JP2009121502A - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP2009121502A
JP2009121502A JP2007292813A JP2007292813A JP2009121502A JP 2009121502 A JP2009121502 A JP 2009121502A JP 2007292813 A JP2007292813 A JP 2007292813A JP 2007292813 A JP2007292813 A JP 2007292813A JP 2009121502 A JP2009121502 A JP 2009121502A
Authority
JP
Japan
Prior art keywords
male spline
diameter
constant velocity
stem
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007292813A
Other languages
Japanese (ja)
Inventor
Hiroo Morimoto
洋生 森本
Kazuhiko Yoshida
和彦 吉田
Yukio Matsubara
幸生 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007292813A priority Critical patent/JP2009121502A/en
Publication of JP2009121502A publication Critical patent/JP2009121502A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • F16D1/116Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling the interengaging parts including a continuous or interrupted circumferential groove in the surface of one of the coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22313Details of the inner part of the core or means for attachment of the core on the shaft

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the fatigue strength of a male spline part by mitigating the stress concentration of both tensile stresses and shear stresses at the male spline part of a stem part of an outer joint member. <P>SOLUTION: A male spline part Sm is formed on an outer circumference of a stem part of an outer joint member. An expansion part 21b with its outside diameter dimension being gradually increased toward a counter shaft end side is provided on a part on the counter shaft end side out of a valley part 21 of the male spline part Sm. Round parts 21b1 of an arc-shaped section are formed on both sides of the circumferential direction of the expanded part 21b, and the radius of curvature of the round parts 21b1 is gradually increased toward the counter shaft end side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二軸間の角度変位を許容しながらトルクを等速伝達する等速自在継手に関する。   The present invention relates to a constant velocity universal joint that transmits torque at a constant speed while allowing angular displacement between two axes.

近年、環境問題に対する関心の高まりから、例えば自動車では排ガス規制の強化や燃費向上等が強く求められており、それらの対策の一環として、ドライブシャフト、プロペラシャフト等に使用される等速自在継手にもさらなる軽量化・強度向上が強く求められている。この種の等速自在継手は、外側継手部材のマウス部から延びたステム部の外周に雄側のスプラインが形成されると共に、雌側部材(例えばデファレンシャルギヤ)の内周に雌側のスプラインが形成される。このステム部の外周の雄スプライン部と雌側部材の内周の雌スプライン部とが嵌合することにより、等速自在継手と雌側部材とがトルク伝達可能に結合される。このような外側継手部材は、例えば別体に形成したマウス部及びステム部の端面同士を接合することにより形成される(例えば特許文献1参照)。   In recent years, with increasing interest in environmental issues, for example, automobiles are strongly required to tighten exhaust gas regulations and improve fuel efficiency. As part of these measures, constant velocity universal joints used for drive shafts, propeller shafts, etc. However, further weight reduction and strength improvement are strongly demanded. In this type of constant velocity universal joint, a male spline is formed on the outer periphery of the stem portion extending from the mouth portion of the outer joint member, and a female spline is formed on the inner periphery of the female member (for example, a differential gear). It is formed. By fitting the male spline portion on the outer periphery of the stem portion and the female spline portion on the inner periphery of the female side member, the constant velocity universal joint and the female side member are coupled so as to transmit torque. Such an outer joint member is formed, for example, by joining end surfaces of a mouth part and a stem part formed separately (see, for example, Patent Document 1).

雄スプライン部を有する外側継手部材のステム部には強度が要求されるため、通常は、素材として鋼を用い、雄スプライン部を転造加工やプレス加工などによって成形した後、少なくとも雄スプライン部を焼入れ硬化させて使用される。成形後の焼入れ硬化の方法としては、高周波焼入れによることが多いが、ずぶ焼入れや浸炭焼入れによる場合もある。   Since the strength of the stem part of the outer joint member having a male spline part is required, usually steel is used as a material, and after forming the male spline part by rolling or pressing, at least the male spline part is formed. Used after quenching and curing. As a method of quenching and hardening after molding, induction hardening is often used, but there are also cases of submerged hardening and carburizing and hardening.

図8は、谷部100の反軸端側(図面左側)の端部を、外径寸法を徐々に拡径させた拡径部102を介して外周面(平滑部)101につなげた、いわゆる切上がりタイプの雄スプライン部を示す平面図である。この形態の雄スプライン部の疲労破壊は、通常、谷部100と拡径部102のつなぎ目付近もしくは拡径部102で生じる。その際のき裂発生モードは2つあり、1つはA部に集中する引張応力によるもの、もう一つはB部に集中するせん断応力によるものである。鋼の場合、目安としてビッカース硬さ700を境に、それ以下ではき裂発生が主としてせん断応力支配となり、それ以上でかつ片振り捩り疲労の場合は引張応力支配となる。   FIG. 8 shows a so-called end portion of the valley portion 100 on the opposite axis end side (left side in the drawing) connected to an outer peripheral surface (smooth portion) 101 via a diameter-expanded portion 102 whose outer diameter is gradually increased. It is a top view which shows a male spline part of a round-up type. The fatigue failure of the male spline portion of this form usually occurs near the joint between the valley portion 100 and the enlarged diameter portion 102 or at the enlarged diameter portion 102. There are two crack generation modes at that time, one is due to the tensile stress concentrated in the A portion, and the other is due to the shear stress concentrated in the B portion. In the case of steel, cracks are mainly governed by shear stress below Vickers hardness 700 as a guide, and if it is more than that, the stress is governed by tensile stress.

これまで、雄スプライン部の疲労強度を向上させるための手段として、いくつかの方法が提案されている。例えば特許文献2では、拡径部と歯面の境界を鈍化させて応力集中を緩和する技術が開示されている。また、特許文献3では、通常は一つの拡径部を軸方向に2つ以上並べて設けた高強度化技術が開示されている。
特開2006−64060号公報 特開2005−147367号公報 特表平11−514079号公報
So far, several methods have been proposed as means for improving the fatigue strength of the male spline part. For example, Patent Document 2 discloses a technique for reducing stress concentration by blunting the boundary between the enlarged diameter portion and the tooth surface. Further, Patent Document 3 discloses a high strength technology in which two or more diameter-expanded portions are usually arranged in the axial direction.
JP 2006-64060 A JP 2005-147367 A Japanese National Patent Publication No. 11-514079

しかしながら、特許文献2に記載された技術では、引張応力集中の緩和には効果が認められるが、せん断応力集中の緩和効果は不充分である。また、特許文献3の技術では、せん断応力集中の緩和はできるが、引張応力集中の緩和効果は不充分である。このように、き裂発生を支配する2つの応力のどちらか一方を緩和できる技術は存在するが、双方を同時に緩和する技術は存在せず、さらなる疲労強度向上を実現するためには改良の余地があった。   However, although the technique described in Patent Document 2 is effective in reducing the tensile stress concentration, the effect of reducing the shear stress concentration is insufficient. Further, the technique of Patent Document 3 can reduce the concentration of shear stress, but the effect of reducing the concentration of tensile stress is insufficient. As described above, there is a technology that can relieve one of the two stresses that govern crack initiation, but there is no technology that relieves both simultaneously, and there is room for improvement in order to achieve further improvement in fatigue strength. was there.

そこで、本発明では、等速自在継手のステム部の雄スプライン部での引張応力とせん断応力の双方の応力集中を緩和させて、雄スプライン部の疲労強度の向上させることを目的とする。   Therefore, an object of the present invention is to improve the fatigue strength of the male spline part by reducing the stress concentration of both the tensile stress and the shear stress in the male spline part of the stem part of the constant velocity universal joint.

本発明者らは、平行部に切欠きを有する試験片を製作し、これを回転曲げ疲労試験と捩り疲労試験にそれぞれ供して、応力集中係数と疲労強度との関係を求めた。   The inventors of the present invention manufactured a test piece having a notch in a parallel portion, and used it for a rotational bending fatigue test and a torsional fatigue test, respectively, to determine the relationship between the stress concentration factor and the fatigue strength.

試験片としては、図9に示す化学成分の同一ロットの中炭素鋼を用い、図10aおよび図11aに示す形状および寸法(単位mm)の試験片を製作した。図10aは回転曲げ疲労試験の試験片であり、図11aは捩り疲労試験の試験片である。回転曲げ疲労試験の試験片では、切欠き先端の曲率半径を0.10、0.15、0.25、0.50、1.40の5水準とし、それぞれの応力集中係数αを3.5、3.0、2.5、2.0、1.5に設定した(図10c参照)。捩り疲労試験の試験片では、切欠き先端の曲率半径を0.15、0.25、0.50、1.40の4水準とし、それぞれの応力集中係数αを3.0、2.5、2.0、1.5に設定した(図11c参照)。これら全ての試験片に対し、切欠きを含む平行部に高周波焼入れを施した後に低温焼戻しを施した。何れの試験片も熱処理後の表面硬度は約HV650であった。   As a test piece, a medium carbon steel having the same chemical composition shown in FIG. 9 was used, and a test piece having the shape and dimensions (unit: mm) shown in FIGS. 10a and 11a was produced. FIG. 10 a is a test piece for a rotating bending fatigue test, and FIG. 11 a is a test piece for a torsional fatigue test. In the specimen of the rotating bending fatigue test, the radius of curvature of the notch tip is set to five levels of 0.10, 0.15, 0.25, 0.50, and 1.40, and the stress concentration coefficient α is 3.5. , 3.0, 2.5, 2.0, 1.5 (see FIG. 10c). In the torsional fatigue test specimen, the radius of curvature of the notch tip is set to four levels of 0.15, 0.25, 0.50, 1.40, and the stress concentration coefficient α is 3.0, 2.5, 2.0 and 1.5 were set (see FIG. 11c). All of these test pieces were subjected to induction quenching in parallel portions including the notches and then subjected to low temperature tempering. All the test pieces had a surface hardness of about HV650 after the heat treatment.

先ず、回転曲げ疲労試験は、小野式回転曲げ疲労試験機により、常温大気中で負荷周波数50Hzにて行った。   First, the rotating bending fatigue test was performed with an Ono type rotating bending fatigue tester in a room temperature atmosphere at a load frequency of 50 Hz.

回転曲げ疲労試験の結果、切欠きの水準によらず、切欠き底に沿ってき裂が発生して破断に至った。この場合のき裂発生モードは引張応力支配となる。破断に至るまでの負荷回数が105を越える辺りまでは、応力振幅の減少に伴って疲労曲線が降下し、応力振幅が一定値を下回ると破断しなくなる明瞭な疲労限現象を示した。なお、ここでの応力振幅は、切欠きの水準によらない公称応力振幅のことで、切欠き底直径(φ6.5mm)を有する平滑丸棒に疲労試験と同じ大きさの曲げモーメントを与えた時に表面に作用する最大引張応力振幅を意味する。 As a result of the rotating bending fatigue test, cracks occurred along the bottom of the notch regardless of the level of the notch, leading to fracture. The crack initiation mode in this case is governed by tensile stress. The fatigue curve decreased with the decrease of the stress amplitude until the number of times of loading until the fracture exceeded 10 5, and a clear fatigue limit phenomenon was observed in which the fracture did not occur when the stress amplitude was below a certain value. The stress amplitude here is a nominal stress amplitude that does not depend on the level of the notch, and a smooth round bar having a notch bottom diameter (φ6.5 mm) was given a bending moment of the same size as the fatigue test. It means the maximum tensile stress amplitude that sometimes acts on the surface.

図12に、上記回転曲げ疲労試験で得られた応力集中係数ασと疲労限強度との関係を示す。図示のように、ασの減少に伴って疲労強度は向上したが、図中に破線で示すように、ασ≦2.7では疲労曲線の勾配が大きく、ασを減少させた時の疲労強度の向上がより顕著に現れることが判明した。   FIG. 12 shows the relationship between the stress concentration factor ασ obtained in the rotating bending fatigue test and the fatigue limit strength. As shown in the figure, the fatigue strength improved as ασ decreased. However, as shown by the broken line in the figure, the slope of the fatigue curve was large when ασ ≦ 2.7, and the fatigue strength when ασ was decreased was large. It has been found that the improvement appears more pronounced.

次に、捩り疲労試験は、電気式油圧サーボ疲労試験機により、トルク制御にて、常温大気中で負荷周波数2Hz、完全両振り(応力比R=−1)の条件で行った。   Next, the torsional fatigue test was carried out under the conditions of a load frequency of 2 Hz and a full swing (stress ratio R = -1) in a normal temperature atmosphere by torque control using an electric hydraulic servo fatigue tester.

捩り疲労試験の結果、切欠きの水準によらず、切欠き底に沿ってき裂が発生して破断に至った。この場合のき裂発生モードはせん断応力支配となる。両振り捩り疲労試験は負荷回数が最大で106回近くになるまで行ったが、その範囲では応力振幅の減少に伴って、疲労曲線が降下した。なお、ここでの応力振幅は、切欠きの水準によらない公称応力振幅のことで、切欠き底直径(φ17mm)を有する平滑丸棒に疲労試験と同じ大きさの捩りトルクを与えた時に表面に作用する最大せん断応力振幅を意味する。 As a result of the torsional fatigue test, cracks occurred along the bottom of the notch regardless of the level of the notch, leading to fracture. The crack initiation mode in this case is governed by shear stress. Both reversed torsional fatigue test is load count went until near 10 6 times at most in the range with decreasing stress amplitude fatigue curve drops. The stress amplitude here is a nominal stress amplitude that does not depend on the level of the notch, and is applied to a smooth round bar having a notch bottom diameter (φ17 mm) when a torsion torque of the same magnitude as that in the fatigue test is applied. Means the maximum shear stress amplitude acting on

図13に、上記両振り捩り疲労試験で得られた応力集中係数ατと105回における疲労強度との関係を示す。図示のように、ατの減少に伴って疲労強度は向上したが、図中に破線で示すように、ατ≦2.1では疲労曲線の勾配が大きく、ατを減少させた時の疲労強度の向上がより顕著に現れることが判明した。 FIG. 13 shows the relationship between the stress concentration coefficient ατ obtained in the above-mentioned swing-torsion fatigue test and the fatigue strength at 10 5 times. As shown in the figure, the fatigue strength improved as ατ decreased, but as shown by the broken line in the figure, the fatigue curve gradient was large when ατ ≦ 2.1, and the fatigue strength when ατ was decreased It has been found that the improvement appears more pronounced.

以上から、き裂発生が引張応力、せん断応力のどちらに支配される場合であっても応力集中緩和によって疲労強度が向上し、特に引張応力に対してはασ≦2.7で、また、せん断応力に対してはατ≦2.1でより応力集中の緩和効果が高まることが判明した。従って、双方の破損モードで疲労破壊する雄スプライン部の拡径部においては、そこに集中する第1主応力の最大値σ1maxを基準応力τ0の2.7倍以下(σ1max≦2.7τo)、軸方向のせん断応力の最大値τθzmaxを基準応力τ0の2.1倍以下(τθzmax≦2.1τ0)となるよう形状をチューニングすることが望ましい。ここで、基準応力τ0は、トルクTと、図6に示す雄スプライン部の谷部底の直径doと、雄スプライン部の内径di(雄スプライン部が中空の場合。中実の時はdi=0となる)とに対し、以下で与えられる値である。 From the above, the fatigue strength is improved by stress concentration relaxation regardless of whether the crack initiation is governed by tensile stress or shear stress, and ασ ≦ 2.7 particularly for tensile stress, and shearing It has been found that the stress concentration relaxation effect is further enhanced when ατ ≦ 2.1 against stress. Accordingly, in the diameter-expanded portion of the male spline portion that undergoes fatigue failure in both failure modes, the maximum value σ 1max of the first principal stress concentrated there is not more than 2.7 times the reference stress τ 01max ≦ 2. 7τ o ), and it is desirable to tune the shape so that the maximum value of axial shear stress τθ zmax is 2.1 times or less of the reference stress τ 0 (τθ zmax ≦ 2.1τ 0 ). Here, the reference stress τ 0 is the torque T, the diameter d o of the bottom of the valley of the male spline shown in FIG. 6, and the inner diameter d i of the male spline (when the male spline is hollow. Is given by: d i = 0).

τ0=16Tdo/[π(do 4−di 4)] τ 0 = 16 Td o / [π (d o 4 −d i 4 )]

本発明者らが拡径部の形状を種々チューニングした結果、雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を反軸端側に向けて徐々に大きくすれば、σ1max≦2.7τo、およびτθzmax≦2.1τ0を満足できることが判明した。 As a result of various tunings of the shape of the enlarged diameter portion by the present inventors, rounded portions are provided on both sides in the circumferential direction of the enlarged diameter portion of the male spline portion, and the curvature radius of the rounded portion is gradually increased toward the opposite shaft end side. As a result, it was found that σ 1max ≦ 2.7τ o and τθ zmax ≦ 2.1τ 0 can be satisfied.

次に、図10(a)および図11(a)の切欠き疲労試験片と同じ成分(図9参照)の素材を用いて、両軸端に雄スプライン部を有するシャフト形状試験片を製作し(図17a参照)、この試験片を用いて両振り捩り疲労試験および片振り捩り疲労試験を行った。試験片は、図17bに示すインボリュートスプライン諸元に準じ、拡径部の形状を本発明品相当と従来品相当とした2種類を製作した。これら試験片には、その全体に大気中の同一条件で高周波焼入れおよび焼戻しが施されている。両振り捩り疲労試験は850〜1300Nmの範囲の4水準の捩りトルク振幅で行い、片振り捩り疲労試験は1250〜2000Nmの範囲の4水準の最大捩りトルクを付与している。図18に両振り捩り疲労試験で得られたT/N線図、図19に片振り捩り疲労試験で得られたT/N線図を示す。両図からも明らかなように、本発明品では、従来品に対して両振り捩り疲労および片振り捩り疲労の双方で大幅な疲労強度の向上を達成することができる。   Next, a shaft-shaped test piece having male spline portions at both shaft ends is manufactured using a material having the same component (see FIG. 9) as the notched fatigue test piece of FIGS. 10 (a) and 11 (a). (See FIG. 17a) Using this test piece, a double torsional fatigue test and a single torsional fatigue test were performed. According to the involute spline specifications shown in FIG. 17b, two types of test pieces were produced in which the shape of the enlarged diameter portion was equivalent to the product of the present invention and equivalent to the conventional product. These test pieces are subjected to induction hardening and tempering under the same conditions in the atmosphere as a whole. The double torsional fatigue test is performed with four levels of torsional torque amplitude in the range of 850 to 1300 Nm, and the single torsional fatigue test gives four levels of maximum torsional torque in the range of 1250 to 2000 Nm. FIG. 18 shows a T / N diagram obtained by the double-twist torsional fatigue test, and FIG. 19 shows a T / N diagram obtained by the one-way torsional fatigue test. As is clear from both figures, the product of the present invention can achieve a significant improvement in fatigue strength in both the torsional fatigue and the single-sided torsional fatigue compared to the conventional product.

さらに、図30に示す外側継手部材を模擬したシャフト状試験片を用いて、片振り捩り疲労試験を行った。この試験片は、S53Cの素材からなるマウス部相当部分M1と、S45Cの素材からなるステム部相当部分M2とからなる。マウス部相当部分M1の外周には図31に示すインボリュートスプライン諸元に準じた雄スプライン部Xが形成され、この雄スプライン部Xのピッチ円直径をステム部に対して大きくすることで強度余裕のある形状としている。ステム部相当部分M2の一端の外周には、図17bに示すインボリュートスプライン諸元に準じた雄スプライン部Yが形成され、他端は直径25mmの円筒形状としている。この試験片の雄スプライン部Yの拡径部の形状を本発明品相当とした実施品1〜4と、従来品相当とした比較品1〜4とを用意した(図32参照)。このうち実施品1及び比較品1に係る試験片のステム部は中央部を直径22mmの一定径とし、実施品2〜4及び比較品2〜4に係る試験片のステム部の中央部には直径Dの最小平滑部を設け、この最小平滑部の直径Dと雄スプライン部Yのピッチ円直径D0との比D/D0を0.92、0.94、及び0.96の3水準とした。各試験片は、転造ラックを用いて雄スプライン部X及びYを成形した後、マウス部相当部分M1及びステム部相当部分M2の端面同士を摩擦圧接により接合し(接合部を図30にQで示す)、さらに高周波焼入れ焼戻しが施されている。この片振り捩り疲労試験は、1250〜2000Nmの範囲の4水準の最大捩りトルクを付与し、トルク制御で行った。負荷波形はサイン波とし、負荷周波数は負荷トルク振幅に応じて0.5〜3.0Hzの範囲で行った。 Further, a one-sided torsional fatigue test was performed using a shaft-like test piece simulating the outer joint member shown in FIG. This test piece is composed of a mouse portion equivalent portion M1 made of S53C material and a stem portion equivalent portion M2 made of S45C material. A male spline portion X conforming to the involute spline specifications shown in FIG. 31 is formed on the outer periphery of the mouse portion corresponding portion M1, and the male spline portion X has a strength margin by increasing the pitch circle diameter with respect to the stem portion. It has a certain shape. A male spline portion Y conforming to the involute spline specifications shown in FIG. 17b is formed on the outer periphery of one end of the stem portion corresponding portion M2, and the other end has a cylindrical shape with a diameter of 25 mm. Examples 1 to 4 in which the shape of the enlarged diameter portion of the male spline portion Y of the test piece was equivalent to the product of the present invention and comparative products 1 to 4 equivalent to the conventional product were prepared (see FIG. 32). Among these, the stem part of the test piece according to the implementation product 1 and the comparison product 1 has a constant central diameter of 22 mm, and the center part of the stem portion of the test piece according to the implementation product 2 to 4 and the comparison product 2 to 4 A minimum smooth part having a diameter D is provided, and the ratio D / D 0 between the diameter D of the minimum smooth part and the pitch circle diameter D 0 of the male spline part Y is 0.92, 0.94, and 0.96. It was. Each test piece was molded into male spline parts X and Y using a rolling rack, and the end faces of the mouse part equivalent part M1 and the stem part equivalent part M2 were joined to each other by friction welding (the joined parts are shown in FIG. In addition, induction hardening and tempering are performed. This single swing torsional fatigue test was carried out by torque control by applying four levels of maximum torsional torque in the range of 1250 to 2000 Nm. The load waveform was a sine wave, and the load frequency was in the range of 0.5 to 3.0 Hz depending on the load torque amplitude.

この試験で得られたT/N線図を、図33及び図34に示す。図33は、ステム部中央に最小平滑部を設けなかった実施品1及び比較品1の結果を示す図である。この図から、比較品1は全て雄スプライン部Yから破断が生じたのに対し、実施品1は全て雄スプライン部Yの横の平坦部から破断が生じ、且つ比較品よりも高強度を示した。図34は、最小平滑部の直径Dの異なる実施品2〜4及び比較品2〜4の結果を示す図である。この図から、比較品2〜4は全て雄スプライン部Yから破断が生じたのに対し、実施品2及び3は最小平滑部から、実施品4は実施品1と同様に雄スプライン部Yの横の平坦部から破断が生じた。以上より、雄スプライン部の拡径部を本発明品相当の形状とすることにより、雄スプライン部からの破断を抑制し、この雄スプライン部と嵌合する雌側部材(例えばデファレンシャルギヤ)に損傷を与える恐れを回避できる。また、ステム部の中央に設けた最小平滑部の直径Dと雄スプライン部Yのピッチ円直径D0との比D/D0が0.94以下(実施品2及び3)であれば、この最小平滑部で最初の破断を生じさせることができるため、最小平滑部の位置を調整することで外側継手部材の最初の破断を任意の位置で生じさせることができる。 The T / N diagrams obtained in this test are shown in FIG. 33 and FIG. FIG. 33 is a diagram illustrating the results of the implementation product 1 and the comparison product 1 in which the minimum smooth portion is not provided at the center of the stem portion. From this figure, all the comparative products 1 were ruptured from the male spline portion Y, whereas all of the practical products 1 were ruptured from the flat portion beside the male spline portion Y, and showed higher strength than the comparative product. It was. FIG. 34 is a diagram illustrating the results of the implementation products 2 to 4 and the comparison products 2 to 4 having different diameters D of the minimum smooth portion. From this figure, all of the comparative products 2 to 4 were broken from the male spline portion Y, whereas the working products 2 and 3 were from the minimum smooth portion, and the working product 4 was the male spline portion Y as in the working product 1. Breakage occurred from the horizontal flat part. From the above, by making the enlarged diameter part of the male spline part equivalent to the product of the present invention, the breakage from the male spline part is suppressed, and the female side member (for example, a differential gear) fitted to the male spline part is damaged. The fear of giving can be avoided. If the ratio D / D 0 between the diameter D of the minimum smooth portion provided at the center of the stem portion and the pitch circle diameter D 0 of the male spline portion Y is 0.94 or less (Examples 2 and 3), Since the first rupture can be generated at the minimum smooth portion, the first rupture of the outer joint member can be generated at an arbitrary position by adjusting the position of the minimum smooth portion.

以上から、本発明は、以下の事項によって特徴付けられるものである。   As described above, the present invention is characterized by the following matters.

(I)マウス部及びステム部の端面同士を接合して成り、ステム部の外周に雄スプライン部が形成され、雄スプライン部の谷部の軸方向一端側にその外径寸法を徐々に拡径させた拡径部が設けられた外側継手部材と、マウス部の内周に収容された内側継手部材とを備えた等速自在継手において、前記雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を軸方向一端側に向けて徐々に大きくする。   (I) The end surfaces of the mouse part and the stem part are joined to each other, a male spline part is formed on the outer periphery of the stem part, and the outer diameter dimension is gradually increased on one end side in the axial direction of the valley part of the male spline part. In the constant velocity universal joint provided with the outer joint member provided with the expanded diameter portion and the inner joint member accommodated in the inner periphery of the mouth portion, on both sides in the circumferential direction of the increased diameter portion of the male spline portion. A rounded portion is provided, and the radius of curvature of the rounded portion is gradually increased toward one end in the axial direction.

(II)トルクTが負荷されたときに、雄スプライン部の拡径部に作用する第1主応力、および軸方向のせん断応力の最大値をそれぞれσ1max、τθzmaxとし、トルクT、雄スプライン部の谷部の直径do、雄スプライン部の内径diに対し、1)式で与えられる基準応力τ0とするとき、下記2)式と3)式を同時に満たすようにする。 (II) When the torque T is applied, the first principal stress acting on the diameter-expanded portion of the male spline portion and the maximum value of the shear stress in the axial direction are σ 1max and τθ zmax , respectively. When the reference stress τ 0 given by the equation (1) is set to the diameter d o of the trough portion and the inner diameter d i of the male spline portion, the following equations (2) and (3) are satisfied simultaneously.

τ0=16Tdo/[π(do 4−di 4)] …1) τ 0 = 16 Td o / [π (d o 4 −d i 4 )]... 1)

σ1max≦2.7τo …2) σ 1max ≦ 2.7τ o … 2)

τθzmax≦2.1τ0 …3) τθ zmax ≦ 2.1τ 0 … 3)

本発明者が検証したところ、以上の構成においては、アール部の曲率半径の増加率をdR/dL、拡径部の軸方向断面の小径端と大径端を結ぶ直線の角度をθとするとき、それぞれの値を0.05≦dR/dL≦0.60、および5°≦θ≦20°の範囲に設定すれば上記2)式と3)式を満たすことが判明した。   As a result of verification by the inventor, in the above configuration, the rate of increase in the radius of curvature of the rounded portion is dR / dL, and the angle of the straight line connecting the small diameter end and the large diameter end of the axial section of the enlarged diameter portion is θ. When the respective values are set in the ranges of 0.05 ≦ dR / dL ≦ 0.60 and 5 ° ≦ θ ≦ 20 °, it has been found that the above equations 2) and 3) are satisfied.

また、マウス部及びステム部の端面同士を接合して外側継手部材を形成した場合、マウス部及びステム部の接合部は他の部分に比べてトルク負荷に対する強度が低いため、雄スプライン部を上記の形状とすることで雄スプライン部の疲労強度が高められることにより、前記接合部にき裂等の疲労破断が生じる恐れがある。この点に鑑み、ステム部を、マウス部との接合部において最大径とすれば、接合部の面積を大きくすることができ、接合部の強度を確保することができる。また、このように接合部の面積を大きくして強度を向上させることで、強度向上のための焼入れ処理を施す部分を縮小することができるため、焼入れ処理に要する時間が短縮され、生産効率の向上を図ることができる。   In addition, when the outer joint member is formed by joining the end surfaces of the mouse part and the stem part, the joint part of the mouse part and the stem part has lower strength against torque load than other parts. By increasing the fatigue strength of the male spline portion by adopting this shape, there is a possibility that fatigue fracture such as a crack may occur in the joint portion. In view of this point, if the stem portion has the maximum diameter at the joint portion with the mouse portion, the area of the joint portion can be increased, and the strength of the joint portion can be ensured. In addition, by increasing the area of the joint and improving the strength in this way, it is possible to reduce the portion subjected to the quenching process for improving the strength, so the time required for the quenching process is shortened and the production efficiency is reduced. Improvements can be made.

また、上記の試験結果より、ステム部のうち、雄スプライン部の一端側に外径寸法が最小となる最小平滑部を設け、この最小平滑部の直径Dと雄スプライン部のピッチ円直径D0とがD/D0≦0.94を満たすようにすると、ステム部の最小平滑部で最初の破断を生じさせることができる。従って、最小平滑部の形成箇所を変更することで、外側継手部材の最初の破断が生じる位置を調整することができる。 Further, from the above test results, a minimum smooth portion having a minimum outer diameter is provided on one end side of the male spline portion of the stem portion, and the diameter D of the minimum smooth portion and the pitch circle diameter D 0 of the male spline portion are provided. And satisfying D / D 0 ≦ 0.94, the first rupture can be caused at the minimum smooth portion of the stem portion. Therefore, the position where the first fracture of the outer joint member occurs can be adjusted by changing the location where the minimum smooth portion is formed.

また、外側継手部材のマウス部及びステム部を形成する鋼のCの含有量は、以下の範囲内であることが好ましい。すなわち、Cは焼入性への影響が最も大きい元素であり、高周波焼入後の硬化層の硬さ及び深さを高めて強度向上に有効に寄与する。しかしながら、炭素の含有量が0.40%に満たないと、必要とされる強度を確保するために硬化層比(熱処理後の硬化層深さの軸半径に対する比)をかなり大きくしなければならず、焼き割れの発生が顕著となる等の不具合が生じるおそれがある。一方、炭素を0.55%を超えて含有させると粒界強度が低下し、さらに切削性、冷間鍛造性、及び耐焼割れ性も低下する。以上より、Cの含有量は0.40%〜0.55%の範囲内であることが望ましい。   Moreover, it is preferable that content of C of steel which forms the mouse | mouth part and stem part of an outer joint member is in the following ranges. That is, C is an element having the greatest influence on the hardenability, and contributes effectively to improving the strength by increasing the hardness and depth of the hardened layer after induction hardening. However, if the carbon content is less than 0.40%, the hardened layer ratio (ratio of the hardened layer depth after heat treatment to the axial radius) must be considerably increased in order to ensure the required strength. Therefore, there is a risk that defects such as the occurrence of burning cracks become prominent. On the other hand, when carbon is contained exceeding 0.55%, the grain boundary strength is lowered, and further, the machinability, the cold forgeability, and the fire cracking resistance are also lowered. From the above, it is desirable that the C content be in the range of 0.40% to 0.55%.

また、外側継手部材のマウス部及びステム部を形成する鋼のSの含有量は、以下の範囲内であることが好ましい。すなわち、Sは鋼中でMnSを形成して切削性を向上させる有用元素であり、Sの含有量が0.01%に満たないと切削性が不足する。一方、Sを0.035%を超えて含有させると、溶接割れが発生するなどマウス部とステム部との接合性が悪化する。以上より、Sの含有量は0.01〜0.035%の範囲内であることが望ましい。   Moreover, it is preferable that content of S of steel which forms the mouse | mouth part and stem part of an outer joint member is in the following ranges. That is, S is a useful element that improves the machinability by forming MnS in steel, and if the S content is less than 0.01%, the machinability is insufficient. On the other hand, if S is contained in an amount exceeding 0.035%, the bondability between the mouse part and the stem part deteriorates, such as weld cracking. From the above, the content of S is preferably in the range of 0.01 to 0.035%.

以上のように、本発明によれば、外側継手部材のステム部の雄スプライン部での引張応力とせん断応力の双方の応力集中を緩和させて雄スプライン部の疲労強度を高めることができる。   As described above, according to the present invention, the stress concentration of both the tensile stress and the shear stress at the male spline portion of the stem portion of the outer joint member can be relaxed, and the fatigue strength of the male spline portion can be increased.

以下、本発明の実施の形態を、添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1(a)に、本発明に係る等速自在継手としてのトリポード型等速自在継手1を示す。このトリポード型等速自在継手1は、例えば自動車のリアのデファレンシャルギヤ(図示省略)と動力伝達シャフト2との間に装着され、これらの角度変位及び軸方向変位を許容しながらトルクを等速伝達するものである。   FIG. 1A shows a tripod type constant velocity universal joint 1 as a constant velocity universal joint according to the present invention. The tripod type constant velocity universal joint 1 is mounted between, for example, a rear differential gear (not shown) of a vehicle and a power transmission shaft 2, and transmits torque at a constant speed while allowing these angular displacements and axial displacements. To do.

トリポード型等速自在継手1は、動力伝達シャフト2に結合される内側継手部材3と、内周に内側継手部材3を収容する外側継手部材4と、内側継手部材3と外側継手部材4との間でトルクを伝達する転動体としてのローラ5とを主要構成要素とする。内側継手部材3の円周方向三箇所には、脚軸3aが突設されている。外側継手部材4のマウス部4aの内周の円周方向三等分位置には軸方向に延びるトラック溝4a1が形成され、このトラック溝4a1をローラ5が転動する。外側継手部材4のステム部4bの先端は、デファレンシャルギヤ(図示省略)と結合される。尚、等速自在継手1の転動体の数を、動力伝達シャフト2の反対側の端部に装着される等速自在継手(図示省略)の転動体の数と互いに素となるようにすると、自動車のNVH特性を向上させることができる。   The tripod type constant velocity universal joint 1 includes an inner joint member 3 coupled to the power transmission shaft 2, an outer joint member 4 accommodating the inner joint member 3 on the inner periphery, and the inner joint member 3 and the outer joint member 4. A roller 5 as a rolling element that transmits torque between them is a main component. Leg shafts 3 a are projected from three locations in the circumferential direction of the inner joint member 3. A track groove 4a1 extending in the axial direction is formed at a position of the inner circumference of the mouth portion 4a of the outer joint member 4 in the circumferential direction, and the roller 5 rolls along the track groove 4a1. The distal end of the stem portion 4b of the outer joint member 4 is coupled to a differential gear (not shown). In addition, when the number of rolling elements of the constant velocity universal joint 1 is made to be coprime with the number of rolling elements of the constant velocity universal joint (not shown) attached to the opposite end of the power transmission shaft 2, The NVH characteristics of the automobile can be improved.

図1(b)に、トリポード型等速自在継手1の外側継手部材4を示す。外側継手部材4は、Cの含有量が0.40〜0.55%、Sの含有量が0.01〜0.035%の範囲内である鋼を用いて形成され、内周に内側継手部材3を収容するマウス部4aと、マウス部4aから延びたステム部4bとを有する。この外側継手部材4は、ステム部4b及びマウス部4aの端面同士を接合して形成され、具体的には、マウス部4aから突出した突出部4a2の端面とステム部4bの端面とが、例えば摩擦圧接あるいは溶接により接合される(図1(b)に接合部をQで示す)。本実施形態では、突出部4a2及びステム部4bは共に中実に形成され、図1(b)のクロスハッチングで示す領域、すなわちマウス部4aとステム部4bとの接合部Qを含む領域に焼入れ処理が施されている。尚、図1(b)では焼入れ処理が突出部4a2及びステム部4bの表面部のみに施されているが、内部まで硬化させてもよい。また、図示は省略するが、マウス部4aの内周にも焼入れ処理が施されている。ステム部4bの端部には雄スプライン部Smが形成され、この雄スプライン部SmがデファレンシャルギヤDeの内周に設けられた雌スプライン部Sfとトルク伝達可能に結合される(図3参照)。   FIG. 1B shows the outer joint member 4 of the tripod type constant velocity universal joint 1. The outer joint member 4 is formed using steel having a C content of 0.40 to 0.55% and an S content of 0.01 to 0.035%. It has a mouse part 4a for accommodating the member 3 and a stem part 4b extending from the mouse part 4a. The outer joint member 4 is formed by joining the end surfaces of the stem portion 4b and the mouth portion 4a. Specifically, the end surface of the protruding portion 4a2 protruding from the mouth portion 4a and the end surface of the stem portion 4b are, for example, They are joined by friction welding or welding (the joint is indicated by Q in FIG. 1B). In the present embodiment, both the protruding portion 4a2 and the stem portion 4b are formed solid, and are hardened in the region indicated by cross-hatching in FIG. 1B, that is, the region including the joint portion Q between the mouse portion 4a and the stem portion 4b. Is given. In addition, in FIG.1 (b), although the hardening process is given only to the surface part of the protrusion part 4a2 and the stem part 4b, you may harden even an inside. Moreover, although illustration is abbreviate | omitted, the hardening process is performed also to the inner periphery of the mouse | mouth part 4a. A male spline portion Sm is formed at the end of the stem portion 4b, and this male spline portion Sm is coupled to a female spline portion Sf provided on the inner periphery of the differential gear De so as to transmit torque (see FIG. 3).

外側継手部材4は図1(b)に示すものに限らず、例えば図28に示すようにマウス部4aの突出部4a2の端部を中空とすると共に、ステム部4bを全長に亘って中空としてもよい。この場合、大幅な軽量化を図ることができると共に、ステム部4bの外径を拡大することで剛性を高めることができる。中空のステム部4bは、例えば板材から成形する電縫管や、素材に穴を空けてその穴を広げるシームレス管から形成することができる。ステム部4bを電縫管から形成すれば、寸法制度が良く比較的安価であるが、管に継目部が形成され、ステム部4bをシームレス管から形成すれば、継目部は形成されないが、肉厚を均一にすることが難しくなる。   The outer joint member 4 is not limited to that shown in FIG. 1B. For example, as shown in FIG. 28, the end portion of the protruding portion 4a2 of the mouse portion 4a is hollow and the stem portion 4b is hollow over the entire length. Also good. In this case, the weight can be significantly reduced, and the rigidity can be increased by increasing the outer diameter of the stem portion 4b. The hollow stem portion 4b can be formed from, for example, an electric sewing tube formed from a plate material, or a seamless tube that opens a hole in the material. If the stem portion 4b is formed from an electric sewing tube, the dimensional system is good and relatively inexpensive. However, if the stem portion 4b is formed from a seamless tube, the seam portion is not formed. It becomes difficult to make the thickness uniform.

また、図29に示すように、ステム部4bのうち、マウス部4aの突出部4a2との接合部Qにおいてその外径寸法を最大径とすると、接合部Qにおける接合面積が大きくなり、マウス部4aとステム部4bの接合強度を高めることができる。これにより、接合部Qの外周部における焼入れ効果処理を省略することができるため、図1(b)や図28に示す場合と比べて焼入れ処理を施す範囲が縮小され、処理に要するサイクルタイムを短縮することができる。また、上記の例ではステム部4bが一体に形成されているが、例えば雄スプライン部Smが形成される部分を別体に形成した後、摩擦圧接等で接合することもできる(図示省略)。   In addition, as shown in FIG. 29, in the stem portion 4b, when the outer diameter of the joint portion Q with the protruding portion 4a2 of the mouse portion 4a is the maximum diameter, the joint area at the joint portion Q increases, and the mouse portion The bonding strength between 4a and the stem portion 4b can be increased. Thereby, since the quenching effect process in the outer peripheral part of the joint Q can be omitted, the range for performing the quench process is reduced as compared with the cases shown in FIG. 1B and FIG. 28, and the cycle time required for the process is reduced. It can be shortened. In the above example, the stem portion 4b is integrally formed. However, for example, a portion where the male spline portion Sm is formed can be formed separately and then joined by friction welding or the like (not shown).

また、図1(b)、図28、及び図29に示す例では、ステム部4bが雄スプライン部Smにおいて外径寸法が最小となっているが、例えばステム部4bの中央に外径寸法が最小となる最小平滑部を設けてもよい(図30参照)。このとき、最小平滑部の直径Dと雄スプライン部Smのピッチ円直径D0との比D/D0を0.94以下とすることにより、最小平滑部において最初の破断を生じさせる。従って、この最小平滑部の形成位置を変更することで、デフケースの外側で最初の破断を生じさせることができ、メンテナンスを容易化することができる。 In the example shown in FIGS. 1B, 28, and 29, the stem portion 4b has the smallest outer diameter at the male spline portion Sm. For example, the outer diameter is at the center of the stem portion 4b. You may provide the minimum smooth part which becomes the minimum (refer FIG. 30). At this time, the ratio D / D 0 between the diameter D of the minimum smooth portion and the pitch circle diameter D 0 of the male spline portion Sm is set to 0.94 or less, thereby causing the first break in the minimum smooth portion. Therefore, by changing the formation position of the minimum smooth portion, the first break can be caused outside the differential case, and maintenance can be facilitated.

図2、図3、および図6に示すように、外側継手部材4のステム部4bに形成された雄スプライン部Smは、軸方向に延びる谷部21と山部22とを円周方向に交互に有する。この実施形態の雄スプライン部Smは、転造加工で形成されたいわゆる切上りタイプで、各谷部21は、軸方向で同径寸法のストレート部21aと、その反軸端側に形成された拡径部21bとで構成される。各山部22も同様に、軸方向で同径寸法のストレート部22aと、その反軸端側に形成された縮径部22bとで構成される。図4に示すように、拡径部21bと縮径部22bの始端は軸方向で同じ位置にあり、かつその終端も軸方向で同じ位置にある。この雄スプライン部Smは冷間鍛造で成形することもでき、この場合は、通常、山部22の縮径部22bは形成されず、山部22の反軸端側は全体が同一外径寸法となる。成形後の雄スプライン部Smには、高周波焼入れ等による熱処理が施される。   As shown in FIGS. 2, 3, and 6, the male spline portion Sm formed in the stem portion 4 b of the outer joint member 4 has alternating trough portions 21 and ridge portions 22 extending in the circumferential direction in the circumferential direction. Have. The male spline portion Sm of this embodiment is a so-called up-round type formed by rolling, and each valley portion 21 is formed on the straight portion 21a having the same diameter in the axial direction and on the opposite end side. It is comprised with the enlarged diameter part 21b. Similarly, each peak portion 22 includes a straight portion 22a having the same diameter in the axial direction and a reduced diameter portion 22b formed on the opposite end side. As shown in FIG. 4, the starting ends of the enlarged diameter portion 21 b and the reduced diameter portion 22 b are at the same position in the axial direction, and the terminal ends are also at the same position in the axial direction. This male spline part Sm can also be formed by cold forging. In this case, normally, the reduced diameter part 22b of the peak part 22 is not formed, and the entire opposite end side of the peak part 22 has the same outer diameter. It becomes. The male spline part Sm after molding is subjected to heat treatment by induction hardening or the like.

図3に示すように、雌スプライン部Sfの谷部31は、同径寸法で反軸端側の端部まで形成されている。一方、山部32は、小径部32a、大径部32b、小径部32aと大径部32bの間の立ち上り部32cを有する。大径部32bの内径寸法は、雄スプライン部Smの山部22の最大外径寸法(ストレート部22aの外径寸法)よりも小さく、雄スプライン部Smの反軸端側に形成されたステム部4bの平滑部25の外径寸法よりも大きい。   As shown in FIG. 3, the valley 31 of the female spline portion Sf has the same diameter and is formed up to the end on the opposite shaft end side. On the other hand, the peak portion 32 has a small diameter portion 32a, a large diameter portion 32b, and a rising portion 32c between the small diameter portion 32a and the large diameter portion 32b. The inner diameter dimension of the large diameter part 32b is smaller than the maximum outer diameter dimension (outer diameter dimension of the straight part 22a) of the peak part 22 of the male spline part Sm, and the stem part formed on the opposite end side of the male spline part Sm. It is larger than the outer diameter of the smooth portion 25 of 4b.

雄スプライン部Smと雌スプライン部Sfとを互いに嵌合させると、雄スプライン部Smの歯面23と、雌スプライン部Sfの歯面(図示省略)とが強く圧接する。この時の両歯面の嵌合部(散点模様で表す)は、図3に示すように、拡径部21bの外径側領域にも及んでいる。   When the male spline portion Sm and the female spline portion Sf are fitted to each other, the tooth surface 23 of the male spline portion Sm and the tooth surface (not shown) of the female spline portion Sf are in strong pressure contact. At this time, the fitting portions (represented by a dotted pattern) of both tooth surfaces extend to the outer diameter side region of the enlarged diameter portion 21b as shown in FIG.

なお、図3では、拡径部21bおよび縮径部22bの軸方向断面を何れも直線的なテーパ状に形成した場合を例示しているが、両者の軸方向断面を曲線状に形成することもできる。また、直線状と曲線状の複合形状とすることもできる。   In addition, although FIG. 3 illustrates the case where both the axial sections of the enlarged diameter portion 21b and the reduced diameter portion 22b are formed in a linear taper shape, both axial sections are formed in a curved shape. You can also. Moreover, it can also be set as the composite shape of a linear form and a curvilinear form.

図2に示すように、本発明において雄スプライン部Smの拡径部21bは、その円周方向両側に形成されたアール部21b1(散点模様で示す)と、アール部21b1の間に形成された平面状の平坦部21b2とで構成される。アール部21b1は半径方向断面が円弧状をなし、その円周方向両側は歯面23および平坦部21b2に滑らかにつながっている。   As shown in FIG. 2, in the present invention, the enlarged diameter portion 21b of the male spline portion Sm is formed between the rounded portion 21b1 (shown by a dotted pattern) formed on both sides in the circumferential direction and the rounded portion 21b1. And a planar flat portion 21b2. The radius portion 21b1 has a circular cross section in the radial direction, and both circumferential sides thereof are smoothly connected to the tooth surface 23 and the flat portion 21b2.

図4は、雄スプライン部Smのうち、拡径部21b付近を示す平面図、図5a〜図5dは、図4におけるA−A線、B−B線、C−C線、D−D線の各断面図である。図5aに示すように、谷部21のストレート部21aと歯面23とをつなぐアール部の曲率半径RAは、拡径部21bとの境界部に至るまで一定である。図5b〜図5dに示すように、拡径部21bでは、アール部21b1の曲率半径が、境界部の曲率半径RAよりも大きく、かつ反軸端側ほど徐々に大きくなっている(RA<RB<RC<RD)。また、図4に示すように、アール部21b1の境界線が山部の稜線と交わって歯面23が無くなる位置までは、アール部21b1の円周方向の幅寸法は反軸端側(図面上方)に向けて徐々に拡大し、これを超えると幅寸法は徐々に縮小している。平坦部21b2の円周方向の幅寸法も反軸端側に向けて徐々に拡大している。 4 is a plan view showing the vicinity of the enlarged diameter portion 21b in the male spline portion Sm, and FIGS. 5a to 5d are the AA, BB, CC, and DD lines in FIG. FIG. As shown in FIG. 5a, the curvature radius R A of the rounded portion connecting the straight portion 21a of the valley portion 21 and the tooth surface 23 is constant until reaching the boundary portion with the enlarged diameter portion 21b. As shown in FIGS. 5b to 5d, in the enlarged diameter portion 21b, the radius of curvature of the rounded portion 21b1 is larger than the radius of curvature R A of the boundary portion and gradually increases toward the opposite shaft end side (R A <R B <R C <R D ). Further, as shown in FIG. 4, the width of the round portion 21b1 in the circumferential direction is on the side opposite the axis (upward in the drawing) until the position where the boundary line of the round portion 21b1 intersects the ridge line of the mountain portion and the tooth surface 23 disappears. ) Gradually expands toward (), and beyond this, the width dimension gradually decreases. The width dimension in the circumferential direction of the flat portion 21b2 is also gradually enlarged toward the opposite axis end side.

図4中のLは、拡径部21bのアール部21b1において、その曲率半径の中心を通る線の方向にとった座標を示す。アール部21b1の曲率半径の増加率は、dR/dLで表され、本実施形態ではdR/dL=0.18に設定している。また、図4中のθは、拡径部21bの軸方向断面の小径端と大径端を結ぶ直線の傾斜角を表し、本実施形態ではθ=8.3°に設定している。   L in FIG. 4 indicates coordinates taken in the direction of a line passing through the center of the radius of curvature in the rounded portion 21b1 of the enlarged diameter portion 21b. The increasing rate of the radius of curvature of the rounded portion 21b1 is represented by dR / dL, and is set to dR / dL = 0.18 in this embodiment. Further, θ in FIG. 4 represents the inclination angle of a straight line connecting the small diameter end and the large diameter end of the cross section in the axial direction of the enlarged diameter portion 21b. In this embodiment, θ is set to 8.3 °.

図14〜図16に、上記特許文献1(特開2005−147367号公報)に記載された雄スプライン部Sm’、すなわち、拡径部21b’と歯面23’の境界にアール部21b1’を形成し、かつアール部21b1’の曲率半径を軸方向全長にわたって一定とした雄スプライン部Sm’を示す(なお、図14〜図16では、図2〜図4に表された部位と対応する部位に(’)を加えた同一符号を付している)。   14 to 16, the male spline portion Sm ′ described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-147367), that is, the rounded portion 21b1 ′ is formed at the boundary between the enlarged diameter portion 21b ′ and the tooth surface 23 ′. A male spline portion Sm ′ formed and having a radius of curvature of the rounded portion 21b1 ′ constant over the entire length in the axial direction is shown (in FIGS. 14 to 16, a portion corresponding to the portion shown in FIGS. 2 to 4) (The same sign with (') added to it).

図2に示す雄スプライン部Sm(本発明品)と図14に示す雄スプライン部Sm’(従来品)のそれぞれについてFEM解析を行い、それぞれについて第1主応力の最大値σ1maxとせん断応力の最大値τθzmaxを求め、これらを上記基準応力τ0で除した値を算出した。 FEM analysis is performed for each of the male spline part Sm (product of the present invention) shown in FIG. 2 and the male spline part Sm ′ (conventional product) shown in FIG. 14, and the maximum value σ 1max of the first principal stress and the shear stress of each are analyzed. The maximum value τθ zmax was obtained, and a value obtained by dividing these by the reference stress τ 0 was calculated.

このFEM解析は、3次元線形弾性解析であり、解析ソフトとして “I-deas Ver.10"を使用した。解析モデルは、図20に示すように、雄スプライン部Sm、Sm'の1つの谷部21、21'を含む線形弾性体で、モデル長は100mmである。図21に、この解析モデルに付したメッシュを示す。各要素は4面体二次要素で、総要素数は約20万個、総接点数は約30万個である。要素長は、主要部分P(雄スプライン部Sm、Sm'を含む部分で)で0.2mm以下とし(最小要素長は0.05mm)、主要部分P以外で0.5mmとした。図22は、主要部分Pのメッシュを拡大して示す図であり、同図(a)が図2に対応した本発明品を表し、同図(b)が図14に対応した従来品を表す。図23に示すように、解析モデルの反軸端側端面MにRigid要素を作成し、この端面Mの中心軸O上にトルクTを負荷した。但し、モデルとして、1/歯数モデルを使用しているので、負荷トルクは、実際のトルクの1/歯数である。図24に示すように、解析モデルは、谷部21の中心を通る半径方向軸を対称軸とした形状で、円周方向の両側面Wの全節点を周期対称としている。なお、図25に示すように、解析モデルの相手部材との接触面(散点模様で示す)では、その法線方向の変位が拘束されている。   This FEM analysis is a three-dimensional linear elastic analysis, and “I-deas Ver. 10” was used as analysis software. As shown in FIG. 20, the analysis model is a linear elastic body including one valley portion 21 and 21 ′ of the male spline portions Sm and Sm ′, and the model length is 100 mm. FIG. 21 shows a mesh attached to this analysis model. Each element is a tetrahedral secondary element, the total number of elements is about 200,000, and the total number of contacts is about 300,000. The element length was set to 0.2 mm or less (the minimum element length was 0.05 mm) in the main portion P (including the male spline portions Sm and Sm ′), and 0.5 mm except for the main portion P. FIG. 22 is an enlarged view showing the mesh of the main part P. FIG. 22 (a) shows the product of the present invention corresponding to FIG. 2, and FIG. 22 (b) shows the conventional product corresponding to FIG. . As shown in FIG. 23, a Rigid element was created on the end face M on the opposite end side of the analysis model, and a torque T was loaded on the central axis O of the end face M. However, since a 1 / tooth number model is used as a model, the load torque is 1 / tooth number of actual torque. As shown in FIG. 24, the analysis model has a shape in which the radial direction axis passing through the center of the valley portion 21 is an axis of symmetry, and all the nodes on both side surfaces W in the circumferential direction are cyclically symmetric. In addition, as shown in FIG. 25, the displacement of the normal direction is restrained in the contact surface (it shows with a dotted pattern) with the other party member of an analysis model.

第1主応力σ1の解析結果を図26に示し、軸方向せん断応力τθzの解析結果を図27に示す。なお、図26および図27の何れでも、(a)図が本発明品モデルを表し、(b)図が従来品モデルを示す。なお、両図中の基準応力τ0は、トルクT、雄スプライン部Smの谷部の直径do、雄スプライン部の内径diに対し、τ0=16Tdo/[π(do 4−di 4)]なる式で与えられる。 The analysis result of the first principal stress σ 1 is shown in FIG. 26, and the analysis result of the axial shear stress τθ z is shown in FIG. 26A and 27B, FIG. 26A shows the product model of the present invention, and FIG. 26B shows the conventional product model. The reference stress τ 0 in both figures is τ 0 = 16 Td o / [π (d o 4 − −) with respect to the torque T, the diameter d o of the valley of the male spline part Sm, and the inner diameter d i of the male spline part. d i 4 )].

以上の解析結果から、従来品では、σ1max/τ0=3.03であるのに対し、本発明品では、σ1max/τ0=2.48となり、従来品より引張応力に対する応力集中の緩和効果が高まることが判明した。これは、本発明品では、歯面23の終端近傍におけるアール部21b1の曲率半径が、従来品の対応部位での曲率半径よりも大きくなるためと考えられる。先に説明したように、引張応力に対する応力集中係数ασが2.7以下であれば、応力集中の緩和効果が顕著となるので、σ1max/τ0≦2.7の本発明品であれば、従来品に比べ、引張り応力に対する疲労強度を大幅に増大させることが可能である。 From the above analysis results, in the conventional product, σ 1max / τ 0 = 3.03, whereas in the product of the present invention, σ 1max / τ 0 = 2.48, which is higher than the conventional product in terms of stress concentration against tensile stress. It has been found that the relaxation effect is enhanced. This is presumably because the radius of curvature of the rounded portion 21b1 in the vicinity of the end of the tooth surface 23 is larger than the radius of curvature at the corresponding portion of the conventional product in the product of the present invention. As described above, if the stress concentration coefficient ασ with respect to the tensile stress is 2.7 or less, the stress concentration mitigating effect becomes significant. Therefore, if the product of the present invention satisfies σ 1max / τ 0 ≦ 2.7, Compared to conventional products, the fatigue strength against tensile stress can be greatly increased.

また、従来品では、τθzmax/τ0=2.28であるのに対し、本発明品ではτθzmax/τ0=1.74となり、従来品より軸方向のせん断応力に対する応力集中の緩和効果も高まることが判明した。上記のとおり、せん断応力に対する応力集中係数ατが2.1以下であれば、応力集中の緩和効果が顕著となるので、τθzmax/τ0≦2.1である本発明品は、従来品に比べ、せん断応力に対する疲労強度を大幅に向上させることができる。このように本発明によれば、雄スプライン部Smで引張応力およびせん断応力の双方に対して高い応力集中緩和効果を得ることができる。従って、外側継手部材4のステム部4bの疲労強度を高めることができる。 Further, in the conventional product, τθ zmax / τ 0 = 2.28, whereas in the product of the present invention, τθ zmax / τ 0 = 1.74, which is a stress relaxation effect on the axial shear stress compared to the conventional product. It was also found to increase. As described above, if the stress concentration coefficient ατ with respect to the shear stress is 2.1 or less, the stress concentration relaxation effect becomes significant. Therefore, the product of the present invention in which τθ zmax / τ 0 ≦ 2.1 is compared with the conventional product. In comparison, the fatigue strength against shear stress can be greatly improved. Thus, according to the present invention, it is possible to obtain a high stress concentration relaxation effect with respect to both tensile stress and shear stress in the male spline portion Sm. Therefore, the fatigue strength of the stem portion 4b of the outer joint member 4 can be increased.

本発明者がさらに解析したところ、図4に示すアール部21b1の曲率半径の増加率dR/dLが0.05≦dR/dL≦0.60であり、かつ拡径部21bの傾斜角θが5°≦θ≦20°の範囲であれば、σ1max/τ0≦2.7、τθzmax/τ0≦2.1を満足できることが判明した。 As a result of further analysis by the present inventor, the rate of increase dR / dL of the radius of curvature of the rounded portion 21b1 shown in FIG. 4 is 0.05 ≦ dR / dL ≦ 0.60, and the inclination angle θ of the enlarged diameter portion 21b is In the range of 5 ° ≦ θ ≦ 20 °, it was found that σ 1max / τ 0 ≦ 2.7 and τθ zmax / τ 0 ≦ 2.1 can be satisfied.

図14に示すように、従来品では、最大せん断応力τθzmaxが拡径部21b’の起点の中心線上で生じる。このように、中心線上で最大せん断応力が発生すると、外側継手部材4のステム部4bが正逆両方向のトルクを伝達する際、正逆何れの回転時にも同じ部位に最大せん断応力が生じるため、それだけ疲労破壊が進展し易くなる。これに対し、本発明品では、最大せん断応力τθzmaxは、図2に示すように、拡径部21bの起点よりも反軸端側の双方のアール部21b1で生じる。そのため、正回転時と逆回転時で最大せん断応力の発生部位が異なり、従って、疲労破壊の進展速度も抑制することが可能となる。以上から、本発明品は、トルクの伝達方向が頻繁に切り替わる用途、例えば車両の前進・後退に応じてトルク伝達方向が反転するような用途に特に好適なものとなる。 As shown in FIG. 14, in the conventional product, the maximum shear stress τθ zmax occurs on the center line of the starting point of the enlarged diameter portion 21b ′. Thus, when the maximum shear stress is generated on the center line, when the stem portion 4b of the outer joint member 4 transmits the torque in both the forward and reverse directions, the maximum shear stress is generated in the same part during both forward and reverse rotations. As much as that, fatigue fractures progress easily. On the other hand, in the product of the present invention, as shown in FIG. 2, the maximum shear stress τθ zmax is generated at both rounded portions 21b1 on the side opposite to the axial end from the starting point of the enlarged diameter portion 21b. Therefore, the generation site of the maximum shear stress differs between the forward rotation and the reverse rotation, and therefore the progress rate of fatigue fracture can be suppressed. From the above, the product of the present invention is particularly suitable for an application in which the torque transmission direction is frequently switched, for example, an application in which the torque transmission direction is reversed in accordance with forward / backward movement of the vehicle.

以上に述べたアール部21b1を有する拡径部21bは、転造加工時に使用する転造ラックに、当該拡径部21bに対応した形状の成形部を形成することにより、雄スプライン部Smの歯と同時に形成することができる。雄スプライン部をプレス加工で冷間鍛造する場合も同様に、プレス加工用のダイスに拡径部21bの形状に対応した成形部を予め形成することにより、雄スプライン部Smの歯と同時にアール部21b1を成形することができる。   The enlarged diameter portion 21b having the rounded portion 21b1 described above is formed by forming a molded portion having a shape corresponding to the enlarged diameter portion 21b on a rolling rack used during rolling, thereby forming the teeth of the male spline portion Sm. It can be formed at the same time. Similarly, when the male spline part is cold forged by press working, the round part is formed simultaneously with the teeth of the male spline part Sm by previously forming a molding part corresponding to the shape of the enlarged diameter part 21b on the die for press working. 21b1 can be molded.

図7に本発明の他の実施形態を示す。この実施形態は、雄スプライン部Smもしくは雌スプライン部Sf(図面では雄スプライン部Sm)のうち、何れか一方の歯に軸心方向に対して捩れ角βを持たせた実施形態であり、嵌合後の両スプライン部Sm、Sf間のガタ詰めに有効な手法である。捩れ角βを設けた場合、トルク伝達側の歯面同士の接触圧力が高まり、これに伴って拡径部に集中する引張応力、せん断応力も高くなるため、疲労強度の低下を招く。この観点から、従来品では、捩れ角βは実質15°が限度とされてきた。これに対し、本発明品では、上記のとおり動力伝達スプラインの疲労強度を大幅に高めることができるので、15°以上の捩れ角βをとることができ、高いガタ詰め効果を得ることが可能である。   FIG. 7 shows another embodiment of the present invention. This embodiment is an embodiment in which either one of the male spline part Sm or the female spline part Sf (male spline part Sm in the drawing) has a twist angle β with respect to the axial direction. This is an effective method for loosening between the spline portions Sm and Sf after the combination. When the torsion angle β is provided, the contact pressure between the tooth surfaces on the torque transmission side increases, and as a result, the tensile stress and the shear stress concentrated on the enlarged diameter portion also increase, resulting in a decrease in fatigue strength. From this point of view, the conventional product has been limited to a torsion angle β of substantially 15 °. On the other hand, in the present invention product, the fatigue strength of the power transmission spline can be greatly increased as described above, so that a twist angle β of 15 ° or more can be obtained, and a high backlash effect can be obtained. is there.

上述の実施形態では、雄スプライン部Smとして、拡径部21bの円周方向幅を反軸端側で徐々に拡大させたいわゆる「槍形タイプ」を例示しているが、これに限らず、拡径部21bの円周方向幅を一定にしたいわゆる「舟形タイプ」の雄スプライン部Smに本発明を適用することもできる。この場合も、拡径部21bの円周方向両側にアール部を設け、かつアール部の曲率半径を反軸端側ほど徐々に大きくすることにより、本発明と同様の効果が得られる。   In the above-described embodiment, as the male spline portion Sm, a so-called “saddle type” in which the circumferential width of the enlarged diameter portion 21b is gradually enlarged on the opposite shaft end side is illustrated, but not limited thereto. The present invention can also be applied to a so-called “boat type” male spline portion Sm in which the circumferential width of the enlarged diameter portion 21b is constant. Also in this case, the same effects as those of the present invention can be obtained by providing rounded portions on both sides in the circumferential direction of the enlarged diameter portion 21b and gradually increasing the radius of curvature of the rounded portion toward the opposite end side.

また、上述の実施形態では、本発明がトリポード型等速自在継手に適用される場合を示しているが、これに限らず、例えばクロスグルーブ型、ダブルオフセット型等の摺動型等速自在継手や、ツェッパ型等の固定型等速自在継手に本発明を適用することもできる。   In the above-described embodiment, the case where the present invention is applied to a tripod type constant velocity universal joint is shown. However, the present invention is not limited to this, and for example, a sliding type constant velocity universal joint such as a cross groove type or a double offset type is shown. The present invention can also be applied to fixed type constant velocity universal joints such as a Rzeppa type.

本発明にかかる等速自在継手の部分断面図である。It is a fragmentary sectional view of the constant velocity universal joint concerning this invention. 外側継手部材の部分断面図である。It is a fragmentary sectional view of an outside joint member. 外側継手部材に形成された雄スプライン部のうち、反軸端側部分(図1符号X部)を示す斜視図である。It is a perspective view which shows a counter-shaft end side part (FIG. 1 code | symbol X part) among the male spline parts formed in the outer joint member. 図1の符号X部を拡大して示す断面図である。It is sectional drawing which expands and shows the code | symbol X part of FIG. (a)図は雄スプライン部の反軸端側部分を示す平面図であり、(b)図は(a)図中のY−Y線断面図である。(A) A figure is a top view which shows the opposite-axis end side part of a male spline part, (b) A figure is the YY sectional view taken on the line in (a) figure. (a)図は、図4(a)中のA−A線断面図、(b)図は同B−B線断面図、(c)図は同C−C線断面図、(d)図は同D−D線断面図である。4A is a cross-sectional view taken along line AA in FIG. 4A, FIG. 4B is a cross-sectional view taken along line BB, FIG. 4C is a cross-sectional view taken along line CC, and FIG. Is a sectional view taken along the line DD. 雄スプライン部の周方向断面図である。It is a circumferential direction sectional view of a male spline part. 捩れ角を有する雄スプライン部の概略構成を示す平面図である。It is a top view which shows schematic structure of the male spline part which has a twist angle. 雄スプライン部の平面図である。It is a top view of a male spline part. 疲労試験で使用する試験片の化学組成を示す表である。It is a table | surface which shows the chemical composition of the test piece used by a fatigue test. 回転曲げ疲労試験の試験片を示す側面図である。It is a side view which shows the test piece of a rotation bending fatigue test. 上記試験片の切欠き部Aを拡大した側面図である。It is the side view to which the notch part A of the said test piece was expanded. 切欠き部の寸法と応力集中係数の関係を示す表である。It is a table | surface which shows the relationship between the dimension of a notch part, and a stress concentration factor. 捩り疲労試験の試験片を示す側面図である。It is a side view which shows the test piece of a torsional fatigue test. 上記試験片の切欠き部Aを拡大した側面図である。It is the side view to which the notch part A of the said test piece was expanded. 切欠き部の寸法と応力集中係数の関係を示す表である。It is a table | surface which shows the relationship between the dimension of a notch part, and a stress concentration factor. 回転曲げ疲労試験で求めた疲労限強度の測定結果を示す図である。It is a figure which shows the measurement result of the fatigue limit strength calculated | required by the rotation bending fatigue test. 捩り疲労試験で求めた105回における捩り疲労強度の測定結果を示す図である。It is a figure which shows the measurement result of the torsional fatigue strength in 10 < 5 > time calculated | required by the torsional fatigue test. 従来の雄スプライン部の反軸端側部分を示す斜視図であるIt is a perspective view which shows the anti-shaft end side part of the conventional male spline part. 従来の雄スプライン部の反軸端側部分を示す断面図である。It is sectional drawing which shows the anti-shaft end side part of the conventional male spline part. 従来の雄スプライン部の反軸端側部分を示す平面図である。It is a top view which shows the non-axis end side part of the conventional male spline part. 試験片を示す側面図である。It is a side view which shows a test piece. 試験片のインボリュートスプライン緒元を示す表である。It is a table | surface which shows the involute spline specification of a test piece. 両振り捩り疲労試験で得られたT/N線図である。It is a T / N diagram obtained by the double torsional fatigue test. 片振り捩り疲労試験で得られたT/N線図である。FIG. 3 is a T / N diagram obtained in a single swing torsional fatigue test. FEM解析モデルを示す斜視図である。It is a perspective view which shows a FEM analysis model. メッシュを付した解析モデルを示す斜視図である。It is a perspective view which shows the analysis model which attached | subjected the mesh. (a)図は、メッシュを付した本発明品の主要部分Pの斜視図であり、同図(b)が同じく従来品の主要部分Pの斜視図である。(A) The figure is a perspective view of the principal part P of this invention goods which attached | subjected the mesh, The figure (b) is a perspective view of the principal part P of a conventional product similarly. 解析モデルの反軸端側の端部の斜視図である。It is a perspective view of the edge part by the side of the non-axis end of an analysis model. 図20の矢印方向から見た解析モデルの正面図である。It is a front view of the analysis model seen from the arrow direction of FIG. 解析モデルの斜視図である。It is a perspective view of an analysis model. 第1主応力の解析結果を示す図である。It is a figure which shows the analysis result of a 1st principal stress. 軸方向せん断応力の解析結果を示す図である。It is a figure which shows the analysis result of an axial direction shear stress. 外側継手部材の他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an outside joint member. 外側継手部材の他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an outside joint member. 試験片を示す側面図である。It is a side view which shows a test piece. 試験片のインボリュートスプライン緒元を示す表である。It is a table | surface which shows the involute spline specification of a test piece. 試験片の形状を示す表である。It is a table | surface which shows the shape of a test piece. 片振り捩り疲労試験で得られたT/N線図である。FIG. 3 is a T / N diagram obtained in a single swing torsional fatigue test. 片振り捩り疲労試験で得られたT/N線図である。FIG. 3 is a T / N diagram obtained in a single swing torsional fatigue test.

符号の説明Explanation of symbols

1 トリポード型等速自在継手
2 動力伝達シャフト
3 内側継手部材
4 外側継手部材
4a マウス部
4a1 トラック溝
4a2 突出部
4b ステム部
5 ローラ
21 谷部
21a ストレート部
21b 拡径部
21b1 アール部
21b2 平坦部
22 山部
22a ストレート部
22b 縮径部
23 歯面
25 平滑部
De デファレンシャルギヤ
Q 接合部
M1 マウス部相当部分
M2 ステム部相当部分
Sf 雌スプライン部
Sm 雄スプライン部
DESCRIPTION OF SYMBOLS 1 Tripod type constant velocity universal joint 2 Power transmission shaft 3 Inner joint member 4 Outer joint member 4a Mouse | mouth part 4a1 Track groove 4a2 Projection part 4b Stem part 5 Roller 21 Valley part 21a Straight part 21b Expanded part 21b1 Earl part 21b2 Flat part 22 Mountain portion 22a Straight portion 22b Reduced diameter portion 23 Tooth surface 25 Smooth portion De Differential gear Q Joint portion M1 Mouse portion equivalent portion M2 Stem portion equivalent portion Sf Female spline portion Sm Male spline portion

Claims (7)

マウス部及びステム部の端面同士を接合して成り、ステム部の外周に雄スプライン部が形成され、雄スプライン部の谷部の軸方向一端側にその外径寸法を徐々に拡径させた拡径部が設けられた外側継手部材と、マウス部の内周に収容された内側継手部材とを備えた等速自在継手において、
雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を軸方向一端側に向けて徐々に大きくしたことを特徴とする等速自在継手。
The end surfaces of the mouse part and the stem part are joined to each other, a male spline part is formed on the outer periphery of the stem part, and the outer diameter dimension is gradually increased on one end side in the axial direction of the valley part of the male spline part. In a constant velocity universal joint comprising an outer joint member provided with a diameter part and an inner joint member housed in the inner periphery of the mouse part,
A constant velocity universal joint characterized in that rounded portions are provided on both sides in the circumferential direction of the enlarged diameter portion of the male spline portion, and the radius of curvature of the rounded portion is gradually increased toward one end in the axial direction.
トルクTが負荷されたときに、雄スプライン部の拡径部に作用する第1主応力、および軸方向のせん断応力の最大値をそれぞれσ1max、τθzmaxとし、トルクT、雄スプライン部の谷部の直径do、雄スプライン部の内径diに対し、1)式で与えられる基準応力τ0とするとき、下記2)式と3)式を同時に満たす請求項1記載の等速自在継手。
τ0=16Tdo/[π(do 4−di 4)] …1)
σ1max≦2.7τo …2)
τθzmax≦2.1τ0 …3)
When the torque T is applied, the first principal stress acting on the diameter-expanded portion of the male spline portion and the maximum value of the shear stress in the axial direction are σ 1max and τθ zmax , respectively. The constant velocity universal joint according to claim 1, wherein the following 2) and 3) are satisfied simultaneously when the reference stress τ 0 given by the equation (1) is satisfied with respect to the diameter d o of the portion and the inner diameter d i of the male spline portion: .
τ 0 = 16 Td o / [π (d o 4 −d i 4 )]... 1)
σ 1max ≦ 2.7τ o … 2)
τθ zmax ≦ 2.1τ 0 … 3)
アール部の曲率半径の増加率をdR/dL、拡径部の軸方向断面の小径端と大径端を結ぶ直線の角度をθとするとき、それぞれの値が
0.05≦dR/dL≦0.60、
5°≦θ≦20°
の範囲にある請求項2記載の等速自在継手。
When the rate of increase in the radius of curvature of the radius portion is dR / dL, and the angle of the straight line connecting the small diameter end and the large diameter end of the axial section of the enlarged diameter portion is θ, each value is 0.05 ≦ dR / dL ≦ 0.60,
5 ° ≦ θ ≦ 20 °
The constant velocity universal joint according to claim 2, which is in the range of.
ステム部を、マウス部との接合部において最大径とした請求項1記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the stem portion has a maximum diameter at a joint portion with the mouse portion. ステム部のうち、雄スプライン部の一端側に外径寸法が最小となる最小平滑部を設け、この最小平滑部の直径Dと雄スプライン部のピッチ円直径D0とがD/D0≦0.94を満たす請求項1記載の等速自在継手。 Among the stem portions, a minimum smooth portion having a minimum outer diameter is provided on one end side of the male spline portion, and the diameter D of the minimum smooth portion and the pitch circle diameter D 0 of the male spline portion are D / D 0 ≦ 0. The constant velocity universal joint according to claim 1 satisfying .94. マウス部及びステム部を形成する鋼のCの含有量を0.40〜0.45%の範囲内とした請求項1記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the C content of steel forming the mouse part and the stem part is within a range of 0.40 to 0.45%. マウス部及びステム部を形成する鋼のSの含有量を0.01〜0.035%の範囲内とした請求項1記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the S content of the steel forming the mouse part and the stem part is in the range of 0.01 to 0.035%.
JP2007292813A 2007-11-12 2007-11-12 Constant velocity universal joint Withdrawn JP2009121502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292813A JP2009121502A (en) 2007-11-12 2007-11-12 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292813A JP2009121502A (en) 2007-11-12 2007-11-12 Constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2009121502A true JP2009121502A (en) 2009-06-04

Family

ID=40813863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292813A Withdrawn JP2009121502A (en) 2007-11-12 2007-11-12 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2009121502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401016A (en) * 2011-11-27 2012-04-04 襄阳博亚精工装备股份有限公司 Combined coupling
WO2013069433A1 (en) * 2011-11-08 2013-05-16 Ntn株式会社 Welding method for outer joint member of constant velocity universal joint, and outer joint member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069433A1 (en) * 2011-11-08 2013-05-16 Ntn株式会社 Welding method for outer joint member of constant velocity universal joint, and outer joint member
JP2013100859A (en) * 2011-11-08 2013-05-23 Ntn Corp Welding method for outer joint member of constant velocity universal joint, and outer joint member
CN103917795A (en) * 2011-11-08 2014-07-09 Ntn株式会社 Welding method for outer joint member of constant velocity universal joint, and outer joint member
US9746036B2 (en) 2011-11-08 2017-08-29 Ntn Corporation Welding method for outer joint member of constant velocity universal joint, and outer joint member
CN102401016A (en) * 2011-11-27 2012-04-04 襄阳博亚精工装备股份有限公司 Combined coupling

Similar Documents

Publication Publication Date Title
WO2008032626A1 (en) Power transmission spline
WO2012032926A1 (en) External joint member of constant velocity universal joint and friction pressure welding method therefor
WO2014057770A1 (en) Bearing device for wheel and manufacturing method therefor
WO2000005514A9 (en) Power transmission mechanism
JP2009121502A (en) Constant velocity universal joint
JP2009121673A (en) Constant speed universal joint
JP2008095845A (en) Power transmission spline
CN1973141A (en) Hollow power transmission shaft
JP2004125000A (en) Shaft and its manufacturing method
JP3424035B2 (en) Outer ring of constant velocity ball joint
JP2009216173A (en) Power transmission spline
JP2008095805A (en) Power transmission shaft
JP2008240968A (en) Power transmission shaft
JP5259064B2 (en) Power transmission shaft
JP2008256203A (en) Power transmission shaft
JP2008196013A (en) Power transfer shaft
JP2008064294A (en) Fixed type constant velocity universal joint
JP2009156405A (en) Constant velocity universal joint
JP2008196592A (en) Power transmission shaft
JP2008286315A (en) Power transmission shaft
JP2008075826A (en) Hollow power transmission shaft
JP2008240971A (en) Power transmission shaft
JP2008128408A (en) Power transmission shaft
JPH059583A (en) Outer ring of uniform-speed universal joint reinforced in stem part
JP2008064297A (en) Power transmission spline

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201