JPH0931600A - Steam turbine rotor material for high temperature use - Google Patents

Steam turbine rotor material for high temperature use

Info

Publication number
JPH0931600A
JPH0931600A JP17976995A JP17976995A JPH0931600A JP H0931600 A JPH0931600 A JP H0931600A JP 17976995 A JP17976995 A JP 17976995A JP 17976995 A JP17976995 A JP 17976995A JP H0931600 A JPH0931600 A JP H0931600A
Authority
JP
Japan
Prior art keywords
turbine rotor
steam turbine
high temperature
creep rupture
rotor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17976995A
Other languages
Japanese (ja)
Other versions
JP3310825B2 (en
Inventor
Masatomo Kamata
政智 鎌田
Akiji Fujita
明次 藤田
Ikujiro Kitagawa
幾次郎 北川
Katsuo Kako
勝夫 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Casting and Forging Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Japan Casting and Forging Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Casting and Forging Corp, Mitsubishi Heavy Industries Ltd filed Critical Japan Casting and Forging Corp
Priority to JP17976995A priority Critical patent/JP3310825B2/en
Priority to EP96103067A priority patent/EP0754774A1/en
Publication of JPH0931600A publication Critical patent/JPH0931600A/en
Application granted granted Critical
Publication of JP3310825B2 publication Critical patent/JP3310825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam turbine rotor material for high temp. use, applicable to high temp. steam conditions, by forming a Cr steel having a composition in which respective contents of C, Si, Mn, Cr, V, Nb, Ta, N, Mo, W, and Co are specified SOLUTION: This steam turbine rotor material for high temp. use has a composition consisting of, by weight ratio, 0.05-0.13% C, 0.005-0.10% Si, 0.01-0.5% Mn, 9-12% Cr, 0.1-0.3% V, 0.01-0.15%, in total, of Nb and Ta, 0.01-0.1% N, 0.05-0.5% Mo, 1.5-3% W, 1-4% Co, and the balance Fe with inevitable impurities. If necessary, a part of Fe is substituted by B and B is incorporated by 0.001-0.03%. B has a function of increasing grain boundary strength and contributes to the improvement of creep rupture strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は火力発電用蒸気ター
ビンロータ材に関する。
The present invention relates to a steam turbine rotor material for thermal power generation.

【0002】[0002]

【従来の技術】火力発電用蒸気タービンプラントに用い
られる高温用ロータ材としては、CrMoV鋼や12C
r鋼があげられる。このうち、CrMoV鋼は高温強度
の限界から566℃までの蒸気温度のプラントに制限さ
れる。一方、12Cr鋼製のロータ材(例えば特開昭6
0−165359号、特開昭62−103345号各公
報など)は高温強度がCrMoV鋼よりも優れているた
め、最高600℃までの蒸気温度のプラントに適用する
ことも可能であるが、これを越える温度に対しては高温
強度が不足することから蒸気タービンロータとしての適
用は困難である。
2. Description of the Related Art High-temperature rotor materials used in steam turbine plants for thermal power generation include CrMoV steel and 12C.
r Steel is an example. Of these, CrMoV steel is limited to plants with steam temperatures up to 566 ° C. due to high temperature strength limitations. On the other hand, a rotor material made of 12Cr steel (for example, Japanese Unexamined Patent Publication No.
0-165359, JP-A-62-103345, etc.) has higher high temperature strength than CrMoV steel, so it can be applied to a plant having a steam temperature up to 600 ° C. It is difficult to apply as a steam turbine rotor because the high temperature strength is insufficient for the temperature exceeding the limit.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は12
Cr系鋼の材料で600℃以上の蒸気条件で適用できる
高温強度の優れた高温用蒸気タービンロータ材を提供す
るものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides
It is intended to provide a high temperature steam turbine rotor material which is a Cr-based steel material and can be applied under a steam condition of 600 ° C. or higher and which has excellent high temperature strength.

【0004】[0004]

【課題を解決するための手段】このため、本発明者らは
鋭意研究を重ねた結果、以下に示す優れた高温用蒸気タ
ービンロータ材を発明した。すなわち、本発明は(1)
重量比で炭素:0.05〜0.13%、シリコン:0.
005〜0.1%、マンガン:0.01〜0.5%、ク
ロム:9〜12%、バナジウム:0.1〜0.3%、ニ
オブ及び/又はタンタルの合計:0.01〜0.15
%、窒素:0.01〜0.1%、モリブデン:0.05
〜0.5%、タングステン:1.5〜3%、コバルト:
1〜4%及び不可避的不純物及び鉄からなることを特徴
とする高温用蒸気タービンロータ材及び(2)鉄の一部
をボロンで置換し、重量比でボロン:0.001〜0.
03%含有してなることを特徴とする上記(1)記載の
高温用蒸気タービンロータ材である。
Therefore, as a result of intensive studies, the present inventors have invented the following excellent high temperature steam turbine rotor material. That is, the present invention is (1)
Carbon: 0.05 to 0.13% by weight, silicon: 0.
005-0.1%, manganese: 0.01-0.5%, chromium: 9-12%, vanadium: 0.1-0.3%, total of niobium and / or tantalum: 0.01-0. 15
%, Nitrogen: 0.01 to 0.1%, molybdenum: 0.05
~ 0.5%, tungsten: 1.5-3%, cobalt:
1 to 4% and inevitable impurities and iron, and a high temperature steam turbine rotor material and (2) part of iron is replaced with boron, and a weight ratio of boron: 0.001 to 0.
The high temperature steam turbine rotor material according to the above (1), characterized in that the content is 03%.

【0005】(第1の高温用蒸気タービンロータ材につ
いて)本発明の第1の高温用蒸気タービンロータ材は1
2Cr系鋼を基本成分として合金元素の厳選を行って高
温強度の改善を鋭意行ったもので、優れた高温特性を有
する新しい高温用蒸気タービンロータ材である。従来の
12Cr鋼系タービンロータ材にはNiが0.5%程度
は添加されている。Niは本質的にはクリープ破断強度
を低下させる元素であるが、基地組織を制御するうえで
δフェライトの抑制に有効であり、かつ靱性も向上させ
るため、これらの有用な効果を優先した結果の添加であ
る。一方、本発明材ではクリープ破断強度の確保を最優
先に考え、不可避的に混入するものを除いてはNiを完
全に排除し、同時にNiと同じくδフェライトの抑制効
果が高いCoを積極的に添加した点に特徴がある。ま
た、靱性に悪影響を及ぼすSiやMnの含有量も極力低
減し靱性を確保している。以下に本発明の第1の高温用
蒸気タービンロータ材における成分限定理由を述べる。
なお以下の説明における%は重量%を意味する。
(Regarding First High Temperature Steam Turbine Rotor Material) The first high temperature steam turbine rotor material of the present invention is 1
This is a new high temperature steam turbine rotor material having excellent high temperature characteristics, which was made by carefully selecting alloying elements using 2Cr steel as a basic component to improve high temperature strength. About 0.5% of Ni is added to the conventional 12Cr steel turbine rotor material. Ni is essentially an element that lowers the creep rupture strength, but it is effective in suppressing δ ferrite in controlling the matrix structure, and also improves toughness, so that these useful effects are prioritized. It is addition. On the other hand, in the material of the present invention, ensuring the creep rupture strength is given top priority, Ni is completely eliminated except for those which are inevitably mixed, and at the same time, Co, which has a high effect of suppressing δ ferrite like Ni, is positively active. The feature is that it is added. Further, the contents of Si and Mn, which adversely affect the toughness, are reduced as much as possible to secure the toughness. The reasons for limiting the components in the first high temperature steam turbine rotor material of the present invention will be described below.
In the following description,% means% by weight.

【0006】C: CはNとともに炭窒化物を形成しク
リープ破断強度の向上に寄与する。しかし、0.05%
未満では十分な効果は得られず、また0.13%を越え
ると使用中に炭窒化物が凝集粗大化し高温長時間強度を
劣化させる。このため0.05〜0.13%とする。望
ましい成分範囲は0.09〜0.11%である。
C: C forms carbonitrides together with N and contributes to the improvement of creep rupture strength. However, 0.05%
If it is less than 0.1%, a sufficient effect cannot be obtained, and if it exceeds 0.13%, carbonitrides agglomerate and coarsen during use, resulting in deterioration of high-temperature long-term strength. Therefore, the content is set to 0.05 to 0.13%. A desirable component range is 0.09 to 0.11%.

【0007】Si: Siは脱酸材としての効果がある
反面、基地を脆化させる元素である。本発明のロータ材
の製造においては真空カーボン脱酸法を適用するので、
その添加量は製鋼において必要な最小限度の量にとどめ
成分範囲を0.005〜0.1%とする。望ましい範囲
は0.005〜0.05%である。
Si: Si has an effect as a deoxidizing agent, but is an element that embrittles the matrix. Since the vacuum carbon deoxidizing method is applied in the production of the rotor material of the present invention,
The addition amount is limited to the minimum amount necessary for steel making, and the component range is 0.005 to 0.1%. A desirable range is 0.005 to 0.05%.

【0008】Mn: Mnは脱酸材として作用するとと
もに鍛造時の熱間割れを防止するのに有用な元素であ
る。また、δフェライトの生成を抑制する作用がある。
しかし、Mnを加えると、その量に応じてクリープ破断
強度が劣化し、また本質的には鉄鋼の脆化を進める元素
でもあるため、本発明ではクリープ破断強度の確保を重
視して添加の最大量を0.5%とした。また、特に0.
15%以下に抑えるとクリープ破断強度はさらに改善さ
れる。このため、必要に応じて0.15%以下に抑えて
添加することが必要である。ただし、0.01%未満に
制御するためには原料鋼の厳選と過度の精錬工程が必要
となりコスト高を招くため、最低量を0.01%に設定
している。望ましい成分範囲は0.01〜0.15%で
ある。
Mn: Mn is an element which acts as a deoxidizer and is useful for preventing hot cracking during forging. It also has the effect of suppressing the formation of δ ferrite.
However, when Mn is added, the creep rupture strength deteriorates according to the amount, and since it is also an element that essentially promotes embrittlement of steel, in the present invention, importance is attached to ensuring the creep rupture strength. The large amount was 0.5%. Also, especially 0.
If the content is suppressed to 15% or less, the creep rupture strength is further improved. Therefore, it is necessary to suppress the addition to 0.15% or less as needed. However, in order to control the content to less than 0.01%, careful selection of the raw material steel and an excessive refining process are required, resulting in high cost. Therefore, the minimum amount is set to 0.01%. A desirable component range is 0.01 to 0.15%.

【0009】Cr: Crは炭化物を形成しクリープ破
断強度の改善に寄与し、かつマトリックス中に溶け込ん
で耐酸化性を改善するとともにマトリックス自体を強化
することでもクリープ破断強度の向上に寄与する。9%
未満であるとその効果が十分でなく、また12%を越え
る量を添加するとδフェライトを生成しやすくなって強
度の低下や靱性の劣化をもたらす。このため、成分範囲
を9〜12%とする。望ましい範囲は10.5〜11.
5%である。
Cr: Cr forms a carbide and contributes to the improvement of creep rupture strength. It also dissolves in the matrix to improve the oxidation resistance and strengthens the matrix itself, thereby contributing to the improvement of the creep rupture strength. 9%
If it is less than the above range, the effect is not sufficient, and if more than 12% is added, δ ferrite is likely to be formed, resulting in a decrease in strength and a deterioration in toughness. Therefore, the component range is set to 9 to 12%. A desirable range is 10.5-11.
5%.

【0010】V: Vは炭窒化物となってクリープ破断
強度を改善する。0.1%未満では十分な効果が得られ
ない。また、逆に0.3%を越える量を添加すると、む
しろクリープ破断強度は低下してしまう。このため、成
分範囲を0.1〜0.3%とする。
V: V becomes a carbonitride to improve creep rupture strength. If it is less than 0.1%, a sufficient effect cannot be obtained. Conversely, if the amount exceeds 0.3%, the creep rupture strength is rather lowered. Therefore, the component range is 0.1 to 0.3%.

【0011】Nb及び/又はTa: Nb及び/又はT
aは炭窒化物を形成して高温強度の改善に寄与する。ま
た、高温で析出する炭化物(M236 )を微細にして長
時間クリープ破断強度の改善に寄与する。両元素の合計
量が0.01%未満ではその効果はなく、また0.15
%を越える量を添加すると、鋼塊製造時に生成したNb
及び/又はTaの炭窒化物が熱処理(溶体化処理)時に
マトリックスに十分に固溶できず、使用中に粗大化して
長時間のクリープ破断強度を低下させる。そこで成分範
囲を0.01%〜0.15%に限定する。
Nb and / or Ta: Nb and / or T
a forms carbonitrides and contributes to improvement of high temperature strength. Further, the carbide (M 23 C 6 ) precipitated at a high temperature is made finer, which contributes to improvement in long-time creep rupture strength. If the total amount of both elements is less than 0.01%, there is no effect, and
%, The amount of Nb generated during steel ingot production
And / or Ta carbonitride cannot be sufficiently solid-dissolved in the matrix during heat treatment (solution treatment), and coarsens during use to reduce long-term creep rupture strength. Therefore, the component range is limited to 0.01% to 0.15%.

【0012】N: NはCや合金元素とともに炭窒化物
を形成して高温強度の改善に寄与する。0.01%未満
では十分な炭窒化物を形成することができないために、
クリープ破断強度が十分に得られない。また、0.1%
を越える量を添加すると、長時間側で炭窒化物が凝集粗
大化して十分なクリープ破断強度を得ることができなく
なる。このため、0.01〜0.1%とする。望ましい
量は0.02〜0.05%である。
N: N forms carbonitrides together with C and alloy elements and contributes to improvement of high temperature strength. If it is less than 0.01%, sufficient carbonitride cannot be formed.
Sufficient creep rupture strength cannot be obtained. Also, 0.1%
If it is added in an amount exceeding the above range, the carbonitride will be agglomerated and coarsened over a long period of time, and sufficient creep rupture strength cannot be obtained. Therefore, it is set to 0.01 to 0.1%. A desirable amount is 0.02 to 0.05%.

【0013】Mo: MoはWとともにマトリックス中
に固溶してクリープ破断強度を改善する。Moの単独の
添加であれば1.5%程度添加することが可能である
が、Wを本発明のように添加する場合、Wの方が高温強
度の改善に有効であり、またMo及びWを多量に添加す
るとδフェライトが形成されてクリープ破断強度を劣化
させる。このため、Wの添加量とのバランスから0.0
5〜0.5%の範囲の添加とする。
Mo: Mo forms a solid solution with W in the matrix to improve the creep rupture strength. Although it is possible to add about 1.5% if Mo is added alone, when W is added as in the present invention, W is more effective in improving the high temperature strength, and Mo and W When a large amount of is added, δ ferrite is formed and the creep rupture strength is deteriorated. Therefore, from the balance with the amount of W added, 0.0
It is added in the range of 5 to 0.5%.

【0014】W: Wは前述のようにMoとともにマト
リックス中に固溶してクリープ破断強度を改善する。W
はMoよりも固溶による強化機能が強く有効な元素であ
る。しかし多量に添加するとδフェライトや多量のラー
ベス相を生成するため、逆にクリープ破断強度を劣化さ
せる。このため、Moの添加量とのバランスを考慮して
1.5〜3%の添加とする。
W: W improves the creep rupture strength by forming a solid solution in the matrix together with Mo as described above. W
Is an element that has a stronger strengthening function by solid solution than Mo and is effective. However, when a large amount is added, δ ferrite and a large amount of Laves phase are generated, and conversely, creep rupture strength is deteriorated. Therefore, in consideration of the balance with the addition amount of Mo, the addition amount is set to 1.5 to 3%.

【0015】Co: Coはマトリックスに固溶して基
地自体を強化するとともにδフェライトの生成を抑制す
る。このため、Coを添加すると、Coを添加しないも
のよりもMoやWなどのフェライト形成傾向が強い強化
元素を多く添加することが可能となる。この結果、高い
クリープ破断強度を得ることが可能となる。同様にδフ
ェライトの生成を抑制する効果を有する一般的な元素に
Niがあるが、Niは添加量の増加にしたがってクリー
プ破断強度を劣化させる。従来の12Cr鋼系のタービ
ンロータ材ではδフェライト生成の抑制および靱性の確
保のため、0.5%程度のNiが添加されているが、本
発明ではクリープ破断強度の確保を重視して特にNiは
添加していない点に特徴がある。ただし、Coを添加す
ることでδフェライトの生成は完全に抑制している。C
o添加の有効な効果が現れるのは添加量1%以上である
が、4%を越える量のCoを添加すると炭化物の析出を
促進してしまうために、長時間側のクリープ破断強度を
劣化させてしまう。加えてCo自体高価な材料であるた
め、多量の添加はコスト高を招く。このため、成分範囲
として1〜4%を設定している。望ましい範囲としては
2.5〜3.5%である。
Co: Co forms a solid solution in the matrix, strengthens the matrix itself, and suppresses the formation of δ ferrite. Therefore, when Co is added, it becomes possible to add more strengthening elements such as Mo and W having a stronger tendency to form ferrite than those without Co. As a result, high creep rupture strength can be obtained. Similarly, Ni is a general element that has an effect of suppressing the formation of δ ferrite, but Ni deteriorates the creep rupture strength as the amount of addition increases. In the conventional 12Cr steel turbine rotor material, about 0.5% of Ni is added in order to suppress the formation of δ ferrite and to secure the toughness, but in the present invention, importance is attached to the securing of creep rupture strength, and Ni is particularly important. Is characterized in that it is not added. However, the addition of Co completely suppresses the formation of δ ferrite. C
The effective effect of o addition appears when the addition amount is 1% or more, but if Co amount exceeding 4% is added, the precipitation of carbides is promoted, so that the creep rupture strength on the long side is deteriorated. Will end up. In addition, since Co itself is an expensive material, addition of a large amount leads to high cost. Therefore, the component range is set to 1 to 4%. A desirable range is 2.5 to 3.5%.

【0016】(本発明の第2の高温用蒸気タービンロー
タ材について)本発明の第2の高温用蒸気タービンロー
タ材は上記第1のFeの一部を重量%で0.001〜
0.03%のBで置き換えたことを特徴とする高温用蒸
気タービンロータ材である。以下に成分限定の理由を述
べるが、C、Si、Mn、Cr、Mo、W、V、Nb及
び/又はTa、Co、Nについては第1の高温用蒸気タ
ービンロータ材と同じであるので、その説明は省略し、
新たな添加元素であるBについてのみ説明する。
(Regarding the Second High-Temperature Steam Turbine Rotor Material of the Present Invention) The second high-temperature steam turbine rotor material of the present invention contains 0.001% by weight of a part of the first Fe.
The steam turbine rotor material for high temperature is characterized by being replaced by 0.03% of B. The reasons for limiting the components will be described below, but since C, Si, Mn, Cr, Mo, W, V, Nb and / or Ta, Co, N are the same as those of the first high temperature steam turbine rotor material, The explanation is omitted,
Only the new additive element B will be described.

【0017】B: Bは粒界強度を高くする作用があ
る。このため、クリープ破断強度の改善に寄与する。し
かし、多量に添加すると熱間加工性が悪くなるとともに
靱性が低下する。したがって、実際に添加量を制御でき
る最低量の0.001%を下限値とし、上限値を悪影響
が現れない0.03%とする。望ましい範囲としては
0.01〜0.02%である。
B: B has the function of increasing the grain boundary strength. This contributes to improvement in creep rupture strength. However, if added in a large amount, the hot workability deteriorates and the toughness decreases. Therefore, 0.001% of the minimum amount that can actually control the addition amount is set as the lower limit value and the upper limit value is set as 0.03% at which no adverse effect appears. A desirable range is 0.01 to 0.02%.

【0018】[0018]

【実施例】以下、本発明の第1および第2の高温用蒸気
タービンロータ材の具体例をあげ、本発明の効果を明ら
かにする。
EXAMPLES The effects of the present invention will be clarified by giving specific examples of the first and second high temperature steam turbine rotor materials of the present invention.

【0019】(実施例1) 第1の高温用蒸気タービン
ロータ材について 〇(実施例1の構成) 表1には試験に供した材料の化学成分を示す。試料番号
1〜9が本発明材、試料番号10〜18が比較材に相当
する。全ての材料は50kg真空高周波溶解炉にて溶製
し、加熱温度:1200℃にて鍛造を行った。各種試験
に用いた試験材熱処理は胴径1200φのロータを油冷
したときの中心部を模擬した焼入れ処理を行い、次いで
焼もどしは0.2%耐力がおよそ63〜67kgf/m
2 になるように各材料の焼もどし温度を決めて行っ
た。
Example 1 First High Temperature Steam Turbine Rotor Material ◯ (Structure of Example 1) Table 1 shows the chemical components of the materials used in the test. Sample numbers 1 to 9 correspond to the material of the present invention, and sample numbers 10 to 18 correspond to the comparative material. All materials were melted in a 50 kg vacuum induction melting furnace and forged at a heating temperature of 1200 ° C. The heat treatment of the test materials used in various tests was a quenching process simulating the center part when a rotor with a body diameter of 1200φ was oil-cooled, and then tempering was performed with a 0.2% proof stress of about 63 to 67 kgf / m.
The tempering temperature of each material was determined so as to be m 2 .

【0020】〇(実施例1の効果) 表2に本発明材及び比較材の機械的性質およびクリープ
破断特性を示す。本発明材のシャルピー衝撃値(常温試
験)はいずれも9.0kgf−m以上の高い値を示して
おり、Niを排除しても十分に高い衝撃値を確保できて
いることがわかる。650℃で15kgf/mm2 の荷
重を負荷した場合のクリープ破断時間に着目すると、本
発明材は比較材に比べて大幅に破断時間がのびているこ
とがわかる。続いて、本発明材のうちで650℃−15
kgf/mm2 クリープ破断時間が最も長い試料8と比
較材の中で650℃−15kgf/mm2 クリープ破断
時間が最も長い試料14について、さらに種々の応力で
650℃、700℃におけるクリープ破断試験を実施
し、得られたデータより650℃における105 時間ク
リープ破断強度を推定した。試料8は12.1kgf/
mm2 、試料14は8.2kgf/mm2 であり、長時
間のクリープ破断強度も本発明材が非常に優れているこ
とがわかる。以上のことは、Niの排除とCoの積極添
加を基本とした成分設計がクリープ破断強度の向上に有
効であることを示唆している。
(Effect of Example 1) Table 2 shows the mechanical properties and creep rupture properties of the material of the present invention and the comparative material. The Charpy impact value (at room temperature test) of the material of the present invention shows a high value of 9.0 kgf-m or more, and it can be seen that a sufficiently high impact value can be secured even if Ni is excluded. Focusing on the creep rupture time when a load of 15 kgf / mm 2 is applied at 650 ° C., it is found that the material of the present invention has a significantly longer rupture time than the comparative material. Subsequently, among the materials of the present invention, 650 ° C.-15
For kgf / mm 2 creep rupture time longest 650 ℃ -15kgf / mm 2 creep rupture time longest sample 14 in the sample 8 and the comparative material, further 650 ° C. in a variety of stresses, the creep rupture test at 700 ° C. The creep rupture strength at 105 ° C. for 10 5 hours was estimated from the obtained data. Sample 8 is 12.1 kgf /
mm 2 and Sample 14 are 8.2 kgf / mm 2 , and it can be seen that the material of the present invention is also very excellent in long-term creep rupture strength. The above suggests that the component design based on the exclusion of Ni and the positive addition of Co is effective in improving the creep rupture strength.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】(実施例2) 第2の高温用蒸気タービン
ロータ材について 〇(実施例2の構成) 表3には試験に供した材料の化学成分を示す。全ての材
料は50kg真空高周波溶解炉にて溶製し、加熱温度:
1200℃にて鍛造を行った。各種試験に用いた試験材
熱処理は胴径1200φのロータを油冷したときの中心
部を模擬した焼入れ処理を行い、次いで焼もどしは0.
2%耐力がおよそ65〜67kgf/mm2 になるよう
に各材料の焼もどし温度を決めて行った。試料番号19
〜21が本発明材、試料番号22、23が比較材に相当
する。試料番号19、20および22は前記実施例1で
用いた試料番号8の成分をベースとして、Bの添加量を
変化させた材料、試料番号21および23は前記実施例
1で用いた試料番号6の成分をベースとして、Bの添加
量を変化させた材料である。なお、厳密には試料番号1
9、20および22の成分ベースは試料番号8と微差が
あり、試料番号21および23は試料番号6の成分ベー
スと微差があるが、現実にはこの程度の成分ベースのば
らつきは制御し難いので、試料番号19、20及び22
は試料番号8を成分ベースとしたもの、試料番号21お
よび22は試料番号6を成分ベースとしたものというこ
とができるものである。
(Example 2) Second High Temperature Steam Turbine Rotor Material O (Structure of Example 2) Table 3 shows the chemical components of the materials used in the test. All materials are melted in a 50kg vacuum high frequency melting furnace and heating temperature:
Forging was performed at 1200 ° C. The heat treatment of the test materials used in various tests was a quenching process simulating the center of a rotor with a cylinder diameter of 1200φ when it was oil-cooled, and then tempering was performed at 0.
The tempering temperature of each material was determined so that the 2% proof stress was about 65 to 67 kgf / mm 2 . Sample number 19
-21 correspond to the material of the present invention, and sample numbers 22 and 23 correspond to the comparative materials. Sample Nos. 19, 20 and 22 are materials with the amount of B added varied based on the components of Sample No. 8 used in Example 1 above, and Sample Nos. 21 and 23 are Sample No. 6 used in Example 1 above. It is a material in which the addition amount of B is changed based on the component of. Strictly speaking, sample number 1
The component bases of 9, 20 and 22 have a slight difference from the sample number 8 and the sample numbers 21 and 23 have a slight difference from the sample number 6 of the component base, but in reality, such a variation in the component base is controlled. Difficult, so sample numbers 19, 20 and 22
It can be said that the sample number 8 is based on the component, and the sample numbers 21 and 22 are sample number 6 based on the component.

【0024】〇(実施例2の効果) 表4に本発明材及び比較材の機械的性質およびクリープ
破断特性を示す。本発明材のシャルピー衝撃値(常温試
験)はいずれも10.0kgf−m以上の高い値を示し
ており、ベース材(試料番号6、8)と比較しても遜色
ない。このことは本発明材における添加範囲内では、B
の添加は衝撃値に対して少なくとも悪い影響を及ぼすこ
とはないことを示している。650℃で15kgf/m
2 の荷重を負荷した場合のクリープ破断時間に着目す
ると、本発明材はベース材(試料番号6、8)に比べて
破断時間がのびていることがわかる。一方、B添加量が
多い比較材(試料番号22、23)では、ベース材(試
料番号6、8)に比べて破断時間が短くなっている。続
いて、本発明材のうちで650℃−15kgf/mm2
クリープ破断時間が最も長い試料20について、さらに
種々の応力で650℃、700℃におけるクリープ破断
試験を実施し、得られたデータより650℃における1
5 時間クリープ破断強度を推定した。試料20の推定
破断強度は12.7kgf/mm2 であり、長時間のク
リープ破断強度もベース材(試料番号8)に比べて優れ
ていることがわかる。以上のことは、実施例1に示した
タービンロータ材にFeの一部を実施例2に示した成分
範囲のBに置き換えることで、より一層クリープ破断強
度が向上することを示唆している。
(Effect of Example 2) Table 4 shows the mechanical properties and creep rupture properties of the material of the present invention and the comparative material. The Charpy impact value (at room temperature test) of the material of the present invention shows a high value of 10.0 kgf-m or more, which is comparable to the base material (Sample Nos. 6 and 8). This means that within the range of addition in the material of the present invention, B
It has been shown that the addition of at least has no adverse effect on the impact value. 15kgf / m at 650 ° C
Focusing on the creep rupture time when a load of m 2 is applied, it can be seen that the material of the present invention has a longer rupture time than the base materials (sample numbers 6 and 8). On the other hand, the comparative materials (Sample Nos. 22 and 23) containing a large amount of B have a shorter fracture time than the base materials (Sample Nos. 6 and 8). Next, among the materials of the present invention, 650 ° C.-15 kgf / mm 2
The creep rupture test at 650 ° C. and 700 ° C. was further conducted on Sample 20 having the longest creep rupture time at various stresses.
0 5 hours creep rupture strength was estimated. The estimated breaking strength of Sample 20 is 12.7 kgf / mm 2 , and it can be seen that the long-term creep breaking strength is also superior to that of the base material (Sample No. 8). The above suggests that by replacing a part of Fe in the turbine rotor material shown in Example 1 with B in the component range shown in Example 2, the creep rupture strength is further improved.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【発明の効果】本発明の高温用蒸気タービンロータ材
は、優れた高温強度を有するため、蒸気温度が600℃
を越える超々臨界圧発電プラント用の高温用蒸気タービ
ンロータ材として有用である。本発明により、現在の超
々臨界圧発電プラントをさらに高温化し、化石燃料の節
約に寄与するとともに二酸化炭素の発生量を低く抑える
上で有用なものであると言える。
The high temperature steam turbine rotor material of the present invention has excellent high temperature strength, so that the steam temperature is 600 ° C.
It is useful as a high temperature steam turbine rotor material for ultra-supercritical power generation plants exceeding 100. According to the present invention, it can be said that the present ultra-supercritical power plant is useful for further raising the temperature, contributing to the saving of fossil fuels, and keeping the amount of generated carbon dioxide low.

フロントページの続き (72)発明者 北川 幾次郎 福岡県北九州市戸畑区大字中原先ノ浜46番 地59 日本鋳鍛鋼株式会社内 (72)発明者 加来 勝夫 福岡県北九州市戸畑区大字中原先ノ浜46番 地59 日本鋳鍛鋼株式会社内Front Page Continuation (72) Inventor Ikujiro Kitagawa, 59, Nakahara Sakinohama, Tobata-ku, Kitakyushu, Fukuoka, Japan 59, Nippon Cast & Forged Steel Co., Ltd. Nohama 46 Address 59 Nippon Cast and Forged Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で炭素:0.05〜0.13%、
シリコン:0.005〜0.1%、マンガン:0.01
〜0.5%、クロム:9〜12%、バナジウム:0.1
〜0.3%、ニオブ及び/又はタンタルの合計:0.0
1〜0.15%、窒素:0.01〜0.1%、モリブデ
ン:0.05〜0.5%、タングステン:1.5〜3
%、コバルト:1〜4%及び不可避的不純物及び鉄から
なることを特徴とする高温用蒸気タービンロータ材。
1. Carbon: 0.05 to 0.13% by weight,
Silicon: 0.005-0.1%, Manganese: 0.01
~ 0.5%, chromium: 9-12%, vanadium: 0.1
~ 0.3%, total of niobium and / or tantalum: 0.0
1 to 0.15%, nitrogen: 0.01 to 0.1%, molybdenum: 0.05 to 0.5%, tungsten: 1.5 to 3
%, Cobalt: 1 to 4%, and inevitable impurities and iron. A high temperature steam turbine rotor material.
【請求項2】 鉄の一部をボロンで置換し、重量比でボ
ロン:0.001〜0.03%含有してなることを特徴
とする請求項1記載の高温用蒸気タービンロータ材。
2. A high temperature steam turbine rotor material according to claim 1, wherein a part of iron is replaced by boron, and the content of boron is 0.001 to 0.03% by weight.
JP17976995A 1995-07-17 1995-07-17 High temperature steam turbine rotor material Expired - Fee Related JP3310825B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17976995A JP3310825B2 (en) 1995-07-17 1995-07-17 High temperature steam turbine rotor material
EP96103067A EP0754774A1 (en) 1995-07-17 1996-02-29 Steam turbine rotor materials for high-temperature applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17976995A JP3310825B2 (en) 1995-07-17 1995-07-17 High temperature steam turbine rotor material

Publications (2)

Publication Number Publication Date
JPH0931600A true JPH0931600A (en) 1997-02-04
JP3310825B2 JP3310825B2 (en) 2002-08-05

Family

ID=16071571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17976995A Expired - Fee Related JP3310825B2 (en) 1995-07-17 1995-07-17 High temperature steam turbine rotor material

Country Status (2)

Country Link
EP (1) EP0754774A1 (en)
JP (1) JP3310825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863221A1 (en) * 1997-03-05 1998-09-09 Mitsubishi Heavy Industries, Ltd. High-Cr precision casting materials and turbine blades

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3245097B2 (en) * 1997-01-08 2002-01-07 三菱重工業株式会社 High temperature steam turbine rotor material
JP3422658B2 (en) * 1997-06-25 2003-06-30 三菱重工業株式会社 Heat resistant steel
JP3982069B2 (en) * 1998-07-08 2007-09-26 住友金属工業株式会社 High Cr ferritic heat resistant steel
JP2005076062A (en) * 2003-08-29 2005-03-24 National Institute For Materials Science High-temperature bolt material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE49240T1 (en) * 1985-07-09 1990-01-15 Mitsubishi Heavy Ind Ltd HIGH TEMPERATURE ROTOR FOR A STEAM TURBINE AND PROCESS FOR ITS MANUFACTURE.
JPH0830251B2 (en) * 1989-02-23 1996-03-27 日立金属株式会社 High temperature strength ferritic heat resistant steel
JP2808048B2 (en) * 1991-06-18 1998-10-08 新日本製鐵株式会社 High-strength ferritic heat-resistant steel
JPH083697A (en) * 1994-06-13 1996-01-09 Japan Steel Works Ltd:The Heat resistant steel
CN1075563C (en) * 1994-07-06 2001-11-28 关西电力株式会社 Process for producing ferritic iron-base alloy and ferritic heat-resistant steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863221A1 (en) * 1997-03-05 1998-09-09 Mitsubishi Heavy Industries, Ltd. High-Cr precision casting materials and turbine blades
US6095756A (en) * 1997-03-05 2000-08-01 Mitsubishi Heavy Industries, Ltd. High-CR precision casting materials and turbine blades

Also Published As

Publication number Publication date
EP0754774A1 (en) 1997-01-22
JP3310825B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
US4564392A (en) Heat resistant martensitic stainless steel containing 12 percent chromium
US5061440A (en) Ferritic heat resisting steel having superior high-temperature strength
JP3354832B2 (en) High toughness ferritic heat-resistant steel
JPH1136038A (en) Heat resistant cast steel
JP2001262286A (en) HIGH-PURITY HIGH-Cr FERRITIC HEAT RESISTING STEEL AND ITS MANUFACTURING METHOD
JP3422658B2 (en) Heat resistant steel
JPH04147948A (en) Rotary shaft for high temperature steam turbine
CA2260498C (en) Material for gas turbine disk
JP3310825B2 (en) High temperature steam turbine rotor material
JP3468975B2 (en) Low alloy heat resistant steel and steam turbine rotor
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JP3245097B2 (en) High temperature steam turbine rotor material
JP3581458B2 (en) High temperature steam turbine rotor material
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPH11217655A (en) High strength heat resistant steel and its production
JPH09194987A (en) Low alloy heat resistant steel and steam turbine rotor
JP2778903B2 (en) High temperature steam turbine rotor material
JP3576328B2 (en) Low alloy heat resistant steel and steam turbine rotor
JPH06256893A (en) High toughness low alloy steel excellent in high temperature strength
JPH09310156A (en) Steam turbine rotor material for high temperature use
JP2003073732A (en) Method for manufacturing heat resistant steel of mx- type carbonitride precipitation-hardening type
JP2003034837A (en) Low-alloy heat resistant steel and turbine rotor
JPH10265913A (en) Compartment material of high chromium cast steel, and pressure vessel made of same material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees