JPS63225714A - Rotary driving shaft - Google Patents
Rotary driving shaftInfo
- Publication number
- JPS63225714A JPS63225714A JP5693287A JP5693287A JPS63225714A JP S63225714 A JPS63225714 A JP S63225714A JP 5693287 A JP5693287 A JP 5693287A JP 5693287 A JP5693287 A JP 5693287A JP S63225714 A JPS63225714 A JP S63225714A
- Authority
- JP
- Japan
- Prior art keywords
- driving shaft
- rotary drive
- drive shaft
- weight
- rotary driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 239000013013 elastic material Substances 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 22
- 239000010959 steel Substances 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 238000013016 damping Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 238000005452 bending Methods 0.000 abstract description 3
- 230000010355 oscillation Effects 0.000 abstract 3
- 229910000851 Alloy steel Inorganic materials 0.000 abstract 2
- 230000008878 coupling Effects 0.000 abstract 2
- 238000010168 coupling process Methods 0.000 abstract 2
- 238000005859 coupling reaction Methods 0.000 abstract 2
- 230000002238 attenuated effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 208000034189 Sclerosis Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/70—Materials used in suspensions
- B60G2206/72—Steel
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
LL上皮豆■ユ1
本発明は、円管軸部分を有する回転駆動軸に係り、特に
車輌用駆動軸として好適なる回転駆動軸に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary drive shaft having a cylindrical shaft portion, and particularly to a rotary drive shaft suitable as a drive shaft for a vehicle.
i釆及呈
車輌用回転駆動軸は、円筒形中実軸または円筒形中空軸
として提供され、その両端部には自在継手、すべり継手
等の金属製継手部材が付設される。The rotary drive shaft for a vehicle is provided as a cylindrical solid shaft or a cylindrical hollow shaft, and a metal joint member such as a universal joint or a slip joint is attached to both ends of the shaft.
駆動軸には、ばね下重最の低減化1組付は時の取扱い性
の向上(重いと取扱い性が悪い)、動力損条件によって
相違する振動数係数、jは管長、Eはヤング率、■は断
面二次モーメント、Aは管断面積、ρは密度である)の
増大化等の要部がある。On the drive shaft, the unsprung weight is reduced, the unsprung weight is reduced, the handling is improved (if it is heavy, the handling is poor), the frequency coefficient differs depending on the power loss condition, j is the pipe length, E is Young's modulus, (2) is the moment of inertia of area, A is the tube cross-sectional area, and ρ is the density.
ぞのため、同一断面積のものでは中実軸に比して曲げ剛
性、ねじり剛性が大きく、伝達トルクが同じであれば中
実軸に比して断面積を小さくすることが可能な中空推進
軸が採用される趨勢にある。Therefore, hollow propulsion with the same cross-sectional area has greater bending and torsional rigidity than a solid shaft, and the cross-sectional area can be smaller than a solid shaft if the transmitted torque is the same. There is a trend towards the adoption of axes.
それに伴って、軸材料の高強度化が81られ、高張力鋼
製シームレス管を用いこれに調質処L!!!(焼入れ後
、焼戻し処理)を施すことにより高強度化の要請に対応
していた。Along with this, the strength of the shaft material has been increased 81, and a seamless pipe made of high-tensile steel is used and heat treated. ! ! (After quenching, tempering treatment) was applied to meet the demand for higher strength.
この高張力鋼管と金m製継手部材との結合は、残留応力
、熱ひずみ発生の少ないIf擦溶接によって行われるの
が普通である。I!y擦溶接は、内杆の接合法であるフ
ラッシュ溶接(火花突合せ溶接)i比して次の利点を有
する。■同一溶接断面積につぎ、摩擦溶接磯の入力(k
VA)はフラッシュ溶接の約1/10である(使用電力
昌少)、■If擦溶接のアプセッ1−シろ(寄りしろ)
はフラッシュ溶接の約40%である(材料節減可)、■
フラッシュを飛ばさないので作業者に安全である。■鋼
のフラッシュ溶接では澄接中心部に脱炭層が生じて接合
部の疲労強度が低下し、また電極把持部にスパーク疵が
生じ易いのに対し、摩擦溶接ではその様な心配が全くな
い、■相互に融接できない材料(例えば、アルミニウム
とステンレス鋼、チタンと鋼等)の接合が可能である。The high-tensile steel pipe and the gold joint member are usually joined by If friction welding, which generates less residual stress and thermal strain. I! Y-friction welding has the following advantages over flash welding (spark butt welding), which is a joining method for inner rods. ■Next to the same welding cross-sectional area, input the friction welding surface (k
VA) is about 1/10 of flash welding (less power used), ■If friction welding upset 1 - Shiro (approximately)
is about 40% of flash welding (material savings possible),■
It is safe for workers because it does not emit flash. ■In flash welding of steel, a decarburized layer forms at the center of the clear weld, reducing the fatigue strength of the joint, and spark flaws are likely to occur at the electrode grip, but with friction welding, there is no such concern. ■It is possible to join materials that cannot be fused together (for example, aluminum and stainless steel, titanium and steel, etc.).
1し 〜と るμ
斯様に、融接法とは異なる特ff1(利点)を右するl
!!擦溶接法であるが、該FJ擦溶接によったとしても
、調質された高張力鋼管の溶接においては、溶接熱影響
部の温度が融点直下まで上背し、マルテンサイトないし
はベーナイトl14mがフェライトとパーライトの混在
組織となり、軟化域が生じてしまう(第1図の硬度特性
曲線A参照。図中、01は高張力鋼管、 02は鋼製継
手部材を示す)。1. In this way, there are advantages that differ from the fusion welding method.
! ! Although it is a friction welding method, even if FJ friction welding is used, when welding tempered high-strength steel pipes, the temperature of the weld heat affected zone rises to just below the melting point, and martensite or bainite l14m turns into ferrite. This results in a mixed structure of pearlite and pearlite, resulting in a softened region (see hardness characteristic curve A in Fig. 1. In the figure, 01 indicates a high-tensile steel pipe, and 02 indicates a steel joint member).
この軟化による強度不足を補うためには、第2図図示の
如(、高張力鋼管01のrIJI!!接合端部を増肉ア
プセットによる厚肉部Otaとして形成する必要があり
、その場合、固有振動数の低下0重聞増。In order to compensate for the lack of strength due to this softening, it is necessary to form the joint end of the high-tensile steel pipe 01 as a thickened part Ota by thickening upsetting, as shown in Figure 2. Vibration frequency decreases and increases by 0 times.
製造工数増(溶接後の調質処理を必要とする場合もある
)、製造経費増等の不都合を招く。This causes inconveniences such as increased manufacturing man-hours (temperature treatment after welding may be required) and increased manufacturing costs.
1.!T ”1.た の−よ
本発明は、斯かる技術的背景の下に創案されたものであ
り、その目的どする処は、使用する鋼製−円管軸の端部
を厚肉化する必要がなく、製造1敗の削減、軽量化、振
!!!l騒音の低減化を工1り得る回転振動軸を提供す
る点にある。1. ! T ``1. The present invention was devised against this technical background, and its purpose is to thicken the end portion of the steel-cylindrical shaft used. The object of the present invention is to provide a rotary vibration shaft that eliminates the need for manufacturing, reduces manufacturing costs, reduces weight, and reduces vibration and noise.
この目的は、c o、os〜0.2重量%、Si0.1
〜0.4重量%、 M’n 1.0〜2.0fil
11%、Tjw0.03〜0.15重ffi%、 V
0.03〜0.15重量%。The purpose was to: co, os ~ 0.2% by weight, Si 0.1
~0.4% by weight, M'n 1.0~2.0fil
11%, Tjw0.03-0.15 ffi%, V
0.03-0.15% by weight.
Nb 0.03〜0.15 、 N (窒素)20〜
60ppm+。Nb 0.03~0.15, N (nitrogen) 20~
60ppm+.
FeT75部、I3よび不可避不純物なる組成の非調質
型低合金高張力鋼で形成された円管軸の端部に、金ri
IS製継手部材を摩擦溶接接合することによって達成さ
れる。Gold ri
This is achieved by friction welding the IS joint members.
Mn 、S=1を用いた高張力鋼は、フェライト−パー
ライト型高張力鋼の基本である。軟鋼に比して炭素を増
すことにより引張り強度を向上させることができるが、
溶接局部の熱履歴差によって機械的性質の変動が著しく
溶接欠陥が生じ易いため、置換型固溶元素であるSL、
Mnを軟鋼よりも多く配合して基地(マトリックス)を
強化するのが適当である。−この組織は、結晶粒の微細
なフェライト(一部バーライトになることもある)であ
り、溶接による材質の変化が少ない。しかしながら、S
=、Mnで強化した高張力鋼は、降伏比がそれほど高く
ないため、炭、窒化物形成元素であるV、T=、Nbを
添加する。V、TL、Nbを添加す6 コトニより、V
C,VN、TLC。High-strength steel using Mn and S=1 is the basis of ferrite-pearlite type high-strength steel. Tensile strength can be improved by increasing carbon content compared to mild steel, but
SL, which is a substitutional solid solution element, is used because the mechanical properties fluctuate significantly due to differences in the thermal history of the local welding area, and welding defects are likely to occur.
It is appropriate to strengthen the base (matrix) by blending Mn in a larger amount than in mild steel. - This structure is ferrite with fine grains (sometimes barite may be formed), and the material quality does not change much due to welding. However, S
Since high-strength steel strengthened with =, Mn does not have a very high yield ratio, carbon and nitride-forming elements V, T=, and Nb are added. Adding V, TL, Nb 6 From Cotoni, V
C, VN, TLC.
T、、N、Nb 、C,Nb N等を基地中に微細に析
出させる(析出硬化)とともに、フェライト粒の微粒化
を晶することができる。T, N, Nb, C, Nb, N, etc. can be finely precipitated in the base (precipitation hardening), and ferrite grains can be crystallized.
本発明の円管軸用高張力鋼で8=、Mn 、V。The high tensile strength steel for circular tube shafts of the present invention is 8=, Mn, V.
T、、、Nb、Nを添加する理由は以上の通りであり、
C,Mn 、SLについては、前記規定範囲を上回ると
、溶接性、造管性が悪化するとともに結 ゛晶粒の微
細化が阻害され、規定範囲を下回ると、靭性の低下を招
き、V、TL、Nb 、Nについては、規定範囲を上回
ると、強痘、耐rfJ撃性が低下するとともに溶接性、
造管性が悪化し、規定範囲を下回ると、結晶粒の微細化
が不十分である。The reason for adding T,..., Nb, and N is as above,
Regarding C, Mn, and SL, when they exceed the above specified ranges, weldability and pipe formability deteriorate and grain refinement is inhibited, and when they fall below the specified ranges, toughness decreases, and V, Regarding TL, Nb, and N, if they exceed the specified range, sclerosis and RFJ impact resistance will decrease, and weldability and
If the tube formability deteriorates and falls below the specified range, grain refinement will be insufficient.
斯かる非7s質型低合金高張力鋼で形成された円軸管を
金属製継手部材に摩擦溶接接合する時には、無影舌部に
おける融点直下の温度上昇にもかかわらず強度低下がほ
とんどない。したがって、円軸管の突き合せ接合端部の
肉厚を増して強度低下を補う必要がなく、公知の回転駆
動軸に比して軽量化され、円軸管端部の増肉アプセット
加工、溶接後のgll質処理を省略することによる製造
工数の削減を計ることができる。When a cylindrical tube made of such non-7S type low alloy high tensile strength steel is joined to a metal joint member by friction welding, there is almost no decrease in strength despite the temperature rise just below the melting point at the shadowless tongue. Therefore, there is no need to increase the wall thickness of the butt joint end of the circular shaft tube to compensate for the decrease in strength, and the weight is reduced compared to known rotary drive shafts, and the wall thickness of the circular shaft tube end can be increased by upsetting and welding. By omitting the subsequent GLL treatment, the number of manufacturing steps can be reduced.
墓1JI
■次表に示す組成の低合金高張力鋼製円@管2の端部に
鋼製継手部材3を摩擦溶接接合して回転駆動軸1を得た
(第3図に回転駆動軸1の要部を示す)。Grave 1JI ■ A rotary drive shaft 1 was obtained by friction welding a steel joint member 3 to the end of a low-alloy high-strength steel circular tube 2 having the composition shown in the following table (Fig. 3 shows the rotary drive shaft 1 ).
*数字はいずれも重量%である。*All numbers are percent by weight.
■回転駆動軸1の溶接接合部近傍における硬度分布を調
べたところ、第1図の曲[IBが得られた。(2) When the hardness distribution in the vicinity of the welded joint of the rotary drive shaft 1 was investigated, the curve [IB] shown in FIG. 1 was obtained.
■回転駆動軸1、および従来の調質型低合金高張力鋼を
用いた回転駆動軸につき、両振ねしり疲労試験を行った
。第4図にその結果を示す。曲線Aは従来の回転駆動軸
の疲労特性を示し、曲線Bは回転駆動@1の疲労特性を
示している。(2) Double shaking fatigue tests were conducted on the rotary drive shaft 1 and the rotary drive shaft using conventional heat-treated low-alloy high-strength steel. Figure 4 shows the results. Curve A shows the fatigue characteristics of the conventional rotary drive shaft, and curve B shows the fatigue characteristics of the rotary drive@1.
く試験結束の評価〉
■第1図によれば、従来のXgl質型低合金高張力鋼を
趙いた回転駆動軸の溶接熱影響部では著しい硬度低下が
見られるのに対して(曲1i1A)、非調質型低合金高
張力が鋼を用いた本発明例に係る回転駆動軸1の溶接の
熱影響部では硬度低)がほとんどない(曲線B)。Evaluation of test bundling> ■According to Figure 1, a significant decrease in hardness is seen in the welded heat-affected zone of the rotary drive shaft made of conventional Xgl type low alloy high tensile strength steel (track 1i1A). , there is almost no hardness (low hardness) in the welded heat-affected zone of the rotary drive shaft 1 according to the example of the present invention using non-tempered low-alloy high-strength steel (curve B).
■第4図によれば、従来の調質型低合金高張力鋼を用い
た回転駆動軸(曲線A)に比して、本発明例に係る回転
駆動軸1の時間強さく曲1i1B)が向上している。■According to FIG. 4, the curve 1i1B) of the rotary drive shaft 1 according to the example of the present invention is longer than that of the conventional rotary drive shaft (curve A) using heat-treated low-alloy high-strength steel. It's improving.
なお、回転駆動軸1の内部に弾性材Fl(ゴム等の弾性
に富む材料を指す)で形成した制振体を圧入し、回転駆
動軸1の振動エネルギーを、制振体の弾性履歴現象を利
用して減衰させ・るのは効果的であり、この場合、特に
円軸管2の壁厚を全体に薄肉にして回部の単体−次曲げ
固有角振動数を大きくするのが効果大である。、
l且ユl」
以上の説明から明らかな様に、c o、os〜0.2重
量%、 SL 0.1〜0.4重量%、 Mn 1.
0〜2.0重B%、T^0.03〜0.15重量%、
V 0.03へ・0.15重量%、Nb0.03〜0.
15 、 N (窒素)20〜60ppg+、 Fe残
部、および不可避不純物なる組成の非調質型低合金高張
力鋼で形成されだ円管軸の端部に、金属製継手部材を摩
耗溶接接合してなる回転駆動軸が提案された。A vibration damper made of an elastic material Fl (referring to a highly elastic material such as rubber) is press-fitted inside the rotary drive shaft 1, and the vibration energy of the rotary drive shaft 1 is absorbed by the elastic history phenomenon of the vibration damper. In this case, it is particularly effective to make the wall thickness of the cylindrical tube 2 thinner as a whole to increase the natural angular frequency of the single-order bending of the turning section. be. As is clear from the above description, co, os~0.2% by weight, SL 0.1~0.4% by weight, Mn 1.
0 to 2.0 weight B%, T^0.03 to 0.15 weight%,
V to 0.03/0.15% by weight, Nb0.03~0.
15, a metal joint member is wear-welded to the end of an elliptical tube shaft made of non-tempered low-alloy high-strength steel with a composition of 20 to 60 ppg+ N (nitrogen), Fe balance, and unavoidable impurities. A rotary drive shaft was proposed.
斯かる回転駆動軸を採用することにより次の作用が得ら
れる。By employing such a rotary drive shaft, the following effects can be obtained.
■円軸管が非調質型低合金高張力鋼で形成されているた
め、J?擦溶接熱影響部の強度低下がほとんどなく、事
後のFIJ質処理を省略することにより、゛製造工数の
削減を翳1り得る。■Since the circular shaft tube is made of non-tempered low alloy high tensile strength steel, J? There is almost no decrease in the strength of the friction welded heat affected zone, and by omitting the subsequent FIJ quality treatment, it is possible to reduce the number of manufacturing steps.
■前項■と同じ押出により、円軸管端部の増肉を行なわ
すとも良く、増肉のための加工を省略することができ(
’HN工数の削減)、また回転駆動軸の軽7化をJlり
得る。■It is also possible to increase the thickness of the end of the cylindrical tube by the same extrusion as in the previous section (■), and the processing for increasing the thickness can be omitted (
'Reduction of HN man-hours) and lighter weight rotary drive shafts.
■回転駆動軸の軽聞化により、伝達動力損失の低減化を
計り得る。■By making the rotary drive shaft lighter, it is possible to reduce transmission power loss.
■回転駆動軸の溶接接合端部を厚肉化しないことにより
、固有角振動数の低下を防ぐことができ、振vJ騒音の
発生を抑制し得る。(2) By not increasing the thickness of the welded joint end of the rotary drive shaft, it is possible to prevent a decrease in the natural angular frequency and suppress the generation of vibration VJ noise.
第1図は公知に係る回転駆動軸および本発明の一実施例
に係る回転駆動軸の摩擦溶接接合部近傍における硬度分
布を示すグラフ、第2図は公知に係る回転駆動軸の要部
断面図、第3図は本発明の一実施例に係る回転駆動軸の
要部断面図、第4図は公知に係る回転駆動軸および本発
明の一実施例に係る回転駆動軸の両振ねしり疲労試験結
果を示すグラフである。
1・・・回転駆動軸、2・・・円軸管、3・・・継手部
材。FIG. 1 is a graph showing the hardness distribution in the vicinity of the friction welded joint of a rotary drive shaft according to a known example and a rotary drive shaft according to an embodiment of the present invention, and FIG. 2 is a sectional view of a main part of a rotary drive shaft according to a known method. , FIG. 3 is a cross-sectional view of a main part of a rotary drive shaft according to an embodiment of the present invention, and FIG. 4 is a diagram showing double vibration torsional fatigue of a known rotary drive shaft and a rotary drive shaft according to an embodiment of the present invention. It is a graph showing test results. 1... Rotation drive shaft, 2... Circular shaft tube, 3... Joint member.
Claims (2)
重量%、Mn1.0〜2.0重量%、Ti0.03〜0
.15重量%、V0.03〜0.15重量%、Nb0.
03〜0.15、N(窒素)20〜60ppm、Fe残
部、および不可避不純物なる組成の非調質型低合金高張
力鋼で形成された円管軸の端部に、金属製継手部材を摩
擦溶接接合してなる回転駆動軸。(1) C0.05-0.2% by weight, Si0.1-0.4
Weight %, Mn 1.0-2.0 weight %, Ti 0.03-0
.. 15% by weight, V0.03-0.15% by weight, Nb0.
A metal joint member is frictionally attached to the end of a circular tube shaft made of non-tempered low-alloy high-strength steel with a composition of 03 to 0.15, 20 to 60 ppm of N (nitrogen), the remainder of Fe, and unavoidable impurities. A rotary drive shaft made by welding.
制する形式の回転駆動軸であって、摩擦溶接接合部に至
る円管軸の断面積が均等な特許請求の範囲第1項に記載
された回転駆動軸。(2) A rotary drive shaft of a type in which vibration is suppressed by press-fitting a vibration damping body made of an elastic material into the inside thereof, and the cross-sectional area of the circular tube shaft leading to the friction welded joint is equal. The rotary drive shaft described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5693287A JPS63225714A (en) | 1987-03-13 | 1987-03-13 | Rotary driving shaft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5693287A JPS63225714A (en) | 1987-03-13 | 1987-03-13 | Rotary driving shaft |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63225714A true JPS63225714A (en) | 1988-09-20 |
Family
ID=13041288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5693287A Pending JPS63225714A (en) | 1987-03-13 | 1987-03-13 | Rotary driving shaft |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63225714A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04160216A (en) * | 1990-10-24 | 1992-06-03 | Mitsubishi Motors Corp | Propeller shaft of vehicle |
US6244496B1 (en) * | 1997-12-25 | 2001-06-12 | Tokai Rubber Industries, Ltd. | Connected structure and method for manufacturing the same |
JP2008031494A (en) * | 2006-07-26 | 2008-02-14 | Jfe Steel Kk | Low-alloy structural steel for friction stir welding |
JP2008255369A (en) * | 2007-03-30 | 2008-10-23 | Jfe Steel Kk | High-strength, high-workability hot rolled steel sheet having excellent workability in friction stir welding process, and its manufacturing method |
US20140103643A1 (en) * | 2012-10-16 | 2014-04-17 | Smith International, Inc. | Friction welded heavy weight drill pipes |
CN104129231A (en) * | 2014-07-30 | 2014-11-05 | 安徽江淮汽车股份有限公司 | Structure for reducing resonance in vehicle at specific rotating speed |
US20180001571A1 (en) * | 2016-07-01 | 2018-01-04 | Lenlok Holdings, Llc | Fluid system and method of manufacture via friction welding |
-
1987
- 1987-03-13 JP JP5693287A patent/JPS63225714A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04160216A (en) * | 1990-10-24 | 1992-06-03 | Mitsubishi Motors Corp | Propeller shaft of vehicle |
US6244496B1 (en) * | 1997-12-25 | 2001-06-12 | Tokai Rubber Industries, Ltd. | Connected structure and method for manufacturing the same |
JP2008031494A (en) * | 2006-07-26 | 2008-02-14 | Jfe Steel Kk | Low-alloy structural steel for friction stir welding |
JP2008255369A (en) * | 2007-03-30 | 2008-10-23 | Jfe Steel Kk | High-strength, high-workability hot rolled steel sheet having excellent workability in friction stir welding process, and its manufacturing method |
US20140103643A1 (en) * | 2012-10-16 | 2014-04-17 | Smith International, Inc. | Friction welded heavy weight drill pipes |
US9816328B2 (en) * | 2012-10-16 | 2017-11-14 | Smith International, Inc. | Friction welded heavy weight drill pipes |
CN104129231A (en) * | 2014-07-30 | 2014-11-05 | 安徽江淮汽车股份有限公司 | Structure for reducing resonance in vehicle at specific rotating speed |
US20180001571A1 (en) * | 2016-07-01 | 2018-01-04 | Lenlok Holdings, Llc | Fluid system and method of manufacture via friction welding |
US10850451B2 (en) * | 2016-07-01 | 2020-12-01 | Lenlok Holdings, Llc | Fluid system and method of manufacture via friction welding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4687712B2 (en) | Induction hardening hollow drive shaft | |
EP1743950B1 (en) | Seamless steel pipe and method for production thereof | |
JP3524229B2 (en) | High toughness case hardened steel machine parts and their manufacturing method | |
JP2000154828A (en) | Outer ring for constant velocity universal joint excellent in anti-flaking characteristic and shaft strength and manufacture thereof | |
EP0643148A1 (en) | Steel material for induction-hardened shaft part and shaft part made therefrom | |
JPS63225714A (en) | Rotary driving shaft | |
JP4272284B2 (en) | ERW welded steel pipe for hollow stabilizers with excellent fatigue durability | |
JP2000154819A (en) | High strength drive shaft and manufacture thereof | |
JP3876384B2 (en) | High strength connecting rod and manufacturing method thereof | |
KR20090046896A (en) | Frictionally press-bonded member | |
JPS5935619A (en) | Production of high tensile steel material having excellent toughness of weld zone | |
WO2021255858A1 (en) | Steel sheet | |
JP3859382B2 (en) | Power transmission shaft | |
JP2002018593A (en) | Welding material for low alloy heat resistant steel and weld metal | |
US6800144B2 (en) | Process for producing retainer for constant velocity joint possessing improved machinability and flexural strength | |
JPH0468374B2 (en) | ||
JPH10263817A (en) | Manufacture of high strength welded joint having excellent crack resistance | |
JPH0551692A (en) | High strength electric resistance-welded tube for automobile use excellent in fatigue characteristic | |
JPH0978127A (en) | Production of high strength and high toughness axial parts for mechanical structure | |
US8070890B2 (en) | Induction hardened hollow driving shaft | |
JP3526702B2 (en) | Steel plate for high tensile welded structure excellent in fatigue strength of welded joint and method for producing the same | |
JP2020165455A (en) | Drive shaft and manufacturing method therefore | |
JPS6152225B2 (en) | ||
JPS59170220A (en) | Production of un-tempered type low temperature steel plate | |
JPH07268538A (en) | High toughness non-heat treated steel excellent in free-cutting |