JPH0468374B2 - - Google Patents

Info

Publication number
JPH0468374B2
JPH0468374B2 JP58220776A JP22077683A JPH0468374B2 JP H0468374 B2 JPH0468374 B2 JP H0468374B2 JP 58220776 A JP58220776 A JP 58220776A JP 22077683 A JP22077683 A JP 22077683A JP H0468374 B2 JPH0468374 B2 JP H0468374B2
Authority
JP
Japan
Prior art keywords
less
strength
delayed fracture
steel
bolts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58220776A
Other languages
Japanese (ja)
Other versions
JPS60114551A (en
Inventor
Kenji Isokawa
Kunio Namiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP22077683A priority Critical patent/JPS60114551A/en
Publication of JPS60114551A publication Critical patent/JPS60114551A/en
Publication of JPH0468374B2 publication Critical patent/JPH0468374B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、強度140〜160Kgf/mm2級の高強度
が得られ、しかも耐遅れ破壊性にも優れており、
ボルトの高強度化および小型化に十分対応するこ
とができる高強度ボルト用鋼に関するものであ
る。 (従来技術) 近年、各種機械構造物等の軽量化および小型化
の要請が強くなつており、自動車においても燃費
の低減および走行性能の向上を目的とした部品の
軽量化および小型化が盛んに進められるようにな
つてきている。そのため各種部品を締結するボル
トについても高強度の設計仕様とする要求が強く
なつてきている。すなわち、例えば部品を小型化
すればボルトも小型のものにする必要があり、所
定の締付け力を確保するためにはボルトの使用本
数を増すかボルトの強度を高めることが考えられ
るが、小型化した部品の締結においてボルト本数
を増すことには無理が生じやすく、結局ボルトの
強度を高める必要性がでてくる。 従来、ボルトの高強度化に際し、成分調整や調
質等を考慮することがよく行われているが、引張
強さが120Kgf/mm2を超えると耐遅れ破壊性が劣
化することが知られており、そのため140〜160Kg
f/mm2級で用いられた例は少ない。 (発明の目的) この発明は、上述した従来の問題点に着目して
なされたもので、強度140〜160Kgf/mm2級の高強
度であつても耐遅れ破壊性の優れたボルト用鋼を
提供することを目的としている。 (発明の構成) 上記目的に従つて、高強度ボルトにおける遅れ
破壊発生機構を詳細に検討し、合金元素および不
純物元素の影響を詳しく調査した。その結果、遅
れ破壊クラツクは一般にオーステナイト粒界を起
点・伝揺経路として発生することが明らかとな
り、これに基いて研究を進めた結果この発明を完
成したものである。すなわち、この発明による高
強度ボルト用鋼は、重量%で、C:0.30%以上
0.50%以下、Si:0.15%未満、Mn:0.10%以上
0.40%以下、P:0.015%以下、S:0.010%以下、
Cr:0.50%以上4.50%以下、Mo:0.10%以上0.70
%以下、および必要に応じてV:0.05以上0.15以
下、Nb:0.05以上0.15%以下、Ti:0.05%以上
0.15%以下のうち1種または2種以上、でかつSi
(%)+Mn(%)+10(P(%)+S(%)):0.45%

下、残部実質的にFeよりなり、強度140〜160Kg
f/mm2級の高強度に調質したときでも耐遅れ破壊
性に著しくすぐれたものであることを特徴として
いる。 次に、この発明による高強度ボルト用鋼の成分
範囲(重量%)の限定理について説明する。 C(炭素):0.30%以上0.50%以下 Cは調質によつて強度140〜160Kgf/mm2級の高
強度を確保するために0.30%以上含有させること
が必要であるが、多すぎると靭延性を劣化させる
と共に耐遅れ破壊性をも劣化させるので0.50%以
下とした。 Si(けい素):0.15%未満 Siは溶製時の脱酸剤として作用する元素である
が、多すぎるとPの偏析を助長し、粒界酸化を促
進して、これが遅れ破壊の起点となるので、この
ようなPの偏析および粒界酸化を防止するため
0.15%未満とした。 Mn(マンガン):0.10%0.40%以下 Mnは溶製時の脱酸・脱硫剤として作用すると
共に、焼入性の向上に寄与する元素であり、他の
成分とのバランスで例えばM10ボルトの中心まで
100%マルテンサイト組織を得るためには0.10%
以上含有させることが必要である。しかし、Mn
はSiと同様にPの偏析を助長し、粒界酸化を促進
する元素であるので、Pの偏析および粒界酸化防
止するために0.40%以下とした。 P(りん):0.015%以下 Pはオーステナイト化時にオーステナイト粒界
に偏析し、粒界を脆化させ、粒界強度を低下して
耐遅れ破壊性を劣化させるので0.015%以下とし
た。 S(いおう):0.010%以下 Sはオーステナイト化時にオーステナイト粒界
に偏析するとともに、MnSとしても存在し、耐
遅れ破壊性を劣化させるため0.010%以下とした。 Cr(クロム):0.50%以上4.50%以下 Crは焼入性を確保すると共に、靭延性を確保
した高温焼もどし(約500℃以上)において強度
140〜160Kgf/mm2級の高強度を得るために0.50%
以上含有させることが必要である。しかし、Cr
量が増加すると約550℃を超えた領域での焼もど
し硬さが急激に低下し、安定した強度が得にくく
なるので4.50%以下とした。 Mo(モリブデン):0.10%以上0.70%以下 MoはCおよびCrとのバランスにもよるが約
500℃以上の焼もどし温度で強度140〜160Kgf/
mm2級の高強度を得るのに最低0.10%含有させるこ
とが必要であり、また、Pの粒界偏析を防止し、
粒界強度を高めて耐遅れ破壊性を向上させる効果
があるので、これらの点から0.10%以上とした。
しかし、この鋼においては0.70%を超えて含有さ
せても効果の向上はさほどみられず、また高価な
元素でもあるので0.70%以下とした。 Si(%)+Mn(%)+10(P(%)+S(%))0.5%

下 Si,Mn,P,Sは上述の範囲に規制したが、
上記成分範囲においてSi(%)+Mn(%)+10(P
(%)+S(%))で算出した値が0.45%以下であれ
ば、強度140〜160Kgf/mm2級の高強度であつても
十分な耐遅れ破壊性が得られ、現用の130Kgf/
mm2級のJIS SCM440と同等の耐遅れ破壊性が得ら
れることを種々の実験より確かめた。 V(バナジウム):0.05%以上0.15%以下、Nb(ニ
オブ):0.05%以上0.15%以下、Ti(チタン):0.05
%以上0.15%以下のうちの1種または2種以上 V,Nb,Tiいずれも炭窒化物を形成し、結晶
粒の微細化に効果があり、耐力および靭延性の向
上に有効な元素であるので必要に応じてこれらの
元素の1種または2種以上を各元素について0.05
%以上添加することもよい。しかし、必要以上に
添加しても上記の効果は飽和するので各元素につ
いて0.15%以下とするのがよい。なお、Nbの一
部をTaで置換することも可能である。 さらに、Cu(銅)、Ni(ニツケル)等の元素につ
いては、JIS規格以下(例えばCu:0.30%以下、
Ni:0.25%以下)の範囲で添加することもこの発
明の高強度ボルト用鋼に当然含まれる。 (実施例) 表1に示す化学成分の鋼を50Kg容量の真空誘導
溶解炉で溶製したのち造塊し、鍛造および焼なら
しを行つたのち試験片に加工した。このとき、試
験片は、引張試験片としてJIS 4号の規定に準じ
たものを用い、また遅れ破壊試験片として第1図
に示すL=20mm,D=6mm,d=4mm,R=0.1
mmの寸法になるものを用いた。 次に、前記各試験片に対し、950℃×30分加熱
後油冷の焼入れを行い、次いで各鋼種に対し引張
強さ150Kgf/mm2±5Kgf/mm2が得られる表2に
示す温度に1時間加熱したのち空冷する焼もどし
を行い、その後各試験片に対して引張試験および
遅れ破壊試験を行つた。 なお、遅れ破壊試験は曲げ型促進試験により行
い、第1図に示す試験片に細径部に0.1N−HCl
を滴下しながら曲げ応力を加え、曲げ応力と破断
時間との関係を調べて遅れ破壊曲線を作成し、30
時間強度(σ30hr)/静曲げ応力(σSB)の値すな
わち30時間強度比で評価した。この結果を同じく
表2および第2図に示す。
(Industrial Application Field) This invention has a high strength of 140 to 160 Kgf/mm, grade 2 , and also has excellent delayed fracture resistance.
The present invention relates to a steel for high-strength bolts that can sufficiently respond to increases in strength and miniaturization of bolts. (Prior art) In recent years, there has been a strong demand for lighter and smaller mechanical structures, etc., and automobile parts are also increasingly being made lighter and smaller in order to reduce fuel consumption and improve driving performance. We are starting to be able to move forward. Therefore, there is an increasing demand for high-strength design specifications for bolts that fasten various parts. In other words, for example, if the parts are made smaller, the bolts must also be made smaller, and in order to secure the specified tightening force, it is possible to increase the number of bolts used or increase the strength of the bolts, but miniaturization Increasing the number of bolts to fasten these parts tends to be unreasonable, and as a result, it becomes necessary to increase the strength of the bolts. Conventionally, when increasing the strength of bolts, consideration has often been given to component adjustment and thermal refining, but it is known that delayed fracture resistance deteriorates when the tensile strength exceeds 120 Kgf/ mm2 . Therefore, the weight is 140~160Kg
There are few examples of f/mm 2nd class use. (Purpose of the Invention) This invention has been made by focusing on the above-mentioned conventional problems, and has developed a steel for bolts that has a high strength of 140 to 160 Kgf/mm class 2 and has excellent delayed fracture resistance. is intended to provide. (Structure of the Invention) In accordance with the above objectives, the mechanism of delayed fracture occurrence in high-strength bolts was studied in detail, and the effects of alloying elements and impurity elements were investigated in detail. As a result, it became clear that delayed fracture cracks generally occur with austenite grain boundaries as the origin and propagation path, and this invention was completed as a result of research based on this. That is, the steel for high-strength bolts according to the present invention has C: 0.30% or more in weight%.
0.50% or less, Si: less than 0.15%, Mn: 0.10% or more
0.40% or less, P: 0.015% or less, S: 0.010% or less,
Cr: 0.50% or more and 4.50% or less, Mo: 0.10% or more and 0.70
% or less, and if necessary V: 0.05 or more and 0.15 or less, Nb: 0.05 or more and 0.15% or less, Ti: 0.05% or more
One or more of 0.15% or less, and Si
(%) + Mn (%) + 10 (P (%) + S (%)): 0.45%
The remainder is essentially made of Fe, with a strength of 140 to 160 kg.
It is characterized by outstanding delayed fracture resistance even when tempered to a high strength of f/mm 2 class. Next, the limiting theorem for the composition range (weight %) of the steel for high-strength bolts according to the present invention will be explained. C (carbon): 0.30% or more and 0.50% or less C has a strength of 140 to 160 Kgf/mm by heat refining.It is necessary to contain 0.30% or more to ensure high strength of class 2 , but if it is too much, it will deteriorate the toughness. Since it deteriorates ductility and delayed fracture resistance, it is set at 0.50% or less. Si (silicon): Less than 0.15% Si is an element that acts as a deoxidizing agent during melting, but if it is too large, it promotes the segregation of P and accelerates grain boundary oxidation, which becomes the starting point of delayed fracture. Therefore, in order to prevent such P segregation and grain boundary oxidation,
It was set to less than 0.15%. Mn (manganese): 0.10% 0.40% or less Mn acts as a deoxidizing and desulfurizing agent during melting and is an element that contributes to improving hardenability. to
0.10% to obtain 100% martensitic structure
It is necessary to contain the above amount. However, Mn
Like Si, P is an element that promotes segregation of P and promotes oxidation at grain boundaries, so it is set to 0.40% or less to prevent segregation of P and oxidation at grain boundaries. P (phosphorus): 0.015% or less P segregates at austenite grain boundaries during austenitization, embrittles the grain boundaries, reduces grain boundary strength, and deteriorates delayed fracture resistance, so it is set to 0.015% or less. S (sulfur): 0.010% or less S segregates at austenite grain boundaries during austenitization, and also exists as MnS, which deteriorates delayed fracture resistance, so the content was set to 0.010% or less. Cr (Chromium): 0.50% to 4.50% Cr not only ensures hardenability but also increases strength during high-temperature tempering (approximately 500°C or higher) that ensures toughness and ductility.
140~160Kgf/mm 0.50% to obtain class 2 high strength
It is necessary to contain the above amount. However, Cr
If the amount increases, the tempering hardness in the region exceeding about 550°C will decrease rapidly, making it difficult to obtain stable strength, so it was set to 4.50% or less. Mo (molybdenum): 0.10% to 0.70% Mo depends on the balance with C and Cr, but about
Strength 140~160Kgf/at tempering temperature of 500℃ or higher
It is necessary to contain P at least 0.10% to obtain high strength of mm 2 class, and it also prevents grain boundary segregation of P.
Since it has the effect of increasing grain boundary strength and improving delayed fracture resistance, from these points of view it is set to 0.10% or more.
However, in this steel, even if the content exceeds 0.70%, the effect does not improve much, and since it is an expensive element, the content was set at 0.70% or less. Si (%) + Mn (%) + 10 (P (%) + S (%)) 0.5%
Below, Si, Mn, P, and S are regulated within the ranges mentioned above.
In the above component range, Si (%) + Mn (%) + 10 (P
If the value calculated by (%) + S (%)) is 0.45% or less, sufficient delayed fracture resistance can be obtained even with a high strength of 140 to 160 Kgf/mm class 2 , and the current 130 Kgf/mm
It was confirmed through various experiments that delayed fracture resistance equivalent to mm 2 class JIS SCM440 can be obtained. V (vanadium): 0.05% to 0.15%, Nb (niobium): 0.05% to 0.15%, Ti (titanium): 0.05
% to 0.15% V, Nb, and Ti all form carbonitrides, are effective in refining crystal grains, and are effective elements in improving yield strength and toughness and ductility. Therefore, if necessary, add one or more of these elements to 0.05 for each element.
% or more may be added. However, even if more than necessary is added, the above effects will be saturated, so it is preferable to limit each element to 0.15% or less. Note that it is also possible to partially replace Nb with Ta. Furthermore, elements such as Cu (copper) and Ni (nickel) must be below JIS standards (for example, Cu: 0.30% or less,
Naturally, the addition of Ni within the range of 0.25% or less is also included in the high-strength bolt steel of the present invention. (Example) Steel having the chemical composition shown in Table 1 was melted in a vacuum induction melting furnace with a capacity of 50 kg, then formed into an ingot, forged and normalized, and then processed into a test piece. At this time, the test piece used was a tensile test piece that complied with the provisions of JIS No. 4, and a delayed fracture test piece was used as shown in Figure 1: L=20 mm, D=6 mm, d=4 mm, R=0.1.
A material with dimensions of mm was used. Next, each test piece was heated at 950°C for 30 minutes and then quenched with oil cooling, and then heated to the temperature shown in Table 2 to obtain a tensile strength of 150Kgf/mm 2 ±5Kgf/mm 2 for each steel type. Tempering was performed by heating for 1 hour and then air cooling, and then a tensile test and a delayed fracture test were performed on each test piece. The delayed fracture test was performed by an accelerated bending test, and 0.1N-HCl was applied to the small diameter part of the test piece shown in Figure 1.
Applying bending stress while dropping 30 minutes, we investigated the relationship between bending stress and rupture time to create a delayed fracture curve.
Evaluation was made using the value of time strength (σ 30hr )/static bending stress (σSB), that is, the 30 hour strength ratio. The results are also shown in Table 2 and FIG.

【表】【table】

【表】 上記表2および第2図に示すように、強度140
〜160Kgf/mm2級の高強度において、本発明鋼
(,)はいずれも比較鋼および通常鋼
(SCM440)に比べて耐遅れ破壊性が著しく優れ
ており、強度130Kgf/mm2級に調質したSCM440
の耐遅れ破壊性とほぼ同等のものである。そし
て、V,Nb,Tiを添加することによつて延性お
よび耐遅れ破壊性をより向上できることが確かめ
られた。 さらに、本発明鋼Aおよび通常鋼Lにおける粒
界酸化状況を調べたところ、本発明鋼Aでは第3
図に示すように粒界酸化が著しく少なかつたのに
対して、通常鋼Lではかなり粒界酸化を生じてい
ることが認められた。 (発明の効果) 以上説明してきたように、この発明の高強度ボ
ルト用鋼は、重量%で、C:0.30%以上0.50%以
下、Si:0.15%未満、Mn:0.10%以上0.40%以
下、P:0.015%以下、S:0.010%以下、Cr:
0.50%以上4.50%以下、Mo:0.10%以上0.70%以
下、および必要に応じてV:0.05%以上0.15%以
下、Nb:0.05%以上0.15%以下、Ti0.05%以上
0.15%以下のちの1種または2種以上、でかつSi
(%)+Mn(%)+10(P(%)+S(%)):0.45%

下、残部実質的にFeよりなるものであるから、
強度140〜160Kgf/mm2級の高強度に調質したとき
でも耐遅れ破壊性に著しく優れたものであり、ボ
ルトの高強度化および同強度での小型化に十分対
応することが可能であり、例えば自動車部品の高
強度化、小型化に伴つて要求される高強度ボルト
の素材としても好適に使用することができるとい
う非常に優れた効果を有している。
[Table] As shown in Table 2 and Figure 2 above, strength 140
In terms of high strength of ~160Kgf/mm 2nd grade, the steels of the present invention (,) are significantly superior in delayed fracture resistance compared to comparison steel and conventional steel (SCM440), and are tempered to a strength of 130Kgf/mm 2nd grade. SCM440
This is almost equivalent to the delayed fracture resistance of It was also confirmed that ductility and delayed fracture resistance can be further improved by adding V, Nb, and Ti. Furthermore, when we investigated the grain boundary oxidation status in inventive steel A and conventional steel L, we found that in inventive steel A, the
As shown in the figure, there was significantly less grain boundary oxidation, whereas in ordinary steel L, it was recognized that grain boundary oxidation occurred considerably. (Effects of the Invention) As explained above, the high-strength bolt steel of the present invention has, in weight percent, C: 0.30% or more and 0.50% or less, Si: less than 0.15%, Mn: 0.10% or more and 0.40% or less, P: 0.015% or less, S: 0.010% or less, Cr:
0.50% or more and 4.50% or less, Mo: 0.10% or more and 0.70% or less, and as required V: 0.05% or more and 0.15% or less, Nb: 0.05% or more and 0.15% or less, Ti 0.05% or more
0.15% or less of one or more of the following, and Si
(%) + Mn (%) + 10 (P (%) + S (%)): 0.45%
Hereinafter, since the remainder essentially consists of Fe,
Strength: 140-160Kgf/mm Even when tempered to a high strength of class 2 , it has outstanding delayed fracture resistance, and is fully compatible with increasing the strength of bolts and downsizing them with the same strength. For example, it has a very excellent effect that it can be suitably used as a material for high-strength bolts, which are required as automobile parts become stronger and smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例において使用した遅
れ破壊試験片の説明図、第2図はSi,Mn,P,
S量による遅れ破壊特性への影響を調べた結果を
示すグラフ、第3図は本発明鋼Aの粒界酸化状況
を示す金属組織顕微鏡写真(500倍)、第4図は通
常鋼Lの粒界酸化状況を示す金属組織顕微鏡写真
(500倍)である。
Fig. 1 is an explanatory diagram of a delayed fracture test piece used in an example of this invention, and Fig. 2 is an explanatory diagram of a delayed fracture test piece used in an example of this invention.
A graph showing the results of investigating the influence of S content on delayed fracture properties. Figure 3 is a metallographic micrograph (500x) showing the grain boundary oxidation status of invention steel A. Figure 4 shows grain boundaries of conventional steel L. This is a metallographic micrograph (500x) showing the state of field oxidation.

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.30%以上0.50%以下、Si:
0.15%未満、Mn:0.10%以上0.40%以下、P:
0.015%以下、S:0.010%以下、Cr:0.50%以上
4.50%以下、Mo:0.10%以上0.70%以下、でかつ
Si(%)+Mn(%)+10(P(%)+S(%)):0.45

以下、残部実質的にFeよりなることを特徴とす
る耐遅れ破壊性の優れた強度140〜160Kgf/mm2
の高強度ボルト用鋼。 2 重量%で、C:0.30%以上0.50%以下、Si:
0.15%未満、Mn:0.10%以上0.40%以下、P:
0.015%以下、S:0.010%以下、Cr:0.50%以上
4.50%以下、Mo:0.10%以上0.70%以下、および
V:0.05%以上0.15%以下、Nb:0.05%以上0.15
%以下、Ti:0.05%以上0.15%以下のうちの1種
または2種以上、でかつSi(%)+Mn(%)+10(P
(%)+S(%)):0.45%以下、残部実質的にFeよ
りなることを特徴とする耐遅れ破壊性の優れた強
度140〜160Kgf/mm2級の高強度ボルト用鋼。
[Claims] 1% by weight, C: 0.30% or more and 0.50% or less, Si:
Less than 0.15%, Mn: 0.10% or more and 0.40% or less, P:
0.015% or less, S: 0.010% or less, Cr: 0.50% or more
4.50% or less, Mo: 0.10% or more and 0.70% or less, big
Si (%) + Mn (%) + 10 (P (%) + S (%)): 0.45
%
The following is a high-strength steel for bolts having a strength of 140 to 160 Kgf/mm 2 and having excellent delayed fracture resistance, the remainder being substantially composed of Fe. 2 In weight%, C: 0.30% or more and 0.50% or less, Si:
Less than 0.15%, Mn: 0.10% or more and 0.40% or less, P:
0.015% or less, S: 0.010% or less, Cr: 0.50% or more
4.50% or less, Mo: 0.10% or more and 0.70% or less, and V: 0.05% or more and 0.15% or less, Nb: 0.05% or more and 0.15
% or less, Ti: one or more of 0.05% to 0.15%, and Si (%) + Mn (%) + 10 (P
(%) + S (%)): 0.45% or less, the balance being substantially Fe, and a 140-160 Kgf/mm 2 class high-strength bolt steel with excellent delayed fracture resistance.
JP22077683A 1983-11-25 1983-11-25 High strength bolt steel Granted JPS60114551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22077683A JPS60114551A (en) 1983-11-25 1983-11-25 High strength bolt steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22077683A JPS60114551A (en) 1983-11-25 1983-11-25 High strength bolt steel

Publications (2)

Publication Number Publication Date
JPS60114551A JPS60114551A (en) 1985-06-21
JPH0468374B2 true JPH0468374B2 (en) 1992-11-02

Family

ID=16756382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22077683A Granted JPS60114551A (en) 1983-11-25 1983-11-25 High strength bolt steel

Country Status (1)

Country Link
JP (1) JPS60114551A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130456A (en) * 1984-11-29 1986-06-18 Honda Motor Co Ltd High-strength bolt and its production
JPS61174326A (en) * 1985-01-29 1986-08-06 Sumitomo Metal Ind Ltd Production of machine structural steel having superior delayed fracture resistance
JP2739713B2 (en) * 1987-08-19 1998-04-15 本田技研工業株式会社 High strength bolt
JP2614659B2 (en) * 1989-05-31 1997-05-28 株式会社神戸製鋼所 High strength bolt steel with delayed fracture resistance and cold forgeability
US5180450A (en) * 1990-06-05 1993-01-19 Ferrous Wheel Group Inc. High performance high strength low alloy wrought steel
KR101604938B1 (en) 2012-01-11 2016-03-18 가부시키가이샤 고베 세이코쇼 Steel for bolts, bolt, and method for producing bolt

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117856A (en) * 1982-01-06 1983-07-13 Daido Steel Co Ltd High-strength bolt steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117856A (en) * 1982-01-06 1983-07-13 Daido Steel Co Ltd High-strength bolt steel

Also Published As

Publication number Publication date
JPS60114551A (en) 1985-06-21

Similar Documents

Publication Publication Date Title
JP3491030B2 (en) Stainless steel for disk shakers
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP3699077B2 (en) Base material for clad steel plate excellent in low temperature toughness of weld heat affected zone and method for producing the clad steel plate
JPH0545660B2 (en)
JPS6349738B2 (en)
JPH0468374B2 (en)
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JP3422658B2 (en) Heat resistant steel
JPH01316441A (en) Heat-resistant steel having excellent toughness
US3373015A (en) Stainless steel and product
JP3387145B2 (en) High Cr ferritic steel with excellent high temperature ductility and high temperature strength
JP3355711B2 (en) High Cr ferritic heat resistant steel with excellent high temperature strength and toughness
JPH07278672A (en) Manufacture of high strength bolt excellent in delayed crack resistance
JP3396372B2 (en) Low Cr ferritic steel with excellent high temperature strength and weldability
JP3338241B2 (en) Cr-Mo steel with excellent hardenability
JPH0931600A (en) Steam turbine rotor material for high temperature use
JP2634961B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JPH1136043A (en) Steel for high temperature-high pressure vessel excellent in creep embrittlement resistance and reheat cracking resistance
JPH07207412A (en) Steel for grain stabilizing carburization
JP3581458B2 (en) High temperature steam turbine rotor material
JP3999334B2 (en) Method for preventing delayed fracture of high strength steel
JP2670937B2 (en) Manufacturing method of high strength bolt
JPH09143632A (en) Precipitation hardening stainless steel
JP2001098351A (en) Martensitic stainless steel of high strength precipitation hardening
JP3499275B2 (en) Precipitation hardening stainless steel