JP2000223123A - 非水系二次電池用炭素質負極材料、その製造方法並びに非水系二次電池 - Google Patents

非水系二次電池用炭素質負極材料、その製造方法並びに非水系二次電池

Info

Publication number
JP2000223123A
JP2000223123A JP11025726A JP2572699A JP2000223123A JP 2000223123 A JP2000223123 A JP 2000223123A JP 11025726 A JP11025726 A JP 11025726A JP 2572699 A JP2572699 A JP 2572699A JP 2000223123 A JP2000223123 A JP 2000223123A
Authority
JP
Japan
Prior art keywords
temperature
negative electrode
heat treatment
electrode material
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11025726A
Other languages
English (en)
Inventor
Akio Kato
明男 加藤
Noritoshi Takao
憲利 高尾
Tomiyuki Kamata
富行 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11025726A priority Critical patent/JP2000223123A/ja
Publication of JP2000223123A publication Critical patent/JP2000223123A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】 【課題】 容量が大きく、かつ効率の高い非水系二次電
池用負極材を提供する。 【解決手段】 真比重が1.7〜2.15の範囲にあり、
窒素ガスのBET吸着法によって求められるミクロポア
分布は、(1)直径8Å未満のポアが2×10-4cc/g
以上であり、(2)直径8〜18Åのポアが15×10-4
cc/g以下であって、かつ比表面積が0.1〜4m2
gであることを特徴とする非水系二次電池用炭素質負極
材料、及び平均粒径100μm以下の微粉状炭素質材料
を特定の条件下加熱処理を行うことよりなる該炭素質負
極材料の製造方法、並びに該炭素質負極材料を用いた非
水系二次電池。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、非水系二次電池用
炭素質負極材料、その製造方法及び非水系二次電池に関
するものである。より詳しくは、非水系二次電池用負極
材料として特に好適な、特定のミクロポア分布量及び真
比重を持ち、かつ低比表面積である炭素質材料、及びそ
の製造方法並びに、小型軽量の電子機器用として好適
な、リチウムイオン二次電池をはじめとする非水系二次
電池に関するものである。
【0002】
【従来の技術】近年、電子機器等の小型軽量化や高機能
化の点から、繰り返し使用可能な二次電池の需要が高ま
ってきている。この様な要求に合致する電池として、省
電力化及び環境保全の立場から、鉛蓄電池やニッカド電
池に替わるニッケル−水素系やリチウム系のクリーンな
非水系電池、特に軽量化、高電圧の点からリチウムイオ
ン二次電池が注目され、実用化されるに至っている。初
期の電池では負極にリチウム金属を用いたが、充放電に
よってデンドライトを生成し、内部短絡を引き起こすと
いう問題があった。その後、リチウム金属に代えて、リ
チウムイオンを吸収、放出することのできる材料の開発
が行われ、コークス等や天然黒鉛等の炭素質あるいは黒
鉛質の材料が主に使われる様になっている(特開平2−
90863号、特開平1−221859号、特開昭63
−121257号公報参照)。炭素質材料及び黒鉛系材
料の中でも、比較的低温で、例えば1500℃以下の温
度で焼成された炭素質材料を用いたものは低コスト、高
容量という点で有望視されている。
【0003】
【発明が解決しようとする課題】しかし、炭素質材料
は、比較的安価で安全性が高く初期充電量は高いもの
の、その後の充放電容量は、炭素黒鉛系材料の理論容量
として提唱されている値(372mAh/g)の2/3
程度で、電池を作成しても充放電容量、効率が充分満足
するものではなく、改良が望まれている。
【0004】
【課題を解決するための手段】本発明者等は、上記の課
題を解決すべく種々検討を行い、炭素質材料中の揮発分
が初期充放電容量を大きくしていること、炭素質材料を
高温で加熱処理する際に揮発分の一部が炭化して生じる
成分が炭素質材料の容量の発現を阻害していること、さ
らに炭素質材料を微粉砕した後に高温加熱処理(仮焼)
すれば、揮発分を効率的に除去でき、揮発分炭化成分の
残留も抑制できることを見出し、先に特願平7−092
606(特開平8−287911)として出願した。
【0005】その後さらに検討を続け、炭素質微粉に特
定の加熱処理を行えば、揮発分、特に上記の問題の主原
因となる遊離の有機高分子化合物をより効率的に除去で
きること、これによって、炭素質材料中の特定のミクロ
ポアの分布量が制御され、かつ炭素質材料の比表面積が
低下することで炭素質材料の充放電容量、効率を改善で
きることを見出し、本発明に至った。
【0006】すなわち、本発明の要旨は、真比重が1.
7〜2.15の範囲にあり、窒素ガスのBET吸着法に
よって求められる、(1)直径8Å未満のポアが2×1
-4cc/g以上であり、(2)直径8〜18Åのポア
が15×10-4cc/g以下であって、かつ比表面積が
0.1〜4m2/gであることを特徴とする非水系二次電
池用炭素質負極材料、該材料を負極材料として用いた非
水系二次電池、特にリチウム二次電池及び該負極材料の
製造方法に存するものである。
【0007】その製造方法は、平均粒度100μm以下
の微粉状の炭素質材料を、不活性ガス雰囲気下に250
〜650℃の温度で第一段加熱処理を行い、さらに不活
性ガス雰囲気下に700〜1500℃の温度で第二段加
熱処理(焼成)を行うこと(第一の製造方法)、平均粒
度100μm以下の微粉状の炭素質材料を、酸化性ガス
雰囲気下に50〜400℃の温度で第一段加熱処理を行
い、或いは不活性ガス雰囲気下250〜650℃の温度
で加熱処理を行う前及び/又は後にこの酸化性ガス雰囲
気下での加熱処理を行い、その後不活性ガス雰囲気下に
700〜1500℃の温度で第二段加熱処理(焼成)を
行うこと(第二及び第三の製造方法)、更には平均粒度
100μm以下の微粉状の炭素質材料を、不活性ガス雰
囲気下に700〜1500℃の温度で加熱処理(焼成)
して非水系二次電池用炭素質負極材料を製造するに際
し、該加熱処理温度への昇温過程における250〜65
0℃の温度領域では500℃/Hr以下の昇温速度とす
ること(第四の製造方法)を特徴とする非水系二次電池
用炭素質負極材料の製造方法を要旨とするものである。
【0008】
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において用いられる炭素質材料としては、例え
ば、FCC(流動接触分解)残渣油、EHE油(エチレ
ン製造時の副生油)、常圧残渣油、減圧残渣油等の石油
系重質油や、コールタール、コールタールピッチ等の石
炭系重質油、さらにはナフタレンやアントラセン等の多
環芳香族化合物を加熱熱処理して得られるタール状物質
を、ディレードコーカー、オートクレーブ等により、コ
ーキングしたコークスが挙げられる。この中では特に、
キノリン不溶分が12%以下、より好ましくは7%以
下、さらに好ましくは3%以下、0.01%以上のコー
ルタールを、ディレードコーカー等で400〜600℃
の温度でコーキングして得られる生コークスが好適に用
いられる。また、フェノール樹脂やフラン樹脂、あるい
は木材や竹材、さらには石炭等を、比較的低温、例えば
700℃以下で炭素化して得られる炭素質材料も使用す
ることができる。
【0009】本発明におけるこの様な炭素質材料は、好
ましくは揮発分が0.1重量%以上15重量%以下、さ
らに好ましくは1重量%以上10重量%以下であるもの
が用いられる。揮発分が15重量%より多くても本発明
の効果は得られるが、一回目の加熱処理に要する時間が
長大になったり(第一〜第三の製造方法)、昇温速度が
制御される250〜650℃の温度領域での昇温速度を
より遅くしなければならなくなったりして(第四の製造
方法)、現実的ではなくなる。また、揮発分が15重量
%よりも多くなると、微粉砕の際に粉塵爆発を起こす可
能性が高くなる。
【0010】本発明の特定のミクロポア分布、比表面積
等の物性を有する炭素質負極材料は、上記の炭素質材料
を微粉化し、得られた微粉状の炭素質材料を特定の条件
下で少なくとも二段階の加熱処理を行うか、又は特定の
温度領域の加熱昇温速度を一定の速度以下にすることに
特徴を有する方法により得ることができる。本発明方法
では製造に際し、後述する加熱処理に先立ち、前記のこ
れら炭素質材料を微粉砕することが重要である。粉砕
は、平均粒径が100μm以下、好ましくは50μ以
下、また下限としては実用上1μm以上になる様に行わ
れる。
【0011】粉砕方法、粒度調整のための分級等の操作
自体は特に限定されるものでなく常法によって行われ、
衝撃式粉砕機、衝突式粉砕機、磨砕式粉砕機等の微粉砕
機を使用して行うことができる。また、分級について
も、ふるいを始め、各種風力式分級機が使用できる。な
お、最大粒径は実質的に500μm以上のものを含まな
い、なかでも最大粒径200μm以上のものを含まない
ようにするのが、揮発分の除去効率の点から好ましい。
また、最大粒径が実質的に500μmを越えると、揮発
分の除去効率が低下しやすくなり、均一な厚さの電極を
製造することが困難になったり、電極の厚みを薄くして
電極表面積を大きくすることがより困難になる。
【0012】本発明の第一の製造方法では、微粉砕した
炭素質材料を、不活性ガス雰囲気下で、250〜650
℃の温度で、第一段加熱処理を行ってから700〜15
00℃で不活性ガス雰囲気下で第二段の加熱処理を行
う。第一段加熱処理は、ロータリーキルン、電気炉等に
よって行われ、特に制限されない。第一段加熱処理は、
好ましくは300〜550℃、より好ましくは400〜
550℃の温度で行われる。加熱処理時間は微粉の粒
度、どの様な状態で加熱されるかによって異なってくる
が、加熱される温度で脱離すべき揮発分が実質的になく
なるだけ、通常は250〜650℃の加熱で揮発する成
分が3重量%以下、好ましくは1重量%以下の量になる
だけの時間で良く、通常5時間以下である。
【0013】また、この加熱処理に際しては、揮発分の
脱離が行われやすい様に、微粉を50mm以下程度の薄
い積層状態にしたり、攪拌等により微粉表面が常に気中
にさらされる様にしたり、さらにはガスの送り込みによ
って流動層状態にするのが好適である。また、減圧下に
加熱したり、大量のガスをスイープしたりして、脱離さ
れる揮発分を積極的に取り除くことも好ましい。この第
一段加熱処理により、微粉に含まれている揮発分の大半
以上、特に遊離の有機化合物に由来する揮発分の大部分
を効率的に微粉中から脱離させることができる。
【0014】第一段加熱処理を行った微粉は、不活性ガ
ス雰囲気下で、700〜1500℃の温度で、第二段加
熱処理を行う。第二段加熱処理は第一段加熱処理と同様
に、ロータリーキルン、電気炉等によって行われ、特に
制限はない。第二段加熱処理は、第一段の加熱処理とは
別途に行っても良いし、第一段加熱処理と連続して行っ
ても良い。ただし、後者の場合は、第一段加熱処理で脱
離発生してくる揮発分が、第二段加熱処理ゾーンに侵入
しない様に、例えば排気機構を設けることが、揮発分の
再炭素化沈積を防ぐといった意味で好ましい。
【0015】第二段加熱処理(焼成)は、実質的に不活
性雰囲気下であることが必要であり、好ましくは800
〜1200℃の温度、さらに、目的の電池特性により異
なるが、より好ましくは1000〜1200℃の温度で
行われる。加熱処理時間は、加熱される温度での炭素化
反応が実質的に終了するだけの時間で良く、通常15分
から2時間の範囲である。第一段加熱処理と同じ様に、
微粉を50mm以下程度の薄い積層状態にしたり、攪拌
等により微粉表面が気中にさらされる様にしたり、さら
にはガスの送り込みによって流動層状態にするのが第一
段加熱処理後も残った揮発分を、早期に速やかに脱離さ
せるためにも好ましい。また、減圧下に加熱したり、大
量のガスをスイープしたりすることも同様な意味で好ま
しい。
【0016】本発明の第二の製造方法では、微粉砕した
炭素質材料を、まず酸化性ガス雰囲気下で、50〜40
0℃の温度で、第一段加熱処理を行う。加熱処理は、通
常ロータリーキルン、電気炉、あるいは乾燥設備等によ
り行われるが、特に制限されない。加熱温度と時間は、
微粉の粒度、加熱される状態等、及び使用する酸化性ガ
スの種類によって異なってくるが、空気を使用した場合
では、通常250〜400℃の温度で、30分から10
時間、NOx、SOx、ハロゲン等を使用(併用)した
場合では通常50〜200℃の温度で、15分から3時
間程度である。勿論、この範囲に限定されるものではな
く、必要とされる処理の程度に応じて適宜選択されるべ
きものであることは言うまでもない。
【0017】また、この加熱処理に際しては、均一な酸
化反応の進行、揮発分の脱離が行われやすい様に、第一
の製造方法と同様に、微粉を50mm以下程度の薄い積
層状態にしたり、攪拌等により微粉表面が常に気中にさ
らされる様にしたり、さらにはガスの送り込みによって
流動層状態にするのが好適である。この酸化性ガス雰囲
気下での加熱処理により、第一の製造方法の場合と同様
に、加熱による揮発分の脱離が起こるが、同時に進行す
る酸化反応によって、揮発分自体に加熱によってより脱
離しやすくなる構造(−O−結合等の化学結合形態)が
生成されるため、揮発分の脱離はより容易になり、また
第一段加熱処理で脱離しきれなかった揮発分も、続く不
活性ガス雰囲気下での第二段加熱処理時の炭素化反応の
進行が始まるかなり前に脱離させることができる様にな
る。
【0018】また、炭素質微結晶の間にも酸化反応によ
る結合が生成し、その構造が第二段加熱処理時の炭素化
反応が始まる頃まで残ると推定され、そのためにリチウ
ムが吸蔵されると考えられる特定のミクロポアの量も、
第二の製造方法では増加する。第一段の酸化性ガス下で
の加熱処理の終了後は、第一の製造方法におけると同様
に700〜1500℃での第二段加熱処理を行えば良
い。
【0019】また、第三の製造方法として、第二の製造
方法の酸化性ガス雰囲気下での加熱処理に第一の製造方
法と同様の二段階の不活性ガス雰囲気下での加熱処理を
組み合わせて行い、より一層の揮発分の脱離を行わせる
もので、酸化性ガス雰囲気下での加熱処理温度が低かっ
た場合や、使用した炭素質材料の揮発分量が多かった場
合には特に有効である。この場合、酸化性ガス雰囲気下
での加熱処理は、第一の製造方法における不活性ガス雰
囲気下での250〜650℃での第一段加熱処理の前及
び/又は後に行うことができるが、酸化性ガス下での加
熱処理は不活性ガス下での加熱処理の前に行うことがよ
り好ましい。その後に700〜1500℃での不活性ガ
ス雰囲気下での第二段加熱処理を行えば良い。
【0020】第四の製造方法では、第一の製造方法にお
ける不活性ガス雰囲気下での250〜650℃での第一
段加熱処理を省き、最初から微粉砕した炭素質材料を不
活性ガス雰囲気下、700〜1500℃での加熱処理を
行うが、その際、加熱処理温度への昇温過程での昇温速
度をある温度領域において制御する、即ち加熱処理過程
の250〜650℃の温度領域の昇温速度を500℃/
Hr以下の遅いものとするのである。昇温速度の制御
は、加熱温度に達するまでの過程の任意の温度領域にお
いて行うことができ、その温度領域としては、400〜
550℃の範囲であっても良いが、好ましくは300〜
550℃の範囲であり、より好ましい範囲は250〜6
50℃である。また、この温度領域の昇温速度は500
℃/Hr以下、好ましくは300℃/Hr以下、より好
ましくは200℃/Hr以下で行われる。勿論この温度
領域以外も同様の昇温速度であっても構わないが、通常
は加熱処理に要する時間が長大になるのを避けるため5
00℃/Hr程度以上で行われる。
【0021】前記の炭素質材料中に含まれる揮発分、特
に遊離の有機化合物に由来する揮発分の大部分は250
〜650℃の温度で脱離してくるものであるので、この
温度範囲の昇温速度を遅くすることで、揮発分の炭素質
微粉内での拡散移動、粉体層内での移動等による揮発分
脱離の遅れがカバーされ、充分な脱離効果が得られるた
め、第一の製造方法における第一段の加熱処理を行った
のと同様の効果が得られる。また、700〜1500℃
での加熱処理(焼成)温度、加熱処理時間は、第一の製
造方法における第二段加熱処理の場合と同様に行えば良
い。
【0022】加熱処理は、ロータリーキルン、電気炉等
によって行われ、特に制限されない。また、第一〜第三
の製造方法の場合と同様に、微粉を50mm以下程度の
薄い積層状態にしたり、攪拌等により微粉表面が気中に
さらされる様にしたり、さらにはガスの送り込みによっ
て流動層状態にするのが好ましい。
【0023】本発明の製造方法により得られる炭素質負
極材料微粉は、真比重が1.7〜2.15の範囲になって
いて、リチウムの吸蔵に適した直径8Å未満のポアが2
×10-4cc/g以上存在し、リチウムの吸蔵に適した
8Å以下のミクロポアの失活を招く、より大きなサイズ
の直径8〜18Åのポアが15×10-4cc/g以下と
なっている。また、比表面積が大きいと電池の不可逆容
量(効率)等を悪化させると考えられるが、本発明の炭
素質負極材料の比表面積は、0.1〜4m2/gの小さな
値となっている。なお、揮発分量が1重量%以下となっ
たものが、充放電容量、効率の点から好適である。
【0024】また、8Å以下のミクロポアの量を決定す
る、一番大きな要因である炭素質微結晶の大きさは、原
料とする炭素質材料によって異なってくるが、X線回折
法で求められる結晶の厚さ(Lc)は、通常15〜50
Å、002格子の格子間間隔(d002)は通常3.40〜
3.55Åの範囲となっている。なお、ミクロポアの大
きさ、量は窒素ガスのBET吸着法によって測定するこ
とができ、その様な装置としては、例えば、QUANT
ACHROM社製のAUTOSORB−1が挙げられ
る。
【0025】本発明の新規の炭素質負極材料が、本発明
の選ばれた条件のもとに製造され、優れた性能を示す効
果は以下の様に考えられる。すなわち、高温処理をする
前の炭素質材料中には、揮発分が含まれている。揮発分
は比較的低分子量の遊離有機化合物や、加熱処理による
炭素化反応の進行に伴い、炭素質骨格構造から分離して
くる低分子量有機化合物等から成るが、これらは高温処
理の際に炭素質材料中からガス化脱離してくる。一方、
加熱処理による炭素化反応の進行に伴い、炭素質骨格構
造は収縮をするが、この収縮段階での揮発分の脱離があ
ると、その脱離ルートの形成、あるいは揮発分のガス化
脱離圧力と炭素質骨格構造の収縮圧力との相互作用によ
り、炭素質骨格構造にミクロンからサブミクロンオーダ
ーの亀裂や、ポアを生じる。この傾向は炭素質材料の粒
度が大であるほど顕著であり、例えば塊〜粒の大きさで
高温処理し、処理後に微粉砕したものと、予め微粉砕し
てから高温処理したものの比表面積を同じ粒度で比べて
みると、微粉砕後に高温処理したものの方が圧倒的に低
比表面積であり、ミクロンからサブミクロンオーダーの
亀裂や、ポアの生成が少なくなっていることを示してい
る。
【0026】一方、リチウム二次電池における炭素質負
極材料のリチウム吸蔵は、炭素質材料を構成する炭素質
微結晶(黒鉛結晶の前駆体)の積層構造間、いわゆるX
線回折法で求められる002格子間に吸蔵されるもの
と、炭素質微結晶の間にある数Å程度のミクロポア内に
吸蔵されるものとがある。この内ミクロポアに吸蔵され
るものは、より大きなサイズのポアと繋がり、連続した
開放ポアになってしまうと吸蔵活性、効率を失ってしま
うので、ミクロポアの量が多くても、より大きなサイズ
のポアも多い場合には充放電容量の増加、効率には結び
つかない。
【0027】本発明の第一の製造方法では、微粉状態で
の加熱処理を行うことにより、揮発分を脱離しやすくさ
せ、炭素化反応進行時の揮発分脱離によるミクロンから
サブミクロンオーダーの亀裂やポアの生成を抑制して比
表面積を低下させるとともに、加熱処理の前期に生じた
揮発分脱離による亀裂、ポアを、炭素化反応進行時の収
縮圧力で押しつぶして、消失、あるいはより小さなサイ
ズのポアに変化させて、リチウムが吸蔵されるミクロポ
アと連続した開放ポアが生じることを防ぐことが可能と
なったものと考えられる。
【0028】特に不活性ガス雰囲気下、250〜650
℃の温度での加熱処理を経ることによって、揮発分の脱
離を炭素化反応の進行が始まる前にほぼ終了させてしま
うことにより、不活性ガス雰囲気下での700〜150
0℃での加熱処理時におけるポアの押しつぶし効果等を
より発現しやすくしているものと考えられる。
【0029】本発明における第二及び第三の製造方法で
の、酸化性ガス雰囲気下、50〜400℃の温度での加
熱処理は、酸化性ガスと炭素質材料との反応で、揮発分
内に加熱によってより脱離しやすくなる構造(化学結合
形態)を生成させて、不活性ガス雰囲気下での、前記し
た250〜650℃あるいは700〜1500℃での加
熱処理と同様の効果の発現をより促進させるものと考え
られる。また、炭素質材料を構成する炭素質微結晶間に
も結合を作り、その結合が炭素化反応が始まる頃まで残
って、炭素化反応による微結晶の再配列(より大きなサ
イズへの結晶への変化)を妨げるため、リチウムが吸蔵
されるミクロポアの量自体を増やすものと考えられる。
【0030】従って、不活性ガス雰囲気下での250〜
650℃での加熱処理と、不活性ガス雰囲気下での70
0〜1500℃の加熱処理に加えて、酸化性ガス雰囲気
下での50〜400℃での加熱処理を組み合わせて行う
ことが好適である。
【0031】本発明の第四の製造方法での加熱処理は、
第一の製造方法の炭素化反応に係わる第二段加熱処理の
みをおこなうが、その昇温過程の或る温度域、即ち第一
の製造方法の第一段加熱処理温度と同じ温度域(250
〜650℃)での加熱昇温速度を遅くすることで、この
温度域で所定時間の加熱保持を行うことなく第一段加熱
処理と同様の効果が得られるものと考えられる。
【0032】この様にして得られた本発明の炭素質負極
材料は、リチウムイオン二次電池等非水系二次電池の負
極材として用いられる。負極材として用いる場合は、前
記炭素質材料を、バインダー、溶媒(支持媒)等と混合
してペースト化し、これを銅、ニッケル等の金属箔上に
塗布した後、乾燥、加圧プレス等を行う。
【0033】バインダーとしては、例えば、ポリフッ化
ビニリデン、ポリテトラフルオロエチレン、EPDM
(エチレン−プロピレン−ジエン三元共重合体)や、S
BRやNBR等の合成ゴム等が用いられる。また、溶媒
(分散媒)としては、通常はバインダーを溶解する有機
溶剤が使用され、例えば、N−メチルピロリドン、ジメ
チルホルムアミド、ジメチルアセトアミド、メチルエチ
ルケトン、シクロヘキサン、酢酸メチル等が用いられ
る。合成ゴム等をバインダーとする場合は、分散剤、増
粘剤等を加えた水を分散媒とすることもある。
【0034】正極材及び非水溶媒中に電解質を溶解させ
てなる電解液については、従来非水系二次電池に用いら
れているもので良く特に限定されない。具体的には、正
極材としては、LiCoO2、MnO2、TiS2、Fe
2、Nb34、Mn34、CoS2、V25、P25
CrO3、V38、TeO2、GeO2等が、又電解質と
してはLiClO4、LiBF4、LiPF6、LiAs
6、LiB(C654、LiCl、LiBr、LiC
3SO3Li、LiCF3SO3等が挙げられ、電解質を
溶解する非水溶媒としては、プロピレンカーボネート、
エチレンカーボネート、ジメチルカーボネート、テトラ
ヒドロフラン、1,2−ジメトキシエタン、1,2−ジ
エトキシエタン、ジメチルスルホキシド、ジメチルホル
ムアミド、ジメチルアセトアミド、ジオキソラン等、及
びこれらの2種以上の混合溶媒等が用いられる。
【0035】セパレータは、電池の内部抵抗を小さくす
るために多孔体が好適であり、ポリエチレンやポリプロ
ピレン等の多孔性フィルムや不織布、あるいはガラスフ
ィルターなどの耐有機溶媒性材料のものが用いられる。
これらの負極、正極、電解液及びセパレータは、例えば
ステンレススチール又はこれにニッケルメッキした電池
ケースに組み込むのが一般的である。電池構造として
は、帯状の正極、負極をセパレータを介して渦巻き状に
したスパイラル構造又はボタン型ケースにペレット状の
正極、円盤状の負極をセパレータを介して挿入する方法
などが採用される。
【0036】
【実施例】以下、本発明を実施例により、さらに詳細に
説明するが、本発明はその要旨を越えない限り、以下の
実施例によって限定されるものではない。 実施例1 キノリン不溶分が2.8%のコールタールをコーキング
して得た、揮発分5.4重量%の生コークスを、ジェッ
トミルにて微粉砕して、平均12μm、最大粒度40μ
m以下の生コークス微粉を得た。この生コークス微粉
を、ステンレス製のトレイ中に10mmの厚さで入れ、
箱形の電気炉中で、窒素流通雰囲気下、10℃/分で4
50℃まで昇温し、その温度で1時間保持して第一段加
熱処理を行った。一旦冷却してトレイを取り出し、微粉
を黒鉛製のトレイ中に10mmの厚さで入れ直した後、
再び箱形の電気炉中に入れ、窒素流通雰囲気下10℃/
分で再昇温した。表1に示す通り、800℃、900℃、1000
℃、1100℃、1200℃までそれぞえ昇温し、それぞれの温
度で1時間の保持をして、第二段加熱処理を行い、炭素
質負極材料を得た。
【0037】得られた炭素質負極材料を、350℃、1
時間の真空脱気処理(乾燥)を行った後、QUANTA
CHROM社(米国)製のAUTOSORB−1を使用
して、液体窒素温度での窒素ガス吸着を行い、吸着等温
線、BETプロットを求めた。これを、Horvath
−Kawazoe法で解析して18Åまでのミクロポア
を測定した。また、比表面積は島津製作所製のジェミニ
2360を使用して、同じく液体窒素温度での窒素ガス
吸着を行うBET法によって測定し、真比重は30℃の
恒温槽中、0.1%オレイン酸ナトリウム水溶液を置換
媒とするピクノメーター法で測定した。
【0038】得られた炭素質負極材料は、図1に示す構
成のセルを使用して、その充放電容量を測定した。な
お、得られた炭素質負極材料は、10%のPVDF(ポ
リフッ化ビニリデン)をバインダーとして使用し、20
mmφのステンレス金網上に圧着して負極1とした。対
極としてはLi金属箔を使用し、同じく20mmφのス
テンレス金網上に圧着して正極3とした。
【0039】電解液にはプロピレンカーボネート(P
C)に、電解質としてLiPF6を1モル/リットルの
割合で溶解したものを用いた(図中、2はセパレータと
電解液を示す)。なお、この電池の容量に関しては、正
極に対して負極を十分に小さくしている。図中、4はス
テンレス製の電池筐体、5は絶縁体(ポリテトラフルオ
ロエチレン製)、6は充放電端子、7はシールパッキン
である。この電池を充電電流0.5mA/cm2で、電圧
(対Li極)が0.01Vになるまで充電し、さらに0.
01Vの電圧を保ったまま、充電電流が0.03mA/
cm2以下になるまで充電を続けた。次いで、放電電流
0.5mA/cm2で1.5Vまでの放電を行って、容量
(放電容量)と効率(放電容量/初充電容量)を測定し
た。得られた炭素質負極材料について行った、ミクロポ
ア量測定、比表面積測定、真比重測定、及び充放電容量
測定の結果を表1に示す。
【0040】
【表1】
【0041】比較例1 実施例1で得た生コークスを、30〜150mmの大き
さの塊のまま黒鉛製のトレイに入れ、箱形の電気炉中
で、窒素流通雰囲気下、10℃/分で表2に示す通り80
0℃、1000℃、1200℃までそれぞれ昇温し、それぞれの
温度で1時間保持して加熱処理を行った。次いで、得ら
れた加熱処理コークスをジェットミルで微粉砕し、平均
11〜12μm、最大粒度45μm以下の炭素質負極材
料を得た。得られた炭素質負極材料について、実施例1
と同様に物性の測定を行い、ミクロポア量測定、比表面
積測定、真比重測定、充放電容量測定の結果を表2に示
す。
【0042】
【表2】
【0043】実施例2 実施例1で得た生コークス微粉を、ステンレス製のトレ
イ中に10mmの厚さで入れ、箱形の電気炉中で、窒素
流通雰囲気下、10℃/分で表3に示す通り300℃、400
℃、500℃、600℃までそれぞれ昇温し、それぞれの温度
で1時間保持して第一段加熱処理を行った。一旦冷却し
てトレイを取り出した後、再び箱形の電気炉中に入れ、
窒素流通雰囲気下10℃/分で再昇温し、1000℃で
1時間の保持をして、第二段加熱処理を行い、炭素質負
極材料を得た。得られた炭素質負極材料について、実施
例1と同様に物性の測定を行い、ミクロポア量測定、比
表面積測定、真比重測定、充放電容量測定の結果を表3
に示す。
【0044】
【表3】
【0045】実施例3 キノリン不溶分2.6%のコールタールをコーキングし
て得た、揮発分18重量%の生コークスを、回転式衝撃
粉砕機にて微粉砕した後、目開き86μmのふるいを通
し、平均18μmの生コークス微粉を得た。この生コー
クス微粉を、ステンレス製のトレイ中に10mmの厚さ
で入れ、箱形の電気炉中で、空気流通雰囲気下、10℃
/分で150℃まで昇温し、その後1℃/分の昇温速度
に変えて、250℃、300℃、350℃、400℃までそれぞれ昇
温した後、それぞれの温度で30分間保持して第一段の
加熱処理を行った。一旦冷却してトレイを取り出した
後、再び箱形の電気炉中に入れ、窒素流通雰囲気下10
℃/分で再昇温し、1000℃で1時間の保持をして、
第二段加熱処理を行い、炭素質負極材料を得た。得られ
た炭素質負極材料について、実施例1と同様に物性の測
定を行い、ミクロポア量測定、比表面積測定、真比重測
定、充放電容量測定の結果を表4に示す。
【0046】
【表4】
【0047】比較例2 第一段加熱処理を450℃まで昇温した後、その温度で
30分間保持した以外は、実施例3と全く同じ処理を行
って炭素質負極材料を得た。この炭素質負極材料につい
て、実施例1と同様のミクロポア量測定、比表面積測
定、真比重測定、充放電容量測定を行った結果、真比重
が1.92で、8Å以下のポア量は28.5×10-4cc
/g、8〜18Åのポア量は46.6×10-4cc/g
であった。比表面積は1.7m2/gであり、また、容量
は355mAh/g、効率は70%であった。
【0048】実施例4 実施例3で得た生コークス微粉を、ステンレス製のトレ
イ中に10mmの厚さで入れ、箱形の電気炉中で、10
容積%のNO2ガスを加えた空気流通雰囲気下、10℃
/分で120℃まで昇温し、その温度で30分間保持し
て、第一段加熱処理を行った。一旦冷却してトレイを取
り出した後、再び箱形の電気炉中に入れ、窒素流通雰囲
気下10℃/分で再昇温し、1000℃で1時間の保持
をして、第二段加熱処理を行い、炭素質負極材料を得
た。得られた炭素質負極材料について、実施例1と同様
のミクロポア量測定、比表面積測定、真比重測定、充放
電容量測定を行った結果、真比重が1.83で、8Å以
下のポア量は3.1×10-4cc/g、8〜18Åのポ
ア量は6.1×10-4cc/gであった。比表面積は0.
7m2/gであり、また、容量は380mAh/g、効
率は71%であった。
【0049】実施例5 実施例3において、酸化性ガス(空気流通)雰囲気下で
の第一段加熱処理を、300℃まで昇温した後、その温度
で30分間保持し、その後、窒素流通雰囲気下での45
0℃、1時間の加熱処理を行い、次いで窒素流通雰囲気
下での1000℃、1時間の最後の加熱処理を行った以
外は、実施例3と全く同じ処理を行って炭素質負極材料
を得た。この炭素質負極材料について、実施例1と同様
のミクロポア量測定、比表面積測定、真比重測定、充放
電容量測定を行った結果、真比重が1.84で、8Å以
下のポア量は3.9×10-4cc/g、8〜18Åのポ
ア量は6.7×10-4cc/gであった。比表面積は0.
8m2/gであり、また、容量は405mAh/g、効
率は79%であった。
【0050】実施例6 実施例1で得た生コークス微粉を、ステンレス製のトレ
イ中に10mmの厚さで入れ、箱形の電気炉中で、窒素
流通雰囲気下、10℃/分で250℃まで昇温し、その
後2℃/分の昇温速度に変えて650℃まで昇温した
後、再度10℃/分の昇温速度として1000℃まで加
熱して1時間の保持を行い、炭素質負極材料を得た。こ
の炭素質負極材料について、実施例1と同様のミクロポ
ア量測定、比表面積測定、真比重測定、充放電容量測定
を行った結果、真比重が1.94で、8Å以下のポア量
は4.3×10-4cc/g、8〜18Åのポア量は7.1
×10-4cc/gであった。比表面積は1.7m2/gで
あり、また、容量は330mAh/g、効率は79%で
あった。
【0051】比較例3 昇温速度を、最初から最後まで10℃/分とした以外
は、実施例6と全く同じ処理を行って炭素質負極材料を
得た。この炭素質負極材料について、実施例1と同様の
ミクロポア量測定、比表面積測定、真比重測定、充放電
容量測定を行った結果、真比重が1.92で、8Å以下
のポア量は6.3×10-4cc/g、8〜18Åのポア
量は15.4×10-4cc/gであった。比表面積は2.
4m2/gであり、また、容量は315mAh/g、効
率は75%であった。
【0052】実施例7 実施例1で得た生コークスを、ジェットミルで粉砕し、
ふるい、または風力式分級機を使用して分級を行い、表
5に示す通り平均粒度7.2μm、13.4μm、20.4μm、4
8.1μmの4種類の生コークス微粉を得た。この生コー
クス微粉を、ステンレス製のトレイ中に10mmの厚さ
で入れ、箱形の電気炉中で、窒素流通雰囲気下、10℃
/分で500℃まで昇温し、その温度で1時間保持して
第一段加熱処理を行った。一旦冷却してトレイを取り出
した後、再び箱形の電気炉中に入れ、窒素流通雰囲気下
10℃/分で再昇温し、1000℃で1時間の保持をし
て、第二段加熱処理を行い、炭素質負極材料を得た。得
られた炭素質負極材料について、実施例1と同様に物性
を評価し、ミクロポア量測定、比表面積測定、真比重測
定、充放電容量測定の結果を表5に示す。
【0053】
【表5】
【0054】
【発明の効果】本発明によれば、低コストの炭素質材料
から容易に、容量が大きく、かつ効率の高い非水系二次
電池用の負極材を提供しうる。
【図面の簡単な説明】
【図1】本発明の非水系二次電池の一例である、ボタン
型非水電解液二次電池の断面説明図である。
【符号の説明】 1 負極 2 セパレータおよび電解液 3 正極 4 電池筐体 5 絶縁体 6 充放電端子 7 シールパッキン
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鎌田 富行 香川県坂出市番の州町1番地 三菱化学株 式会社坂出事業所内 Fターム(参考) 4G046 CA00 CA04 CA05 CA06 CA07 CB02 CB08 CB09 CC02 CC03 5H003 AA01 AA02 BA01 BB01 BC01 BD00 BD01 BD02 BD05 5H014 AA01 BB01 HH00 HH01 HH02 HH06 HH08 5H029 AJ03 AK02 AK03 AK05 AL06 AM03 AM04 AM05 AM07 CJ28 HJ00 HJ05 HJ06 HJ07 HJ14

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】真比重が1.7〜2.15の範囲にあり、窒
    素ガスのBET吸着法によるミクロポア分布は(1)直
    径8Å未満のポアが2×10-4cc/g以上で、(2)
    直径8〜18Åのポアが15×10-4cc/g以下であ
    って、かつ比表面積が0.1〜4m2/gであることを特
    徴とする非水系二次電池用炭素質負極材料。
  2. 【請求項2】平均粒度が100μm以下である微粉状体
    であることを特徴とする請求項1記載のリチウムイオン
    二次電池用炭素質負極材料。
  3. 【請求項3】平均粒度100μm以下の微粉状の炭素質
    材料を、不活性ガス雰囲気下に250〜650℃の温度
    で第一段加熱処理を行い、さらに不活性ガス雰囲気下に
    700〜1500℃の温度で第二段加熱処理を行うこと
    を特徴とする請求項1に記載の非水系二次電池用炭素質
    負極材料の製造方法。
  4. 【請求項4】平均粒度100μm以下の微粉状の炭素質
    材料を、酸化性ガス雰囲気下に50〜400℃の温度で
    第一段加熱処理を行い、さらに不活性ガス雰囲気下に7
    00〜1500℃の温度で第二段加熱処理を行うことを
    特徴とする請求項1に記載の非水系二次電池用炭素質負
    極材料の製造方法。
  5. 【請求項5】平均粒度100μm以下の微粉状の炭素質
    材料を、不活性ガス雰囲気下で250〜650℃の温度
    で加熱処理する前及び/又は後に酸化性ガス雰囲気下に
    50〜400℃の温度で加熱処理を行い、さらに不活性
    ガス雰囲気下に700〜1500℃の温度で加熱処理を
    行うことを特徴とする請求項1記載の非水系二次電池用
    炭素質負極材料の製造方法。
  6. 【請求項6】平均粒度100μm以下の微粉状の炭素質
    材料を、不活性ガス雰囲気下に700〜1500℃の温
    度で加熱処理して非水系二次電池用炭素質負極材料を製
    造するに際し、該加熱処理温度への昇温過程における2
    50〜650℃の温度領域では500℃/Hr以下の昇
    温速度とすることを特徴とする請求項1記載の非水系二
    次電池用炭素質負極材料の製造方法。
  7. 【請求項7】請求項1の非水系二次電池用炭素質負極材
    料を負極材料として用いることを特徴とする非水系二次
    電池。
  8. 【請求項8】請求項2のリチウムイオン二次電池用炭素
    質負極材料を負極材料として用いることを特徴とするリ
    チウム二次電池。
JP11025726A 1999-02-03 1999-02-03 非水系二次電池用炭素質負極材料、その製造方法並びに非水系二次電池 Pending JP2000223123A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11025726A JP2000223123A (ja) 1999-02-03 1999-02-03 非水系二次電池用炭素質負極材料、その製造方法並びに非水系二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11025726A JP2000223123A (ja) 1999-02-03 1999-02-03 非水系二次電池用炭素質負極材料、その製造方法並びに非水系二次電池

Publications (1)

Publication Number Publication Date
JP2000223123A true JP2000223123A (ja) 2000-08-11

Family

ID=12173816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11025726A Pending JP2000223123A (ja) 1999-02-03 1999-02-03 非水系二次電池用炭素質負極材料、その製造方法並びに非水系二次電池

Country Status (1)

Country Link
JP (1) JP2000223123A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027242A1 (ja) * 2003-09-09 2005-03-24 Japan Energy Corporation 非水電解液二次電池、それに用いる炭素材料および該炭素材料の前駆体
WO2009038093A1 (ja) * 2007-09-18 2009-03-26 Nippon Oil Corporation リチウムイオン二次電池負極用非晶質炭素材料及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027242A1 (ja) * 2003-09-09 2005-03-24 Japan Energy Corporation 非水電解液二次電池、それに用いる炭素材料および該炭素材料の前駆体
WO2009038093A1 (ja) * 2007-09-18 2009-03-26 Nippon Oil Corporation リチウムイオン二次電池負極用非晶質炭素材料及びその製造方法

Similar Documents

Publication Publication Date Title
WO2013118757A1 (ja) 非水電解質二次電池用炭素質材料
KR101043010B1 (ko) 리튬 2차 전지용 음극 재료 및 리튬 2차 전지
WO1998054779A1 (fr) Batterie secondaire electrolytique non aqueuse
JPH10189044A (ja) 非水電解液二次電池
KR100269923B1 (ko) 리튬 계열 이차 전지의 음극용 활물질의 제조 방법
JP3054379B2 (ja) リチウム二次電池負極材用黒鉛を被覆した黒鉛質粉末とその製法
KR101417588B1 (ko) 고전도성 음극활물질 및 이의 제조방법
JPH10228896A (ja) 非水電解液二次電池
EP0896377B1 (en) Carbonaceous negative electrode material for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
JPH06111818A (ja) 非水電解液二次電池用炭素負極
JP3634408B2 (ja) リチウム電池の電極用炭素材およびその製造方法
JP4150087B2 (ja) 非水電解液二次電池
JPH07302595A (ja) カーボン粒子の製造方法及びそのカーボン粒子を含んでなる負極
JP4198254B2 (ja) 非水系二次電池用炭素質負極材料、その製造方法及び非水系二次電池
JPH07134988A (ja) 非水電解質二次電池
JPH07302594A (ja) 炭素質粒子及びこれを用いたリチウムイオン二次電池用負極
JP4108226B2 (ja) バルクメソフェーズの製造方法、炭素材料の製造方法、負極用活物質およびリチウムイオン二次電池
JP3551490B2 (ja) 非水系二次電池
JP2000228193A (ja) 非水系二次電池用炭素質負極活物質及び非水系二次電池
JP3577776B2 (ja) 非水系二次電池
JPH11135124A (ja) リチウム系列二次電池の負極材料及びその製造方法
JP2000223123A (ja) 非水系二次電池用炭素質負極材料、その製造方法並びに非水系二次電池
JP3690128B2 (ja) 非水系二次電池用炭素質負極材料及びその製造方法並びに非水系二次電池
JP2000315500A (ja) リチウムイオン二次電池用の難黒鉛化性炭素材料、その製造方法及びリチウムイオン二次電池
JP2010257982A (ja) リチウム二次電池用アノード活物質とこれを含むリチウム二次電池