、黒鉛
鋼は炭素鋼より12%以上強度アップした。特に、低負
荷領域(高サイクル疲労)では、15〜20%強度アッ
プした。
When a torsional strength test was carried out on this sample, the graphite steel and the carbon steel had the same strength in the static torsion test, but in the double torsional torsion fatigue test by repetition, the graphite steel was at least 12% stronger than the carbon steel. Up. In particular, in the low load region (high cycle fatigue), the strength increased by 15 to 20%.

【0031】さらに、S45C相当黒鉛鋼に対し、同様
の形状に加工したものを表面硬度56〜61HRC、有
効硬化層深さまでの焼入れ深さが4.0mmになるよう
に2回焼入れを実施した。この時の芯部の硬さ、金属組
織は、上記S45C相当黒鉛鋼と同様に28HRC程
度、フェライトとマルテンサイトを含む組織とした。な
お、表層部の硬さのバラツキは、ビッカース硬さにて2
00Hv以内とした。
Further, graphite steel equivalent to S45C was processed into a similar shape, and twice hardened so that the surface hardness was 56 to 61 HRC and the quenching depth to the effective hardened layer depth was 4.0 mm. The hardness and the metal structure of the core at this time were about 28 HRC, similar to the above-described S45C-equivalent graphite steel, and were a structure containing ferrite and martensite. In addition, the variation in the hardness of the surface layer is 2 in Vickers hardness.
It was within 00Hv.

【0032】このサンプルについて捩り強度試験を実施
したところ、1回焼入れの黒鉛鋼に対し、静捩り強度で
10%強度アップした。両捩り捩り疲労試験では、1回
焼入れの黒鉛鋼と同様に炭素鋼より12%以上強度アッ
プした。特に低負荷領域(高サイクル疲労)では15〜
20%強度アップした。
When a torsional strength test was performed on this sample, the static torsional strength was increased by 10% with respect to the once quenched graphite steel. In the double torsional torsion fatigue test, the strength was increased by 12% or more than that of the carbon steel as in the case of the once quenched graphite steel. Especially in the low load region (high cycle fatigue)
Strength increased by 20%.

【0033】S45C相当黒鉛鋼と、その水焼入れ品
(水+水溶性冷却剤15%の冷却材を使用)およびショ
ットピーニング品(高周波焼入れ後にショットピーニン
グ処理)とについて表面圧縮応力の測定および両捩り捩
り疲労(高サイクル疲労)試験を行ったところ、表面圧
縮応力は、S45C相当黒鉛鋼で50kgf/mm2
水焼入れ品で65kgf/mm2 、ショットピーニング
品で97kgf/mm2となった。また、両捩り捩り疲
労は、S45C相当黒鉛鋼を基準とすると、水焼入れ品
で9%増、ショットピーニング品で20%増が達成され
た。
Measurement of surface compressive stress and double torsion of S45C-equivalent graphite steel, its water-quenched product (using a coolant of water + 15% water-soluble coolant) and shot-peened product (shot-peening treatment after induction hardening) When a torsional fatigue (high cycle fatigue) test was performed, the surface compressive stress was 50 kgf / mm 2 for S45C equivalent graphite steel,
The water-quenched product was 65 kgf / mm 2 , and the shot-peened product was 97 kgf / mm 2 . The torsional torsional fatigue was increased by 9% for the water-quenched product and by 20% for the shot-peened product, based on S45C graphite steel.

【0034】[0034]

【発明の効果】以上のように本発明によれば、被削性、
冷間・温間鍛造性等の機械加工性に優れ、かつ静的強度
や疲労強度等に優れる高強度の動力伝達軸を提供するこ
とができる。
As described above, according to the present invention, machinability,
It is possible to provide a high-strength power transmission shaft having excellent machinability such as cold / warm forgeability and excellent static strength and fatigue strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】動力伝達軸の一例として、等速自在継手のスタ
ブを示す側面図である。
FIG. 1 is a side view showing a stub of a constant velocity universal joint as an example of a power transmission shaft.

【符号の説明】[Explanation of symbols]

1 スタブ 2 歯部(セレーション部) 3 フランジ部 1 Stub 2 Tooth (serration) 3 Flange

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 9/28 C21D 9/28 Z C22C 38/06 C22C 38/06 38/12 38/12 (72)発明者 牧野 弘昭 静岡県磐田市東貝塚1578番地 エヌティエ ヌ株式会社内 Fターム(参考) 4K042 AA14 AA25 BA01 BA03 BA05 BA09 CA02 CA08 CA10 DA01 DB01 DC05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21D 9/28 C21D 9/28 Z C22C 38/06 C22C 38/06 38/12 38/12 (72) Invention Person Hiroaki Makino 1578 Higashikaizuka, Iwata-shi, Shizuoka F-term in NTN Corporation (reference) 4K042 AA14 AA25 BA01 BA03 BA05 BA09 CA02 CA08 CA10 DA01 DB01 DC05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 等速自在継手を使用した動力伝達軸にお
いて、黒鉛鋼を高周波焼入れして表層を硬化させると共
に、芯部にフェライトとマルテンサイトの2相組織を生
成させたことを特徴とする動力伝達軸。
In a power transmission shaft using a constant velocity universal joint, graphite steel is induction hardened to harden a surface layer, and a two-phase structure of ferrite and martensite is formed in a core portion. Power transmission shaft.
【請求項2】 上記黒鉛鋼が重量%で、C:0.35〜
0.70%、Si:0.4〜2.0%、Mn:0.3〜
1.5%、S:0.025%以下、P:0.02%以
下、Al:0.01〜0.1%、B:0.001〜0.
004%、N:0.002〜0.008%を基本成分と
し、残部がFeおよび不可避的不純物からなることを特
徴とする請求項1記載の動力伝達軸。
2. The graphite steel in weight%, C: 0.35
0.70%, Si: 0.4 to 2.0%, Mn: 0.3 to
1.5%, S: 0.025% or less, P: 0.02% or less, Al: 0.01 to 0.1%, B: 0.001 to 0.
The power transmission shaft according to claim 1, wherein 004%, N: 0.002 to 0.008% are basic components, and the balance is Fe and unavoidable impurities.
【請求項3】 上記黒鉛鋼にNi:0.3〜1.0重量
%、Mo:0.2重量%以下を一種又は二種添加したこ
とを特徴とする請求項2記載の動力伝達軸。
3. The power transmission shaft according to claim 2, wherein one or two types of Ni: 0.3 to 1.0% by weight and Mo: 0.2% by weight or less are added to the graphite steel.
【請求項4】 表面の硬さの最大値と最小値の差を20
0Hv以下とした請求項1記載の動力伝達軸。
4. The difference between the maximum value and the minimum value of the surface hardness is 20
2. The power transmission shaft according to claim 1, wherein the power transmission shaft is 0 Hv or less.
【請求項5】 芯部の硬さを25〜45HRCとした請
求項1記載の動力伝達軸。
5. The power transmission shaft according to claim 1, wherein the core has a hardness of 25 to 45 HRC.
【請求項6】 表面の圧縮残留応力を60kgf/mm
2 以上とした請求項1記載の動力伝達軸。
6. A compressive residual stress on a surface of 60 kgf / mm.
The power transmission shaft according to claim 1, wherein the number is two or more.
【請求項7】 ショットピーニングにより表面の圧縮残
留応力を90kgf/mm2 以上にした請求項1記載の
動力伝達軸。
7. The power transmission shaft according to claim 1, wherein the compressive residual stress on the surface is increased to 90 kgf / mm 2 or more by shot peening.
JP11005574A 1999-01-12 1999-01-12 Power transmission shaft Pending JP2000204432A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11005574A JP2000204432A (en) 1999-01-12 1999-01-12 Power transmission shaft
US09/468,328 US6390924B1 (en) 1999-01-12 1999-12-21 Power transmission shaft and constant velocity joint
FR0000216A FR2788821B1 (en) 1999-01-12 2000-01-10 POWER TRANSMISSION SHAFT AND HOMOCINETIC SEAL
FR0008723A FR2796685B1 (en) 1999-01-12 2000-07-05 HOMOCINETIC SEAL FOR POWER TRANSMISSION SHAFT
FR0103585A FR2808311B1 (en) 1999-01-12 2001-03-16 HOMOCINETIC JOINT FOR TRANSMISSION SHAFT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11005574A JP2000204432A (en) 1999-01-12 1999-01-12 Power transmission shaft

Publications (1)

Publication Number Publication Date
JP2000204432A true JP2000204432A (en) 2000-07-25

Family

ID=11615003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11005574A Pending JP2000204432A (en) 1999-01-12 1999-01-12 Power transmission shaft

Country Status (1)

Country Link
JP (1) JP2000204432A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116284A1 (en) 2004-05-07 2005-12-08 Sumitomo Metal Industries, Ltd. Seamless steel pipe and method for production thereof
WO2006030800A1 (en) * 2004-09-17 2006-03-23 Nippon Steel Corporation High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
WO2007086215A1 (en) * 2006-01-26 2007-08-02 Jfe Steel Corporation Constant velocity universal joint having excellent rolling fatigue property, power transmission shaft having excellent torsional fatigue property, and processes for producing them
JP2007197772A (en) * 2006-01-26 2007-08-09 Jfe Steel Kk Transmission shaft superior in torsion fatigue characteristic and manufacturing method therefor
US8070890B2 (en) 2005-03-25 2011-12-06 Sumitomo Metal Industries, Ltd. Induction hardened hollow driving shaft
JP2012172344A (en) * 2011-02-18 2012-09-10 Mitsubishi Materials Corp Drilling hollow steel rod and method of manufacturing the same
EP2594654A1 (en) * 2010-07-14 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Steel having excellent machinability for mechanical structure
US9539675B2 (en) 2012-03-05 2017-01-10 Toyota Jidosha Kabushiki Kaisha Method for manufacturing machined part, and machined part
KR20200049924A (en) 2018-10-29 2020-05-11 현대자동차주식회사 Steel for crank shaft and manufacturing method of crank shaft using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116284A1 (en) 2004-05-07 2005-12-08 Sumitomo Metal Industries, Ltd. Seamless steel pipe and method for production thereof
US7316143B2 (en) 2004-05-07 2008-01-08 Sumitomo Metal Industries, Ltd. Seamless steel tubes and method for producing the same
WO2006030800A1 (en) * 2004-09-17 2006-03-23 Nippon Steel Corporation High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
US8070890B2 (en) 2005-03-25 2011-12-06 Sumitomo Metal Industries, Ltd. Induction hardened hollow driving shaft
WO2007086215A1 (en) * 2006-01-26 2007-08-02 Jfe Steel Corporation Constant velocity universal joint having excellent rolling fatigue property, power transmission shaft having excellent torsional fatigue property, and processes for producing them
JP2007197772A (en) * 2006-01-26 2007-08-09 Jfe Steel Kk Transmission shaft superior in torsion fatigue characteristic and manufacturing method therefor
US9139894B2 (en) 2010-07-14 2015-09-22 Nippon Steel & Sumitomo Metal Corporation Steel for machine structure exhibiting excellent machinability
EP2594654A1 (en) * 2010-07-14 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Steel having excellent machinability for mechanical structure
EP2594654A4 (en) * 2010-07-14 2015-04-29 Nippon Steel & Sumitomo Metal Corp Steel having excellent machinability for mechanical structure
JP2012172344A (en) * 2011-02-18 2012-09-10 Mitsubishi Materials Corp Drilling hollow steel rod and method of manufacturing the same
US9539675B2 (en) 2012-03-05 2017-01-10 Toyota Jidosha Kabushiki Kaisha Method for manufacturing machined part, and machined part
KR20200049924A (en) 2018-10-29 2020-05-11 현대자동차주식회사 Steel for crank shaft and manufacturing method of crank shaft using the same
US11319609B2 (en) 2018-10-29 2022-05-03 Hyundai Motor Company Steel for crankshaft and method of manufacturing crankshaft using the same

Similar Documents

Publication Publication Date Title
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
JP5669339B2 (en) Manufacturing method of high strength carburized parts
JP2012214900A (en) Method for manufacturing machine components
JP7152832B2 (en) machine parts
JP4771745B2 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP2945714B2 (en) High surface pressure gear
JPH11236644A (en) Steel for induction hardening excellent in high strength characteristic and low heat treating strain characteristic and its production
JP2000204432A (en) Power transmission shaft
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP3876384B2 (en) High strength connecting rod and manufacturing method thereof
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP4488228B2 (en) Induction hardening steel
JPH1017928A (en) Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
JP2009299147A (en) Method for manufacturing high-strength carburized component
JP4136656B2 (en) Carburizing steel and carburizing gear
JPH08260039A (en) Production of carburized and case hardened steel
JPH0770646A (en) Production of gear
JP5703934B2 (en) Cold forging induction hardening steel, cold forging induction hardening steel bar, automobile undercarriage parts and automobile hub
JP2016188422A (en) Carburized component
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JP3623313B2 (en) Carburized gear parts
JP2007231411A (en) Method of manufacturing machine structure component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050225