JPH0978127A - Production of high strength and high toughness axial parts for mechanical structure - Google Patents

Production of high strength and high toughness axial parts for mechanical structure

Info

Publication number
JPH0978127A
JPH0978127A JP26758095A JP26758095A JPH0978127A JP H0978127 A JPH0978127 A JP H0978127A JP 26758095 A JP26758095 A JP 26758095A JP 26758095 A JP26758095 A JP 26758095A JP H0978127 A JPH0978127 A JP H0978127A
Authority
JP
Japan
Prior art keywords
induction hardening
less
hardness
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26758095A
Other languages
Japanese (ja)
Inventor
Koji Matsumura
康志 松村
Yutaka Kurebayashi
豊 紅林
Sadayuki Nakamura
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP26758095A priority Critical patent/JPH0978127A/en
Publication of JPH0978127A publication Critical patent/JPH0978127A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce axial parts for mechanical structures excellent in fatigue characteristics and toughness by subjecting a steel contg. specified amount of C, Mn, Cr, B, Ti and Al and in which the contents of Si, P, S and O are regulated to cold working and induction hardening to control its hardness. SOLUTION: A steel for induction hardening having a compsn. contg., by weight, 0.30 to 0.55% C, <=0.15% Si, 0.20 to 1.50% Mn, 0.05 to 0.30% Cr, 0.0005 to 0.0035% B, 0.01 to 0.05% Ti, 0.01 to 0.06% Al, <=0.030% P, <=0.035% S and <=0.0020% O and furthermore contg. prescribed amounts of Pb, Bi, Te, Ca, Nb, Ta, Hf and Zr is subjected to hot rolling to regulate its structure into a ferritic-pearlitic one. This hot rolled steel is subjected to cold working to harden the whole body or a part to 220 to 300 HV hardness. Furthermore, this worked product is subjected to induction hardening to regulate its surface to the hardening ratio (t)/R=0.4 to 0.7 ((t) denotes the depth of the hardened layer to 50% martensite hardness and R denotes the radius of the parts).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械構造用鋼を素材と
する軸状部品であるスピンドル、ジョイント、シャフト
などの製造方法に関するもので、特に疲労特性および靭
性に優れた機械構造用軸状部品の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a spindle, a joint, a shaft, etc., which are shaft-shaped parts made of steel for machine structure, and particularly to a shaft structure for machine structure excellent in fatigue characteristics and toughness. The present invention relates to a method of manufacturing a component.

【0002】[0002]

【従来の技術】機械構造用軸状部品であるスピンドル、
ジョイント、シャフト類などは、疲労強度に優れている
ことが要求されるため、所定形状に製作後、高周波焼入
処理が施されることが多い。このように、高周波焼入処
理により最終品質を得るための機械構造用鋼としては、
C:0.40〜0.60%を含有する中炭素鋼が一般的
に用いられ、熱間加工により所定の形状に製作されてき
た。ただし、熱間加工だけでは寸法精度が悪く、その後
の切削加工が必要とされるため、最近では、材料歩留り
および寸法精度に優れた冷間加工が採用されてるように
なってきている。一方、この冷間加工において、JIS
中炭素鋼の圧延ままでは変形抵抗が高く冷間加工工具寿
命が問題となるため、冷間加工性を向上させるため、焼
なましおよび球状化焼なましを施さなければならないた
め、経済的に問題となっている。
2. Description of the Related Art A spindle, which is a shaft-shaped component for machine structure,
Since joints, shafts and the like are required to have excellent fatigue strength, they are often subjected to induction hardening after being manufactured into a predetermined shape. In this way, as the steel for machine structure to obtain the final quality by induction hardening treatment,
A medium carbon steel containing C: 0.40 to 0.60% is generally used, and has been manufactured into a predetermined shape by hot working. However, since the dimensional accuracy is poor only by hot working and the subsequent cutting is required, cold working excellent in material yield and dimensional accuracy has recently been adopted. On the other hand, in this cold working, JIS
Since the deformation resistance is high and the cold working tool life becomes a problem when the medium carbon steel is rolled as it is, it is necessary to perform annealing and spheroidizing annealing in order to improve the cold workability. It's a problem.

【0003】また、近年、自動車などの燃費低減、排ガ
ス低減を目的とする軽量化、またエンジンの高出力化に
ともなう機械構造用部品の高強度化が望まれるようにな
ってきている。高周波焼入される機械構造用部品の疲労
強度を向上させる手法として、硬化層深さ、表層硬さお
よび心部硬さを増加させる方法が知られている。硬化層
深さを増加させるためには、高周波焼入の加熱時間を長
くする必要があるが、長時間加熱をすると、結晶粒の粗
大化、表面圧縮残留応力の減少、表面硬さの低下により
疲労強度が低下するという問題がある。このため、合金
元素添加により焼入性を高め、硬化層深さを深くするこ
とは可能であるが、素材の強度が上昇し、冷間加工など
に問題が生じる。また、表層硬さを上げるためには、C
含有量を高くすることが望ましいが、冷間加工などに問
題が生じる。さらに、心部硬さを上げるためは合金元素
添加が有効であるが、非常に高価な鋼材になり、素材の
強度が上昇し冷間加工性などに問題が生じる。
In recent years, it has been desired to reduce the weight of automobiles and the like for the purpose of reducing fuel consumption and exhaust gas, and to increase the strength of mechanical structural parts accompanying the increase in output of engines. As a method for improving the fatigue strength of induction-hardened machine structural parts, a method of increasing the depth of hardened layer, surface layer hardness, and core hardness is known. In order to increase the depth of the hardened layer, it is necessary to lengthen the heating time for induction hardening, but if heated for a long time, the crystal grains become coarse, the surface compressive residual stress decreases, and the surface hardness decreases. There is a problem that the fatigue strength decreases. Therefore, it is possible to increase the hardenability and deepen the hardened layer depth by adding an alloying element, but the strength of the raw material is increased, and problems such as cold working occur. Further, in order to increase the surface hardness, C
It is desirable to increase the content, but problems such as cold working occur. Further, addition of alloying elements is effective for increasing the hardness of the core, but it becomes a very expensive steel material, the strength of the material increases, and problems such as cold workability occur.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述した従
来の問題点に着目し、冷間加工および高周波焼入を適用
し、上述したような問題を生じることなく、疲労特性お
よび靭性に著しく優れた高強度高靭性機械構造用軸状部
品の製造方法を提供することにある。
The present invention focuses on the above-mentioned conventional problems and applies cold working and induction hardening to remarkably improve fatigue properties and toughness without causing the above problems. An object of the present invention is to provide a method for manufacturing a shaft-shaped component for an excellent high strength and high toughness mechanical structure.

【0005】[0005]

【課題を解決するための手段】本発明による機械構造用
軸状部品の製造方法は、重量%で、C:0.30〜05
5%、Si:0.15%以下、Mn:0.20〜1.5
0%、Cr:0.05〜0.30%、B:0.005〜
0.0035%、Ti:0.01〜0.05%、Al:
0.01〜0.06%、P:0.030%以下、S:
0.035%以下、O:0.0020%以下、残部Fe
および不純物よりなり、冷間加工性向上のため望ましく
はP:0.015%以下、S:0.010%以下、N:
0.010%以下に規制し、被削性を向上させるために
必要に応じてPb:0.01〜0.20%、Bi:0.
01〜0.20%、Te:0.005〜0.10%、C
a:0.0003〜0.010%の1種または2種以上
を添加し、結晶粒微細化のために必要に応じてNb:
0.01〜0.30%、Ta:0.01〜0.30%、
Hf:0.01〜0.30%、Zr:0.01〜0.3
0%の1種または2種以上を添加した鋼を用いて機械構
造用軸状部品を製造する際、熱間圧延でフェライト・パ
ーライト組織に調整し、全体あるいは一部を冷間加工で
硬さ220〜300HVに硬化させ、さらに表面を硬化
層比t/R=0.4〜0.7(t:有効硬化層深さ,
R:部品半径)に高周波焼入れすることを特徴としてお
り、この方法を実施することにより希望する部分が得ら
れる。
The method for manufacturing a shaft-shaped component for a machine structure according to the present invention is C: 0.30 to 05 in weight%.
5%, Si: 0.15% or less, Mn: 0.20 to 1.5
0%, Cr: 0.05-0.30%, B: 0.005-
0.0035%, Ti: 0.01 to 0.05%, Al:
0.01-0.06%, P: 0.030% or less, S:
0.035% or less, O: 0.0020% or less, balance Fe
In order to improve cold workability, P: 0.015% or less, S: 0.010% or less, N:
It is regulated to 0.010% or less, and Pb: 0.01 to 0.20%, Bi: 0.
01-0.20%, Te: 0.005-0.10%, C
a: 0.0003 to 0.010% of one kind or two or more kinds are added, and Nb:
0.01-0.30%, Ta: 0.01-0.30%,
Hf: 0.01 to 0.30%, Zr: 0.01 to 0.3
When manufacturing shaft-shaped parts for machine structures using steel containing 0% of 1 type or 2 or more types, the ferrite / pearlite structure is adjusted by hot rolling and the hardness is wholly or partly cold-worked. It is cured to 220 to 300 HV, and the surface is further cured layer ratio t / R = 0.4 to 0.7 (t: effective cured layer depth,
R: radius of parts) is characterized by induction hardening, and the desired portion can be obtained by carrying out this method.

【0006】[0006]

【作用】本発明による機械構造用軸状部品の製造方法に
おいて素材として用いられる高周波焼入用鋼は、Si含
有量を減少させることによって冷間加工性を良好なもの
とし、焼入性を増加させ高周波焼入深さを十分確保で
き、さらに高周波焼入部の靭性を向上させるためBを添
加し、さらに、結晶粒の粗大化傾向をAl添加により阻
止するようにしたものである。そして、この高周波焼入
用鋼を熱間圧延により冷間加工性および靭性に優れたフ
ェライト・パーライト組織に調整し、冷間加工により心
部硬さを220〜300HVに硬化させ、さらに表面を
高周波焼入れにより最適な硬化層深さとなるように処理
を行うことにより、疲労特性および靭性に著しく優れた
機械構造用軸状部品を製造することが可能となった。以
下、本発明による機械構造用部品の製造方法において素
材として用いられる高周波焼入用鋼の成分範囲の限定理
由について説明する。
The induction hardening steel used as a raw material in the method of manufacturing a shaft-shaped component for a machine structure according to the present invention has a good cold workability by reducing the Si content and has an increased hardenability. In order to secure a sufficient induction hardening depth and further improve the toughness of the induction hardening portion, B is added, and the tendency of crystal grain coarsening is prevented by adding Al. Then, this induction hardening steel is hot-rolled to adjust to a ferrite-pearlite structure having excellent cold workability and toughness, and the core hardness is hardened to 220 to 300 HV by cold working. By performing the treatment so as to obtain the optimum hardened layer depth by quenching, it has become possible to manufacture a shaft-shaped component for a mechanical structure having excellent fatigue properties and toughness. Hereinafter, the reasons for limiting the component range of the induction hardening steel used as a raw material in the method for manufacturing a machine structural component according to the present invention will be described.

【0007】C:0.30〜0.55% Cは機械構造用部品の強度を確保するために必要な元素
であり、特に高周波焼入によって十分な表面硬さを得る
ためには0.30%以上の含有を必要とする。しかし、
多すぎると高周波焼入れ時に焼き割れを生じやすくなる
ので0.55%以下に限定した。
C: 0.30 to 0.55% C is an element necessary for ensuring the strength of mechanical structural parts, and is 0.30 in order to obtain sufficient surface hardness particularly by induction hardening. % Or more is required. But,
If it is too large, quench cracking tends to occur during induction hardening, so the content was limited to 0.55% or less.

【0008】Si:0.15%以下 Siは溶製時の脱酸剤として含有される量であるが冷間
加工性を劣化させるので、冷間加工性を向上させるため
に0.15%以下に限定した。
Si: 0.15% or less Si is an amount contained as a deoxidizing agent at the time of melting, but since it deteriorates the cold workability, it is 0.15% or less in order to improve the cold workability. Limited to.

【0009】Mn:0.20〜1.50% Mnは溶製時の脱硫剤として作用する元素であり、また
焼入性を向上させる元素であり、0.20%未満では、
高周波焼入により十分な硬化層深さが得られないため製
品の疲労特性が著しく劣化してしまう。また、1.50
%を超えるとSiと同様に冷間加工性が劣化してしま
う。このために、0.20〜1.50%とした。
Mn: 0.20 to 1.50% Mn is an element that acts as a desulfurizing agent at the time of melting, and is an element that improves hardenability. If less than 0.20%,
Due to induction hardening, a sufficient hardened layer depth cannot be obtained, and the fatigue characteristics of the product deteriorate significantly. Also, 1.50
If it exceeds%, the cold workability deteriorates like Si. Therefore, it is set to 0.20 to 1.50%.

【0010】Cr:0.05%〜0.30% Crは焼入性を向上させる元素であり、高周波焼入によ
って十分な硬化層深さを得るために0.05%以上を添
加する必要がある。しかし、多すぎると高周波焼入れ時
に焼き割れを生じやすくなるので0.30%以下に限定
した。
Cr: 0.05% to 0.30% Cr is an element that improves hardenability, and it is necessary to add 0.05% or more to obtain a sufficient hardened layer depth by induction hardening. is there. However, if it is too large, quench cracking is likely to occur during induction hardening, so the content was limited to 0.30% or less.

【0011】B:0.0005〜0.0035% Bは必要な高周波焼入深さを確保するために添加し、さ
らに高周波焼入部のマルテンサイトの靭性の向上させる
元素でもあり、このような効果を得るためには0.00
05%以上含有させることが必要である。しかし、量の
増大とともにその効果は飽和し、熱間加工性の低下とい
う弊害が出てくるので、0.0035%以下とした。
B: 0.0005 to 0.0035% B is an element added to secure the necessary induction hardening depth, and is also an element for improving the toughness of martensite in the induction hardened part, and such an effect is obtained. 0.00 to get
It is necessary that the content be at least 05%. However, as the amount increases, the effect saturates, and the adverse effect of deterioration of hot workability appears, so the content was made 0.0035% or less.

【0012】Ti:0.01〜0.05% TiはNを固定し、B添加による焼入性の向上を確保す
るために添加する元素であり、このような効果を得るた
めには0.01%以上含有させることが必要である。し
かし、多すぎると靭性の低下をきたすので0.05%以
下に限定した。
Ti: 0.01 to 0.05% Ti is an element added to fix N and ensure the improvement of hardenability by adding B. It is necessary that the content be 01% or more. However, if the content is too large, the toughness is reduced. Therefore, the content is limited to 0.05% or less.

【0013】Al:0.01〜0.06% Alは脱酸に必要な元素であるが、さらにNを固定しB
添加による結晶粒の粗大化傾向を防ぎ、B添加鋼の高周
波焼入れ時において結晶粒を微細化し、強度を向上させ
るとともに、高周波焼入れ後のひずみを著しく小さくす
るのに有効な元素であり、このような効果を得るために
0.01%以上含有させた。しかし、多すぎるとかえっ
て結晶粒が粗大化し、鋼の靭性を低下させるので0.0
6%以下に限定した。
Al: 0.01 to 0.06% Al is an element necessary for deoxidation.
It is an element that is effective in preventing the tendency of crystal grains to coarsen due to addition, refining the crystal grains during induction hardening of B-added steel, improving the strength, and significantly reducing the strain after induction hardening. In order to obtain various effects, it is contained by 0.01% or more. However, if the amount is too large, the crystal grains become coarser and the toughness of the steel decreases, so 0.0
It was limited to 6% or less.

【0014】P:0.030%以下 P含有量が多すぎると靭性を害すると共に、冷間加工性
を劣化させるので、0.030%以下、より望ましくは
0.015%以下に規制するのがよい。
P: 0.030% or less If the P content is too large, the toughness is impaired and the cold workability is deteriorated. Therefore, it is preferable to regulate the content to 0.030% or less, more preferably 0.015% or less. Good.

【0015】S:0.035%以下 S含有量が多すぎると冷間加工性を劣化させるので0.
035%以下、より望ましくは0.010%以下に規制
するのがよい。しかし、S含有量が低すぎると被削性を
低下させるので、後記する被削性向上元素を添加しない
場合は、冷間加工性を劣化させない程度に含有させる必
要があり、0.005〜0.020の範囲に規制するこ
とが望ましい。
S: 0.035% or less If the S content is too large, the cold workability is deteriorated, so that
It is preferable to regulate to 035% or less, and more desirably to 0.010% or less. However, if the S content is too low, the machinability is deteriorated. Therefore, when the machinability improving element described later is not added, it is necessary to add S in an amount not deteriorating the cold workability. It is desirable to regulate the range to 0.020.

【0016】N:0.010%以下 N含有量が多すぎると変形抵抗が増大して冷間加工性を
低下させるので、0.010%以下に規制することが望
ましい。
N: 0.010% or less If the N content is too large, the deformation resistance increases and the cold workability deteriorates. Therefore, it is desirable to control the content to 0.010% or less.

【0017】O:0.0020%以下 O含有量が多過ぎると鋼中の介在物量を増大させ冷間加
工性を低下させるので、0.0020%以下に規制する
ことが望ましい。
O: 0.0020% or less If the O content is too large, the amount of inclusions in the steel increases and the cold workability deteriorates. Therefore, it is desirable to control the content to 0.0020% or less.

【0018】Pb:0.01〜0.20%、Bi:0.
01〜0.20%、Te:0.005〜0.10%、C
a:0.0003〜0.010%の1種以上 Pb、Bi、TeおよびCaは被削性を向上させるのに
有効な元素であり、冷間加工性を向上させるためにS含
有量をかなり抑制したときの被削性低下を補うのに有効
であるので、必要に応じて上記の範囲で適宜添加するの
もよい。
Pb: 0.01 to 0.20%, Bi: 0.
01-0.20%, Te: 0.005-0.10%, C
a: 0.0003 to 0.010% of one or more Pb, Bi, Te and Ca are effective elements for improving the machinability, and the S content is considerably increased in order to improve the cold workability. Since it is effective in compensating for the decrease in machinability when it is suppressed, it may be appropriately added within the above range if necessary.

【0019】Nb:0.01〜0.30%、Ta:0.
01〜0.30%、Hf:0.01〜0.30%、Z
r:0.01〜0.30%の1種以上 Nb、Ta、Hf、Zrは結晶粒を微細化して靭性を向
上させるのに寄与する元素であるので、必要に応じて上
記範囲で添加するのもよい。
Nb: 0.01 to 0.30%, Ta: 0.
01 to 0.30%, Hf: 0.01 to 0.30%, Z
r: 0.01 to 0.30% of one or more Nb, Ta, Hf, and Zr are elements that contribute to refining the crystal grains and improving the toughness, so they are added in the above range as necessary. Also good.

【0020】心部硬さおよび硬化層比:本発明は、上記
のような化学成分組成の鋼を素材とするが、冷間加工し
やすいように硬さの低い素材を用いている。しかし、こ
の状態であると、心部硬さ不足のため高周波焼入処理を
施しても、十分な疲労強度は得られない。そこで、冷間
押しだし、転造等の冷間加工を利用し素材を硬化させ、
心部硬さを増加させることにより、疲労強度の向上を図
ることが可能であるが、このとき、220HV未満であ
ると心部硬さが低いため希望する疲労強度が得られな
い。また、300HVを超えるまで冷間加工すると冷間
押出しおよび転造時等の工具寿命が問題となるため、2
20〜300HVに硬化させる必要がある。さらに、こ
の後、高周波焼入処理を行うが、50%マルテンサイト
硬さまでの硬化層深さtと部品半径Rとの比である硬化
層比t/Rが0.4未満であると十分な疲労強度が得ら
れない。また、0.7を超えても圧縮残留応力が低下す
るため、疲労強度の増加は飽和する。これより、t/R
=0.4〜0.7に高周波焼入する必要がある。
Core hardness and hardened layer ratio: In the present invention, a steel having the above chemical composition is used as a material, but a material having a low hardness is used so that cold working is easy. However, in this state, sufficient hardness cannot be obtained even if induction hardening is performed due to insufficient hardness of the core. Therefore, cold extrusion, cold working such as rolling is used to harden the material,
The fatigue strength can be improved by increasing the core hardness, but at this time, if it is less than 220 HV, the core hardness is low and the desired fatigue strength cannot be obtained. Further, if cold working is performed until it exceeds 300 HV, the tool life during cold extrusion and rolling becomes a problem, so 2
It is necessary to cure it to 20 to 300 HV. Furthermore, after this, induction hardening is performed, but it is sufficient that the hardened layer ratio t / R, which is the ratio of the hardened layer depth t up to 50% martensite hardness and the component radius R, is less than 0.4. Fatigue strength cannot be obtained. Further, even if it exceeds 0.7, the compressive residual stress decreases, and the increase in fatigue strength saturates. From this, t / R
= 0.4-0.7, induction hardening is required.

【0021】[0021]

【実施例】本発明の効果を実施例を用いて説明する。表
1に示す化学成分の鋼を溶製した後、分塊圧延および製
品圧延を行って直径40mmの圧延材を製造した。次い
で、前記圧延材を素材として冷間押出しにより冷間加工
し、一部は円周切欠き(1mmRノッチ、深さ1mm)
を有する衝撃試験片(切欠き底直径15mm)を作成し
た。また、一部は両端を転造によるセレーション加工
し、ねじり試験片(平行部直径25mm)を作成した。
その際、冷間押出し時の工具寿命を調査した。工具寿命
は従来鋼(No.15)を1とした。続いて、作成した
衝撃試験片を表2に示す条件で高周波焼入処理を行い、
衝撃試験を行い衝撃値を求めた。さらに、ねじり試験片
を表3に示す条件で高周波焼入処理を行い、ねじり疲労
試験を行った。ねじり疲労試験は2Hzの正弦波トルク
を負荷し、繰返し破断回数2×10でのトルク値をね
じり疲労強度とした。以上の結果を表4、5に示す。
EXAMPLES The effects of the present invention will be described with reference to examples. After the steel having the chemical composition shown in Table 1 was melted, slab rolling and product rolling were performed to manufacture a rolled material having a diameter of 40 mm. Then, the rolled material is cold-extruded by cold extrusion, and a part of it is a circumferential notch (1 mmR notch, depth 1 mm).
An impact test piece having a notch bottom diameter of 15 mm was prepared. In addition, a part of both ends was subjected to serration processing by rolling to prepare a torsion test piece (parallel part diameter 25 mm).
At that time, the tool life during cold extrusion was investigated. The tool life was set to 1 for the conventional steel (No. 15). Subsequently, the impact test piece prepared was subjected to induction hardening treatment under the conditions shown in Table 2,
An impact test was conducted to determine the impact value. Further, the torsion test piece was subjected to induction hardening treatment under the conditions shown in Table 3 and a torsion fatigue test was performed. In the torsional fatigue test, a sine wave torque of 2 Hz was applied, and the torque value at the number of repeated fractures of 2 × 10 5 was taken as the torsional fatigue strength. The above results are shown in Tables 4 and 5.

【0022】本発明法による試料はいずれも高い疲労強
度および衝撃値を示すことがわかる。比較例10では素
材のC含有量が少ないため工具寿命は優れてるが、高周
波焼入後の表層硬さが低いため十分なねじり疲労強度が
得られない。比較例11では素材のMn含有量が少な
く、高周波焼入深さが不十分で、硬化層比t/Rが0.
4以下であるためねじり疲労強度が低くなっている。比
較例12では素材のMn含有量は十分であり高周波焼入
深さは十分であるが、硬化層比t/Rが0.7以上とな
り、表層圧縮残量応力が低下しねじり疲労強度も低下し
ている。さらに、Mn含有量が多いために工具寿命も低
下している。比較例13では素材のSi含有量が多いた
めに工具寿命が低下しており、さらに高周波焼入材の衝
撃値が低下している。比較例14では素材のC含有量が
多いため、高周波焼入材の衝撃値が低くなっている。比
較例15、16はJIS規格S40C、S48Cに相当
する鋼であるが、冷間加工することによりねじり疲労強
度が向上するが、十分な硬化層深さが得られず、本発明
による試料に比べねじり疲労強度および衝撃値は低下し
ている。
It can be seen that all the samples produced by the method of the present invention exhibit high fatigue strength and impact value. In Comparative Example 10, the tool life is excellent because the C content of the material is small, but sufficient torsional fatigue strength cannot be obtained because the surface hardness after induction hardening is low. In Comparative Example 11, the Mn content of the material is small, the induction hardening depth is insufficient, and the hardened layer ratio t / R is 0.
Since it is 4 or less, the torsional fatigue strength is low. In Comparative Example 12, the Mn content of the material is sufficient and the induction hardening depth is sufficient, but the hardened layer ratio t / R becomes 0.7 or more, the surface layer residual compression stress decreases, and the torsional fatigue strength also decreases. are doing. Furthermore, the tool life is shortened because the Mn content is high. In Comparative Example 13, the tool life is shortened due to the large Si content of the material, and the impact value of the induction hardened material is also reduced. In Comparative Example 14, since the C content of the material is large, the impact value of the induction hardened material is low. Comparative Examples 15 and 16 are steels corresponding to JIS standards S40C and S48C, but the torsional fatigue strength is improved by cold working, but a sufficient hardened layer depth cannot be obtained, and compared with the samples according to the present invention. The torsional fatigue strength and impact value are low.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【発明の効果】以上の説明で明らかなように、本発明で
は、冷間加工および高周波焼入を適用し、疲労特性およ
び靭性に著しく優れた高強度高靭性機械構造用軸状部品
の製造が可能であり、該部品としてはスピンドル、ジョ
イントおよびシャフト類などに最適である。
As is clear from the above description, in the present invention, cold working and induction hardening are applied to manufacture a shaft-shaped component for a high strength and high toughness mechanical structure having excellent fatigue properties and toughness. It is possible and the parts are most suitable for spindles, joints and shafts.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C :0.30〜0.55
%、Si:0.15%以下、Mn:0.20〜1.50
%、Cr:0.05〜0.30%、B :0.0005
〜0.0035%、Ti:0.01〜0.05%、A
l:0.01〜0.06%、P :0.030%以下、
S :0.035%以下、O :0.0020%以下、
を含有する高周波焼入用鋼を用いて機械構造用軸状部品
を製造する際、熱間圧延でフェライト・パーライト組織
に調整し、全体あるいは一部を冷間加工で硬さ220〜
300HVに硬化させ、さらに表面を硬化層比t/R=
0.4〜0.7(t:50%マルテンサイト硬さまでの
硬化層深さ,R:部品半径)に高周波焼入することを特
徴とする機械構造用軸状部品の製造方法。
1. In weight%, C: 0.30 to 0.55.
%, Si: 0.15% or less, Mn: 0.20 to 1.50
%, Cr: 0.05 to 0.30%, B: 0.0005
~ 0.0035%, Ti: 0.01-0.05%, A
1: 0.01 to 0.06%, P: 0.030% or less,
S: 0.035% or less, O: 0.0020% or less,
When manufacturing a shaft-shaped component for machine structure using induction hardening steel containing a steel, a ferrite-pearlite structure is adjusted by hot rolling, and a hardness of 220 to
It is cured to 300 HV and the surface is further cured at a layer ratio of t / R
A method for manufacturing a shaft-shaped component for machine structure, characterized by induction hardening to 0.4 to 0.7 (t: depth of hardened layer up to 50% martensite hardness, R: component radius).
【請求項2】 請求項1のPを0.015%以下に規制
したことを特徴とする機械構造用軸状部品の製造方法。
2. A method for manufacturing a shaft-shaped component for machine structure, wherein P in claim 1 is restricted to 0.015% or less.
【請求項3】 請求項1又は2のSを0.010%以下
に規制したことを特徴とする機械構造用軸状部品の製造
方法。
3. A method for manufacturing a shaft-shaped component for machine structure, wherein S according to claim 1 or 2 is restricted to 0.010% or less.
【請求項4】 請求項1ないし3のNを0.010%以
下に規制したことを特徴とする機械構造用軸状部品の製
造方法。
4. A method for manufacturing a shaft-shaped component for a machine structure, characterized in that N in any one of claims 1 to 3 is restricted to 0.010% or less.
【請求項5】 重量%で、Pb:0.01〜0.20
%、Bi:0.01〜0.20%、Te:0.005〜
0.10%、Ca:0.0003〜0.010%の1種
または2種以上を含有する高周波焼入用鋼を用いること
を特徴とした請求項1ないし4の機械構造用軸状部品の
製造方法。
5. Pb: 0.01 to 0.20 in% by weight.
%, Bi: 0.01 to 0.20%, Te: 0.005
An induction hardening steel containing one or more of 0.10% and Ca: 0.0003 to 0.010% is used. Production method.
【請求項6】 重量%で、Nb:0.01〜0.30
%、Ta:0.01〜0.30%、Hf:0.01〜
0.30%、Zr:0.01〜0.30%の1種または
2種以上を含有する高周波焼入用鋼を用いることを特徴
とした請求項1ないし5の機械構造用軸状部品の製造方
法。
6. Nb: 0.01 to 0.30 in weight%.
%, Ta: 0.01 to 0.30%, Hf: 0.01 to
An induction hardening steel containing one or more of 0.30% and Zr: 0.01 to 0.30% is used. Production method.
JP26758095A 1995-09-11 1995-09-11 Production of high strength and high toughness axial parts for mechanical structure Pending JPH0978127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26758095A JPH0978127A (en) 1995-09-11 1995-09-11 Production of high strength and high toughness axial parts for mechanical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26758095A JPH0978127A (en) 1995-09-11 1995-09-11 Production of high strength and high toughness axial parts for mechanical structure

Publications (1)

Publication Number Publication Date
JPH0978127A true JPH0978127A (en) 1997-03-25

Family

ID=17446757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26758095A Pending JPH0978127A (en) 1995-09-11 1995-09-11 Production of high strength and high toughness axial parts for mechanical structure

Country Status (1)

Country Link
JP (1) JPH0978127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069201A2 (en) * 1999-07-13 2001-01-17 Daido Tokushuko Kabushiki Kaisha Steel for induction hardening
US6982120B2 (en) * 2001-09-15 2006-01-03 Gkn Driveline Duetschland Gmbh Hardened steel components and process of treating the same
JP2008075177A (en) * 2006-08-23 2008-04-03 Kobe Steel Ltd Steel for induction hardened shaft part and shaft part
CN102220546A (en) * 2011-06-30 2011-10-19 首钢总公司 B-containing medium-carbon non-quenched and tempered steel and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069201A2 (en) * 1999-07-13 2001-01-17 Daido Tokushuko Kabushiki Kaisha Steel for induction hardening
EP1069201A3 (en) * 1999-07-13 2002-01-16 Daido Tokushuko Kabushiki Kaisha Steel for induction hardening
US6982120B2 (en) * 2001-09-15 2006-01-03 Gkn Driveline Duetschland Gmbh Hardened steel components and process of treating the same
JP2008075177A (en) * 2006-08-23 2008-04-03 Kobe Steel Ltd Steel for induction hardened shaft part and shaft part
CN102220546A (en) * 2011-06-30 2011-10-19 首钢总公司 B-containing medium-carbon non-quenched and tempered steel and production method thereof

Similar Documents

Publication Publication Date Title
JPH0853714A (en) Shaft parts for machine structural use excellent in torsional fatigue strength
EP1647608B1 (en) High strength constant velocity joint intermediate shaft
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JPH10195589A (en) Induction hardened steel material with high torsional fatigue strength
JPH0953149A (en) Case hardening steel with high strength and high toughness
JP2002069566A (en) Steel for induction hardening excellent in torsional fatigue characteristic and induction hardened parts
JP2000154819A (en) High strength drive shaft and manufacture thereof
JP2004027334A (en) Steel for induction tempering and method of producing the same
KR20050061476A (en) Steel product for induction hardening, induction-hardened member using the same and methods for producing them
JPH08283910A (en) Steel material for induction hardened shaft parts, combining cold workability with torsional fatigue strength characteristic
JP2003055714A (en) Non-heat treated steel forged workpiece, production method therefor and connecting rod parts for internal combustion engine obtained by using the same
JPS60230960A (en) Steel for cold forging
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JPH1129842A (en) Ferrite-pearlite type non-heat treated steel
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JPH0978127A (en) Production of high strength and high toughness axial parts for mechanical structure
JP3502744B2 (en) Method of manufacturing shaft-shaped parts for machine structure with excellent fatigue characteristics
JP3267164B2 (en) Method for producing steel for nitriding and nitrided steel products
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH1162943A (en) Soft nitrided as rolled or normalized crankshaft and manufacture thereof
JP2005048211A (en) Method for producing steel excellent in fatigue characteristic

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060713

A02 Decision of refusal

Effective date: 20061102

Free format text: JAPANESE INTERMEDIATE CODE: A02