JP2020100861A - Machine component for automobiles made of steel material for induction hardening excellent in static torsional strength and torsional fatigue strength - Google Patents

Machine component for automobiles made of steel material for induction hardening excellent in static torsional strength and torsional fatigue strength Download PDF

Info

Publication number
JP2020100861A
JP2020100861A JP2018238903A JP2018238903A JP2020100861A JP 2020100861 A JP2020100861 A JP 2020100861A JP 2018238903 A JP2018238903 A JP 2018238903A JP 2018238903 A JP2018238903 A JP 2018238903A JP 2020100861 A JP2020100861 A JP 2020100861A
Authority
JP
Japan
Prior art keywords
hardness
automobiles
induction hardening
strength
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018238903A
Other languages
Japanese (ja)
Other versions
JP7149179B2 (en
Inventor
武 宮▲崎▼
Takeshi Miyazaki
武 宮▲崎▼
清志 田島
Kiyoshi Tajima
清志 田島
石川 雅裕
Masahiro Ishikawa
雅裕 石川
直生 ▲高▼林
直生 ▲高▼林
Sunao Takabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Sanyo Special Steel Co Ltd
Original Assignee
Aisin AW Co Ltd
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Sanyo Special Steel Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2018238903A priority Critical patent/JP7149179B2/en
Publication of JP2020100861A publication Critical patent/JP2020100861A/en
Application granted granted Critical
Publication of JP7149179B2 publication Critical patent/JP7149179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a machine component for automobiles made of a steel material for induction hardening, excellent in static torsional strength and torsional fatigue strength.SOLUTION: Provided is a machine component for automobiles made of a steel material for induction hardening that contains, by mass%, C:0.42 to 0.48%, Si:0.20 to 1.10%, Mn:0.70 to 0.90%, P:0.030% or less, S:0.030% or less, Cr:0.90 to 1.20%, Al:0.010 to 0.040% and N:0.0200% or less, and the balance Fe with inevitable impurities. The machine component for automobiles has the following values in an induction hardened/tempered state: the surface hardness is 600 Hv or more, the core hardness is 350 Hv or more, the ratio of (the hardened layer depth/the component radius) is 0.5 to 1.0, the cross-sectional average hardness as expressed in the formula below is 550 Hv or more, and the grain size number of the outermost surface is 7.0 or more.SELECTED DRAWING: Figure 1

Description

本発明は静捩り強度ならびに捩り疲労強度に優れた高周波焼入れ用鋼材に関し、特に自動車のシャフト部材などの自動車用の機械部品に関する。 TECHNICAL FIELD The present invention relates to a steel material for induction hardening which is excellent in static torsional strength and torsional fatigue strength, and more particularly to a mechanical part for an automobile such as an automobile shaft member.

近年、自動車のエンジンにおいて高トルク化や高出力化が進んでいる。これに伴い、エンジンからの入力トルクを出力する軸物部品であるシャフト部材の高強度化が要請されている。さらに、シャフト部材には捩り応力が負荷されることから、静捩り強度や捩り疲労強度が要求される。
そこで、従来のシャフト部材には、中炭素合金鋼であるSCr440やSCM440等が用いられてきた。しかし、前述のような自動車の高トルク化や高出力化の背景に伴い、さらなる静捩り強度や捩り疲労強度に優れたシャフト部材などの自動車用機械部品の開発が求められている。
2. Description of the Related Art In recent years, high torque and high output have been advanced in automobile engines. Along with this, there is a demand for higher strength of a shaft member that is a shaft component that outputs an input torque from an engine. Further, since a torsion stress is applied to the shaft member, static torsion strength and torsion fatigue strength are required.
Therefore, as the conventional shaft member, medium carbon alloy steel such as SCr440 or SCM440 has been used. However, along with the background of high torque and high output of automobiles as described above, it is required to develop mechanical parts for automobiles such as shaft members which are further excellent in static torsional strength and torsional fatigue strength.

そこで、含有炭素量に対する高周波焼入れ前のフェライトの組織面積率や、フェライト結晶粒径、フェライトバンドの幅、MnSのアスペクト比などを規定することによって、捩り疲労特性に優れた鋼と部品に関する出願が提案されている(例えば、特許文献1参照。)。しかし、上記のような観点から規定すると、製鋼や圧延工程における操業条件に制約が出てしまう問題がある。 Therefore, by specifying the structural area ratio of ferrite before induction hardening with respect to the carbon content, the ferrite crystal grain size, the width of the ferrite band, the aspect ratio of MnS, etc., an application relating to steel and parts having excellent torsional fatigue properties has been filed. It has been proposed (for example, refer to Patent Document 1). However, if specified from the above viewpoint, there is a problem that the operating conditions in steel making and rolling processes are restricted.

そこで、高周波焼入れ前のミクロ組織、高周波焼入れ後の有効硬化層対半径の比、結晶粒度、断面平均硬さなどを規定することにより、捩り強度に優れた鋼材とその部品に関する出願が提案されている(例えば、特許文献2参照。)。
しかし、高周波焼入れ前のミクロ組織は初析フェライト体積率が15%未満のパーライト主体の鋼で、この鋼の高周波焼入れ焼戻し後の芯部は軟質であり、有効硬化層/半径の比が0.4〜0.6であることから、ねじり強度向上に有効な断面平均硬さの大幅な上昇は見込めないものである。
Therefore, by specifying the microstructure before induction hardening, the ratio of the effective hardened layer to the radius after induction hardening, the grain size, the average hardness of the cross-section, etc., an application for a steel material with excellent torsional strength and its parts has been proposed. (For example, see Patent Document 2).
However, the microstructure before induction hardening is a pearlite-based steel with a pro-eutectoid ferrite volume ratio of less than 15%, the core of this steel after induction hardening and tempering is soft, and the effective hardened layer/radius ratio is 0. Since it is 4 to 0.6, it is not possible to expect a significant increase in the average cross-sectional hardness effective for improving the torsional strength.

特開2002−069566号公報JP, 2002-069566, A 特開2010−189702号公報JP, 2010-189702, A

そこで、本発明が解決しようとする課題は、高周波焼入れ・焼戻しされた、静捩り強度ならびに捩り疲労強度に優れた、シャフト部材などの高周波焼入れ用鋼からなる自動車用機械部品を提供することである。
また、高周波焼入れ用鋼材からなる自動車用機械部品に高周波焼入れ・焼戻しを行った後、さらにショットピーニング層を付与した、静捩り強度ならびに捩り疲労強度に優れた、シャフト部材などの、自動車用機械部品を提供することである。
Therefore, the problem to be solved by the present invention is to provide a mechanical part for automobiles made of induction hardening steel, such as a shaft member, which is induction hardened/tempered and is excellent in static torsional strength and torsional fatigue strength. ..
Further, after mechanical induction hardening/tempering of an automobile mechanical part made of steel for induction hardening, a shot peening layer is further added, which has excellent static torsional strength and torsional fatigue strength. Is to provide.

上記の課題を解決するための手段は、第1の手段では、化学成分として、質量%で、C:0.42〜0.48%、Si:0.20〜1.10%、Mn:0.70〜0.90%、P:0.030%以下、S:0.030%以下、Cr:0.90〜1.20%、Al:0.010〜0.040%、N:0.0200%以下を含有し、残部がFeおよび不可避不純物からなる高周波焼入れ用鋼からなる自動車用機械部品であって、
高周波焼入れ・焼戻しされた状態における、表面硬さが600Hv以上、芯部硬さが350Hv以上、(硬化層深さ/部品半径)の比が0.5〜1.0、下記数式で表される断面平均硬さが550Hv以上、かつ、最表面の結晶粒度番号が7.0以上の値を有していることを特徴とする自動車用機械部品である。

Figure 2020100861
なお、a:捩り試験片の半径、Hv(r):ビッカース硬さ、r:中心からの距離である。 Means for solving the above-mentioned problems is, in the first means, as chemical components, in mass%, C: 0.42 to 0.48%, Si: 0.20 to 1.10%, Mn:0. .70 to 0.90%, P: 0.030% or less, S: 0.030% or less, Cr: 0.90 to 1.20%, Al: 0.010 to 0.040%, N: 0. A machine part for an automobile, which contains 0200% or less and the balance is induction hardening steel consisting of Fe and unavoidable impurities,
In the induction-hardened/tempered state, the surface hardness is 600 Hv or more, the core hardness is 350 Hv or more, the ratio of (hardened layer depth/part radius) is 0.5 to 1.0, and is expressed by the following mathematical formula. An automotive machine part having an average cross-section hardness of 550 Hv or more and a grain size number of the outermost surface of 7.0 or more.
Figure 2020100861
Note that a is the radius of the torsion test piece, Hv(r) is the Vickers hardness, and r is the distance from the center.

第2の手段では、第1の手段に記載の化学成分に加えて、質量%で、Mo:0.10〜0.30%を含有し、残部がFeおよび不可避不純物からなる高周波焼入れ用鋼からなる自動車用機械部品であって、
高周波焼入れ・焼戻しされた状態における、表面硬さが600Hv以上、芯部硬さが350Hv以上、(硬化層深さ/部品半径)の比が0.5〜1.0、下記数式で表される断面平均硬さが550Hv以上、かつ、最表面の結晶粒度番号が7.0以上の値を有していることを特徴とする自動車用機械部品である。

Figure 2020100861
なお、a:捩り試験片の半径、Hv(r):ビッカース硬さ、r:中心からの距離である。 In the second means, in addition to the chemical components described in the first means, from the steel for induction hardening containing Mo: 0.10 to 0.30% by mass% and the balance Fe and unavoidable impurities. Which is a machine part for automobiles,
In the induction-hardened/tempered state, the surface hardness is 600 Hv or more, the core hardness is 350 Hv or more, the ratio of (hardened layer depth/part radius) is 0.5 to 1.0, and is expressed by the following mathematical formula. An automotive machine part having an average cross-section hardness of 550 Hv or more and a grain size number of the outermost surface of 7.0 or more.
Figure 2020100861
Note that a is the radius of the torsion test piece, Hv(r) is the Vickers hardness, and r is the distance from the center.

第3の手段では、第1又は第2の手段に記載の化学成分に加えて、質量%で、Ti:0.010〜0.050%、B:0.0003〜0.0030%を含有し、残部がFeおよび不可避不純物からなる高周波焼入れ用鋼からなる自動車用機械部品であって、
高周波焼入れ・焼戻しされた状態における、表面硬さが600Hv以上、芯部硬さが350Hv以上、(硬化層深さ/部品半径)の比が0.5〜1.0、下記数式で表される断面平均硬さが550Hv以上、かつ、最表面の結晶粒度番号が7.0以上の値を有していることを特徴とする自動車用機械部品である。

Figure 2020100861
なお、a:捩り試験片の半径、Hv(r):ビッカース硬さ、r:中心からの距離である。 In the third means, in addition to the chemical components described in the first or second means, Ti: 0.010 to 0.050% and B: 0.0003 to 0.0030% are contained by mass %. A machine part for an automobile made of induction hardening steel, the balance of which is Fe and unavoidable impurities,
In the induction-hardened/tempered state, the surface hardness is 600 Hv or more, the core hardness is 350 Hv or more, the ratio of (hardened layer depth/part radius) is 0.5 to 1.0, and is represented by the following mathematical formula. An automotive machine part having an average cross-section hardness of 550 Hv or more and a grain size number of the outermost surface of 7.0 or more.
Figure 2020100861
Note that a is the radius of the torsion test piece, Hv(r) is the Vickers hardness, and r is the distance from the center.

第4の手段では、自動車用機械部品は、高周波焼入れ・焼戻しされた状態の自動車用機械部品にショットピーニング層を有し、このショットピーニング層の表面硬さが700Hv以上、かつ表面の圧縮残留応力が1000MPa以上の値を有していることを特徴とする第1〜第3の手段のいずれか1つの手段における自動車用機械部品である。 In the fourth means, the mechanical part for automobile has a shot peening layer on the mechanical part for automobile which is induction hardened/tempered, and the surface hardness of this shot peening layer is 700 Hv or more and the compressive residual stress on the surface. Has a value of 1000 MPa or more. The automotive machine component according to any one of the first to third means.

第5の手段では、自動車用機械部品は、シャフト部材であることを特徴とする第1〜第4の手段のいずれか1つの手段における自動車用機械部品である。 In the fifth means, the vehicle mechanical component is the vehicle mechanical component according to any one of the first to fourth means, which is a shaft member.

本発明によると、本発明に規定する成分組成の高周波焼入れ用鋼に対して、自動車、その他の産業用機械において従来から使用されている2〜30KHzの高周波による焼入れ・焼戻し処理すると、その自動車用機械部品は、その表面硬さが600Hv以上、芯部硬さが350Hv以上、硬化層深さ/半径の比が0.5〜1.0、断面平均硬さが550Hv以上、かつ最表面の結晶粒度番号が7.0以上の鋼部品とすることができるので、優れた静捩り強度を備え、また捩り疲労強度に優れた自動車用機械部品が得られる。
また、上記の焼入れ・焼戻し後の鋼部品にショットピーニングした鋼部品は、表面硬さが700Hv以上で、かつ表面の圧縮残留応力が1000MPa以上となることから、静捩り強度および捩り疲労強度において、より一層に優れた鋼部品となっている。
このように本発明は、自動車用機械部品のなかでも、とりわけ軸部を有するシャフト部材に好適な静捩り強度と捩じり疲労特性と捻りを備えたものとなっている。
According to the present invention, when the induction hardening steel having the component composition defined in the present invention is subjected to quenching/tempering with a high frequency of 2 to 30 KHz which has been conventionally used in automobiles and other industrial machines, it is used for automobiles. The mechanical component has a surface hardness of 600 Hv or more, a core hardness of 350 Hv or more, a hardening layer depth/radius ratio of 0.5 to 1.0, a cross-section average hardness of 550 Hv or more, and an outermost surface crystal. Since a steel part having a grain size number of 7.0 or more can be obtained, a mechanical part for an automobile having excellent static torsional strength and torsional fatigue strength can be obtained.
Further, the steel part shot-peened to the above-mentioned quenched and tempered steel part has a surface hardness of 700 Hv or more and a surface compressive residual stress of 1000 MPa or more, so in terms of static torsional strength and torsional fatigue strength, It is an even better steel part.
As described above, the present invention provides a static torsional strength, a torsional fatigue characteristic, and a torsion, which are suitable for a shaft member having a shaft portion among mechanical parts for automobiles.

捩り試験片の形状を示す図である。It is a figure which shows the shape of a torsion test piece.

本発明の実施の形態を詳述する前に、まず本発明における高周波焼入れ用鋼の化学成分の限定理由について説明し、次いで、本発明における高周波焼入れ用鋼材からなる自動車用機械部品の高周波焼入れ・焼戻し状態における、表面硬さ、芯部硬さ、(硬化層深さ/部品半径)の比、断面平均硬さ、および最表面の結晶粒度番号の各値の範囲の限定理由について説明する。 Before describing the embodiments of the present invention in detail, first, the reasons for limiting the chemical composition of the steel for induction hardening in the present invention will be explained, and then the induction hardening of the mechanical parts for automobiles made of the steel material for induction hardening in the present invention The reasons for limiting the range of each value of surface hardness, core hardness, ratio of (hardened layer depth/part radius), cross-section average hardness, and outermost surface grain size number in the tempered state will be described.

先ず、本発明の高周波焼入れ用鋼の化学成分の限定理由について、以下に説明する。なお、これらの限定理由における%は、全て、質量%である。 First, the reasons for limiting the chemical composition of the induction hardening steel of the present invention will be described below. In addition,% in these reasons for limitation is% by mass.

C:0.42〜0.48%
Cは、高周波焼入れ・焼戻し状態における、鋼部品の表面硬さを600Hv以上確保するためには、また、鋼部品の断面平均硬さを550Hv以上確保するためには、Cは0.42%以上が必要である。
しかし、Cが0.48%を超えると、鋼材の被削性や冷間鍛造性に劣ってくる。また、捩り試験時の鋼材の破壊が脆性破壊になり、かえって捩り強度が低下することとなる。また、高周波焼入れ時に、焼き割れが発生しやすくなる。 そこで、Cは0.42〜0.48%とする。
C: 0.42-0.48%
C is 0.42% or more in order to secure the surface hardness of the steel component of 600 Hv or more in the induction hardening/tempering state, and to secure the cross-sectional average hardness of the steel component of 550 Hv or more. is necessary.
However, when C exceeds 0.48%, the machinability and cold forgeability of the steel material deteriorate. Further, the fracture of the steel material during the torsion test becomes brittle fracture, and the torsional strength is rather lowered. Also, during induction hardening, quenching cracks easily occur. Therefore, C is 0.42 to 0.48%.

Si:0.20〜1.10%
Siは、脱酸に必要な元素であり、また鋼材の焼入性や強度向上に有効な元素であり、粒界を強化する元素であり、捩り強度向上に有効な元素である。このためには、Siは0.20%以上が必要である。
しかし、Siが1.10%を超えると、被削性が低下し、焼ならし、焼なまし後にフェライト基地の硬さを上げ、冷鍛時に割れが発生しやすくなる。
そこで、Siは0.20〜1.10%とする
Si: 0.20 to 1.10%
Si is an element necessary for deoxidation, is an element effective for improving the hardenability and strength of the steel material, is an element for strengthening the grain boundary, and is an element effective for improving the torsional strength. For this purpose, Si must be 0.20% or more.
However, if Si exceeds 1.10%, the machinability deteriorates, the hardness of the ferrite matrix increases after normalizing and annealing, and cracks easily occur during cold forging.
Therefore, Si is set to 0.20 to 1.10%.

Mn:0.70〜0.90%
Mnは、脱酸に必要な元素であり、鋼材の焼入性や強度向上に有効な元素である。このためには、Mnは0.70%以上が必要である。
しかし、Mnが0.90%を超えると、鋼部品の焼なまし後のフェライト基地の硬さを上げて、冷間鍛造時に割れが発生しやすくなり、さらに被削性が低下する。さらにPとなどの脆化元素の粒界偏析を助長することで、静捩り強度を低下させる。
そこで、Mnは0.70〜0.90%とする。
Mn: 0.70 to 0.90%
Mn is an element necessary for deoxidation, and is an element effective for improving hardenability and strength of steel materials. For this purpose, Mn needs to be 0.70% or more.
However, when Mn exceeds 0.90%, the hardness of the ferrite matrix after annealing the steel part is increased, cracks are likely to occur during cold forging, and machinability is further reduced. Further, by promoting segregation of grain boundary of embrittlement elements such as P, the static torsion strength is reduced.
Therefore, Mn is set to 0.70 to 0.90%.

P:0.030%以下
Pは、粒界に偏析して捩り疲労強度を低下させ、焼なまし後のフェライト基地の硬さを上げる元素であり、冷間鍛造時に割れ発生を助長する元素である。そこで、Pは0.030%以下とする。
P: 0.030% or less P is an element that segregates at grain boundaries to lower the torsional fatigue strength and increases the hardness of the ferrite matrix after annealing, and is an element that promotes the occurrence of cracks during cold forging. is there. Therefore, P is set to 0.030% or less.

S:0.030%以下
Sは被削性を向上させる元素であるが、MnSを多く生成すると冷間鍛造性や捩り強度を低下させる。そこで、Sは0.030%以下とする。
S: 0.030% or less S is an element that improves machinability, but if a large amount of MnS is produced, cold forgeability and torsional strength are reduced. Therefore, S is set to 0.030% or less.

Cr:0.90〜1.20%
Crは、鋼の焼入性や強度向上に有効な元素である。このためには、Crは0.90%以上が必要である。
しかし、Crが1.20%以上に含有されると、鋼材の被削性や冷間鍛造性を低下させる。
そこで、Crは0.90〜1.20%とする。
Cr: 0.90 to 1.20%
Cr is an element effective in improving the hardenability and strength of steel. For this purpose, Cr needs to be 0.90% or more.
However, if Cr is contained at 1.20% or more, the machinability and cold forgeability of the steel material deteriorate.
Therefore, Cr is set to 0.90 to 1.20%.

Al:0.010〜0.040%
Alは脱酸に必要な元素であり、また、固溶Nと結合してAlNを形成することで高周波焼入れ加熱時の結晶粒の粗大化を抑制する働きがある。このためには、Alは0.010%が必要である。
しかし、Alは0.040%より多く含有されると、鋼中にアルミナ系酸化物が増加し、鋼材の捩り疲労強度を低下させる。
そこで、Alは0.010〜0.040%とする。
Al: 0.010 to 0.040%
Al is an element necessary for deoxidation, and also has a function of suppressing coarsening of crystal grains at the time of induction hardening heating by combining with solid solution N to form AlN. For this purpose, Al needs to be 0.010%.
However, when Al is contained in an amount of more than 0.040%, the amount of alumina-based oxide in the steel increases, and the torsional fatigue strength of the steel material decreases.
Therefore, Al is set to 0.010 to 0.040%.

N:0.0200%以下
Nは鋼中でAlやNbと結合してAlNやNbCNを形成することで、鋼材の結晶粒粗大化の抑制に寄与する元素であるが、Nが0.0200%より多いと、鋼材の熱間加工性を劣化させ、かつ、窒化物が介在物となって捩り疲労強度に対して悪影響を及ぼす。そこで、Nは0.0200%以下とする。
N: 0.0200% or less N is an element that contributes to the suppression of crystal grain coarsening of the steel material by forming AlN and NbCN by combining with Al and Nb in steel, but N is 0.0200%. If the amount is larger, the hot workability of the steel material is deteriorated, and nitrides act as inclusions to adversely affect the torsional fatigue strength. Therefore, N is set to 0.0200% or less.

Mo:0.10〜0.30%
Moは、鋼の焼入性や強度向上に有効な元素であり、粒界を強化し、脆性破面を減少させる元素であり、かつ捩り強度の向上に有効な元素である。そこで、Moは0.10%以上とする。
しかし、Moは焼なまし後のフェライト基地の硬さを上げ、冷間鍛造時に割れを発生し易くする元素であり、Moは0.30%より多いと、被削性が低下し、鋼材コストが増加する。
そこで、Moは0.10〜0.30%とする。
Mo: 0.10 to 0.30%
Mo is an element that is effective in improving the hardenability and strength of steel, is an element that strengthens grain boundaries and reduces brittle fracture surfaces, and is also an element that is effective in improving torsional strength. Therefore, Mo is set to 0.10% or more.
However, Mo is an element that increases the hardness of the ferrite matrix after annealing and easily causes cracks during cold forging. If Mo is more than 0.30%, the machinability decreases, and the steel material cost increases. Will increase.
Therefore, Mo is set to 0.10 to 0.30%.

Ti:0.010〜0.050%
TiはCと結合してTiCを形成することで、浸炭加熱時の粗大化を抑制する元素であり、さらにTiはNと結合することで、BがBNになることを防ぐ元素である。このためには、Tiは0.010%以上とする。
一方、Tiは0.050%より多いと、過剰なTiCやTiNの形成によって、鋼材の被削性や冷間鍛造性を低下させる元素である。
そこで、Tiは0.010〜0.050%とする。
Ti: 0.010 to 0.050%
Ti is an element that suppresses coarsening during carburizing and heating by forming TiC by combining with C, and Ti is an element that prevents B from becoming BN by combining with N. To this end, Ti is set to 0.010% or more.
On the other hand, when Ti is more than 0.050%, it is an element that deteriorates the machinability and cold forgeability of the steel material due to the formation of excessive TiC and TiN.
Therefore, Ti is set to 0.010 to 0.050%.

B:0.0003〜0.0030%
Bは少量の添加によって鋼の焼入性を著しく向上させる元素であり、Bの添加によって他の合金元素の添加量を減らすことができる。さらに、Bは粒界を強化し、脆性破面を減少させる元素でもあり、捩り強度の向上に有効な元素である。このために、Bは0.0003%以上とする。
しかし、Bは0.0030%より多く含有させても、鋼材の焼入性および強度向上の効果は飽和する。
そこで、Bは0.0003〜0.0030%とする。
B: 0.0003 to 0.0030%
B is an element that significantly improves the hardenability of steel with a small amount of addition, and the addition of B can reduce the amount of addition of other alloying elements. Further, B is an element that strengthens the grain boundaries and reduces the brittle fracture surface, and is an element effective in improving the torsional strength. Therefore, B is 0.0003% or more.
However, even if B is contained in an amount of more than 0.0030%, the effects of improving the hardenability and strength of the steel material are saturated.
Therefore, B is set to 0.0003 to 0.0030%.

本発明の自動車用機械部品は、本発明に規定する化学成分の浸炭焼入れ用鋼材を冷間鍛造、熱間鍛造、切削加工等によって所定の形状のシャフト部材や自動車用機械部品の形状へと成形、適宜の熱処理等をした後、部品表面に高周波焼入れ・焼戻しすること、さらに必要に応じてショットピーニングを付与することで得られる。そこで、本発明の高周波焼入れ用鋼材からなる自動車用機械部品の、高周波焼入れ・焼戻し状態における、表面硬さ、芯部硬さ、(硬化層深さ/部品半径)の比、断面平均硬さ、および最表面の結晶粒度番号の各範囲の限定理由について、以下に説明する。 The automotive machine part of the present invention is formed into a predetermined shape of a shaft member or an automotive machine part by cold forging, hot forging, cutting or the like for carburizing and quenching steel material having the chemical composition specified in the present invention. It can be obtained by subjecting the surface of the component to induction hardening and tempering after appropriate heat treatment and the like, and further applying shot peening if necessary. Therefore, the surface hardness, core hardness, (hardened layer depth/part radius) ratio, cross-section average hardness, in the induction hardening/tempering state of the automobile machine part made of the steel material for induction hardening of the present invention, The reason for limiting each range of the crystal grain size number of the outermost surface will be described below.

表面硬さ:600Hv以上
表面硬さが600Hv以上であると、自動車用機械部品の断面平均硬さが増加し、さらに該自動車用機械部品の捩り強度が向上する。そこで、表面硬さは600Hv以上とする。
Surface hardness: 600 Hv or more When the surface hardness is 600 Hv or more, the average cross-section hardness of the automobile mechanical part is increased, and the torsional strength of the automobile mechanical part is further improved. Therefore, the surface hardness is 600 Hv or more.

芯部硬さ(非硬化層である):350Hv以上
芯部硬さが350Hv以上であると、自動車用機械部品の断面平均硬さが増加し、さらに自動車用機械部品の捩り強度が向上する。そこで、非硬化層である芯部硬さは350Hv以上とする。
Core hardness (which is a non-cured layer): 350 Hv or more When the core hardness is 350 Hv or more, the average cross-sectional hardness of the automobile machine component increases, and the torsional strength of the automobile machine component improves. Therefore, the hardness of the core, which is the non-cured layer, is set to 350 Hv or higher.

(硬化層深さ/部品半径)の比:0.5〜1.0
(硬化層深さ/部品半径)の比が0.5以上であると、自動車用機械部品の断面平均硬さが増加し、さらに自動車用機械部品の捩り強度が向上する。
しかし、(硬化層深さ/部品半径)の比は1.0を超えても、自動車機械部品の断面平均硬さが増加することはない。
そこで、(硬化層深さ/部品半径)の比は0.5〜1.0とする。
(Cured layer depth/part radius) ratio: 0.5-1.0
When the ratio of (hardened layer depth/part radius) is 0.5 or more, the cross-sectional average hardness of the mechanical parts for automobiles increases, and the torsional strength of the mechanical parts for automobiles is further improved.
However, even if the ratio of (hardened layer depth/part radius) exceeds 1.0, the average cross-section hardness of the automobile machine part does not increase.
Therefore, the ratio of (hardened layer depth/part radius) is set to 0.5 to 1.0.

断面平均硬さ:550Hv以上
断面平均硬さが550Hv以上であると、自動車機械部品の捩り強度が向上する。そこで、断面平均硬さは550Hv以上とする。
Cross-section average hardness: 550 Hv or more When the cross-section average hardness is 550 Hv or more, the torsional strength of automobile machine parts is improved. Therefore, the average cross-sectional hardness is set to 550 Hv or more.

最表面の結晶粒度番号:7.0以上
表面の結晶粒度番号は、その番号が大きい方が鋼部材の捩り強度向上に有効であり、結晶粒度番号が7.0以上であると、PやSの粒界脆化元素の偏析量を軽減でき、この結果、自動車機械部品の捩り疲労強度が向上できる。そこで、表面の結晶粒度番号を7.0以上とする。
Crystal grain size number of the outermost surface: 7.0 or more The larger grain size number of the surface is more effective in improving the torsional strength of the steel member, and when the grain size number is 7.0 or more, P or S The segregation amount of the grain boundary embrittlement element can be reduced, and as a result, the torsional fatigue strength of automobile machine parts can be improved. Therefore, the grain size number of the surface is set to 7.0 or more.

ショットピーニング層の表面硬さが700Hv以上、かつ表面の圧縮残留応力が1000MPa以上の値を有していること
本発明の化学成分の鋼材に高周波焼入れ焼戻し処理をし、さらにショットピーニングを付与することによって表面硬さを700Hv以上にすると、ショットピーニングを施さないものに比して、自動車用機械部品の断面平均硬さがさらに増加し、該自動車用機械部品の捩り強度がより向上したものとなる。
また、ショットピーニングによって表面に圧縮残留応力領域が形成されると、き裂進展が抑制されるなど破壊を生じにくくなるので、捩り疲労強度がより向上する。
そこで、ショットピーニング層の表面硬さを700Hv以上、かつ表面の残留圧縮応力を1000MPa以上の値を有していることとする。
The surface hardness of the shot peening layer is 700 Hv or more and the compressive residual stress of the surface has a value of 1000 MPa or more. The steel material having the chemical composition of the present invention is subjected to induction hardening and tempering treatment, and further shot peening is applied. When the surface hardness is 700 Hv or more, the cross-sectional average hardness of the mechanical parts for automobiles is further increased and the torsional strength of the mechanical parts for automobiles is further improved as compared with the case where the shot peening is not performed. ..
Further, when a compressive residual stress region is formed on the surface by shot peening, crack propagation is suppressed and fracture is less likely to occur, so that the torsional fatigue strength is further improved.
Therefore, it is assumed that the surface hardness of the shot peening layer is 700 Hv or more and the residual compressive stress on the surface is 1000 MPa or more.

ここで、本願発明の実施の形態における高周波焼入れ・焼戻し用鋼の化学成分について示す。表1に、供試材のNo.1〜8として、本願発明の高周波焼入れ用鋼の化学成分に相当する鋼材を、供試材No.9〜11として、規定する成分範囲から網かけで示した成分が外れている鋼材を示す。なお、表1の化学成分の含有量は質量%であり、表1の記載からは、Feおよび不可避不純物は除かれている。 Here, the chemical composition of the induction hardening/tempering steel in the embodiment of the present invention will be described. Table 1 shows the sample No. The steel materials corresponding to the chemical components of the induction hardening steel of the present invention were designated as test material Nos. 9 to 11 indicate steel materials in which the shaded components deviate from the specified component range. The content of the chemical components in Table 1 is% by mass, and Fe and unavoidable impurities are excluded from the description in Table 1.

Figure 2020100861
Figure 2020100861

次に、表2及び表3に、熱処理等された試験片による実施例、比較例の特性が記載されている。なお、表中の実施例及び比較例の「No.」の値は、試験片に用いた供試材の「No.」に対応しており、その化学成分を示すものであり、試験片の鋼材が表1の供試材No.1〜11のいずれであったかを示している。
そして、表2には各供試材を(a)高周波焼入れ焼戻し処理した高周波焼き入れ鋼部品の場合の、表3には各供試材を(b)高周波焼入れ焼戻し処理をしたものにさらにショットピーニングを付してショットピーニング層を形成させた鋼部品の場合の、それぞれの表面硬さ、芯部硬さ、(硬化層深さ/部品半径)の比、断面平均硬さ、表面の結晶粒度番号、ショットピーニング後の表面硬さ、ショットピーニング後の圧縮残留応力、静捩り強度比、捩り疲労強度比を記載している。
Next, Tables 2 and 3 show the characteristics of the examples and comparative examples of the test pieces that were heat-treated. In addition, the value of "No." of the examples and comparative examples in the table corresponds to "No." of the test material used for the test piece, and indicates the chemical composition of the test piece. The steel material is the sample material No. 1 in Table 1. It shows which one of 1 to 11.
Then, Table 2 shows (a) induction hardening and tempering treated induction hardening steel parts, and Table 3 shows (b) induction hardening and tempering treatments. Surface hardness, core hardness, (hardened layer depth/part radius) ratio, cross-section average hardness, surface grain size in the case of steel parts with shot peening formed by peening The numbers, surface hardness after shot peening, compressive residual stress after shot peening, static torsional strength ratio, and torsional fatigue strength ratio are described.

表2および表3に実施例として示すものは、供試材No.1、供試材No.3〜No.7を用いた実施例No.1(a)、実施例No.1(b)、実施例No.3(a)、実施例No.3(b)、実施例No.4(a)、実施例No.4(b)、実施例No.5(a)、実施例No.5(b)、実施例No.6(a)、実施例No.6(b)、実施例7No.(a)、実施例No.7(b)である。
また、表2及び表3には、比較例として、供試材No.2、供試材No.8〜No.11を用いた比較例No.2(a)、比較例No.2(b)、比較例No.8(a)、比較例No.8(b)、比較例No.9(a)、比較例No.9(b)、比較例No.10(a)、比較例No.10(b)、比較例No.11(a)、比較例No.11(b)を示す。
なお、表2、表3における静捩り強度比と、捩り疲労強度比は、いずれも、表2の比較例No.11(a)の高周波焼入れ焼戻し処理された鋼部品の強度を1.0とした場合の、これに対する比を示したものである。
The materials shown in Tables 2 and 3 as examples are the test material Nos. 1, sample material No. 3 to No. Example No. 7 using No. 7 1(a), Example No. 1(b), Example No. 3(a), Example No. 3(b), Example No. 4(a), Example No. 4(b), Example No. 5(a), Example No. 5(b), Example No. 6(a), Example No. 6(b), Example 7 No. (A), Example No. 7(b).
In addition, in Tables 2 and 3, as comparative examples, the test material No. 2, test material No. 8 to No. Comparative Example No. 11 using No. 11 2(a), Comparative Example No. 2(b), Comparative Example No. 8(a), Comparative Example No. 8(b), Comparative Example No. 9(a), Comparative Example No. 9(b), Comparative Example No. 10(a), Comparative Example No. 10(b), Comparative Example No. 11(a), Comparative Example No. 11(b) is shown.
The static torsional strength ratios and the torsional fatigue strength ratios in Tables 2 and 3 are all comparative example Nos. 11 shows the ratio of the steel part 11(a) that has been subjected to the induction hardening and tempering treatment to a strength of 1.0.

Figure 2020100861
Figure 2020100861

Figure 2020100861
Figure 2020100861

(表2、表3に関する手順について)
まず、供試材No.1〜11の表1に示された化学成分を有し残部がFe及び不可避不純物からなる鋼材を、それぞれ100kg真空溶解炉で溶製し、直径45mmに熱間鍛伸した後に放冷し、次いで、焼ならしとして870℃で1時間保持した後空冷して標準的な状態とし、さらに、低温焼なましとして720℃に4時間保持した後に空冷により徐冷して、得られた鋼材を、図1に示す捩り試験片1に加工した。
さらに、この捩り試験片1に、ずぶ焼入れとして、860℃で0.5時間保持した後、油冷し、その後高温焼戻し温度580℃で1.5時間保持した後に空冷し、さらに、高周波焼入れ・焼戻しを行なって、捩り試験片1を表2(a)に示す高周波焼入れ・焼戻し状態とした。
また、高周波焼入れ・焼戻しした状態でさらにショットピーニング処理を施し、表面にショットピーニング層を形成した状態の試験片を表3(b)の捩じり試験片とした。
得られた(a)および(b)の各捩り試験片1に対して、それぞれ、静捩り・捩り疲労試験を実施した。
(Regarding procedures related to Tables 2 and 3)
First, the test material No. Steel materials each having the chemical composition shown in Table 1 of 1 to 11 and the balance consisting of Fe and unavoidable impurities were melted in a 100 kg vacuum melting furnace, hot forged to a diameter of 45 mm, and then allowed to cool, then, After being kept at 870° C. for 1 hour as normalizing, it was air-cooled to a standard state, and further as low-temperature annealing was kept at 720° C. for 4 hours and then gradually cooled by air-cooling to obtain the obtained steel material. The torsion test piece 1 shown in FIG. 1 was processed.
Further, this torsion test piece 1 was subjected to soaking quenching by holding it at 860° C. for 0.5 hour, followed by oil cooling, then holding it at a high tempering temperature of 580° C. for 1.5 hours, and then air cooling, and further induction hardening. By tempering, the torsion test piece 1 was put into the induction-hardened/tempered state shown in Table 2(a).
Further, the test piece in the state of being subjected to shot peening treatment in a state of induction hardening/tempering to form a shot peening layer on the surface thereof was used as a torsion test piece in Table 3(b).
A static torsion/torsion fatigue test was performed on each of the obtained torsion test pieces 1 of (a) and (b).

図1に捩り試験片1の形状を示す。捩り試験片1は長さ150mm、最大で30mm角であり、軸方向に沿ってφ7mmの貫通穴を、長手中央部に軸方向に垂直な縦方向にφ4mmの貫通穴をそれぞれ有している。 FIG. 1 shows the shape of the torsion test piece 1. The torsion test piece 1 has a length of 150 mm and a maximum of 30 mm square, and has a through hole of φ7 mm along the axial direction and a through hole of φ4 mm in the longitudinal direction perpendicular to the axial direction at the longitudinal center portion.

静捩り強度は、油圧サーボ式捩り疲労試験機によって計測し、負荷トルク−試験角度のデータから比例限度の値を静捩り強度とした。
また、捩り疲労強度比は、両振り、周波数5Hzの条件で105サイクル疲労強度の値とした。
The static torsion strength was measured by a hydraulic servo type torsion fatigue tester, and the value of the proportional limit was set as the static torsion strength from the data of load torque-test angle.
Further, the torsional fatigue strength ratio was a value of 10 5 cycle fatigue strength under the condition of both swings and a frequency of 5 Hz.

(b)の高周波焼入れ処理にさらにショットピーニングが付与されたに捩り試験片1のショットピーニング層部分の表面硬さは、部品表面から0.05mmの位置を荷重2.94Nで測定して得た値である。そして、表3に示すように、ショットピーニング層の硬さは700Hv以上の値である。さらに、ショットピーニングして得たショットピーニング層の圧縮残留応力は、同じく表3に示すように、1000MPa以上の値である。 The surface hardness of the shot peening layer portion of the torsion test piece 1 in which shot peening was further applied to the induction hardening treatment of (b) was obtained by measuring a position of 0.05 mm from the surface of the component with a load of 2.94 N. It is a value. Then, as shown in Table 3, the hardness of the shot peening layer is 700 Hv or more. Further, the compressive residual stress of the shot peening layer obtained by shot peening is a value of 1000 MPa or more, as also shown in Table 3.

断面平均硬さは、表面から芯部までの硬さ分布を求めた後、面積に対応させて重み付き積分を行ない、全断面積で割ることにより求めた値であり、Hvで示している。次の段落に、この重み付き積分の式を示す。 The cross-sectional average hardness is a value obtained by calculating the hardness distribution from the surface to the core, then performing weighted integration corresponding to the area, and dividing by the total cross-sectional area, and is indicated by Hv. The next paragraph shows the formula for this weighted integral.

Figure 2020100861
なお、a:捩り試験片1の半径、Hv(r):ビッカース硬さ、r:中心からの距離である。
Figure 2020100861
In addition, a: radius of the torsion test piece 1, Hv(r): Vickers hardness, r: distance from the center.

表面の結晶粒度番号は、光学顕微鏡400倍または1000倍で撮影した2視野から、JIS G 0551の切断法によって算出した。 The crystal grain size number of the surface was calculated by the cutting method of JIS G 0551 from two fields of view photographed with an optical microscope at 400 times or 1000 times.

ショットピーニング層の圧縮残留応力は、表面から100μmまでを電界研磨によって追い込み、X線回折を用いて測定した。表2には、測定により示された最も高い値の圧縮残留応力を記載している。 The compressive residual stress of the shot peening layer was measured by X-ray diffraction after driving up to 100 μm from the surface by electropolishing. Table 2 lists the highest value of compressive residual stress indicated by the measurements.

(芯部硬さについて)
表2、表3に示すとおり、芯部硬さは、実施例No.1については(a)の高周波焼入れの場合及び(b)のショットピーニング層の場合も、共に629Hvであり、実施例No.3については(a)の高周波焼入れの場合及び(b)のショットピーニング層の場合も、共に638Hvであり、実施例No.4については(a)の高周波焼入れの場合及び(b)のショットピーニング層の場合も、共に451Hvであり、実施例No.5については(a)の高周波焼入れの場合及び(b)のショットピーニング層の場合も、共に632Hvであり、実施例No.6については(a)の高周波焼入れの場合及び(b)のショットピーニング層の場合も、共に642Hvであり、実施例No.7については(a)の高周波焼入れの場合及び(b)のショットピーニング層の場合も(a)の高周波焼入れの場合及び(b)のショットピーニング層の場合も、共に447Hvである。そこで、いずれも本発明が規定するとおり芯部硬さは350Hv以上である。
他方、比較例No.10については(a)の高周波焼入れの場合も(b)のショットピーニング層の場合も共に347Hvであり、いずれも本発明で規定する350Hvよりも芯部硬さは低い値である。
(About core hardness)
As shown in Tables 2 and 3, the hardness of the core portion is the same as in Example No. In the case of the induction hardening of (a) and the shot peening layer of (b), the value of 629 Hv is 629 Hv for Example No. 1. Regarding Example 3, in both the case of the induction hardening of (a) and the case of the shot peening layer of (b), both are 638 Hv. Regarding Example 4, in both the case of the induction hardening of (a) and the case of the shot peening layer of (b), both are 451 Hv. Regarding No. 5, both in the case of the induction hardening of (a) and in the case of the shot peening layer of (b), it was 632 Hv. Regarding No. 6, both in the case of induction hardening in (a) and in the case of shot peening layer in (b) are 642 Hv. Regarding No. 7, both in the case of the induction hardening of (a), the shot peening layer of (b), the case of the induction hardening of (a) and the shot peening layer of (b), both are 447 Hv. Therefore, in all cases, the core hardness is 350 Hv or more as specified by the present invention.
On the other hand, Comparative Example No. Regarding No. 10, both in the case of the induction hardening of (a) and in the case of the shot peening layer of (b) are 347 Hv, and the hardness of the core is lower than 350 Hv specified in the present invention.

(硬化層深さ/部品半径)の比について
(硬化層深さ/部品半径)の比は、実施例No.1(a)高周波焼入れの場合およびNo.1(b)のショットピーニング層の場合のいずれも1.0であり、実施例No.3(a)および実施例No.3(b)のいずれの場合も1.0であり、実施例No.4(a)および実施例No.4(b)のいずれの場合も0.8であり、実施例No.5(a)および実施例No.5(b)のいずれの場合も1.0であり、実施例No.6(a)および実施例No.6(b)のいずれの場合も1.0であり、実施例No.7(a)および実施例No.7(b)のいずれの場合も0.5である。そこで、いずれも本発明が規定する0.5〜1.0の比を満足している。
他方、比較例のNo.11では、(a)の高周波焼入れの場合及び(b)のショットピーニング層の場合のいずれも、0.4であり、本発明の規定する0.5〜1.0よりも低い値となった。
Regarding the ratio of (hardened layer depth/part radius) The ratio of (hardened layer depth/part radius) is the same as Example No. 1(a) Induction hardening and No. In the case of the shot peening layer of FIG. 3(a) and Example No. In any of the cases of 3(b), it is 1.0, and Example No. 4(a) and Example No. In any of the cases of 4(b), it is 0.8, and the example No. 5(a) and Example No. In any of the cases of 5(b), it is 1.0, and the example No. 6(a) and Example No. In each of the cases of 6(b), it is 1.0, and the example No. 7(a) and Example No. It is 0.5 in both cases of 7(b). Therefore, all satisfy the ratio of 0.5 to 1.0 specified by the present invention.
On the other hand, in Comparative Example No. In No. 11, both in the case of the induction hardening of (a) and in the case of the shot peening layer of (b) were 0.4, which were values lower than 0.5 to 1.0 specified by the present invention. ..

(表面の結晶粒度番号について)
供試材No.2を用いた比較例No.2(a)及び比較例No.2(b)は、表面の結晶粒度番号が6.8であり、本願の規定する7.0よりも下回っている。そこで、供試材1を用いた実施例No.1(a)及び実施例No.1(b)と比べて、捩り強度が低いものとなった。このように比較例のNo.2(a)及びNo.2(b)の結晶粒度番号が小さくなっているのは、高周波時のオーステナイト化保持時間を他条件と比べて2倍長く設定したためである。
また、供試材No.8を用いた比較例No.8(a)及び比較例No.8(b)は、表面の結晶粒度番号が6.9であり、本願の規定する7.0よりも下回っている。そこで、供試材7を用いた実施例No.7(a)及び実施例No.7(b)と比べて、捩り強度が低いものとなった。このように比較例のNo.8(a)及びNo.8(b)の結晶粒度番号が小さくなっているのは、高周波時のオーステナイト化保持時間を他条件と比べて2倍長く設定したためである。
結晶粒度の番号が大きい方が鋼部材の捩り強度向上に有効であり、結晶粒度番号が7.0以上であると、PやSの粒界脆化元素の偏析量を軽減でき、捩り疲労強度が向上できる。比較例No.2(a)及びNo.2(b)、比較例No.8(a)及び8(b)では、結晶粒度が7.0を下回っているので、静捩り強度、捩り疲労強度の双方が向上するといったことはなかった。そこで、実施例No.1、実施例No.3〜No.7の場合と比して、(a)(b)いずれの場合も静捩り強度、捩り疲労強度が劣る結果となった。
(About surface grain size number)
Specimen No. Comparative example No. 2 using No. 2 2(a) and Comparative Example No. In 2(b), the grain size number of the surface is 6.8, which is lower than 7.0 defined by the present application. Therefore, Example No. 1 using the test material 1 1(a) and Example No. The torsional strength was lower than that of 1(b). In this way, No. 2(a) and No. The grain size number of 2(b) is small because the austenitizing retention time at high frequency is set to be twice as long as that under other conditions.
In addition, the sample material No. Comparative Example No. 8 using No. 8 8(a) and Comparative Example No. 8(b) has a surface grain size number of 6.9, which is lower than 7.0 defined by the present application. Therefore, Example No. 3 using the sample material 7 7(a) and Example No. The torsional strength was lower than that of 7(b). In this way, No. 8(a) and No. The reason that the grain size number of 8(b) is small is that the austenitizing holding time at high frequency is set to be twice as long as that of other conditions.
The larger the grain size number is, the more effective it is to improve the torsional strength of the steel member. When the grain size number is 7.0 or more, the segregation amount of the grain boundary embrittlement elements such as P and S can be reduced, and the torsional fatigue strength can be improved. Can be improved. Comparative Example No. 2(a) and No. 2(b), Comparative Example No. In 8(a) and 8(b), since the crystal grain size was less than 7.0, neither the static torsional strength nor the torsional fatigue strength was improved. Therefore, in Example No. 1, Example No. 3 to No. Compared to the case of No. 7, in both cases (a) and (b), the results were that static torsional strength and torsional fatigue strength were inferior.

(比較例No.9について)
供試材No.9を用いた比較例No.9(a)、比較例No.9(b)は、供試材No.5のC量が0.50%と本発明よりも多いことから、脆性破壊が起こりやすくなっている。そこで、比較例No.9(a)、比較例No.9(b)のいずれの場合も、実施例No.1、実施例No.3〜No.7の(a)(b)のいずれもの場合と比して、静捩り強度、捩り疲労強度が劣る結果となっている。
(Regarding Comparative Example No. 9)
Specimen No. Comparative example No. 9 using No. 9 9(a), Comparative Example No. 9(b) is the sample material No. Since the C content of 5 is 0.50%, which is larger than that of the present invention, brittle fracture is likely to occur. Therefore, Comparative Example No. 9(a), Comparative Example No. In any of the cases of 9(b), Example No. 1, Example No. 3 to No. As a result, the static torsional strength and the torsional fatigue strength are inferior to those in any of 7 (a) and (b).

(比較例No.10について)
供試材No.10を用いた比較例No.10(a)、比較例No.10(b)は、供試材No.10のC量が0.35%と本発明より少ないことから、表面硬さが低くなっており、また芯部硬さも低くなっている。そして、断面平均硬さも523Hvと550Hvを下回っており、捩り強度が向上していない。そこで、比較例No.10(a)、比較例No.10(b)のいずれの場合も、実施例No.1、実施例No.3〜No.7の(a)(b)のいずれもの場合と比して、静捩り強度、捩り疲労強度が劣る結果となっている。
(Regarding Comparative Example No. 10)
Specimen No. Comparative example No. 10 using No. 10(a), Comparative Example No. No. 10(b) is the sample material No. Since the C content of 10 is 0.35%, which is smaller than that of the present invention, the surface hardness is low and the core hardness is also low. The average cross-section hardness is also lower than 523 Hv and 550 Hv, and the torsional strength is not improved. Therefore, Comparative Example No. 10(a), Comparative Example No. In any of the cases of 10(b), the example No. 1, Example No. 3 to No. As a result, the static torsional strength and the torsional fatigue strength are inferior to those in any of 7 (a) and (b).

(比較例No.11について)
供試材No.11を用いた比較例No.11(a)、比較例No.11(b)は、供試材No.11のC量が0.40%と本発明より少ないことから、表面硬さが低くなっている。そして、断面平均硬さも532Hvと550Hvを下回っており、捩り強度が向上していない。そこで、比較例No.11(a)、比較例No.11(b)のいずれの場合も、実施例No.1、実施例No.3〜No.7の(a)(b)のいずれもの場合と比して、静捩り強度、捩り疲労強度が劣る結果となっている。
(Regarding Comparative Example No. 11)
Specimen No. Comparative Example No. 11 using No. 11 11(a), Comparative Example No. 11(b) is the sample material No. Since the C content of 11 is 0.40%, which is smaller than that of the present invention, the surface hardness is low. And the average hardness of the cross section is lower than 532 Hv and 550 Hv, and the torsional strength is not improved. Therefore, Comparative Example No. 11(a), Comparative Example No. In any of the cases of 11(b), the example No. 1, Example No. 3 to No. As a result, the static torsional strength and the torsional fatigue strength are inferior to those in any of 7 (a) and (b).

1 捩り試験片
2 φ7mmの貫通穴
3 φ4mmの貫通穴
1 Torsion test piece 2 Through hole of φ7mm 3 Through hole of φ4mm

Claims (5)

化学成分として、質量%で、C:0.42〜0.48%、Si:0.20〜1.10%、Mn:0.70〜0.90%、P:0.030%以下、S:0.030%以下、Cr:0.90〜1.20%、Al:0.010〜0.040%、N:0.0200%以下を含有し、残部がFeおよび不可避不純物からなる高周波焼入れ用鋼からなる自動車用機械部品であって、
高周波焼入れ・焼戻しされた状態における、表面硬さが600Hv以上、芯部硬さが350Hv以上、(硬化層深さ/部品半径)の比が0.5〜1.0、下記数式で表される断面平均硬さが550Hv以上、かつ、最表面の結晶粒度番号が7.0以上の値を有していることを特徴とする自動車用機械部品。
Figure 2020100861
a:試験片の半径、Hv(r):ビッカース硬さ、r:中心からの距離
As chemical components, in mass%, C: 0.42 to 0.48%, Si: 0.20 to 1.10%, Mn: 0.70 to 0.90%, P: 0.030% or less, S : Induction hardening containing 0.030% or less, Cr: 0.90 to 1.20%, Al: 0.010 to 0.040%, N: 0.0200% or less, with the balance being Fe and inevitable impurities. A mechanical part for automobiles made of steel
In the induction-hardened/tempered state, the surface hardness is 600 Hv or more, the core hardness is 350 Hv or more, the ratio of (hardened layer depth/part radius) is 0.5 to 1.0, and is expressed by the following mathematical formula. A machine component for automobiles, which has an average cross-section hardness of 550 Hv or more and a grain size number of the outermost surface of 7.0 or more.
Figure 2020100861
a: radius of test piece, Hv(r): Vickers hardness, r: distance from center
請求項1に記載の化学成分に加えて、質量%で、Mo:0.10〜0.30%を含有し、残部がFeおよび不可避不純物からなる高周波焼入れ用鋼からなる自動車用機械部品であって、
高周波焼入れ・焼戻しされた状態における、表面硬さが600Hv以上、芯部硬さが350Hv以上、(硬化層深さ/部品半径)の比が0.5〜1.0、下記数式で表される断面平均硬さが550Hv以上、かつ、最表面の結晶粒度番号が7.0以上の値を有していることを特徴とする自動車用機械部品。
Figure 2020100861
a:試験片の半径、Hv(r):ビッカース硬さ、r:中心からの距離
In addition to the chemical composition according to claim 1, an automotive machine part made of induction hardening steel containing Mo: 0.10 to 0.30% by mass and the balance Fe and unavoidable impurities. hand,
In the induction-hardened/tempered state, the surface hardness is 600 Hv or more, the core hardness is 350 Hv or more, the ratio of (hardened layer depth/part radius) is 0.5 to 1.0, and is expressed by the following mathematical formula. A machine component for automobiles, which has an average cross-section hardness of 550 Hv or more and a grain size number of the outermost surface of 7.0 or more.
Figure 2020100861
a: radius of test piece, Hv(r): Vickers hardness, r: distance from center
請求項1または請求項2に記載の化学成分に加えて、質量%で、Ti:0.010〜0.050%、B:0.0003〜0.0030%を含有し、残部がFeおよび不可避不純物からなる高周波焼入れ用鋼からなる自動車用機械部品であって、
高周波焼入れ・焼戻しされた状態における、表面硬さが600Hv以上、芯部硬さが350Hv以上、(硬化層深さ/部品半径)の比が0.5〜1.0、下記数式で表される断面平均硬さが550Hv以上、かつ、最表面の結晶粒度番号が7.0以上の値を有していることを特徴とする自動車用機械部品。
Figure 2020100861
a:試験片の半径、Hv(r):ビッカース硬さ、r:中心からの距離
In addition to the chemical component of Claim 1 or Claim 2, it contains Ti:0.010-0.050% and B:0.0003-0.0030% by mass %, and the balance is Fe and unavoidable. A machine part for an automobile made of induction hardening steel made of impurities,
In the induction-hardened/tempered state, the surface hardness is 600 Hv or more, the core hardness is 350 Hv or more, the ratio of (hardened layer depth/part radius) is 0.5 to 1.0, and is expressed by the following mathematical formula. A machine component for automobiles, which has an average cross-section hardness of 550 Hv or more and a grain size number of the outermost surface of 7.0 or more.
Figure 2020100861
a: radius of test piece, Hv(r): Vickers hardness, r: distance from center
自動車用機械部品は、高周波焼入れ・焼戻しされた状態の自動車用機械部品にショットピーニング層を有し、このショットピーニング層の表面硬さが700Hv以上、かつ表面の圧縮残留応力が1000MPa以上の値を有していることを特徴とする請求項1〜請求項3のいずれか1項に記載の自動車用機械部品。 The mechanical parts for automobiles have a shot peening layer on the mechanical parts for automobiles that have been induction hardened and tempered. The surface hardness of the shot peening layer is 700 Hv or more, and the compressive residual stress of the surface is 1000 MPa or more. It has, The mechanical component for motor vehicles of any one of Claim 1- Claim 3 characterized by the above-mentioned. 自動車用機械部品は、シャフト部材を有していることを特徴とする請求項1〜4のいずれか1項に記載の自動車用機械部品。 The mechanical part for vehicles has a shaft member, The mechanical part for vehicles of any one of Claims 1-4 characterized by the above-mentioned.
JP2018238903A 2018-12-20 2018-12-20 Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength Active JP7149179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018238903A JP7149179B2 (en) 2018-12-20 2018-12-20 Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238903A JP7149179B2 (en) 2018-12-20 2018-12-20 Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength

Publications (2)

Publication Number Publication Date
JP2020100861A true JP2020100861A (en) 2020-07-02
JP7149179B2 JP7149179B2 (en) 2022-10-06

Family

ID=71139036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238903A Active JP7149179B2 (en) 2018-12-20 2018-12-20 Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength

Country Status (1)

Country Link
JP (1) JP7149179B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790379A (en) * 1993-09-24 1995-04-04 Kobe Steel Ltd Production of induction-hardened shaft part improved in twisting fatigue property
JP2003160810A (en) * 2001-11-22 2003-06-06 Kobe Steel Ltd Method for manufacturing carburized steel parts superior in fatigue strength
JP2007332439A (en) * 2006-06-16 2007-12-27 Nippon Steel Corp Steel material for high frequency induction contour hardening having excellent low cycle fatigue property and induction contour hardened component
JP2010285689A (en) * 2009-05-13 2010-12-24 Nippon Steel Corp Carburized steel component excellent in low-cycle bending fatigue strength
JP2011094217A (en) * 2009-11-02 2011-05-12 Nippon Steel Corp Electric resistance welded tube for drive shaft having excellent static torsion strength, and method for producing the same
WO2018180342A1 (en) * 2017-03-30 2018-10-04 愛知製鋼株式会社 Shaft member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790379A (en) * 1993-09-24 1995-04-04 Kobe Steel Ltd Production of induction-hardened shaft part improved in twisting fatigue property
JP2003160810A (en) * 2001-11-22 2003-06-06 Kobe Steel Ltd Method for manufacturing carburized steel parts superior in fatigue strength
JP2007332439A (en) * 2006-06-16 2007-12-27 Nippon Steel Corp Steel material for high frequency induction contour hardening having excellent low cycle fatigue property and induction contour hardened component
JP2010285689A (en) * 2009-05-13 2010-12-24 Nippon Steel Corp Carburized steel component excellent in low-cycle bending fatigue strength
JP2011094217A (en) * 2009-11-02 2011-05-12 Nippon Steel Corp Electric resistance welded tube for drive shaft having excellent static torsion strength, and method for producing the same
WO2018180342A1 (en) * 2017-03-30 2018-10-04 愛知製鋼株式会社 Shaft member

Also Published As

Publication number Publication date
JP7149179B2 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5635316B2 (en) Gear having excellent fatigue strength and method for manufacturing the same
JP5669339B2 (en) Manufacturing method of high strength carburized parts
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP2013112827A (en) Gear excellent in pitching resistance and manufacturing method therefor
WO2017115842A1 (en) Case-hardened steel, carburized component, and process for producing case-hardened steel
WO2019244503A1 (en) Mechanical component
JP2009299148A (en) Method for manufacturing high-strength carburized component
JPH0421757A (en) High surface pressure gear
JP6057626B2 (en) Machine structural steel with low heat treatment deformation
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
JP5941439B2 (en) Coil spring and manufacturing method thereof
WO2015146703A1 (en) Steel material for vacuum carburizing and method for producing same
JP4488228B2 (en) Induction hardening steel
WO2018180342A1 (en) Shaft member
JP2012237052A (en) Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
JP2010189702A (en) Steel for induction hardening, and induction-hardened component having excellent static twisting fracture strength and twisting fatigue strength
JP2009299165A (en) Method for manufacturing high-strength carburized component by induction hardening
JP2009299147A (en) Method for manufacturing high-strength carburized component
JP2002121645A (en) Steel for gear having excellent dedendum bending fatigue characteristic and facial pressure fatigue characteristic and gear
JP7149179B2 (en) Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength
JP7175182B2 (en) Automobile mechanical parts made of carburizing steel with excellent static torsional strength and torsional fatigue strength
JP2020002447A (en) Carburization member
JP3409275B2 (en) Case hardened steel with little heat treatment distortion
JP2015127435A (en) Steel material having excellent flexural fatigue properties after carburization, production method thereof and carburization component

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7149179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150