JP2008196592A - Power transmission shaft - Google Patents

Power transmission shaft Download PDF

Info

Publication number
JP2008196592A
JP2008196592A JP2007032298A JP2007032298A JP2008196592A JP 2008196592 A JP2008196592 A JP 2008196592A JP 2007032298 A JP2007032298 A JP 2007032298A JP 2007032298 A JP2007032298 A JP 2007032298A JP 2008196592 A JP2008196592 A JP 2008196592A
Authority
JP
Japan
Prior art keywords
mass
less
power transmission
transmission shaft
male spline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007032298A
Other languages
Japanese (ja)
Inventor
Yukio Matsubara
幸生 松原
Hiroo Morimoto
洋生 森本
Kazuhiko Yoshida
和彦 吉田
Yasuhiro Omori
靖浩 大森
Seishi Uei
清史 上井
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
JFE Steel Corp
Original Assignee
NTN Corp
JFE Steel Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, JFE Steel Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007032298A priority Critical patent/JP2008196592A/en
Priority to PCT/JP2008/051681 priority patent/WO2008099689A1/en
Publication of JP2008196592A publication Critical patent/JP2008196592A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • F16D1/116Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling the interengaging parts including a continuous or interrupted circumferential groove in the surface of one of the coupling parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22313Details of the inner part of the core or means for attachment of the core on the shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ocean & Marine Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the fatigue strength of a material itself which forms a power transmission shaft besides enhancing the fatigue strength of a male spline portion by easing stress concentration of both tensile stress and shear stress in the male spline of a power transmission shaft. <P>SOLUTION: A male spline portion Sm is formed in an outer periphery of a power transmission shaft. An enlarged diameter portion 21b gradually enlarging in the outer diameter toward the opposite shaft end side is arranged in a portion on the opposite shaft end side in a valley portion 21 of the male spline portion Sm. A sectionally arc-shaped rounded portion 21b1 is provided on both circumferential sides of the enlarged diameter portion 21b, and the curvature radius of the rounded portion 21b1 is gradually increased toward the opposite shaft end side. A material of the power transmission shaft is steel formed of predetermined components, wherein an average grain size of retained austenite in a surface layer of a hardened layer after induction hardening/annealing is 10 μm or smaller. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、雌側部材とスプライン(セレーションも含まれる。以下、同じ)を介して結合される動力伝達シャフトに関する。   The present invention relates to a power transmission shaft coupled to a female member through a spline (including serrations, the same applies hereinafter).

近年、環境問題に対する関心の高まりから、例えば自動車では排ガス規制の強化や燃費向上等が強く求められており、それらの対策の一環として、ドライブシャフト、プロペラシャフト等に使用される動力伝達シャフトにもさらなる軽量化・強度向上が強く求められている。この種の動力伝達シャフトは、外周に雄側のスプラインが形成されると共に、等速自在継手の内側継手部材の内周面に雌側のスプラインが形成される。この動力伝達シャフトの外周の雄スプライン部と内側継手部材の内周面の雌スプライン部とが嵌合することにより、動力伝達シャフトと内側継手部材とがトルク伝達可能に結合される。   In recent years, with increasing interest in environmental issues, for example, automobiles are strongly required to tighten exhaust gas regulations and improve fuel efficiency. As part of these measures, power transmission shafts used for drive shafts, propeller shafts, etc. There is a strong demand for further weight reduction and strength improvement. In this type of power transmission shaft, a male spline is formed on the outer periphery, and a female spline is formed on the inner peripheral surface of the inner joint member of the constant velocity universal joint. By fitting the male spline portion on the outer periphery of the power transmission shaft and the female spline portion on the inner peripheral surface of the inner joint member, the power transmission shaft and the inner joint member are coupled so as to be able to transmit torque.

雄スプライン部を有する動力伝達シャフトには強度が要求されるため、通常は、素材として鋼を用い、雄スプライン部を転造加工やプレス加工などによって成形した後、少なくとも雄スプライン部を焼入れ硬化させて使用される。成形後の焼入れ硬化の方法としては、高周波焼入れによることが多いが、ずぶ焼入れや浸炭焼入れによる場合もある。   Since a power transmission shaft with a male spline part requires strength, usually steel is used as the material, and after forming the male spline part by rolling or pressing, at least the male spline part is hardened and hardened. Used. As a method of quenching and hardening after molding, induction hardening is often used, but there are also cases of submerged hardening and carburizing and hardening.

図8は、谷部100の反軸端側(図面左側)の端部を、外径寸法を徐々に拡径させた拡径部102を介して外周面(平滑部)101につなげた、いわゆる切上がりタイプの雄スプライン部を示す平面図である。この形態の雄スプライン部の疲労破壊は、通常、谷部100と拡径部102のつなぎ目付近もしくは拡径部102で生じる。その際のき裂発生モードは2つあり、1つはA部に集中する引張応力によるもの、もう一つはB部に集中するせん断応力によるものである。鋼の場合、目安としてビッカース硬さ700を境に、それ以下ではき裂発生が主としてせん断応力支配となり、それ以上でかつ片振り捩り疲労の場合は引張応力支配となる。   FIG. 8 shows a so-called end portion of the valley portion 100 on the opposite axis end side (left side in the drawing) connected to an outer peripheral surface (smooth portion) 101 via a diameter-expanded portion 102 whose outer diameter is gradually increased. It is a top view which shows a male spline part of a round-up type. The fatigue failure of the male spline portion of this form usually occurs near the joint between the valley portion 100 and the enlarged diameter portion 102 or at the enlarged diameter portion 102. There are two crack generation modes at that time, one is due to the tensile stress concentrated in the A portion, and the other is due to the shear stress concentrated in the B portion. In the case of steel, cracks are mainly governed by shear stress below Vickers hardness 700 as a guide, and if it is more than that, and if it is swung torsional fatigue, it is governed by tensile stress.

これまで、雄スプライン部の疲労強度を向上させるための手段として、いくつかの方法が提案されている。例えば特許文献1では、拡径部と歯面の境界を鈍化させて応力集中を緩和する技術が開示されている。また、特許文献2では、通常は一つの拡径部を軸方向に2つ以上並べて設けた高強度化技術が開示されている。
特開2005−147367号公報 特表平11−514079号公報
So far, several methods have been proposed as means for improving the fatigue strength of the male spline part. For example, Patent Literature 1 discloses a technique for reducing stress concentration by blunting the boundary between the enlarged diameter portion and the tooth surface. Further, Patent Document 2 discloses a high strength technology in which two or more diameter-expanded portions are usually arranged side by side in the axial direction.
JP 2005-147367 A Japanese National Patent Publication No. 11-514079

しかしながら、特許文献1に記載された技術では、引張応力集中の緩和には効果が認められるが、せん断応力集中の緩和効果は不充分である。また、特許文献2の技術では、せん断応力集中の緩和はできるが、引張応力集中の緩和効果は不充分である。このように、き裂発生を支配する2つの応力のどちらか一方を緩和できる技術は存在するが、双方を同時に緩和する技術は存在せず、さらなる疲労強度向上を実現するためには改良の余地があった。   However, in the technique described in Patent Document 1, an effect is recognized in reducing the tensile stress concentration, but the effect of reducing the shear stress concentration is insufficient. Further, in the technique of Patent Document 2, the shear stress concentration can be reduced, but the effect of reducing the tensile stress concentration is insufficient. As described above, there is a technology that can relieve one of the two stresses that govern crack initiation, but there is no technology that relieves both simultaneously, and there is room for improvement in order to achieve further improvement in fatigue strength. was there.

また、雄スプライン部の疲労強度が高められたとしても、動力伝達シャフトを形成する素材自体の疲労強度が低いと、他の部分にき裂等の疲労破断が生じる恐れがある。例えば図1に示すように、動力伝達シャフト2の両端部に等速自在継手J1、J2を結合する場合、動力伝達シャフト2のうち、継手が大きな作動角を取ったときに外側継手部材4、14の開口端部と干渉する部分に最小径部2a、2bを形成し、継手の作動角の高角化を図ることがある。このとき、動力伝達シャフト2のうち、比較的強度の低い最小径部2a、2bにき裂等の疲労破断が生じる恐れがある。 Even if the fatigue strength of the male spline part is increased, if the fatigue strength of the material itself forming the power transmission shaft is low, fatigue fracture such as cracks may occur in other parts. For example, as shown in FIG. 1, when the constant velocity universal joints J 1 and J 2 are coupled to both ends of the power transmission shaft 2, the outer joint member when the joint of the power transmission shaft 2 takes a large operating angle. In some cases, the minimum diameter portions 2a and 2b are formed in the portions that interfere with the open end portions of the four and fourteen portions, thereby increasing the operating angle of the joint. At this time, fatigue breakage such as cracks may occur in the minimum diameter portions 2a and 2b of the power transmission shaft 2 having relatively low strength.

そこで、本発明では、動力伝達シャフトの雄スプライン部での引張応力とせん断応力の双方の応力集中を緩和させて雄スプライン部の疲労強度の向上させると共に、動力伝達シャフトを形成する素材自体の疲労強度を高めることを目的とする。   Therefore, in the present invention, the stress concentration of both the tensile stress and the shear stress in the male spline portion of the power transmission shaft is relaxed to improve the fatigue strength of the male spline portion, and the fatigue of the material itself forming the power transmission shaft is increased. The purpose is to increase the strength.

本発明者らは、平行部に切欠きを有する試験片を製作し、これを回転曲げ疲労試験と捩り疲労試験にそれぞれ供して、応力集中係数と疲労強度との関係を求めた。   The inventors of the present invention manufactured a test piece having a notch in a parallel portion, and used it for a rotational bending fatigue test and a torsional fatigue test, respectively, to determine the relationship between the stress concentration factor and the fatigue strength.

試験片としては、図9に示す化学成分の同一ロットの中炭素鋼を用い、図10aおよび図11aに示す形状および寸法(単位mm)の試験片を製作した。図10aは回転曲げ疲労試験の試験片であり、図11aは捩り疲労試験の試験片である。回転曲げ疲労試験の試験片では、切欠き先端の曲率半径を0.10、0.15、0.25、0.50、1.40の5水準とし、それぞれの応力集中係数αを3.5、3.0、2.5、2.0、1.5に設定した(図10c参照)。捩り疲労試験の試験片では、切欠き先端の曲率半径を0.15、0.25、0.50、1.40の4水準とし、それぞれの応力集中係数αを3.0、2.5、2.0、1.5に設定した(図11c参照)。これら全ての試験片に対し、切欠きを含む平行部に高周波焼入れを施した後に低温焼戻しを施した。何れの試験片も熱処理後の表面硬度は約HV650であった。   As a test piece, a medium carbon steel having the same chemical composition shown in FIG. 9 was used, and a test piece having the shape and dimensions (unit: mm) shown in FIGS. 10a and 11a was produced. FIG. 10 a is a test piece for a rotating bending fatigue test, and FIG. 11 a is a test piece for a torsional fatigue test. In the specimen of the rotating bending fatigue test, the radius of curvature of the notch tip is set to five levels of 0.10, 0.15, 0.25, 0.50, and 1.40, and the stress concentration coefficient α is 3.5. , 3.0, 2.5, 2.0, 1.5 (see FIG. 10c). In the torsional fatigue test specimen, the radius of curvature of the notch tip is set to four levels of 0.15, 0.25, 0.50, 1.40, and the stress concentration coefficient α is 3.0, 2.5, 2.0 and 1.5 were set (see FIG. 11c). All of these test pieces were subjected to induction quenching in parallel portions including the notches and then subjected to low temperature tempering. All the test pieces had a surface hardness of about HV650 after the heat treatment.

先ず、回転曲げ疲労試験は、小野式回転曲げ疲労試験機により、常温大気中で負荷周波数50Hzにて行った。   First, the rotating bending fatigue test was performed with an Ono type rotating bending fatigue tester in a room temperature atmosphere at a load frequency of 50 Hz.

回転曲げ疲労試験の結果、切欠きの水準によらず、切欠き底に沿ってき裂が発生して破断に至った。この場合のき裂発生モードは引張応力支配となる。破断に至るまでの負荷回数が105を越える辺りまでは、応力振幅の減少に伴って疲労曲線が降下し、応力振幅が一定値を下回ると破断しなくなる明瞭な疲労限現象を示した。なお、ここでの応力振幅は、切欠きの水準によらない公称応力振幅のことで、切欠き底直径(φ6.5mm)を有する平滑丸棒に疲労試験と同じ大きさの曲げモーメントを与えた時に表面に作用する最大引張応力振幅を意味する。 As a result of the rotating bending fatigue test, cracks occurred along the bottom of the notch regardless of the level of the notch, leading to fracture. The crack initiation mode in this case is governed by tensile stress. The fatigue curve decreased with the decrease of the stress amplitude until the number of loadings until the break exceeded 10 5, and a clear fatigue limit phenomenon was observed in which the fracture did not occur when the stress amplitude was below a certain value. The stress amplitude here is a nominal stress amplitude that does not depend on the level of the notch, and a smooth round bar having a notch bottom diameter (φ6.5 mm) was given a bending moment of the same size as the fatigue test. It means the maximum tensile stress amplitude that sometimes acts on the surface.

図12に、上記回転曲げ疲労試験で得られた応力集中係数ασと疲労限強度との関係を示す。図示のように、ασの減少に伴って疲労強度は向上したが、図中に破線で示すように、ασ≦2.7では疲労曲線の勾配が大きく、ασを減少させた時の疲労強度の向上がより顕著に現れることが判明した。   FIG. 12 shows the relationship between the stress concentration factor ασ obtained in the rotating bending fatigue test and the fatigue limit strength. As shown in the figure, the fatigue strength improved as ασ decreased. However, as shown by the broken line in the figure, the slope of the fatigue curve was large when ασ ≦ 2.7, and the fatigue strength when ασ was decreased was large. It has been found that the improvement appears more pronounced.

次に、捩り疲労試験は、電気式油圧サーボ疲労試験機により、トルク制御にて、常温大気中で負荷周波数2Hz、完全両振り(応力比R=−1)の条件で行った。   Next, the torsional fatigue test was carried out under the conditions of a load frequency of 2 Hz and a full swing (stress ratio R = -1) in a normal temperature atmosphere by torque control using an electric hydraulic servo fatigue tester.

捩り疲労試験の結果、切欠きの水準によらず、切欠き底に沿ってき裂が発生して破断に至った。この場合のき裂発生モードはせん断応力支配となる。両振り捩り疲労試験は負荷回数が最大で106回近くになるまで行ったが、その範囲では応力振幅の減少に伴って、疲労曲線が降下した。なお、ここでの応力振幅は、切欠きの水準によらない公称応力振幅のことで、切欠き底直径(φ17mm)を有する平滑丸棒に疲労試験と同じ大きさの捩りトルクを与えた時に表面に作用する最大せん断応力振幅を意味する。 As a result of the torsional fatigue test, cracks occurred along the bottom of the notch regardless of the level of the notch, leading to fracture. The crack initiation mode in this case is governed by shear stress. Both reversed torsional fatigue test is load count went until near 10 6 times at most in the range with decreasing stress amplitude fatigue curve drops. The stress amplitude here is a nominal stress amplitude that does not depend on the level of the notch, and is applied to a smooth round bar having a notch bottom diameter (φ17 mm) when a torsion torque of the same magnitude as that in the fatigue test is applied. Means the maximum shear stress amplitude acting on

図13に、上記両振り捩り疲労試験で得られた応力集中係数ατと105回における疲労強度との関係を示す。図示のように、ατの減少に伴って疲労強度は向上したが、図中に破線で示すように、ατ≦2.1では疲労曲線の勾配が大きく、ατを減少させた時の疲労強度の向上がより顕著に現れることが判明した。 FIG. 13 shows the relationship between the stress concentration coefficient ατ obtained in the above-mentioned swing-torsion fatigue test and the fatigue strength at 10 5 times. As shown in the figure, the fatigue strength improved as ατ decreased, but as shown by the broken line in the figure, the fatigue curve gradient was large when ατ ≦ 2.1, and the fatigue strength when ατ was decreased It has been found that the improvement appears more pronounced.

以上から、き裂発生が引張応力、せん断応力のどちらに支配される場合であっても応力集中緩和によって疲労強度が向上し、特に引張応力に対してはασ≦2.7で、また、せん断応力に対してはατ≦2.1でより応力集中の緩和効果が高まることが判明した。従って、双方の破損モードで疲労破壊する雄スプライン部の拡径部においては、そこに集中する第1主応力の最大値σ1maxを基準応力τ0の2.7倍以下(σ1max≦2.7τo)、軸方向のせん断応力の最大値τθzmaxを基準応力τ0の2.1倍以下(τθzmax≦2.1τ0)となるよう形状をチューニングすることが望ましい。ここで、基準応力τ0は、トルクTと、図6に示す雄スプライン部の谷部底の直径doと、雄スプライン部の内径di(雄スプライン部が中空の場合。中実の時はdi=0となる)とに対し、以下で与えられる値である。 From the above, the fatigue strength is improved by stress concentration relaxation regardless of whether the crack initiation is governed by tensile stress or shear stress, and ασ ≦ 2.7 particularly for tensile stress, and shearing It has been found that the stress concentration relaxation effect is further enhanced when ατ ≦ 2.1 against stress. Accordingly, in the diameter-expanded portion of the male spline portion that undergoes fatigue failure in both failure modes, the maximum value σ 1max of the first principal stress concentrated there is not more than 2.7 times the reference stress τ 01max ≦ 2. 7τ o ), and it is desirable to tune the shape so that the maximum value of axial shear stress τθ zmax is 2.1 times or less of the reference stress τ 0 (τθ zmax ≦ 2.1τ 0 ). Here, the reference stress τ 0 is the torque T, the diameter d o of the bottom of the valley of the male spline shown in FIG. 6, and the inner diameter d i of the male spline (when the male spline is hollow. Is given by: d i = 0).

τ0=16Tdo/[π(do 4−di 4)] τ 0 = 16 Td o / [π (d o 4 −d i 4 )]

本発明者らが拡径部の形状を種々チューニングした結果、雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を反軸端側に向けて徐々に大きくすれば、σ1max≦2.7τo、およびτθzmax≦2.1τ0を満足できることが判明した。 As a result of various tunings of the shape of the enlarged diameter portion by the present inventors, rounded portions are provided on both sides in the circumferential direction of the enlarged diameter portion of the male spline portion, and the curvature radius of the rounded portion is gradually increased toward the opposite shaft end side. As a result, it was found that σ 1max ≦ 2.7τ o and τθ zmax ≦ 2.1τ 0 can be satisfied.

次に、図10(a)および図11(a)の切欠き疲労試験片と同じ成分(図9参照)の素材を用いて、両軸端に雄スプライン部を有するシャフト形状試験片を製作し(図17a参照)、この試験片を用いて両振り捩り疲労試験および片振り捩り疲労試験を行った。試験片は、図17bに示すインボリュートスプライン諸元に準じ、拡径部の形状を本発明品相当と従来品相当とした2種類を製作した。これら試験片には、その全体に大気中の同一条件で高周波焼入れおよび焼戻しが施されている。両振り捩り疲労試験は850〜1300Nmの範囲の4水準で行い、片振り捩り疲労試験は1250〜2000Nmの範囲の4水準の最大捩りトルクを付与している。図18に両振り捩り疲労試験で得られたT/N線図、図19に片振り疲労試験で得られたT/N線図を示す。両図からも明らかなように、本発明品では、従来品に対して両振り捩り疲労および片振り捩り疲労の双方で大幅な疲労強度の向上を達成することができる。   Next, a shaft-shaped test piece having male spline portions at both shaft ends is manufactured using a material having the same component (see FIG. 9) as the notched fatigue test piece of FIGS. 10 (a) and 11 (a). (See FIG. 17a) Using this test piece, a double torsional fatigue test and a single torsional fatigue test were performed. According to the involute spline specifications shown in FIG. 17b, two types of test pieces were produced in which the shape of the enlarged diameter portion was equivalent to the product of the present invention and equivalent to the conventional product. These test pieces are subjected to induction hardening and tempering under the same conditions in the atmosphere as a whole. The double torsional fatigue test is conducted at four levels in the range of 850 to 1300 Nm, and the single torsional fatigue test gives a maximum torsional torque of four levels in the range of 1250 to 2000 Nm. FIG. 18 shows a T / N diagram obtained in the double swing torsional fatigue test, and FIG. 19 shows a T / N diagram obtained in the single swing fatigue test. As is clear from both figures, the product of the present invention can achieve a significant improvement in fatigue strength in both the double torsional fatigue and the single swing torsional fatigue compared to the conventional product.

次に、図28(a)に示す成分のA鋼(本発明品用鋼)及びB鋼(従来品用鋼)を用いて図28(b)に示すシャフト形状試験片を製作し、これに異なる処理(28(c)参照)を施して得られた試験片A−1、A−2、A−3、及びB−1を用いて両振り捩り疲労試験を行った。この試験片の両軸端には、図17bに示すインボリュートスプライン諸元に準じ、拡径部の形状が本発明品相当の雄スプライン部を有する。試験片の軸方向中間部には、直径Do=19mmで外周面が平滑な小径部を有する。A鋼からなる試験片A−1〜A−3には、旧オーステナイト粒径を微細にするため、比較的低温の約900℃で高周波加熱して焼入を行った。一方、B鋼からなる試験片B−1には、従来条件、すなわち比較的高温の約1000℃で高周波加熱して焼入を行った。硬化層比は、A鋼品、B鋼品ともに約0.6となるように、高周波加熱温度以外の条件を調整した。その後の焼戻しについては、A鋼品は170℃×1時間(A−1)、150℃×1時間(A−2)、及び焼戻しなし(A−3)の3水準とし、B鋼品は170℃×1時間の1水準(B−1)とした。この両振り捩り疲労試験は850〜1300Nmの範囲の4水準で行い、得られたT/N線図を図29(a)〜(d)に示す。図29中の実線は、従来品の疲労強度レベルを示す基準回帰線である。この実線で示す従来品より強度を15%向上させることを目標とし、目標値を図29に点線で示す。 Next, a shaft-shaped test piece shown in FIG. 28 (b) is manufactured using steel A (steel for the present invention) and steel B (steel for conventional products) having the components shown in FIG. 28 (a). A double torsional fatigue test was performed using test pieces A-1, A-2, A-3, and B-1 obtained by performing different treatments (see 28 (c)). The both ends of the test piece have male spline portions corresponding to the invented spline specifications shown in FIG. In the middle part in the axial direction of the test piece, there is a small diameter part with a diameter D o = 19 mm and a smooth outer peripheral surface. The test pieces A-1 to A-3 made of steel A were quenched by induction heating at a relatively low temperature of about 900 ° C. in order to make the prior austenite grain size fine. On the other hand, the test piece B-1 made of B steel was quenched by induction heating at a conventional condition, that is, at a relatively high temperature of about 1000 ° C. Conditions other than the high-frequency heating temperature were adjusted so that the hardened layer ratio was about 0.6 for both the A steel product and the B steel product. Regarding the subsequent tempering, the steel A product has three levels of 170 ° C. × 1 hour (A-1), 150 ° C. × 1 hour (A-2), and no tempering (A-3), and the steel B product has 170 levels. One level (B-1) of ° C. × 1 hour was set. This double torsional fatigue test was conducted at four levels in the range of 850 to 1300 Nm, and the obtained T / N diagrams are shown in FIGS. The solid line in FIG. 29 is a reference regression line indicating the fatigue strength level of the conventional product. The target is to improve the strength by 15% from the conventional product indicated by the solid line, and the target value is indicated by a dotted line in FIG.

図29(a)〜(c)に示す試験結果から、A鋼を用いたA−1〜A−3のうち、焼戻し温度が低くその分表層硬度が高いA−1及びA−2は、全負荷域で目標値を超える高強度を示した(図29(a)、(b)参照)。また、焼戻し温度が高くその分表層硬度が低いA−3は、平均的に概ね目標値に沿う結果を示した(図29(c)参照)。これに対し、図29(d)に示す試験結果から、B−1は雄スプライン部の拡径部が本発明の形状であるため、従来品(実線)よりは優れた疲労強度を示すものの、目標値(点線)には到底届かないものであることが明らかとなった。以上より、本発明に規定した成分を有するA鋼を用いると、疲労強度向上の目標値を達成することができる。尚、A−3の結果から、全負荷域で目標値以上の強度を発揮するには、図28(c)に示す表層硬度のバラつきを考慮して、HV690以上の表層硬度が必要であるといえる。   From the test results shown in FIGS. 29A to 29C, among A-1 to A-3 using A steel, A-1 and A-2 having a low tempering temperature and a correspondingly high surface layer hardness are all A high intensity exceeding the target value in the load range was shown (see FIGS. 29A and 29B). In addition, A-3, which has a high tempering temperature and a correspondingly low surface layer hardness, shows a result on average approximately along the target value (see FIG. 29C). On the other hand, from the test results shown in FIG. 29 (d), B-1 shows fatigue strength superior to that of the conventional product (solid line) because the diameter-expanded portion of the male spline portion is the shape of the present invention. It became clear that the target value (dotted line) was not reached. From the above, when steel A having the components defined in the present invention is used, a target value for improving fatigue strength can be achieved. In addition, from the result of A-3, in order to demonstrate the intensity | strength more than a target value in a full load area, the surface layer hardness of HV690 or more is required in consideration of the variation in surface layer hardness shown in FIG.28 (c). I can say that.

以上から、本発明は、以下の事項によって特徴付けられるものである。   As described above, the present invention is characterized by the following matters.

(I)外周に雄スプライン部が設けられ、雄スプライン部の谷部の軸方向一端側にその外径寸法を徐々に拡径させた拡径部を有する動力伝達シャフトにおいて、前記雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を軸方向一端側に向けて徐々に大きくする。   (I) In the power transmission shaft having a male spline portion provided on the outer periphery and having a diameter-expanded portion whose outer diameter is gradually increased on one axial end side of the valley portion of the male spline portion, Round portions are provided on both sides in the circumferential direction of the enlarged diameter portion, and the radius of curvature of the round portion is gradually increased toward one end side in the axial direction.

(II)トルクTが負荷されたときに、雄スプライン部の拡径部に作用する第1主応力、および軸方向のせん断応力の最大値をそれぞれσ1max、τθzmaxとし、トルクT、雄スプライン部の谷部の直径do、雄スプライン部の内径diに対し、1)式で与えられる基準応力τ0とするとき、下記2)式と3)式を同時に満たすようにする。 (II) When the torque T is applied, the first principal stress acting on the diameter-expanded portion of the male spline portion and the maximum value of the shear stress in the axial direction are σ 1max and τθ zmax , respectively. When the reference stress τ 0 given by the equation (1) is set to the diameter d o of the trough portion and the inner diameter d i of the male spline portion, the following equations (2) and (3) are satisfied simultaneously.

τ0=16Tdo/[π(do 4−di 4)] …1) τ 0 = 16 Td o / [π (d o 4 −d i 4 )]... 1)

σ1max≦2.7τo …2) σ 1max ≦ 2.7τ o … 2)

τθzmax≦2.1τ0 …3) τθ zmax ≦ 2.1τ 0 … 3)

本発明者が検証したところ、以上の構成においては、アール部の曲率半径の増加率をdR/dL、拡径部の軸方向断面の内径端と外径端を結ぶ直線の角度をθとするとき、それぞれの値を0.05≦dR/dL≦0.60、および5°≦θ≦20°の範囲に設定するのが望ましいことが判明した。   As a result of verification by the inventor, in the above configuration, the rate of increase in the radius of curvature of the rounded portion is dR / dL, and the angle of the straight line connecting the inner diameter end and the outer diameter end of the axial section of the enlarged diameter portion is θ. It was found that it is desirable to set the respective values in the ranges of 0.05 ≦ dR / dL ≦ 0.60 and 5 ° ≦ θ ≦ 20 °.

また、上記の試験結果より、本発明の動力伝達シャフトは、C:0.4mass%以上、0.5mass%以下、Si:0.35mass%以上、0.8mass%以下、Mn:0.5mass%以上、0.8mass%以下、Al:0.005mass%以上、0.05mass%以下、Ti:0.005mass%以上0.05mass%以下、Mo:0.3mass%以上、0.5mass%以下、B:0.0005mass%以上、0.005mass%以下、Cu:0.05mass%以上、0.5mass%以下、S:0.005mass%以上、0.025mass%以下、P:0.02mass%以下、Cr:0.2mass%以下を含有し、残部はFeおよび不可避的不純物から成る鋼で形成し、この鋼の高周波焼入・焼戻後の硬化層表層における旧オーステナイト平均粒径が10μm以下であることが好ましい。   Further, from the above test results, the power transmission shaft of the present invention has C: 0.4 mass% or more and 0.5 mass% or less, Si: 0.35 mass% or more, 0.8 mass% or less, Mn: 0.5 mass%. Or more, 0.8 mass% or less, Al: 0.005 mass% or more, 0.05 mass% or less, Ti: 0.005 mass% or more and 0.05 mass% or less, Mo: 0.3 mass% or more, 0.5 mass% or less, B : 0.0005 mass% or more, 0.005 mass% or less, Cu: 0.05 mass% or more, 0.5 mass% or less, S: 0.005 mass% or more, 0.025 mass% or less, P: 0.02 mass% or less, Cr : 0.2% by mass or less, the balance being made of steel consisting of Fe and inevitable impurities, induction hardening and quenching of this steel It is preferable prior austenite average particle size in the cured layer surface after it is 10μm or less.

また、上記試験結果より、動力伝達シャフトを形成する鋼の母材組織は、組織分率で50%以上のベイナイト組織を有することが好ましい。さらに、この鋼の高周波焼入・焼戻後の硬化層深さの軸半径に対する比である硬化層比は0.55以上であることが好ましい。   From the above test results, it is preferable that the steel base material structure forming the power transmission shaft has a bainite structure of 50% or more in terms of the structure fraction. Furthermore, the hardened layer ratio, which is the ratio of the hardened layer depth after induction hardening and tempering of this steel to the axial radius, is preferably 0.55 or more.

動力伝達シャフトを形成する鋼の各成分を限定した理由は以下の通りである。   The reason for limiting the components of the steel forming the power transmission shaft is as follows.

(1)C:0.4mass%以上、0.5mass%以下
Cは焼入性への影響が最も大きい元素であり、高周波焼入・焼戻後の硬化層の硬さおよび深さを高めて強度向上に有効に寄与する。しかしながら、含有量が0.4mass%に満たないと、必要とされる強度を確保するためには硬化層比をかなり大きくしなければならず、その際に焼割れの発生が顕著となり、またベイナイト組織も生成しにくくなる。一方、0.5mass%を超えて含有させると粒界強度が低下し、また切削性、冷間鍛造性、および耐焼割れ性も低下する。以上より、Cの含有量は0.4mass%以上、0.5mass%以下の範囲、好ましくは 0.42mass%以上、0.46mass%以下の範囲であることが望ましい。
(1) C: 0.4 mass% or more, 0.5 mass% or less C is an element having the greatest influence on hardenability, and increases the hardness and depth of the hardened layer after induction hardening and tempering. Effectively contributes to strength improvement. However, if the content is less than 0.4 mass%, the cured layer ratio must be considerably increased in order to ensure the required strength, in which case the occurrence of burning cracks becomes significant, and bainite Tissues are also difficult to generate. On the other hand, when the content exceeds 0.5 mass%, the grain boundary strength is lowered, and the machinability, cold forgeability, and fire cracking resistance are also lowered. From the above, the C content is desirably 0.4 mass% or more and 0.5 mass% or less, preferably 0.42 mass% or more and 0.46 mass% or less.

(2)Si:0.35mass%以上、0.8mass%以下
Siはベイナイト組織の生成に有用な元素である。また、焼入硬化層の粒径を微細化する作用を有する。さらに、焼戻軟化抵抗を向上させる元素であり、高周波焼入後の硬化層の硬さを増加させる。さらに、炭化物生成を抑制し、粒界への炭化物析出による粒界強度の低下を抑制する。これらの作用により、強度および耐焼割れ性が向上する。Siの含有量が0.35mass%に満たないと、ベイナイト組織分率が低下するとともに、硬化層表層の旧オーステナイト粒径を10μm 以下にすることができず、また、硬化層硬さが低下して強度低下する。一方、Siの含有量が0.8mass%を超えると、フェライトの固溶硬化により素材硬さが上昇し、切削性、冷間鍛造性、および耐焼割れ性の低下を招く。以上より、Siの含有量は0.35mass%以上、0.8mass%以下の範囲、好ましくは0.4mass%以上、0.8mass%以下の範囲であることが望ましい。
(2) Si: 0.35 mass% or more and 0.8 mass% or less Si is an element useful for generating a bainite structure. Moreover, it has the effect | action which refines | miniaturizes the particle size of a hardening hardening layer. Furthermore, it is an element that improves the temper softening resistance, and increases the hardness of the hardened layer after induction hardening. Furthermore, the carbide | carbonized_material production | generation is suppressed and the fall of the grain boundary strength by the carbide | carbonized_material precipitation to a grain boundary is suppressed. By these actions, the strength and the resistance to fire cracking are improved. If the Si content is less than 0.35 mass%, the bainite structure fraction is lowered, the prior austenite grain size of the hardened layer surface layer cannot be made 10 μm or less, and the hardened layer hardness is lowered. Strength decreases. On the other hand, when the Si content exceeds 0.8 mass%, the material hardness increases due to the solid solution hardening of ferrite, and the machinability, cold forgeability, and fire cracking resistance decrease. From the above, the Si content is desirably in the range of 0.35 mass% to 0.8 mass%, preferably in the range of 0.4 mass% to 0.8 mass%.

(3)Mn:0.5mass%以上、0.8mass%以下
Mnは焼入性を向上させる元素であり、高周波焼入後の硬化層深さを確保するのに不可欠である。Mnの含有量が0.5mass%未満では、その添加効果は小さく、Mnの含有量が0.8mass%を超えると素材硬さが上昇し、転造性、切削性が低下するとともに耐焼割れ性も低下する。以上より、Mnの含有量は0.5mass%以上、0.8mass%以下の範囲、好ましくは0.5mass%以上、0.7mass%以下の範囲であることが望ましい。
(3) Mn: 0.5 mass% or more and 0.8 mass% or less Mn is an element that improves hardenability and is indispensable for ensuring the depth of the hardened layer after induction hardening. When the content of Mn is less than 0.5 mass%, the effect of addition is small. When the content of Mn exceeds 0.8 mass%, the material hardness increases, and the rolling property and machinability deteriorate, and the resistance to fire cracking. Also decreases. From the above, the Mn content is desirably in the range of 0.5 mass% to 0.8 mass%, preferably in the range of 0.5 mass% to 0.7 mass%.

(4)Al:0.005mass%以上、0.05mass%以下
Alは脱酸に有効な元素である。また、高周波焼入加熱時においてオーステナイト粒成長を抑制する効果がある。しかし、Alの含有量が0.005mass%に満たないとその効果は小さく、一方、0.05mass%を超えて含有させてもその効果は飽和し、むしろ成分コストの上昇を招く不利が生じる。以上より、Alの含有量は0.005mass%以上、0.05mass%以下の範囲、好ましくは0.02mass%以上、0.04mass%以下の範囲であることが望ましい。
(4) Al: 0.005 mass% or more and 0.05 mass% or less Al is an element effective for deoxidation. In addition, there is an effect of suppressing austenite grain growth during induction hardening. However, when the Al content is less than 0.005 mass%, the effect is small. On the other hand, even if the Al content exceeds 0.05 mass%, the effect is saturated, and there is a disadvantage that the component cost increases. From the above, the content of Al is desirably in the range of 0.005 mass% to 0.05 mass%, preferably in the range of 0.02 mass% to 0.04 mass%.

(5)Ti:0.005mass%以上0.05mass%以下
Tiが不可避的不純物として混入するNと結合することにより、BがBNとなってBの焼入性向上効果が消失するのを防止することができる。この効果を得るためには、少なくとも0.005mass%以上の含有を必要とする。しかし、0.05mass%を超えて含有するとTiNが多量に形成される結果、これが疲労破壊の起点となって強度低下を招く。以上より、Tiの含有量は0.005mass%以上0.05mass%以下の範囲、好ましくは0.015mass%以上、0.03mass%以下の範囲であることが望ましい。さらには、Nを確実に固定して、Bによる焼入性向上効果を十分に発揮させる観点からは、Ti(mass%)/N(mass%)≧3.42を満足させることが好適である。
(5) Ti: 0.005 mass% or more and 0.05 mass% or less Ti is combined with N mixed as an inevitable impurity, thereby preventing B from becoming BN and improving the hardenability of B. be able to. In order to obtain this effect, it is necessary to contain at least 0.005 mass%. However, if it contains more than 0.05 mass%, a large amount of TiN is formed. As a result, this becomes a starting point of fatigue fracture and causes a decrease in strength. From the above, the Ti content is desirably in the range of 0.005 mass% to 0.05 mass%, preferably in the range of 0.015 mass% to 0.03 mass%. Furthermore, it is preferable to satisfy Ti (mass%) / N (mass%) ≧ 3.42 from the viewpoint of securely fixing N and sufficiently exhibiting the effect of improving hardenability by B. .

(6)Mo:0.3mass%以上、0.5mass%以下
Moはベイナイト組織の生成を促進する作用がある。また、高周波焼入加熱時におけるオーステナイト粒成長を抑制することにより、焼入硬化層の旧オーステナイト粒径を微細化する作用がある。さらに、焼入性の向上に有用な元素であるため、焼入性を調整するために用いられる。Moの含有量が0.3mass%に満たないと、製造条件や焼入条件をいかように調整しても硬化層表層の旧オーステナイト粒径を10μm以下にすることができない。一方、Moを0.5mass%を超えて含有させると、素材硬さが著しく上昇して加工性の低下を招くと共に、耐焼割れ性も低下する。以上より、Moの含有量は0.30mass%以上、0.5mass%以下の範囲、好ましくは0.35mass%以上、0.45mass%以下の範囲であることが望ましい。
(6) Mo: 0.3 mass% or more and 0.5 mass% or less Mo has an action of promoting the formation of a bainite structure. Moreover, there exists an effect | action which refines | miniaturizes the prior austenite grain size of a hardening hardening layer by suppressing the austenite grain growth at the time of induction hardening heating. Furthermore, since it is an element useful for improving hardenability, it is used for adjusting hardenability. If the Mo content is less than 0.3 mass%, the prior austenite grain size of the hardened layer cannot be reduced to 10 μm or less, regardless of how the production conditions and quenching conditions are adjusted. On the other hand, when Mo is contained exceeding 0.5 mass%, the hardness of the material is remarkably increased, resulting in a decrease in workability and a decrease in fire cracking resistance. From the above, the Mo content is desirably in the range of 0.30 mass% to 0.5 mass%, preferably in the range of 0.35 mass% to 0.45 mass%.

(7)B:0.0005mass%以上、0.005mass%以下
Bはベイナイト組織あるいはマルテンサイト組織の生成を促進する効果を有する。また、Bは微量添加によって焼入性を向上させ、焼入深さを増して強度向上させる効果がある。さらに、Bは粒界に優先的に偏析して粒界に偏析するPの濃度を低減し、粒界強度を向上させる作用もある。また、粒界強化により耐焼割れ性も向上させる。Bの含有量が0.0005mass%に満たないとその添加効果に小さく、一方、0.005mass%を超えて含有させるとその効果は飽和し、むしろ成分コストの上昇を招く。以上より、Bの含有量は0.0005mass%以上、0.005mass%以下の範囲、好ましくは0.001mass%以上、0.003mass%以下の範囲であることが望ましい。
(7) B: 0.0005 mass% or more and 0.005 mass% or less B has an effect of promoting the formation of a bainite structure or a martensite structure. Further, B has the effect of improving the hardenability by adding a small amount and increasing the quenching depth to improve the strength. Further, B has an action of preferentially segregating at the grain boundary and reducing the concentration of P segregating at the grain boundary and improving the grain boundary strength. Also, the crack resistance is improved by strengthening the grain boundaries. If the content of B is less than 0.0005 mass%, the effect of addition is small. On the other hand, if the content of B exceeds 0.005 mass%, the effect is saturated and the cost of components is increased. From the above, the B content is desirably 0.0005 mass% or more and 0.005 mass% or less, and preferably 0.001 mass% or more and 0.003 mass% or less.

(8)Cu:0.05mass%以上、0.5mass%以下
Cuは焼入性の向上に有効であり、またフェライト中に固溶し、その固溶強化によって強度向上させる効果がある。また、炭化物の生成を抑制することにより、炭化物による粒界強度の低下を抑制して強度向上させる。そのためには、0.05mass%以上添加する必要がある。しかし、Cuの含有量が0.5mass%を超えると、熱間加工時に割れが発生したり、耐焼割れ性が低下する。以上より、Cuの含有量は0.05mass%以上、0.5mass%以下の範囲、好ましくは0.05mass%以上、0.3mass%以下の範囲であることが望ましい。
(8) Cu: 0.05 mass% or more and 0.5 mass% or less Cu is effective in improving hardenability, and has the effect of solid-dissolving in ferrite and improving the strength by solid solution strengthening. Moreover, by suppressing the production | generation of a carbide | carbonized_material, the fall of the grain boundary intensity | strength by a carbide | carbonized_material is suppressed, and a strength improvement is carried out. For that purpose, it is necessary to add 0.05 mass% or more. However, if the Cu content exceeds 0.5 mass%, cracks occur during hot working, and the fire cracking resistance decreases. As described above, the Cu content is desirably in the range of 0.05 mass% to 0.5 mass%, preferably in the range of 0.05 mass% to 0.3 mass%.

(9)S:0.005mass%以上、0.025mass%以下
Sは鋼中でMnSを形成し、切削性を向上させる有用元素であり、0.005 mass%以上含有させるが、0.025mass%を超えて含有させると、MnS量が増加して強度が低下する。従って、Sの含有量は0.005mass%以上、0.025mass%以下の範囲であることが望ましい。
(9) S: 0.005 mass% or more, 0.025 mass% or less S is a useful element that forms MnS in steel and improves the machinability, and is contained by 0.005 mass% or more, but 0.025 mass%. If the content exceeds V, the amount of MnS increases and the strength decreases. Therefore, the content of S is desirably in the range of 0.005 mass% to 0.025 mass%.

(10)P:0.02mass%以下
Pは旧オーステナイト粒界に偏析して粒界強度を低下させる。また、焼割れを助長する弊害もある。したがって、Pの含有は極力低減することが望ましいが、0.02mass%までは許容される。
(10) P: 0.02 mass% or less P segregates at the prior austenite grain boundaries and lowers the grain boundary strength. In addition, there is a harmful effect that promotes burning cracks. Therefore, it is desirable to reduce the P content as much as possible, but 0.02 mass% is allowed.

(11)Cr:0.2mass%以下
Crは炭化物を安定化させて残留炭化物の生成を助長し、粒界強度を低下させる。さらに、Crは焼割れを助長する。したがって、Crの含有は極力低減することが望ましいが、0.2 mass%までは許容され、好ましくは0.05mass%以下とするのが望ましい。
(11) Cr: 0.2 mass% or less Cr stabilizes carbides, promotes the formation of residual carbides, and lowers the grain boundary strength. Furthermore, Cr promotes fire cracking. Therefore, the Cr content is desirably reduced as much as possible, but is allowed up to 0.2 mass%, preferably 0.05 mass% or less.

また、動力伝達シャフトを形成する鋼の母材組織、すなわち焼入前組織がベイナイト組織を有し、その組織分率が50%以上とする理由は次の通りである。ベイナイト組織はフェライト・パーライト組織に比べて炭化物が微細に分散した組織であり、焼入加熱時にオーステナイトの核生成サイトとなるフェライトと炭化物の延べ界面面積が大きくなる。そのためオーステナイトが微細になるため、高周波焼入後の硬化層の旧オーステナイト粒径を微細にすることができる。旧オーステナイト粒径の微細化により粒界強度が上昇し、強度および耐焼割れ性を向上させることができる。このような効果はベイナイト組織の組織分率が50%以上であれば得られるが、好ましくはベイナイト組織の組織分率を60%以上とすることが望ましい。   Further, the steel base material structure forming the power transmission shaft, that is, the structure before quenching has a bainite structure, and the structure fraction is 50% or more for the following reasons. The bainite structure is a structure in which carbides are finely dispersed as compared with the ferrite-pearlite structure, and the total interfacial area between ferrite and carbides that become nucleation sites of austenite during quenching heating increases. Therefore, since austenite becomes fine, the prior austenite grain size of the hardened layer after induction hardening can be made fine. The grain boundary strength is increased by the refinement of the prior austenite grain size, and the strength and resistance to fire cracking can be improved. Such an effect can be obtained when the bainite structure has a structure fraction of 50% or more, but preferably the bainite structure has a structure fraction of 60% or more.

また、動力伝達シャフトを形成する鋼の高周波焼入後の硬化層表層の旧オーステナイト粒径が10μmを超えると十分な粒界強度が得られないため、この旧オーステナイト粒径は10μm以下、好ましくは8μm以下とすることが望ましい。なお、硬化層表層とは表面から500μmの深さまでの部分を指すものとする。   Further, if the prior austenite grain size of the hardened layer surface layer after induction hardening of the steel forming the power transmission shaft exceeds 10 μm, sufficient grain boundary strength cannot be obtained, so this prior austenite grain size is 10 μm or less, preferably It is desirable that the thickness is 8 μm or less. In addition, a hardened layer surface layer shall point to the part to the depth of 500 micrometers from the surface.

また、動力伝達シャフトを形成する鋼の最小平滑部の高周波焼入・焼戻し後の硬化層において、硬化層深さの軸半径に対する比である硬化層比を0.55以上に限定した理由は、静捩り強度と捩り疲労強度を安定して高く保つためである。硬化層比が0.55未満では、捩り負荷を与えた際に内部が塑性変形するため、結果として表面における応力の増大を招き、強度低下につながることとなる。なお、ここでの硬化層深さとはHV450以上(JIS準拠)の硬度を有する深さのことを言うものとする。   The reason why the hardened layer ratio, which is the ratio of the hardened layer depth to the shaft radius, is 0.55 or more in the hardened layer after induction hardening and tempering of the minimum smooth portion of the steel forming the power transmission shaft, This is to keep the static torsional strength and torsional fatigue strength stable and high. When the hardened layer ratio is less than 0.55, the inside undergoes plastic deformation when a torsional load is applied, resulting in an increase in stress on the surface and a decrease in strength. In addition, the hardened layer depth here shall mean the depth which has the hardness of HV450 or more (JIS conformity).

また、上記の試験結果より、動力伝達シャフトを形成する鋼の疲労強度向上の目標値を達成するため、すなわち従来品より15%強度を向上させるために、鋼の高周波焼入れ・焼戻し後の硬化層表層の硬さは、HV690以上であることが望ましい。   Moreover, from the above test results, in order to achieve the target value for improving the fatigue strength of the steel forming the power transmission shaft, that is, to improve the strength by 15% compared to the conventional product, the hardened layer after induction hardening and tempering of the steel. The hardness of the surface layer is desirably HV690 or more.

以上のように、本発明によれば、動力伝達シャフトの雄スプライン部での引張応力とせん断応力の双方の応力集中を緩和させて雄スプライン部の疲労強度を高めると共に、動力伝達シャフトを形成する素材自体の疲労強度を高めることができる。   As described above, according to the present invention, the stress concentration of both the tensile stress and the shear stress in the male spline portion of the power transmission shaft is relaxed to increase the fatigue strength of the male spline portion, and the power transmission shaft is formed. The fatigue strength of the material itself can be increased.

以下、本発明の実施の形態を、添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明に係る動力伝達シャフト2を組み込んだ車のドライブシャフト1を示す。図示例のドライブシャフト1は、動力伝達シャフト2と、動力伝達シャフト2のアウトボード側(車両搭載時に車幅方向の外となる側)の端部に装着される固定型等速自在継手J1と、動力伝達シャフト2のインボード側の端部に装着される摺動型等速自在継手(トリポード型等速自在継手)J2とを備える。 FIG. 1 shows a drive shaft 1 of a vehicle incorporating a power transmission shaft 2 according to the present invention. The drive shaft 1 in the illustrated example includes a power transmission shaft 2 and a fixed type constant velocity universal joint J 1 that is attached to the end of the power transmission shaft 2 on the outboard side (the outside in the vehicle width direction when mounted on the vehicle). And a sliding-type constant velocity universal joint (tripod type constant-velocity universal joint) J 2 mounted on the end portion on the inboard side of the power transmission shaft 2.

固定型等速自在継手J1は、動力伝達シャフト2に結合される内側継手部材3と、内側継手部材3の外径側に配置される外側継手部材4と、内側継手部材3と外側継手部材4との間でトルクを伝達するボール5とを主要構成要素とする。内側継手部材3の外周に形成されたトラック溝3aと外側継手部材4の内周に形成されたトラック溝4aとで形成されるボールトラックにボール5を配置し、円周方向等配位置に配置した複数のボール5をケージ6で保持している。 The fixed type constant velocity universal joint J 1 includes an inner joint member 3 coupled to the power transmission shaft 2, an outer joint member 4 disposed on the outer diameter side of the inner joint member 3, and the inner joint member 3 and the outer joint member. A ball 5 that transmits torque to and from 4 is a main component. The balls 5 are arranged on a ball track formed by the track grooves 3a formed on the outer periphery of the inner joint member 3 and the track grooves 4a formed on the inner periphery of the outer joint member 4, and are arranged at equidistant positions in the circumferential direction. The plurality of balls 5 are held by the cage 6.

トリポード型等速自在継手J2は、動力伝達シャフト2に結合される内側継手部材13と、内側継手部材13の外径側に配置される外側継手部材14と、内側継手部材13と外側継手部材14との間でトルクを伝達するトルク伝達部材としてのローラ15とを主要構成要素とする。内側継手部材13の円周方向三箇所には、脚軸13aが突設されている。外側継手部材14の内周の円周方向三等分位置には軸方向に延びるトラック溝14aが形成され、このトラック溝14aをローラ15が転動する。 The tripod type constant velocity universal joint J 2 includes an inner joint member 13 coupled to the power transmission shaft 2, an outer joint member 14 disposed on the outer diameter side of the inner joint member 13, and the inner joint member 13 and the outer joint member. A roller 15 as a torque transmission member that transmits torque to and from 14 is a main component. Leg shafts 13 a are projected from three locations in the circumferential direction of the inner joint member 13. A track groove 14a extending in the axial direction is formed at a position of the inner periphery of the outer joint member 14 in the circumferential direction, and the roller 15 rolls along the track groove 14a.

動力伝達シャフト2は、以下のような成分を有する鋼で形成される。すなわち、C:0.4mass%以上、0.5mass%以下、Si:0.35mass%以上、0.8mass%以下、Mn:0.5mass%以上、0.8mass%以下、Al:0.005mass%以上、0.05mass%以下、Ti:0.005mass%以上0.05mass%以下、Mo:0.3mass%以上、0.5mass%以下、B:0.0005mass%以上、0.005mass%以下、Cu:0.05mass%以上、0.5mass%以下、S:0.005mass%以上、0.025mass%以下、P:0.02mass%以下、Cr:0.2mass%以下を含有する鋼で形成され、例えば図28(a)に示すA鋼の成分を有する鋼で形成される。この鋼の上記成分の残部は、Feおよび不可避的不純物から成る。この鋼は、高周波焼入・焼戻後の硬化層表層の旧オーステナイト平均粒径が10μm以下であり、母材組織が組織分率で50%以上のベイナイト組織を有し、さらに、高周波焼入・焼戻後の硬化層深さの軸半径に対する比である硬化層比が0.55以上である。また、この鋼の高周波焼入れ・焼戻し後の硬化層表層の硬さは、HV690以上である。   The power transmission shaft 2 is formed of steel having the following components. That is, C: 0.4 mass% or more, 0.5 mass% or less, Si: 0.35 mass% or more, 0.8 mass% or less, Mn: 0.5 mass% or more, 0.8 mass% or less, Al: 0.005 mass% Or more, 0.05 mass% or less, Ti: 0.005 mass% or more and 0.05 mass% or less, Mo: 0.3 mass% or more, 0.5 mass% or less, B: 0.0005 mass% or more, 0.005 mass% or less, Cu : 0.05 mass% or more, 0.5 mass% or less, S: 0.005 mass% or more, 0.025 mass% or less, P: 0.02 mass% or less, Cr: formed with steel containing 0.2 mass% or less, For example, it is made of steel having the components of steel A shown in FIG. The balance of the above components of this steel consists of Fe and inevitable impurities. This steel has an old austenite average grain size of 10 μm or less in the surface layer of the hardened layer after induction hardening and tempering, and the base metal structure has a bainite structure of 50% or more in terms of the structure fraction. -Hardened layer ratio which is ratio with respect to axial radius of hardened layer depth after tempering is 0.55 or more. Moreover, the hardness of the hardened layer surface layer after induction hardening and tempering of this steel is HV690 or more.

動力伝達シャフト2は、中実に形成される。尚、動力伝達シャフト2は中空に形成してもよく、この場合、軽量化が図られる。   The power transmission shaft 2 is formed solid. Note that the power transmission shaft 2 may be formed hollow, and in this case, the weight can be reduced.

動力伝達シャフト2の両軸端の外周には、それぞれ雄スプライン部Smが形成される。この雄スプライン部Smを、図3に示すように内側継手部材3、13の内周に形成された雌スプライン部Sfと嵌合させることによって、動力伝達シャフト2と内側継手部材3、13とがトルク伝達可能に結合されている。内側継手部材3、13は、その反軸端側(図3の左側)の内径端部を動力伝達シャフト2外周の肩部24に当接させ、かつ軸端側(図3の右側)の内径端部を、例えば図示しない止め輪で係止することによって、動力伝達シャフト2に対して軸方向で位置決め固定される。   Male spline portions Sm are formed on the outer circumferences of both shaft ends of the power transmission shaft 2. By fitting this male spline portion Sm with a female spline portion Sf formed on the inner periphery of the inner joint members 3 and 13 as shown in FIG. 3, the power transmission shaft 2 and the inner joint members 3 and 13 are connected. It is connected so that torque can be transmitted. The inner joint members 3 and 13 have the inner diameter end on the opposite shaft end side (left side in FIG. 3) abutted against the shoulder 24 on the outer periphery of the power transmission shaft 2 and the inner diameter on the shaft end side (right side in FIG. 3). For example, the end portion is locked with a retaining ring (not shown) to be positioned and fixed in the axial direction with respect to the power transmission shaft 2.

動力伝達シャフト2の両軸端の外周に形成された雄スプライン部Smより反軸端側の領域、すなわちトルク負荷の加わる雄スプライン部Sm間の領域には、最小径部2a、2bが形成される(図1参照)。この最小径部2a,2bは、外周面が平滑な円筒面状に形成され、且つ、両軸端の雄スプライン部Sm間の領域において最も小径に形成される。この最小径部2a,2bは、軸端に設けた等速自在継手J1、J2の最大折曲時に外側継手部材4,14の開口端部と干渉する部分に設けられる。これにより、動力伝達シャフト2と外側継手部材4,14との干渉を遅らせ、継手の作動角の高角化を図ることができる。 Minimum diameter portions 2a and 2b are formed in a region on the opposite shaft end side from the male spline portion Sm formed on the outer periphery of both shaft ends of the power transmission shaft 2, that is, a region between the male spline portions Sm to which a torque load is applied. (See FIG. 1). The minimum diameter portions 2a and 2b are formed in the shape of a cylindrical surface having a smooth outer peripheral surface and the smallest diameter in the region between the male spline portions Sm at both shaft ends. The minimum diameter portions 2a and 2b are provided at portions that interfere with the opening end portions of the outer joint members 4 and 14 when the constant velocity universal joints J 1 and J 2 provided at the shaft ends are bent at the maximum. Thereby, interference with the power transmission shaft 2 and the outer joint members 4 and 14 can be delayed, and the operating angle of the joint can be increased.

図2、図3、および図6に示すように、動力伝達シャフト2の雄スプライン部Smは、軸方向に延びる谷部21と山部22とを円周方向に交互に有する。この実施形態の雄スプライン部Smは、転造加工で形成されたいわゆる切上りタイプで、各谷部21は、軸方向で同径寸法のストレート部21aと、その反軸端側に形成された拡径部21bとで構成される。各山部22も同様に、軸方向で同径寸法のストレート部22aと、その反軸端側に形成された縮径部22bとで構成される。図4に示すように、拡径部21bと縮径部22bの始端は軸方向で同じ位置にあり、かつその終端も軸方向で同じ位置にある。この雄スプライン部Smは冷間鍛造で成形することもでき、この場合は、通常、山部22の縮径部22bは形成されず、山部22の反軸端側は全体が同一外径寸法となる。成形後の雄スプライン部Smには、高周波焼入れ等による熱処理が施される。   As shown in FIGS. 2, 3, and 6, the male spline portion Sm of the power transmission shaft 2 has trough portions 21 and crest portions 22 extending in the axial direction alternately in the circumferential direction. The male spline portion Sm of this embodiment is a so-called up-round type formed by rolling, and each valley portion 21 is formed on the straight portion 21a having the same diameter in the axial direction and on the opposite end side. It is comprised with the enlarged diameter part 21b. Similarly, each peak portion 22 includes a straight portion 22a having the same diameter in the axial direction and a reduced diameter portion 22b formed on the opposite end side. As shown in FIG. 4, the starting ends of the enlarged diameter portion 21 b and the reduced diameter portion 22 b are at the same position in the axial direction, and the terminal ends are also at the same position in the axial direction. This male spline part Sm can also be formed by cold forging. In this case, normally, the reduced diameter part 22b of the peak part 22 is not formed, and the entire opposite end side of the peak part 22 has the same outer diameter. It becomes. The male spline part Sm after molding is subjected to heat treatment by induction hardening or the like.

図3に示すように、雌スプライン部Sfの谷部31は、同径寸法で反軸端側の端部まで形成されている。一方、山部32は、小径部32a、大径部32b、小径部32aと大径部32bの間の立ち上り部32cを有する。大径部32bの内径寸法は、雄スプライン部Smの山部22の最大外径寸法(ストレート部22aの外径寸法)よりも小さく、雄スプライン部Smの反軸端側に形成された動力伝達シャフト2の平滑部25の外径寸法よりも大きい。   As shown in FIG. 3, the valley 31 of the female spline portion Sf has the same diameter and is formed to the end on the opposite shaft end side. On the other hand, the peak portion 32 has a small diameter portion 32a, a large diameter portion 32b, and a rising portion 32c between the small diameter portion 32a and the large diameter portion 32b. The inner diameter dimension of the large diameter part 32b is smaller than the maximum outer diameter dimension (outer diameter dimension of the straight part 22a) of the peak part 22 of the male spline part Sm, and the power transmission formed on the opposite end side of the male spline part Sm. It is larger than the outer diameter of the smooth portion 25 of the shaft 2.

雄スプライン部Smと雌スプライン部Sfとを互いに嵌合させると、雄スプライン部Smの歯面23と、雌スプライン部Sfの歯面(図示省略)とが強く圧接する。この時の両歯面の嵌合部(散点模様で表す)は、図3に示すように、拡径部21bの外径側領域にも及んでいる。   When the male spline portion Sm and the female spline portion Sf are fitted to each other, the tooth surface 23 of the male spline portion Sm and the tooth surface (not shown) of the female spline portion Sf are in strong pressure contact. At this time, the fitting portions (represented by a dotted pattern) of both tooth surfaces extend to the outer diameter side region of the enlarged diameter portion 21b as shown in FIG.

なお、図3では、拡径部21bおよび縮径部22bの軸方向断面を何れも直線的なテーパ状に形成した場合を例示しているが、両者の軸方向断面を曲線状に形成することもできる。また、直線状と曲線状の複合形状とすることもできる。   In addition, although FIG. 3 illustrates the case where both the axial sections of the enlarged diameter portion 21b and the reduced diameter portion 22b are formed in a linear taper shape, both axial sections are formed in a curved shape. You can also. Moreover, it can also be set as the composite shape of a linear form and a curvilinear form.

図2に示すように、本発明において雄スプライン部Smの拡径部21bは、その円周方向両側に形成されたアール部21b1(散点模様で示す)と、アール部21b1の間に形成された平面状の平坦部21b2とで構成される。アール部21b1は半径方向断面が円弧状をなし、その円周方向両側は歯面23および平坦部21b2に滑らかにつながっている。   As shown in FIG. 2, in the present invention, the enlarged diameter portion 21b of the male spline portion Sm is formed between the rounded portion 21b1 (shown by a dotted pattern) formed on both sides in the circumferential direction and the rounded portion 21b1. And a planar flat portion 21b2. The radius portion 21b1 has a circular cross section in the radial direction, and both circumferential sides thereof are smoothly connected to the tooth surface 23 and the flat portion 21b2.

図4は、雄スプライン部Smのうち、拡径部21b付近を示す平面図、図5a〜図5dは、図4におけるA−A線、B−B線、C−C線、D−D線の各断面図である。図5aに示すように、谷部21のストレート部21aと歯面23とをつなぐアール部の曲率半径RAは、拡径部21bとの境界部に至るまで一定である。図5b〜図5dに示すように、拡径部21bでは、アール部21b1の曲率半径が、境界部の曲率半径RAよりも大きく、かつ反軸端側ほど徐々に大きくなっている(RA<RB<RC<RD)。また、図4に示すように、アール部21b1の境界線が山部の稜線と交わって歯面23が無くなる位置までは、アール部21b1の円周方向の幅寸法は反軸端側(図面上方)に向けて徐々に拡大し、これを超えると幅寸法は徐々に縮小している。平坦部21b2の円周方向の幅寸法も反軸端側に向けて徐々に拡大している。 4 is a plan view showing the vicinity of the enlarged diameter portion 21b in the male spline portion Sm, and FIGS. 5a to 5d are the AA, BB, CC, and DD lines in FIG. FIG. As shown in FIG. 5a, the curvature radius R A of the rounded portion connecting the straight portion 21a of the valley portion 21 and the tooth surface 23 is constant until reaching the boundary portion with the enlarged diameter portion 21b. As shown in FIGS. 5b to 5d, in the enlarged diameter portion 21b, the radius of curvature of the rounded portion 21b1 is larger than the radius of curvature R A of the boundary portion and gradually increases toward the opposite shaft end side (R A <R B <R C <R D ). Further, as shown in FIG. 4, the width of the round portion 21b1 in the circumferential direction is on the side opposite the axis (upward in the drawing) until the position where the boundary line of the round portion 21b1 intersects the ridge line of the mountain portion and the tooth surface 23 disappears. ) Gradually expands toward (), and beyond this, the width dimension gradually decreases. The width dimension in the circumferential direction of the flat portion 21b2 is also gradually increased toward the opposite shaft end side.

図4中のLは、拡径部21bのアール部21b1において、その曲率半径の中心を通る線の方向にとった座標を示す。アール部21b1の曲率半径の増加率は、dR/dLで表され、本実施形態ではdR/dL=0.18に設定している。また、図4中のθは、拡径部21bの軸方向断面の内径端と外径端を結ぶ直線の傾斜角を表し、本実施形態ではθ=8.3°に設定している。   L in FIG. 4 indicates coordinates taken in the direction of a line passing through the center of the radius of curvature in the rounded portion 21b1 of the enlarged diameter portion 21b. The increasing rate of the radius of curvature of the rounded portion 21b1 is represented by dR / dL, and is set to dR / dL = 0.18 in this embodiment. Further, θ in FIG. 4 represents the inclination angle of a straight line connecting the inner diameter end and the outer diameter end of the axial section of the enlarged diameter portion 21b, and is set to θ = 8.3 ° in the present embodiment.

図14〜図16に、上記特許文献1(特開2005−147367号公報)に記載された雄スプライン部Sm’、すなわち、拡径部21b’と歯面23’の境界にアール部21b1’を形成し、かつアール部21b1’の曲率半径を軸方向全長にわたって一定とした雄スプライン部Sm’を示す(なお、図14〜図16では、図2〜図4に表された部位と対応する部位に(’)を加えた同一符号を付している)。   14 to 16, the male spline portion Sm ′ described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-147367), that is, the rounded portion 21b1 ′ is formed at the boundary between the enlarged diameter portion 21b ′ and the tooth surface 23 ′. A male spline portion Sm ′ formed and having a radius of curvature of the rounded portion 21b1 ′ constant over the entire length in the axial direction is shown (in FIGS. 14 to 16, a portion corresponding to the portion shown in FIGS. 2 to 4) (The same sign with (') added to it).

図2に示す雄スプライン部Sm(本発明品)と図14に示す雄スプライン部Sm’(従来品)のそれぞれについてFEM解析を行い、それぞれについて第1主応力の最大値σ1maxとせん断応力の最大値τθzmaxを求め、これらを上記基準応力τ0で除した値を算出した。 FEM analysis is performed for each of the male spline part Sm (product of the present invention) shown in FIG. 2 and the male spline part Sm ′ (conventional product) shown in FIG. 14, and the maximum value σ 1max of the first principal stress and the shear stress of each are analyzed. The maximum value τθ zmax was obtained, and a value obtained by dividing these by the reference stress τ 0 was calculated.

このFEM解析は、3次元線形弾性解析であり、解析ソフトとして “I-deas Ver.10"を使用した。解析モデルは、図20に示すように、雄スプライン部Sm、Sm'の1つの谷部21、21'を含む線形弾性体で、モデル長は100mmである。図21に、この解析モデルに付したメッシュを示す。各要素は4面体二次要素で、総要素数は約20万個、総接点数は約30万個である。要素長は、主要部分P(雄スプライン部Sm、Sm'を含む部分で)で0.2mm以下とし(最小要素長は0.05mm)、主要部分P以外で0.5mmとした。図22は、主要部分Pのメッシュを拡大して示す図であり、同図(a)が図2に対応した本発明品を表し、同図(b)が図14に対応した従来品を表す。図23に示すように、解析モデルの反軸端側端面MにRigid要素を作成し、この端面Mの中心軸O上にトルクTを負荷した。但し、モデルとして、1/歯数モデルを使用しているので、負荷トルクは、実際のトルクの1/歯数である。図24に示すように、解析モデルは、谷部21の中心を通る半径方向軸を対称軸とした形状で、円周方向の両側面Wの全節点を周期対称としている。なお、図25に示すように、解析モデルの相手部材との接触面(散点模様で示す)では、その法線方向の変位が拘束されている。   This FEM analysis is a three-dimensional linear elastic analysis, and “I-deas Ver. 10” was used as analysis software. As shown in FIG. 20, the analysis model is a linear elastic body including one valley portion 21 and 21 ′ of the male spline portions Sm and Sm ′, and the model length is 100 mm. FIG. 21 shows a mesh attached to this analysis model. Each element is a tetrahedral secondary element, the total number of elements is about 200,000, and the total number of contacts is about 300,000. The element length was 0.2 mm or less at the main portion P (including the male spline portions Sm and Sm ′) (minimum element length was 0.05 mm), and 0.5 mm except at the main portion P. FIG. 22 is an enlarged view showing the mesh of the main part P. FIG. 22A shows the product of the present invention corresponding to FIG. 2, and FIG. 22B shows the conventional product corresponding to FIG. . As shown in FIG. 23, a Rigid element was created on the end face M on the opposite end side of the analysis model, and a torque T was loaded on the central axis O of the end face M. However, since a 1 / tooth number model is used as a model, the load torque is 1 / tooth number of actual torque. As shown in FIG. 24, the analysis model has a shape in which the radial direction axis passing through the center of the valley portion 21 is an axis of symmetry, and all the nodes on both side surfaces W in the circumferential direction are periodically symmetric. In addition, as shown in FIG. 25, the displacement of the normal direction is restrained in the contact surface (it shows with a dotted pattern) with the other party member of an analysis model.

第1主応力σ1の解析結果を図26に示し、軸方向せん断応力τθzの解析結果を図27に示す。なお、図26および図27の何れでも、(a)図が本発明品モデルを表し、(b)図が従来品モデルを示す。なお、両図中の基準応力τ0は、トルクT、雄スプライン部Smの谷部の直径do、雄スプライン部の内径diに対し、τ0=16Tdo/[π(do 4−di 4)]なる式で与えられる。 The analysis result of the first principal stress σ 1 is shown in FIG. 26, and the analysis result of the axial shear stress τθ z is shown in FIG. 26A and 27B, FIG. 26A shows the product model of the present invention, and FIG. 26B shows the conventional product model. The reference stress τ 0 in both figures is τ 0 = 16 Td o / [π (d o 4 − −) with respect to the torque T, the diameter d o of the valley of the male spline part Sm, and the inner diameter d i of the male spline part. d i 4 )].

以上の解析結果から、従来品では、σ1max/τ0=3.03であるのに対し、本発明品では、σ1max/τ0=2.48となり、従来品より引張応力に対する応力集中の緩和効果が高まることが判明した。これは、本発明品では、歯面23の終端近傍におけるアール部21b1の曲率半径が、従来品の対応部位での曲率半径よりも大きくなるためと考えられる。先に説明したように、引張応力に対する応力集中係数ασが2.7以下であれば、応力集中の緩和効果が顕著となるので、σ1max/τ0≦2.7の本発明品であれば、従来品に比べ、引張り応力に対する疲労強度を大幅に増大させることが可能である。 From the above analysis results, in the conventional product, σ 1max / τ 0 = 3.03, whereas in the product of the present invention, σ 1max / τ 0 = 2.48, which is higher than the conventional product in terms of stress concentration against tensile stress. It has been found that the relaxation effect is enhanced. This is presumably because the radius of curvature of the rounded portion 21b1 in the vicinity of the end of the tooth surface 23 is larger than the radius of curvature at the corresponding portion of the conventional product in the product of the present invention. As described above, if the stress concentration coefficient ασ with respect to the tensile stress is 2.7 or less, the stress concentration mitigating effect becomes significant. Therefore, if the product of the present invention satisfies σ 1max / τ 0 ≦ 2.7, Compared to conventional products, the fatigue strength against tensile stress can be greatly increased.

また、従来品では、τθzmax/τ0=2.28であるのに対し、本発明品ではτθzmax/τ0=1.74となり、従来品より軸方向のせん断応力に対する応力集中の緩和効果も高まることが判明した。上記のとおり、せん断応力に対する応力集中係数ατが2.1以下であれば、応力集中の緩和効果が顕著となるので、τθzmax/τ0≦2.1である本発明品は、従来品に比べ、せん断応力に対する疲労強度を大幅に向上させることができる。このように本発明によれば、雄スプライン部Smで引張応力およびせん断応力の双方に対して高い応力集中緩和効果を得ることができる。従って、動力伝達シャフト2の疲労強度を高めることができる。 Further, in the conventional product, τθ zmax / τ 0 = 2.28, whereas in the product of the present invention, τθ zmax / τ 0 = 1.74, which is a stress relaxation effect on the axial shear stress compared to the conventional product. It was also found to increase. As described above, if the stress concentration coefficient ατ with respect to the shear stress is 2.1 or less, the stress concentration relaxation effect becomes significant. Therefore, the product of the present invention in which τθ zmax / τ 0 ≦ 2.1 is compared with the conventional product. In comparison, the fatigue strength against shear stress can be greatly improved. Thus, according to the present invention, it is possible to obtain a high stress concentration relaxation effect with respect to both tensile stress and shear stress in the male spline portion Sm. Therefore, the fatigue strength of the power transmission shaft 2 can be increased.

本発明者がさらに解析したところ、図4に示すアール部21b1の曲率半径の増加率dR/dLが0.05≦dR/dL≦0.60であり、かつ拡径部21bの傾斜角θが5°≦θ≦20°の範囲であれば、σ1max/τ0≦2.7、τθzmax/τ0≦2.1を満足できることが判明した。 As a result of further analysis by the present inventor, the rate of increase dR / dL of the radius of curvature of the round portion 21b1 shown in FIG. 4 is 0.05 ≦ dR / dL ≦ 0.60, and the inclination angle θ of the enlarged diameter portion 21b is In the range of 5 ° ≦ θ ≦ 20 °, it was found that σ 1max / τ 0 ≦ 2.7 and τθ zmax / τ 0 ≦ 2.1 can be satisfied.

図14に示すように、従来品では、最大せん断応力τθzmaxが拡径部21b’の起点の中心線上で生じる。このように、中心線上で最大せん断応力が発生すると、動力伝達シャフト2が正逆両方向のトルクを伝達する際、正逆何れの回転時にも同じ部位に最大せん断応力が生じるため、それだけ疲労破壊が進展し易くなる。これに対し、本発明品では、最大せん断応力τθzmaxは、図2に示すように、拡径部21bの起点よりも反軸端側の双方のアール部21b1で生じる。そのため、正回転時と逆回転時で最大せん断応力の発生部位が異なり、従って、疲労破壊の進展速度も抑制することが可能となる。以上から、本発明品は、トルクの伝達方向が頻繁に切り替わる用途、例えば車両の前進・後退に応じてトルク伝達方向が反転するような用途に特に好適なものとなる。 As shown in FIG. 14, in the conventional product, the maximum shear stress τθ zmax occurs on the center line of the starting point of the enlarged diameter portion 21b ′. In this way, when the maximum shear stress is generated on the center line, when the power transmission shaft 2 transmits torque in both forward and reverse directions, the maximum shear stress is generated in the same part during both forward and reverse rotations, so that fatigue failure is caused accordingly. Easy to progress. On the other hand, in the product of the present invention, as shown in FIG. 2, the maximum shear stress τθ zmax is generated at both rounded portions 21b1 on the side opposite to the axial end from the starting point of the enlarged diameter portion 21b. For this reason, the generation site of the maximum shear stress differs between the forward rotation and the reverse rotation, and therefore the progress rate of fatigue fracture can be suppressed. From the above, the product of the present invention is particularly suitable for an application in which the torque transmission direction is frequently switched, for example, an application in which the torque transmission direction is reversed in accordance with forward / backward movement of the vehicle.

以上に述べたアール部21b1を有する拡径部21bは、転造加工時に使用する転造ラックに、当該拡径部21bに対応した形状の成形部を形成することにより、雄スプライン部Smの歯と同時に形成することができる。雄スプライン部をプレス加工で冷間鍛造する場合も同様に、プレス加工用のダイスに拡径部21bの形状に対応した成形部を予め形成することにより、雄スプライン部Smの歯と同時にアール部21b1を成形することができる。   The enlarged diameter portion 21b having the rounded portion 21b1 described above is formed by forming a molded portion having a shape corresponding to the enlarged diameter portion 21b on a rolling rack used during rolling, thereby forming the teeth of the male spline portion Sm. It can be formed at the same time. Similarly, when the male spline part is cold forged by press working, the round part is formed simultaneously with the teeth of the male spline part Sm by previously forming a molding part corresponding to the shape of the enlarged diameter part 21b on the die for press working. 21b1 can be molded.

以上の対策により、雄スプライン部Smで引張応力およびせん断応力の双方に対して高い疲労強度が得られると共に、動力伝達シャフト2を形成する素材自体の疲労強度を高めることができる。   With the above measures, the male spline portion Sm can obtain high fatigue strength against both tensile stress and shear stress, and can increase the fatigue strength of the material itself forming the power transmission shaft 2.

図7に本発明の他の実施形態を示す。この実施形態は、雄スプライン部Smもしくは雌スプライン部Sf(図面では雄スプライン部Sm)のうち、何れか一方の歯に軸心方向に対して捩れ角βを持たせた実施形態であり、嵌合後の両スプライン部Sm、Sf間のガタ詰めに有効な手法である。捩れ角βを設けた場合、トルク伝達側の歯面同士の接触圧力が高まり、これに伴って拡径部に集中する引張応力、せん断応力も高くなるため、疲労強度の低下を招く。この観点から、従来品では、捩れ角βは実質15°が限度とされてきた。これに対し、本発明品では、上記のとおり動力伝達スプラインの疲労強度を大幅に高めることができるので、15°以上の捩れ角βをとることができ、高いガタ詰め効果を得ることが可能である。   FIG. 7 shows another embodiment of the present invention. This embodiment is an embodiment in which either one of the male spline part Sm or the female spline part Sf (male spline part Sm in the drawing) has a twist angle β with respect to the axial direction. This is an effective method for loosening between the spline portions Sm and Sf after the combination. When the torsion angle β is provided, the contact pressure between the tooth surfaces on the torque transmission side increases, and as a result, the tensile stress and the shear stress concentrated on the enlarged diameter portion also increase, resulting in a decrease in fatigue strength. From this point of view, the conventional product has been limited to a torsion angle β of substantially 15 °. On the other hand, in the present invention product, the fatigue strength of the power transmission spline can be greatly increased as described above, so that a twist angle β of 15 ° or more can be obtained, and a high backlash effect can be obtained. is there.

上述の実施形態では、雄スプライン部Smとして、拡径部21bの円周方向幅を反軸端側で徐々に拡大させたいわゆる「槍形タイプ」を例示しているが、これに限らず、拡径部21bの円周方向幅を一定にしたいわゆる「舟形タイプ」の雄スプライン部Smに本発明を適用することもできる。この場合も、拡径部21bの円周方向両側にアール部を設け、かつアール部の曲率半径を反軸端側ほど徐々に大きくすることにより、本発明と同様の効果が得られる。   In the above-described embodiment, as the male spline portion Sm, a so-called “saddle type” in which the circumferential width of the enlarged diameter portion 21b is gradually enlarged on the opposite shaft end side is illustrated, but not limited thereto. The present invention can also be applied to a so-called “boat type” male spline portion Sm in which the circumferential width of the enlarged diameter portion 21b is constant. Also in this case, the same effects as those of the present invention can be obtained by providing rounded portions on both sides in the circumferential direction of the enlarged diameter portion 21b and gradually increasing the radius of curvature of the rounded portion toward the opposite end side.

本発明にかかる動力伝達シャフトの部分段面図である。It is a partial step view of the power transmission shaft according to the present invention. 動力伝達シャフトに形成された雄スプライン部のうち、反軸端側部分(図1符号X部)を示す斜視図である。It is a perspective view which shows a non-shaft end side part (FIG. 1 code | symbol X part) among the male spline parts formed in the power transmission shaft. 図1の符号X部を拡大して示す断面図である。It is sectional drawing which expands and shows the code | symbol X part of FIG. (a)図は雄スプライン部の反軸端側部分を示す平面図であり、(b)図は(a)図中のY−Y線断面図である。(A) A figure is a top view which shows the opposite-axis end side part of a male spline part, (b) A figure is the YY sectional view taken on the line in (a) figure. (a)図は、図4(a)中のA−A線断面図、(b)図は同B−B線断面図、(c)図は同C−C線断面図、(d)図は同D−D線断面図である。4A is a cross-sectional view taken along line AA in FIG. 4A, FIG. 4B is a cross-sectional view taken along line BB, FIG. 4C is a cross-sectional view taken along line CC, and FIG. Is a sectional view taken along the line DD. 雄スプライン部の周方向断面図である。It is a circumferential direction sectional view of a male spline part. 捩れ角を有する雄スプライン部の概略構成を示す平面図である。It is a top view which shows schematic structure of the male spline part which has a twist angle. 雄スプライン部の平面図である。It is a top view of a male spline part. 疲労試験で使用する試験片の化学組成を示す表である。It is a table | surface which shows the chemical composition of the test piece used by a fatigue test. 回転曲げ疲労試験の試験片を示す側面図である。It is a side view which shows the test piece of a rotation bending fatigue test. 上記試験片の切欠き部Aを拡大した側面図である。It is the side view to which the notch part A of the said test piece was expanded. 切欠き部の寸法と応力集中係数の関係を示す表である。It is a table | surface which shows the relationship between the dimension of a notch part, and a stress concentration factor. 捩り疲労試験の試験片を示す側面図である。It is a side view which shows the test piece of a torsional fatigue test. 上記試験片の切欠き部Aを拡大した側面図である。It is the side view to which the notch part A of the said test piece was expanded. 切欠き部の寸法と応力集中係数の関係を示す表である。It is a table | surface which shows the relationship between the dimension of a notch part, and a stress concentration factor. 回転曲げ疲労試験で求めた疲労限強度の測定結果を示す図である。It is a figure which shows the measurement result of the fatigue limit strength calculated | required by the rotation bending fatigue test. 捩り疲労試験で求めた105回における捩り疲労強度の測定結果を示す図である。It is a figure which shows the measurement result of the torsional fatigue strength in 10 < 5 > time calculated | required by the torsional fatigue test. 従来の雄スプライン部の反軸端側部分を示す斜視図であるIt is a perspective view which shows the anti-shaft end side part of the conventional male spline part. 従来の雄スプライン部の反軸端側部分を示す断面図である。It is sectional drawing which shows the anti-shaft end side part of the conventional male spline part. 従来の雄スプライン部の反軸端側部分を示す平面図である。It is a top view which shows the non-axis end side part of the conventional male spline part. 試験片を示す側面図である。It is a side view which shows a test piece. 試験片のインボリュートスプライン緒元を示す表である。It is a table | surface which shows the involute spline specification of a test piece. 両振り捩り疲労試験で得られたT/N線図である。It is a T / N diagram obtained by the double torsional fatigue test. 片振り捩り疲労試験で得られたT/N線図である。FIG. 3 is a T / N diagram obtained in a single swing torsional fatigue test. FEM解析モデルを示す斜視図である。It is a perspective view which shows a FEM analysis model. メッシュを付した解析モデルを示す斜視図である。It is a perspective view which shows the analysis model which attached | subjected the mesh. (a)図は、メッシュを付した本発明品の主要部分Pの斜視図であり、同図(b)が同じく従来品の主要部分Pの斜視図である。(A) The figure is a perspective view of the principal part P of this invention goods which attached | subjected the mesh, The figure (b) is a perspective view of the principal part P of a conventional product similarly. 解析モデルの反軸端側の端部の斜視図である。It is a perspective view of the edge part by the side of the non-axis end of an analysis model. 図20の矢印方向から見た解析モデルの正面図である。It is a front view of the analysis model seen from the arrow direction of FIG. 解析モデルの斜視図である。It is a perspective view of an analysis model. 第1主応力の解析結果を示す図である。It is a figure which shows the analysis result of a 1st principal stress. 軸方向せん断応力の解析結果を示す図である。It is a figure which shows the analysis result of an axial direction shear stress. A鋼及びB鋼の成分表である。It is a component table | surface of A steel and B steel. 試験片を示す側面図である。It is a side view which shows a test piece. 試験片の仕様及び材質を示す表である。It is a table | surface which shows the specification and material of a test piece. 両振り捩り疲労試験で得られたT/N線図である。It is a T / N diagram obtained by the double torsional fatigue test.

符号の説明Explanation of symbols

1 ドライブシャフト
2 動力伝達シャフト
2a、2b 最小径部
1、J2 等速自在継手
3、13 内側継手部材
4、14 外側継手部材
21 谷部
21a ストレート部
21b 拡径部
21b1 アール部
21b2 平坦部
22 山部
23 歯面
24 肩部
25 平滑部
Sm 雄スプライン部
Sf 雌スプライン部
1 drive shaft 2 power transmission shaft 2a, 2b minimum diameter portion J 1, J 2 constant velocity universal joint 3, 13 inner joint member 4,14 outer joint member 21 troughs 21a straight portion 21b enlarged diameter portion 21b1 rounded portion 21b2 flat portion 22 Mountain part 23 Tooth surface 24 Shoulder part 25 Smooth part Sm Male spline part Sf Female spline part

Claims (6)

外周に雄スプライン部が設けられ、雄スプライン部の谷部の軸方向一端側にその外径寸法を徐々に拡径させた拡径部を有する動力伝達シャフトにおいて、
前記雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を軸方向一端側に向けて徐々に大きくし、且つ、
C :0.4mass%以上、0.5mass%以下、
Si:0.35mass%以上、0.8mass%以下、
Mn:0.5mass%以上、0.8mass%以下、
Al:0.005mass%以上、0.05mass%以下、
Ti:0.005mass%以上0.05mass%以下、
Mo:0.3mass%以上、0.5mass%以下、
B :0.0005mass%以上、0.005mass%以下、
Cu:0.05mass%以上、0.5mass%以下、
S :0.005mass%以上、0.025mass%以下、
P :0.02mass%以下、
Cr:0.2mass%以下
を含有し、残部はFeおよび不可避的不純物から成る鋼で形成され、この鋼の高周波焼入・焼戻後の硬化層表層における旧オーステナイト平均粒径が10μm以下であることを特徴とする動力伝達シャフト。
In the power transmission shaft provided with a male spline part on the outer periphery, and having a diameter-expanded part gradually expanding the outer diameter dimension on one end side in the axial direction of the valley part of the male spline part.
Providing rounded portions on both sides in the circumferential direction of the enlarged portion of the male spline portion, gradually increasing the radius of curvature of the rounded portion toward one end in the axial direction; and
C: 0.4 mass% or more, 0.5 mass% or less,
Si: 0.35 mass% or more, 0.8 mass% or less,
Mn: 0.5 mass% or more, 0.8 mass% or less,
Al: 0.005 mass% or more, 0.05 mass% or less,
Ti: 0.005 mass% or more and 0.05 mass% or less,
Mo: 0.3 mass% or more, 0.5 mass% or less,
B: 0.0005 mass% or more, 0.005 mass% or less,
Cu: 0.05 mass% or more, 0.5 mass% or less,
S: 0.005 mass% or more, 0.025 mass% or less,
P: 0.02 mass% or less,
Cr: 0.2 mass% or less is contained, and the balance is formed of steel composed of Fe and inevitable impurities, and the prior austenite average grain size in the hardened layer surface layer after induction hardening and tempering of this steel is 10 μm or less. A power transmission shaft characterized by that.
トルクTが負荷されたときに、雄スプライン部の拡径部に作用する第1主応力、および軸方向のせん断応力の最大値をそれぞれσ1max、τθzmaxとし、トルクT、雄スプライン部の谷部の直径do、雄スプライン部の内径diに対し、1)式で与えられる基準応力τ0とするとき、下記2)式と3)式を同時に満たす請求項1記載の動力伝達シャフト。
τ0=16Tdo/[π(do 4−di 4)] …1)
σ1max≦2.7τo …2)
τθzmax≦2.1τ0 …3)
When the torque T is applied, the first principal stress acting on the enlarged diameter portion of the male spline portion and the maximum value of the shear stress in the axial direction are σ 1max and τθ zmax , respectively. 2. The power transmission shaft according to claim 1, wherein when the reference stress τ 0 given by the equation (1) is set to the diameter d o of the portion and the inner diameter d i of the male spline portion, the following equations (2) and (3) are satisfied simultaneously.
τ 0 = 16 Td o / [π (d o 4 −d i 4 )]... 1)
σ 1max ≦ 2.7τ o … 2)
τθ zmax ≦ 2.1τ 0 … 3)
アール部の曲率半径の増加率をdR/dL、拡径部の軸方向断面の内径端と外径端を結ぶ直線の角度をθとするとき、それぞれの値が
0.05≦dR/dL≦0.60、
5°≦θ≦20°
の範囲にある請求項2記載の動力伝達シャフト。
When the rate of increase in the radius of curvature of the radius portion is dR / dL and the angle of the straight line connecting the inner diameter end and the outer diameter end of the axial section of the enlarged diameter portion is θ, each value is 0.05 ≦ dR / dL ≦ 0.60,
5 ° ≦ θ ≦ 20 °
The power transmission shaft according to claim 2, which is in the range of.
前記鋼の母材組織が組織分率で50%以上のベイナイト組織を有する請求項1〜3の何れかに記載の動力伝達シャフト。   The power transmission shaft according to any one of claims 1 to 3, wherein the base material structure of the steel has a bainite structure having a structure fraction of 50% or more. 前記鋼の高周波焼入・焼戻後の硬化層深さの軸半径に対する比である硬化層比が0.55以上である請求項1〜4の何れかに記載の動力伝達シャフト。   The power transmission shaft according to any one of claims 1 to 4, wherein a hardened layer ratio, which is a ratio of a hardened layer depth of the steel after induction hardening and tempering, to an axial radius is 0.55 or more. 前記鋼の高周波焼入れ・焼戻後の硬化層表層の硬さがHV690以上である請求項1〜5の何れかに記載の動力伝達シャフト。   The power transmission shaft according to any one of claims 1 to 5, wherein the hardness of the surface layer of the hardened layer after induction hardening and tempering of the steel is HV690 or more.
JP2007032298A 2007-02-13 2007-02-13 Power transmission shaft Withdrawn JP2008196592A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007032298A JP2008196592A (en) 2007-02-13 2007-02-13 Power transmission shaft
PCT/JP2008/051681 WO2008099689A1 (en) 2007-02-13 2008-02-01 Power transmission shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007032298A JP2008196592A (en) 2007-02-13 2007-02-13 Power transmission shaft

Publications (1)

Publication Number Publication Date
JP2008196592A true JP2008196592A (en) 2008-08-28

Family

ID=39689934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032298A Withdrawn JP2008196592A (en) 2007-02-13 2007-02-13 Power transmission shaft

Country Status (2)

Country Link
JP (1) JP2008196592A (en)
WO (1) WO2008099689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514901A (en) * 2012-04-13 2015-05-21 スネクマ Shaft coupling using variable profile splines

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850254B (en) * 2020-08-17 2022-06-21 綦江重配齿轮有限公司 Method for preventing spline shaft from medium-frequency quenching deformation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147367A (en) * 2003-11-19 2005-06-09 Ntn Corp Power transmission shaft
JP2005314756A (en) * 2004-04-28 2005-11-10 Jfe Steel Kk Component for machine structure
JP4771745B2 (en) * 2004-10-13 2011-09-14 新日本製鐵株式会社 Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
EP2060813A4 (en) * 2006-09-11 2011-01-12 Ntn Toyo Bearing Co Ltd Power transmission spline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514901A (en) * 2012-04-13 2015-05-21 スネクマ Shaft coupling using variable profile splines

Also Published As

Publication number Publication date
WO2008099689A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
WO2008032626A1 (en) Power transmission spline
JP5760453B2 (en) Carburized material
WO2005088147A1 (en) Machine element and method for manufacture thereof
WO2010029841A1 (en) Power transmission shaft, drive shaft, and propeller shaft
WO2005088146A1 (en) Bearing device for wheel
JP4771745B2 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP2001200348A (en) Gear couple excellent in surface fatigue strength
JP2014198877A (en) Carburized component excellent in surface fatigue strength and method of manufacturing the same
JP2008196592A (en) Power transmission shaft
JP2008196013A (en) Power transfer shaft
JP2005163118A (en) Machine structural shaft component, and method for manufacturing the same
JPH08121492A (en) Outer ring for constant speed ball joint
JP2008095845A (en) Power transmission spline
JP2008286315A (en) Power transmission shaft
JP2009216173A (en) Power transmission spline
JP2008240968A (en) Power transmission shaft
JPH10310823A (en) Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic
JP5259064B2 (en) Power transmission shaft
JP2009121502A (en) Constant velocity universal joint
JP2008095805A (en) Power transmission shaft
JP2009293780A (en) Ball for constant velocity universal joint and method for producing the same
JP2007270902A (en) Tripod type constant velocity joint
JP2008240971A (en) Power transmission shaft
JP2008256203A (en) Power transmission shaft
JP2008064294A (en) Fixed type constant velocity universal joint

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511