JP2000218128A - Acid component removing agent, its production, and acid component removing method - Google Patents

Acid component removing agent, its production, and acid component removing method

Info

Publication number
JP2000218128A
JP2000218128A JP11335814A JP33581499A JP2000218128A JP 2000218128 A JP2000218128 A JP 2000218128A JP 11335814 A JP11335814 A JP 11335814A JP 33581499 A JP33581499 A JP 33581499A JP 2000218128 A JP2000218128 A JP 2000218128A
Authority
JP
Japan
Prior art keywords
acidic component
sodium bicarbonate
particle size
average particle
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11335814A
Other languages
Japanese (ja)
Other versions
JP3840858B2 (en
JP2000218128A5 (en
Inventor
Hachiro Hirano
八朗 平野
Makoto Yoshida
吉田  誠
Shigeru Sakurai
茂 桜井
Masaharu Tanaka
正治 田中
Makoto Kusaka
良 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP33581499A priority Critical patent/JP3840858B2/en
Publication of JP2000218128A publication Critical patent/JP2000218128A/en
Publication of JP2000218128A5 publication Critical patent/JP2000218128A5/ja
Application granted granted Critical
Publication of JP3840858B2 publication Critical patent/JP3840858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove acid components such as hydrogen chloride, sulfur oxides, and nitrogen oxides efficiently from exhaust gas and to reduce the amount of waste by facilitating disposal treatment by incorporating sodium hydrogen carbonate whose average particle size based on volume measured by a laser diffraction scattering method is specified. SOLUTION: In an acid component removing agent, the average particle size based on volume of sodium hydrogen carbonate is measured by a laser diffraction scattering particle size distribution measuring device. The average particle size of sodium hydrogen carbonate is set up at 1-9 μm. In sodium hydrogen carbonate, in the pore distribution of a powder layer by a mercury pressure injection method, a pore volume in which pore diameters are 1-10 μm is set up at 0.4 cm3 or above. Moreover, in sodium hydrogen carbonate, sodium carbonate obtained when baked at 200 deg.C for one hr preferably exhibits powder properties similar to those of sodium hydrogen carbonate. In this way, acid components in exhaust gas are removed efficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体中の酸性成分
除去剤、その製造方法及び気体中から酸性成分を除去す
る方法に関する。
The present invention relates to an agent for removing an acidic component in a gas, a method for producing the same, and a method for removing an acidic component from a gas.

【0002】[0002]

【従来の技術】ゴミ焼却炉などから排出される排気ガス
から、塩化水素や硫黄酸化物を吸収して除去するため
に、消石灰を酸性成分除去剤として用いることが知られ
ている。この場合、焼却炉等からの排ガス排出路におけ
る150〜300℃、特には150〜200℃の温度域
に消石灰を分散し、バグフィルターや電気集塵機等で捕
集し、濾過層を形成して酸性成分を除去している。
2. Description of the Related Art It is known to use slaked lime as an acidic component remover in order to absorb and remove hydrogen chloride and sulfur oxides from exhaust gas discharged from a waste incinerator or the like. In this case, slaked lime is dispersed in a temperature range of 150 to 300 ° C., particularly 150 to 200 ° C. in an exhaust gas discharge path from an incinerator or the like, and collected by a bag filter or an electric dust collector to form a filtration layer to form an acidic layer. The components have been removed.

【0003】しかし消石灰は、反応当量に対して3〜4
倍当量と過剰に使用する必要があるため、廃棄するダス
ト量が増加する等の欠点があった。さらにこれらダスト
はコンクリートを用いて固化するため、埋め立て用の最
終処分場の用地を圧迫している。塩化水素と消石灰の反
応生成物は塩化カルシウムであり水溶性のため、水に溶
解させて除去することもできるが、過剰に投入された消
石灰の一部は生石灰となるが水に不溶のため、水による
ダストの減少効果は少ない。さらに、最終処分場では塩
化カルシウムを含む浸出水の処理時にカルシウムスケー
ルが発生し、トラブルの原因となっている。
However, slaked lime is 3 to 4 parts per equivalent.
There is a drawback that the amount of dust to be discarded increases because it is necessary to use double equivalents and excessive use. In addition, since these dusts are solidified using concrete, they are putting pressure on the landfill site for landfills. Since the reaction product of hydrogen chloride and slaked lime is calcium chloride and water-soluble, it can be dissolved and removed in water.However, part of slaked lime that is added excessively becomes quicklime but is insoluble in water. Dust reduction effect by water is small. Furthermore, at the final disposal site, calcium scale is generated during the treatment of leachate containing calcium chloride, causing trouble.

【0004】また、消石灰のかわりに、酸性成分除去剤
として炭酸水素ナトリウムを用いることが知られてい
る。この場合、未反応の炭酸水素ナトリウムは炭酸ナト
リウムとなり、水溶性のためダストの減少に効果的であ
る。例えば、特表平9−507654には、炭酸水素ナ
トリウムを98質量%超かつ炭酸ナトリウムを2質量%
未満含む組成物からなる酸性成分除去剤が記載されてい
る。この組成物の平均粒径は50μm以下であり、好ま
しくは10〜30μmであることが記載されている。
It is known to use sodium hydrogen carbonate as an acidic component remover instead of slaked lime. In this case, unreacted sodium bicarbonate becomes sodium carbonate, and is effective in reducing dust due to water solubility. For example, Japanese Patent Application Laid-Open No. Hei 9-507654 discloses that sodium hydrogen carbonate exceeds 98% by mass and sodium carbonate 2% by mass.
An acidic component remover consisting of a composition containing less than is described. It is described that the average particle size of this composition is 50 μm or less, preferably 10 to 30 μm.

【0005】しかし、炭酸水素ナトリウムの価格は消石
灰に比べ高価なため、反応率が高くて少量で効果の得ら
れる炭酸水素ナトリウムを、安価で工業的規模で供給す
ることが望まれている。さらに、使用時に微粉砕機の設
置が不要で直ちに使用でき、被処理ガス中への注入が容
易でかつ安定しており、ガス中で良好に分散し、反応速
度が速く、使用場所での貯槽や倉庫での長期保存が可能
であることが望ましい。
However, since sodium bicarbonate is more expensive than slaked lime, it is desired to supply inexpensive and industrial scale sodium bicarbonate which has a high reaction rate and can be obtained in a small amount. In addition, a pulverizer is not required during use, so it can be used immediately, is easy and stable to be injected into the gas to be treated, disperses well in the gas, has a high reaction rate, and has a storage tank at the place of use. And long-term storage in warehouses are desirable.

【0006】[0006]

【発明が解決しようとする課題】一般的にゴミ焼却場等
における酸性成分除去剤としては、消石灰が使用されて
いる。消石灰は安価であるが、上述のように廃棄する水
不溶性のダストの増加、最終処分場における浸出水のカ
ルシウムスケールの発生によるトラブルの問題等、廃棄
物処理において問題がある。また、炭酸水素ナトリウム
を使用する場合には高価なため、反応効率を高め使用量
を削減することが必要である。また、使用量を削減でき
れば、付帯する設備を小型化でき、処理すべきダストを
削減できる。
In general, slaked lime is used as an acidic component remover in a garbage incineration plant or the like. Although slaked lime is inexpensive, it has problems in waste treatment, such as an increase in water-insoluble dust to be discarded as described above, and a problem of trouble due to generation of calcium scale in leachate at a final disposal site. In addition, since sodium bicarbonate is expensive when used, it is necessary to increase the reaction efficiency and reduce the amount used. Further, if the amount of use can be reduced, the size of the accompanying equipment can be reduced, and the dust to be treated can be reduced.

【0007】そこで本発明は、排気ガスから効率良く塩
化水素や硫黄酸化物や窒素酸化物等の酸性成分を除去で
き、かつ廃棄処理も容易で廃棄物量を削減できる酸性成
分除去剤を工業的に提供することを目的とする。
Accordingly, the present invention is to provide an acidic component remover which can efficiently remove acidic components such as hydrogen chloride, sulfur oxides, nitrogen oxides, etc. from exhaust gas, can easily dispose, and reduce the amount of waste. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、レーザー回折
散乱法により測定した体積基準の平均粒径が1〜9μm
の炭酸水素ナトリウムを含む酸性成分除去剤及びその製
造方法を提供する。
According to the present invention, a volume-based average particle diameter measured by a laser diffraction scattering method is 1 to 9 μm.
The present invention provides an acidic component remover containing sodium hydrogen carbonate and a method for producing the same.

【0009】本発明の酸性成分除去剤においては、炭酸
水素ナトリウムの平均粒径は、レーザー回折散乱式粒度
分布測定装置を使用して測定した体積基準での平均粒径
の数値をいうものとする。以下、単に平均粒径というと
きは、この方法で測定した値をいうものとする。なお、
本明細書では、平均粒径は日機装株式会社製、商品名:
マイクロトラックFRA9220を用いて測定した。
In the acidic component-removing agent of the present invention, the average particle size of sodium bicarbonate refers to the numerical value of the average particle size on a volume basis measured using a laser diffraction / scattering type particle size distribution analyzer. . Hereinafter, when simply referred to as the average particle size, it refers to the value measured by this method. In addition,
In the present specification, the average particle size is manufactured by Nikkiso Co., Ltd., trade name:
It was measured using a Microtrac FRA9220.

【0010】本発明の酸性成分除去剤は、気体中に存在
する酸性成分と反応して、当該気体から酸性成分を除去
する。除去の対象である酸性成分は特に限定されず、塩
化水素、二酸化硫黄、三酸化硫黄、窒素酸化物等の各種
酸性成分に適用できる。特に、塩化水素等の塩素を含む
化合物に本発明の酸性成分除去剤を適用すると、従来に
比べ反応効率が高く、使用も容易である。以下、塩化水
素について説明を行うが、他の酸性成分についても同様
である。
The acidic component removing agent of the present invention reacts with an acidic component present in a gas to remove the acidic component from the gas. The acidic component to be removed is not particularly limited, and can be applied to various acidic components such as hydrogen chloride, sulfur dioxide, sulfur trioxide, and nitrogen oxide. In particular, when the acidic component-removing agent of the present invention is applied to a compound containing chlorine such as hydrogen chloride, the reaction efficiency is higher than before and the use is easy. Hereinafter, hydrogen chloride will be described, but the same applies to other acidic components.

【0011】炭酸水素ナトリウムを使用すると、焼成に
より炭酸水素ナトリウム粒子が炭酸ナトリウムに変換す
る際に、粒子が多孔質化して塩化水素と効率的に反応
し、塩化水素を効率よく除去できる。本発明者らは、焼
成前後の炭酸水素ナトリウムと炭酸ナトリウムの粒子径
と細孔分布と形状を詳細に測定及び観察することによ
り、その多孔質化により得られる細孔構造と塩化水素と
の反応特性とは、炭酸水素ナトリウムの平均粒径に敏感
に影響されることを見出し、本発明に至った。
When sodium bicarbonate is used, when sodium bicarbonate particles are converted into sodium carbonate by firing, the particles become porous and react efficiently with hydrogen chloride, so that hydrogen chloride can be removed efficiently. The present inventors measured and observed the particle diameter, pore distribution, and shape of sodium hydrogen carbonate and sodium carbonate before and after calcination in detail, and found that the reaction between the pore structure obtained by making the pores porous and hydrogen chloride. The inventors have found that the characteristics are sensitively affected by the average particle size of sodium hydrogen carbonate, and have reached the present invention.

【0012】本発明の酸性成分除去剤においては、炭酸
水素ナトリウムの平均粒径が1〜9μmの範囲にある。
炭酸水素ナトリウムの平均粒径が9μmを超える場合、
炭酸水素ナトリウムを焼成して炭酸ナトリウムとしたと
きに、炭酸水素ナトリウムの外表面の輪郭を維持したま
ま、直径が数十nm以下の微細な穴が空いたスポンジ状
の炭酸ナトリウム粒子となる。一方、炭酸水素ナトリウ
ムの平均粒径が9μm以下では、粒径に対して比較的大
きな直径の細孔が形成されるために、粒子形状は表面が
大きく凹凸して不定形の輪郭を呈するようになる。
In the acidic component-removing agent of the present invention, the average particle size of sodium hydrogen carbonate is in the range of 1 to 9 μm.
When the average particle size of sodium bicarbonate exceeds 9 μm,
When sodium bicarbonate is calcined into sodium carbonate, sponge-like sodium carbonate particles having fine holes with a diameter of several tens nm or less are obtained while maintaining the contour of the outer surface of sodium bicarbonate. On the other hand, when the average particle size of sodium bicarbonate is 9 μm or less, pores having a relatively large diameter with respect to the particle size are formed. Become.

【0013】本発明の要点は、平均粒径9μm以下の炭
酸水素ナトリウムが焼成されて炭酸ナトリウムとなった
ときに上記のような特殊な細孔構造が得られ、該細孔構
造が酸性ガスの吸収に非常に効果的なことにある。従来
技術においては、粒径の大きな炭酸水素ナトリウムによ
る酸性ガスの吸収の例示はあるものの、平均粒径9μm
以下の炭酸水素ナトリウムは使用されておらず、また炭
酸水素ナトリウムの微粒子化により焼成後の炭酸ナトリ
ウムの細孔構造、粒子形状が変化することも知られてい
ない。
The gist of the present invention is that when sodium bicarbonate having an average particle size of 9 μm or less is calcined to form sodium carbonate, the above-mentioned special pore structure is obtained, and the pore structure is formed of an acidic gas. It is very effective for absorption. In the prior art, although the absorption of acidic gas by sodium hydrogen carbonate having a large particle size is exemplified, the average particle size is 9 μm.
The following sodium hydrogen carbonate is not used, and it is not known that the fine particle size of sodium hydrogen carbonate changes the pore structure and the particle shape of sodium carbonate after firing.

【0014】本発明者らは、気流中を粒子が飛散してい
るときや、バグフィルターに捕捉されて粒子堆積層を形
成しその粒子間隙を塩化水素等の酸性成分のガスが流通
する場合において、上記形状により酸性成分の粒子表面
への拡散及び反応が容易になり、良好な酸性成分との反
応を促進すると推測している。炭酸水素ナトリウムは、
平均粒径が8μm以下である場合はさらに好ましい。
The present inventors have found that when particles are scattered in an air stream, or when a gas of an acidic component such as hydrogen chloride flows through the particle gap when the particles are trapped by a bag filter to form a particle deposition layer. It is presumed that the above-mentioned shape facilitates diffusion and reaction of the acidic component to the particle surface, and promotes a favorable reaction with the acidic component. Sodium bicarbonate
It is more preferable that the average particle size is 8 μm or less.

【0015】炭酸水素ナトリウムの平均粒径の下限は、
酸性成分との反応の点では特に限定されないが、平均粒
径が1μmに満たない場合は、互いに固着する傾向が強
く、後述の固着防止剤を併用した場合にも十分な流動性
を保持できなかったり、又は多量の固着防止剤の添加が
必要となるなどの問題が生じる。さらに、工業的に生産
するには、粉砕に要する設備と動力の費用とが過大にな
るおそれがある。
The lower limit of the average particle size of sodium hydrogen carbonate is as follows:
Although not particularly limited in terms of the reaction with the acidic component, when the average particle size is less than 1 μm, there is a strong tendency to adhere to each other, and sufficient fluidity cannot be maintained even when an anti-adhesion agent described below is used in combination. Or a large amount of an anti-sticking agent needs to be added. Furthermore, for industrial production, the cost of equipment and power required for grinding may be excessive.

【0016】本発明の酸性成分除去剤における炭酸水素
ナトリウムは、粉体層の水銀圧入法による細孔分布にお
いて、細孔直径1〜10μmの範囲の細孔容積が0.4
cm 3/g以上であることが好ましい。本明細書におい
て、粉体層の水銀圧入法による細孔分布は、炭酸水素ナ
トリウムの粉体層について水銀圧入法で測定した数値を
いい、具体的には、直径15mm、高さ30mmの円柱
状セル中に、0.25gの粉体をスパチュラから軽く降
り落とすようにして充填した粉体層で測定する。以下、
単に細孔容積というときは、この方法で測定したものを
いうものとする。
Bicarbonate in the acidic component remover of the present invention
Sodium is found in the pore distribution of the powder layer by the mercury intrusion method.
And the pore volume in the range of pore diameter of 1 to 10 μm is 0.4
cm Three/ G or more. In this specification
Therefore, the pore distribution of the powder layer by the mercury intrusion method is
The value measured by the mercury intrusion method for the thorium powder layer
Good, specifically, a cylinder with a diameter of 15 mm and a height of 30 mm
0.25 g of powder was lightly dropped from spatula
The measurement is performed on the powder layer that has been filled in such a way that it is dropped. Less than,
When simply called the pore volume, the value measured by this method
Shall be referred to.

【0017】さらに本発明の酸性成分除去剤における炭
酸水素ナトリウムは、200℃で1時間焼成したときに
得られる炭酸ナトリウムが、炭酸水素ナトリウム同様の
粉体特性を示すことが好ましい。すなわち、得られた炭
酸ナトリウムは、粉体層の水銀圧入法による細孔分布に
おいて、細孔直径1〜10μmの範囲の細孔容積が0.
4cm3/g以上であることが好ましい。
Further, it is preferable that the sodium bicarbonate obtained by baking at 200 ° C. for 1 hour has the same powder characteristics as sodium bicarbonate. That is, the obtained sodium carbonate has a pore volume in the range of pore diameter of 1 to 10 μm in the pore distribution of the powder layer by the mercury intrusion method of 0.1 μm.
It is preferably at least 4 cm 3 / g.

【0018】なお、炭酸水素ナトリウムを炭酸ナトリウ
ムに変換する焼成操作は、事前に約200℃に予熱した
直径60mmのシャーレに5gの炭酸水素ナトリウムを
薄く散布して、これを200℃に保持した熱風循環乾燥
機に静置して、1時間経過後に取り出すことにより行っ
た。
The baking operation for converting sodium bicarbonate into sodium carbonate is performed by spraying 5 g of sodium bicarbonate thinly on a 60 mm diameter petri dish preheated to about 200 ° C., and keeping the hot air maintained at 200 ° C. It carried out by leaving still in a circulation dryer and taking out after 1 hour.

【0019】炭酸水素ナトリウム及び炭酸ナトリウムの
細孔直径1〜10μmの範囲にある細孔容積が上述の範
囲にある場合は、高い酸性成分除去効率を発現できる。
この効果の発現の機構は詳細には明確ではないが、酸性
成分除去剤への酸性成分の拡散の容易さと、細孔直径1
〜10μmの範囲の細孔容積との間に相関関係があるも
のと考えられる。すなわち、本発明の酸性成分除去剤で
は、炭酸水素ナトリウムの平均粒径が9μm以下である
ため、炭酸ナトリウムになったときに1μm以上の大き
な直径の細孔が形成され、その結果、粒子形状は表面が
大きく凹凸となって不定形の輪郭を示すことによりガス
の拡散が容易になることが関与すると推測される。
When the pore volume of sodium hydrogen carbonate and sodium carbonate in the range of pore diameter of 1 to 10 μm is in the above range, high removal efficiency of acidic components can be exhibited.
The mechanism of the manifestation of this effect is not clear in detail, but the ease of diffusion of the acidic component to the acidic component removing agent and the pore diameter of 1
It is believed that there is a correlation between pore volume in the range of 〜1010 μm. That is, in the acidic component-removing agent of the present invention, since the average particle size of sodium hydrogen carbonate is 9 μm or less, pores having a large diameter of 1 μm or more are formed when sodium carbonate is formed, and as a result, the particle shape becomes It is presumed that the diffusion of gas is facilitated by the fact that the surface becomes largely uneven and shows an irregular contour.

【0020】炭酸水素ナトリウムの平均粒径が9μmを
超える場合の炭酸ナトリウムでは、直径1μm以上の細
孔は形成されないか、形成されても割合が低い。例え
ば、平均粒径83μmの炭酸水素ナトリウムを200℃
で1時間焼成した場合、得られる炭酸ナトリウムは、細
孔直径0.1〜1.0μmの細孔容積が0.30cm3
/g、細孔直径1.0〜10μmの細孔容積が0.04
cm3/gとなる。また、平均粒径21μmの炭酸水素
ナトリウムを200℃で1時間焼成した場合、得られる
炭酸ナトリウムは、細孔直径0.1〜1.0μmの細孔
容積が0.28cm3/g、細孔直径1.0〜10μm
の細孔容積が0.24cm3/gとなる。
In the case where the average particle size of sodium bicarbonate exceeds 9 μm, pores having a diameter of 1 μm or more are not formed, or even if formed, the ratio is low. For example, sodium bicarbonate having an average particle size of 83 μm
When calcined for 1 hour, the resulting sodium carbonate has a pore volume of 0.30 cm 3 with a pore diameter of 0.1 to 1.0 μm.
/ G, pore volume of 1.0 to 10 μm is 0.04
cm 3 / g. When sodium bicarbonate having an average particle size of 21 μm is calcined at 200 ° C. for 1 hour, the obtained sodium carbonate has a pore volume of 0.18 to 1.0 μm, a pore volume of 0.28 cm 3 / g, 1.0 to 10 μm in diameter
Has a pore volume of 0.24 cm 3 / g.

【0021】すなわち、細孔の多くは細孔直径0.1〜
1.0μmであり、粒子に比較的細い細孔が空いた形状
となっている。そのため、酸性成分は細く長い流路を拡
散する必要が生じ、酸性成分の拡散に時間がかかるため
反応には不都合となる。一方、酸性成分を短い時間で除
去するのに効果があると考えられる細孔直径1.0〜1
0μmの細孔容積は0.4cm3/g未満になるため、
酸性成分の吸収性能が低い。
That is, most of the pores have a pore diameter of 0.1 to
1.0 μm, and the particles have a shape with relatively fine pores. For this reason, the acidic component needs to be diffused through a thin and long flow path, and it takes time to diffuse the acidic component, which is inconvenient for the reaction. On the other hand, a pore diameter of 1.0 to 1 which is considered to be effective for removing an acidic component in a short time.
Since the pore volume of 0 μm is less than 0.4 cm 3 / g,
Poor absorption of acidic components.

【0022】炭酸水素ナトリウムは、100℃以上の温
度で焼成すると、炭酸ナトリウムとなる。例えば、炭酸
水素ナトリウムを200℃で1時間焼成して得られた炭
酸ナトリウムを観察すると、焼成の前後で平均粒径に大
きな変化は生じない。具体的には、本発明者らが観察し
た、炭酸水素ナトリウムの平均粒径が0.7〜50μm
の範囲では、焼成前後で平均粒径がほとんど変化してい
ない。
When sodium bicarbonate is calcined at a temperature of 100 ° C. or higher, it becomes sodium carbonate. For example, when observing sodium carbonate obtained by baking sodium bicarbonate at 200 ° C. for 1 hour, no significant change occurs in the average particle size before and after baking. Specifically, the average particle size of sodium bicarbonate observed by the present inventors was 0.7 to 50 μm.
In the range, the average particle size hardly changes before and after firing.

【0023】炭酸水素ナトリウム(分子量84.01、
比重2.19)の真の体積と、該炭酸水素ナトリウムか
ら得られる炭酸ナトリウム(分子量105.99、比重
2.53)の真の体積との差は、炭酸ナトリウムの質量
を基準とした場合0.33cm3/gである。すなわ
ち、炭酸水素ナトリウムがその外形状を維持したまま炭
酸ナトリウムになる場合、この0.33cm3/gが炭
酸ナトリウムの細孔容積となる。この炭酸ナトリウム
が、塩化水素と反応して食塩(分子量58.44、比重
2.161)となった場合には、若干真の体積が増える
ため細孔容積が減少するが、それでも計算上0.19c
3/gの細孔容積が残る。これが消石灰などのカルシ
ウム系の酸性成分除去剤に比較して、炭酸水素ナトリウ
ムが反応率が高い理由の一つであり、本質的に有利な点
である。
Sodium hydrogen carbonate (molecular weight 84.01,
The difference between the true volume of specific gravity 2.19) and the true volume of sodium carbonate (molecular weight 105.99, specific gravity 2.53) obtained from the sodium hydrogencarbonate is 0 based on the mass of sodium carbonate. 0.33 cm 3 / g. That is, when sodium bicarbonate becomes sodium carbonate while maintaining its outer shape, 0.33 cm 3 / g is the pore volume of sodium carbonate. When this sodium carbonate reacts with hydrogen chloride to form a salt (molecular weight 58.44, specific gravity 2.161), the pore volume decreases due to a slight increase in the true volume. 19c
A pore volume of m 3 / g remains. This is one of the reasons why sodium bicarbonate has a higher reaction rate than calcium-based acidic component removers such as slaked lime, and is an inherently advantageous point.

【0024】従来のカルシウム系の酸性成分除去剤にお
いては、酸性成分の処理過程で過剰に使用された酸性成
分除去剤から塩化カルシウム以外に水不溶性のカルシウ
ム塩を生成し、固形廃棄物を生成する。一方、本発明の
酸性成分除去剤では、酸性成分の処理過程での生成物
は、例えば塩化水素の場合、主として塩化ナトリウム及
び炭酸ナトリウムである。このため、他の重金属等の飛
灰から分離すれば、水に溶解して処理できるので、固形
廃棄物の量を低減できる。この点では、カリウム系の酸
性成分除去剤も同様に有利であるが、カリウム系では吸
湿性が高く、また一般的に入手する際の価格の点でも炭
酸水素ナトリウムの方が有利である。
In the conventional calcium-based acidic component remover, a water-insoluble calcium salt other than calcium chloride is generated from the excessively used acidic component remover in the process of treating the acidic component to produce solid waste. . On the other hand, in the acidic component remover of the present invention, in the case of hydrogen chloride, the product in the process of treating the acidic component is mainly sodium chloride and sodium carbonate. For this reason, if separated from fly ash such as other heavy metals, it can be dissolved and treated in water, and the amount of solid waste can be reduced. In this respect, a potassium-based acid component remover is also advantageous, but potassium-based sodium bicarbonate is more advantageous in terms of high hygroscopicity and the price at the time of general availability.

【0025】[0025]

【発明の実施の形態】本発明の酸性成分除去剤は、例え
ば平均粒径50μm以上の炭酸水素ナトリウムを、平均
粒径が9μm以下になるように粉砕して製造できる。粉
砕法としては、乾式粉砕又は湿式粉砕のどちらも採用で
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The acidic component-removing agent of the present invention can be produced, for example, by pulverizing sodium bicarbonate having an average particle size of 50 μm or more so that the average particle size becomes 9 μm or less. As a pulverization method, either dry pulverization or wet pulverization can be adopted.

【0026】乾式粉砕の場合、衝撃式粉砕機(高速回転
する羽根等による粉砕機)、ジェットミル(衝突気流に
よる粉砕機)、ボールミル等を用いるのが好ましい。風
力式分級機を備えた衝撃式粉砕機を用い、粉砕機から排
出される粒子を分級して粗粒子は再度粉砕機に戻しなが
ら、炭酸水素ナトリウムを粉砕する場合は、高い収率で
目的の粒径の炭酸水素ナトリウムを得ることができるの
でより好ましい。また、ジェットミルを用いる場合も、
粉砕方法として微粒子化に適しており、ふるい分けによ
る粗粒子除去なしに、高い収率で目的の粒径の炭酸水素
ナトリウムを得ることができるので好ましい。
In the case of dry pulverization, it is preferable to use an impact pulverizer (a pulverizer using high-speed rotating blades), a jet mill (a pulverizer using an impinging air flow), a ball mill, or the like. When the sodium bicarbonate is pulverized while classifying the particles discharged from the pulverizer and returning the coarse particles to the pulverizer again using an impact type pulverizer equipped with an air classifier, the desired yield can be obtained with a high yield. It is more preferable since sodium bicarbonate having a particle size can be obtained. Also, when using a jet mill,
It is suitable for pulverization as a pulverization method, and is preferable because sodium bicarbonate having a target particle size can be obtained in a high yield without removing coarse particles by sieving.

【0027】湿式粉砕の場合、媒体撹拌ミル、ボールミ
ル等を用いるのが好ましい。特に、炭酸水素ナトリウム
を実質的に溶解せずまた変質しない液体中に炭酸水素ナ
トリウムを分散したスラリーを、媒体撹拌ミル又はボー
ルミルで湿式粉砕し、得られた炭酸水素ナトリウムを分
離して乾燥する場合は、平均粒径の小さな炭酸水素ナト
リウムを得ることができるので好ましい。炭酸水素ナト
リウムを実質的に溶解しない液体としては、炭酸水素ナ
トリウムのアルカリ性によって変質せず、かつ粘度が低
い液体が好ましい。
In the case of wet pulverization, it is preferable to use a medium stirring mill, a ball mill or the like. Particularly, when a slurry in which sodium bicarbonate is dispersed in a liquid that does not substantially dissolve or deteriorate sodium bicarbonate is wet-pulverized with a medium stirring mill or a ball mill, and the obtained sodium bicarbonate is separated and dried. Is preferable since sodium bicarbonate having a small average particle size can be obtained. As the liquid that does not substantially dissolve sodium bicarbonate, a liquid that does not deteriorate due to the alkalinity of sodium bicarbonate and has a low viscosity is preferable.

【0028】このような液体としては、メタノール、エ
タノール、アセトン、C49OCH 3等が挙げられる。
炭酸水素ナトリウムを実質的に溶解しない液体は、炭酸
水素ナトリウムの溶解度が3質量%以下であるものが好
ましく、溶解度が1質量%以下である場合はさらに好ま
しい。
[0028] Such liquids include methanol, ethanol and the like.
Tanol, acetone, CFourF9OCH ThreeAnd the like.
Liquids that do not substantially dissolve sodium bicarbonate
Those having a solubility of sodium hydrogen of 3% by mass or less are preferred.
More preferably, the solubility is 1% by mass or less.
New

【0029】本発明の酸性成分除去剤は、平均粒径1〜
9μmの炭酸水素ナトリウムの他に、炭酸水素カリウ
ム、消石灰、炭酸カルシウム、ゼオライト等の他の酸性
成分除去成分や活性炭などの吸着剤やシリカ、ケイ藻土
等の固結防止剤等を含有してもよい。酸性成分除去剤の
全質量中に、平均粒径1〜9μmの炭酸水素ナトリウム
は70%以上含まれることが好ましい。
The acidic component remover of the present invention has an average particle size of 1 to 1.
In addition to 9 μm sodium bicarbonate, it contains other components for removing acidic components such as potassium bicarbonate, slaked lime, calcium carbonate, zeolite, adsorbents such as activated carbon, and anti-caking agents such as silica and diatomaceous earth. Is also good. It is preferable that 70% or more of sodium bicarbonate having an average particle size of 1 to 9 μm is contained in the total mass of the acidic component remover.

【0030】本発明の酸性成分除去剤においては、従来
のものに比較して粒径の小さい炭酸水素ナトリウムを用
いるため、長期間保存しておくと固結する。本発明の酸
性成分除去剤は、貯槽から直接被処理ガス中に供給でき
るが、炭酸水素ナトリウムが固結すると粉体としての流
動性が低下して貯槽からの排出が悪化したり、煙道内で
の分散が不良となり酸性成分との反応性が低下する等の
おそれがある。そのため、酸性成分除去剤に固結防止剤
を添加するのが好ましい。固結防止剤の添加により流動
性が維持され、酸性成分除去剤の貯槽での貯留が可能と
なる。
In the acidic component removing agent of the present invention, since sodium bicarbonate having a smaller particle size than conventional ones is used, it solidifies when stored for a long period of time. The acidic component-removing agent of the present invention can be supplied directly from the storage tank into the gas to be treated, but when sodium bicarbonate solidifies, the fluidity as a powder is reduced, and the discharge from the storage tank is deteriorated. Dispersion may be poor and the reactivity with acidic components may be reduced. Therefore, it is preferable to add an anti-caking agent to the acidic component remover. By adding the anti-caking agent, the fluidity is maintained, and the acid component removing agent can be stored in the storage tank.

【0031】固結防止剤としては、ヒュームドシリカ、
ホワイトカーボン等のシリカ系粉体、塩基性炭酸マグネ
シウム、炭酸カルシウム、ケイ藻土等が好ましい。特
に、ヒュームドシリカと呼ばれる微細な無水ケイ酸が、
少量の添加で効果があるので好ましい。固結防止剤の含
有量としては、炭酸水素ナトリウムの粉砕程度や貯留状
態により最適量は異なるが、固結防止剤を含む酸性成分
除去剤全質量の0.1〜5%、特に0.3〜2%が好ま
しい。
As the anti-caking agent, fumed silica,
Preferred are silica-based powders such as white carbon, basic magnesium carbonate, calcium carbonate, diatomaceous earth and the like. In particular, fine silicic anhydride called fumed silica,
It is preferable because a small amount is effective. Although the optimum amount of the anti-caking agent varies depending on the degree of pulverization of sodium bicarbonate and the state of storage, it is 0.1 to 5% of the total mass of the acidic component remover containing the anti-caking agent, particularly 0.3%. ~ 2% is preferred.

【0032】ここでヒュームドシリカには、疎水化処理
したものと疎水化処理されず親水性のものとがある。疎
水化処理された疎水性シリカを使用すると、ガス中にお
ける酸性成分除去剤の流動性は向上するが、酸性成分の
処理後に水に溶解させると若干水に浮遊するので、湿式
の排ガス処理設備を有するボイラー排ガスの処理等にお
いては親水性のヒュームドシリカの使用が好ましい。例
えばボイラーでは排煙脱硫装置の吸収塔で水分の存在に
より疎水性シリカが水表面に凝集して膜が形成され、そ
の膜により発泡するおそれがあるためである。
Here, the fumed silica includes those subjected to a hydrophobic treatment and hydrophilic ones which are not subjected to a hydrophobic treatment. The use of hydrophobicized hydrophobic silica improves the fluidity of the acidic component remover in the gas, but if it is dissolved in water after the treatment of the acidic component, it slightly floats in the water. The use of hydrophilic fumed silica is preferred for treating boiler exhaust gas. For example, in a boiler, the presence of moisture in the absorption tower of a flue gas desulfurization apparatus causes hydrophobic silica to aggregate on the water surface to form a film, which may cause foaming.

【0033】一方、乾式でガスを処理する場合は、疎水
性シリカを固結防止剤として含んでも上記のような支障
はない。また、排ガス処理後に水に浮遊する疎水性シリ
カの割合は少量なので、ごみ焼却場の排ガス処理等にお
いて疎水性シリカを含む酸性成分除去剤を使用しそのダ
ストを水に溶解させ処理することができ、その場合は浮
遊部分を濾過等により除去すればよい。
On the other hand, when the gas is treated in a dry manner, the above problem does not occur even if hydrophobic silica is contained as an anti-caking agent. In addition, since the ratio of hydrophobic silica suspended in water after exhaust gas treatment is small, it is possible to dissolve the dust in water using an acidic component remover containing hydrophobic silica in exhaust gas treatment of garbage incineration plants, etc. In that case, the floating portion may be removed by filtration or the like.

【0034】また本発明の酸性成分除去剤の固結防止対
策としては、上記の方法以外に平均粒径50μm以上の
炭酸水素ナトリウムを酸性成分除去剤中に添加する方法
がある。この方法で得られる酸性成分除去剤は、レーザ
ー回折散乱法により測定した体積基準の平均粒径分布に
おいて、1〜9μmの範囲及び50〜200μmの範囲
の2箇所にピークを有し、かつ44μmを超える粒径の
粒子の体積が全体の10〜30%である炭酸水素ナトリ
ウムを含むことが好ましい。
As a countermeasure for preventing the solidification of the acidic component remover of the present invention, there is a method other than the above method in which sodium hydrogen carbonate having an average particle size of 50 μm or more is added to the acidic component remover. The acidic component remover obtained by this method has two peaks in a range of 1 to 9 μm and a range of 50 to 200 μm in a volume-based average particle size distribution measured by a laser diffraction scattering method, and 44 μm. It is preferable to include sodium bicarbonate in which the volume of particles having a particle size exceeding 10 to 30% of the total volume.

【0035】44μmを超える粒径の粒子の含有割合を
レーザー回折散乱で測定するかわりに、ふるい分けによ
り粒径分布を測定して比較的大粒径のものの含有割合
(質量比)を測定することもできる。炭酸水素ナトリウ
ムの結晶は多孔質や中空ではなくかつ密度が均一である
ため、含有割合は体積基準であっても質量基準であって
も同一とみなせる。具体的には、目開き45μmのふる
いを用い、ふるい分けによる粒径分布を測定する。この
とき45μmを超える粒径の炭酸水素ナトリウムが酸性
成分除去剤全質量の10〜30%である炭酸水素ナトリ
ウムを含み、かつレーザー回折散乱法により測定した体
積基準の平均粒径分布において、1〜9μmの範囲及び
50〜200μmの範囲の2箇所にピークを有すること
が好ましい。
Instead of measuring the content ratio of particles having a particle size exceeding 44 μm by laser diffraction scattering, it is also possible to measure the particle size distribution by sieving to measure the content ratio (mass ratio) of particles having a relatively large particle size. it can. Since the crystals of sodium bicarbonate are not porous or hollow and have a uniform density, the content ratio can be regarded as the same regardless of the volume basis or the mass basis. Specifically, a sieve having an opening of 45 μm is used, and the particle size distribution by sieving is measured. At this time, sodium bicarbonate having a particle size exceeding 45 μm contains sodium bicarbonate which is 10 to 30% of the total mass of the acidic component removing agent, and has a volume-based average particle size distribution measured by a laser diffraction scattering method of 1 to 1. It is preferable to have two peaks in the range of 9 μm and in the range of 50 to 200 μm.

【0036】平均粒径50〜200μmの炭酸水素ナト
リウムの含有量としては、酸性成分除去剤全質量中の1
0〜30%が好適である。平均粒径50〜200μmの
炭酸水素ナトリウムの含有量が10%に満たない場合
は、流動性向上の効果が実質的に得られない。平均粒径
50〜200μmの炭酸水素ナトリウムの含有量が30
%を超える場合は、酸性成分の除去効率が低下するおそ
れがある。
The content of sodium bicarbonate having an average particle size of 50 to 200 μm is 1% of the total mass of the acidic component remover.
0-30% is preferred. When the content of sodium hydrogen carbonate having an average particle size of 50 to 200 μm is less than 10%, the effect of improving the fluidity cannot be substantially obtained. When the content of sodium bicarbonate having an average particle size of 50 to 200 μm is 30
%, The removal efficiency of acidic components may be reduced.

【0037】このように平均粒径の大きい炭酸水素ナト
リウムを添加する場合、酸性成分除去剤自体(平均粒径
1〜9μmの炭酸水素ナトリウム及び平均粒径50〜2
00μmの炭酸水素ナトリウム)や酸性ガスとの反応生
成物が水に溶解する。このため、シリカ系粉体、塩基性
炭酸マグネシウム、炭酸カルシウム、ケイ藻土等の水へ
の溶解度の低い固結防止剤を用いた場合に比べて、酸性
成分の処理後の水不溶分量を削減でき、また微粉である
固結防止剤に起因する粉塵の発生も抑制できる。また、
平均粒径50μm以上の炭酸水素ナトリウムは、ヒュー
ムドシリカ等の固結防止剤と併用できる。このとき固結
防止剤の含有量は、固結防止剤及び平均粒径50〜20
0μmの炭酸水素ナトリウムを含む酸性成分除去剤全質
量の0.1〜5%が好ましい。この場合、平均粒径50
〜200μmの炭酸水素ナトリウムを添加しない場合に
比較して、固結防止剤の添加量を低減できる。
When sodium bicarbonate having a large average particle size is added, the acidic component remover itself (sodium bicarbonate having an average particle size of 1 to 9 μm and an average particle size of 50 to 2) is used.
(00 μm sodium bicarbonate) and the reaction product with acid gas dissolve in water. For this reason, the amount of water-insoluble matter after treatment of acidic components is reduced compared to the case where anti-caking agents with low solubility in water such as silica-based powder, basic magnesium carbonate, calcium carbonate, and diatomaceous earth are used. It is also possible to suppress the generation of dust due to the anti-caking agent which is fine powder. Also,
Sodium hydrogen carbonate having an average particle size of 50 μm or more can be used in combination with an anti-caking agent such as fumed silica. At this time, the content of the anti-caking agent depends on the anti-caking agent and the average particle size of 50 to 20.
It is preferably 0.1 to 5% of the total mass of the acidic component remover containing 0 µm of sodium bicarbonate. In this case, the average particle size is 50
The amount of the anti-caking agent to be added can be reduced as compared with a case where sodium bicarbonate of up to 200 μm is not added.

【0038】本発明の酸性成分除去剤により処理しうる
酸性成分を含む気体としては、ポリ塩化ビニル等の産業
廃棄物、都市ゴミ、医療廃棄物等の焼却炉等からの塩化
水素やフッ化水素を含む排気ガス、硫黄酸化物や窒素酸
化物を含有する燃焼ガス、各種製品の製造工程において
不純物として酸性成分が混入しているガス等が例示され
る。
Examples of the gas containing an acidic component that can be treated by the acidic component removing agent of the present invention include hydrogen chloride and hydrogen fluoride from an incinerator for industrial waste such as polyvinyl chloride, municipal waste, medical waste, and the like. Exhaust gas containing, for example, a combustion gas containing sulfur oxides and nitrogen oxides, a gas containing an acidic component as an impurity in the production process of various products, and the like.

【0039】本発明の酸性成分除去剤を用いて気体中の
酸性成分を除去する方法としては、酸性成分を含む気体
中に本発明の酸性成分除去剤を分散し、バグフィルター
などで捕集する方法が好ましい。この方法ではバグフィ
ルター表面に酸性成分除去剤の濾過層が形成されるの
で、効率的に酸性成分を除去できる。酸性成分を含む気
体の温度は、酸露点より高いことが好ましいが、ダイオ
キシンの生成抑制の観点からは低い温度が好ましく、具
体的には100〜200℃が好ましい。
As a method for removing an acidic component in a gas using the acidic component removing agent of the present invention, the acidic component removing agent of the present invention is dispersed in a gas containing an acidic component, and collected by a bag filter or the like. The method is preferred. According to this method, a filtration layer of the acidic component removing agent is formed on the surface of the bag filter, so that the acidic component can be efficiently removed. The temperature of the gas containing the acidic component is preferably higher than the acid dew point, but from the viewpoint of suppressing the generation of dioxin, a lower temperature is preferable, and specifically 100 to 200 ° C is preferable.

【0040】[0040]

【実施例】[例1]平均粒径92μmの炭酸水素ナトリ
ウム(旭硝子株式会社製、以下の各例においてすべて同
じ)を、風力式分級機を備えた衝撃式粉砕機(ホソカワ
ミクロン株式会社製、商品名:ACMパルベライザーA
CM10A型)を用い、粉砕機から排出される炭酸水素
ナトリウムを分級し、粗粒子は再度粉砕機に戻しながら
粉砕することにより、平均粒径9μmの炭酸水素ナトリ
ウムを得た。この粉砕機によると、150kgの炭酸水
素ナトリウムを1時間で前記の平均粒径にまで粉砕で
き、ふるい分けによる粗粒子除去は行わなかった。
[Example 1] An impact-type pulverizer equipped with a wind-type classifier (manufactured by Hosokawa Micron Corporation, manufactured by Asahi Glass Co., Ltd.) Name: ACM Pulverizer A
Using sodium chloride (CM10A), the sodium hydrogen carbonate discharged from the grinder was classified, and the coarse particles were ground again while returning to the grinder to obtain sodium hydrogen carbonate having an average particle size of 9 μm. According to this pulverizer, 150 kg of sodium bicarbonate could be pulverized to the above-mentioned average particle size in one hour, and coarse particles were not removed by sieving.

【0041】[例2(比較例)]平均粒径92μmの炭
酸水素ナトリウムを、高速度で回転する円盤に取り付け
られたピンと、固定された円盤に取り付けられたピンと
の衝撃と反発により粉砕する高速回転型ピンミル(株式
会社奈良機械製作所製、商品名:自由粉砕機M−5型)
にて500kgを1時間で微粉砕した後、目開き180
μmのふるいにて粗粒子を除去し、平均粒径38μmの
炭酸水素ナトリウムを得た。収率は83%であった。粗
粒子は粉砕機に戻して再粉砕することもできるが、例1
の粉砕機に比較すると工程は複雑となる。しかもふるい
を使用して工業的に大量に分級するのは、実質的には4
5μm程度が下限であり、9μm以下の粒径の炭酸水素
ナトリウムを得ることは困難である。
Example 2 (Comparative Example) High-speed pulverization of sodium bicarbonate having an average particle size of 92 μm by the impact and repulsion of a pin mounted on a disk rotating at a high speed and a pin mounted on a fixed disk. Rotary pin mill (Nara Machinery Co., Ltd., trade name: free crusher M-5)
500kg in 1 hour with fine grinding
The coarse particles were removed with a sieve having a size of μm to obtain sodium hydrogen carbonate having an average particle size of 38 μm. The yield was 83%. The coarse particles can be returned to the mill and remilled, but
The process becomes complicated as compared with the pulverizers of No. In addition, the use of a sieve to classify a large amount industrially is practically 4 times.
The lower limit is about 5 μm, and it is difficult to obtain sodium bicarbonate having a particle size of 9 μm or less.

【0042】[例3(比較例)]平均粒径92μmの炭
酸水素ナトリウムを、高速度で回転するハンマーにより
粉砕する高速回転型ハンマーミル(不二パウダル株式会
社製、商品名:アトマイザーC−20型)にて1000
kgを1時間で微粉砕した後、目開き100μmのふる
いにて粗粒子を除去し、平均粒径28μmの炭酸水素ナ
トリウムを得た。収率は8%であった。
Example 3 (Comparative Example) A high-speed rotary hammer mill (trade name: Atomizer C-20, manufactured by Fuji Paudal Co., Ltd.) that grinds sodium bicarbonate having an average particle size of 92 μm with a hammer rotating at a high speed. 1000)
After finely pulverizing the kg for 1 hour, coarse particles were removed with a sieve having openings of 100 μm to obtain sodium hydrogen carbonate having an average particle size of 28 μm. The yield was 8%.

【0043】[例4]平均粒径92μmの炭酸水素ナト
リウムを、ジェットミル(株式会社セイシン企業製、商
品名:シングルトラックジェットミルSTJ−200
型)にて6kgを1時間で微粉砕して、平均粒径4μm
の炭酸水素ナトリウムを得た。ふるい分けによる粗粒子
除去が不要であり、ほぼ全量を製品とすることができ
た。
Example 4 A sodium bicarbonate having an average particle size of 92 μm was added to a jet mill (trade name: Single Track Jet Mill STJ-200, manufactured by Seishin Enterprise Co., Ltd.).
6 kg in 1 hour with a mold) and average particle size 4 μm
Of sodium bicarbonate was obtained. It was not necessary to remove coarse particles by sieving, and almost the entire amount could be obtained as a product.

【0044】[例5]平均粒径92μmの炭酸水素ナト
リウムを、アルミナ製ボールミルを使用して湿式粉砕し
た。使用したボールミルは、内容積866cm3の卓上
式ボールミルで、ボールは10〜15mmφのアルミナ
製のものを430cm3、質量で782g入れて使用し
た。その中に前記炭酸水素ナトリウム60gとエタノー
ル200gを入れ、100rpmにて24時間運転し炭
酸水素ナトリウムの微粉スラリーを得た。得られた炭酸
水素ナトリウムスラリーを、ステンレス鋼製のバットに
薄く入れて、40℃の防爆型の乾燥器で5時間静置乾燥
して、平均粒径が8μmの炭酸水素ナトリウムを得た。
Example 5 Sodium hydrogen carbonate having an average particle size of 92 μm was wet-pulverized using an alumina ball mill. The ball mill used was a table-top ball mill having an internal volume of 866 cm 3 , and a ball made of alumina having a diameter of 10 to 15 mmφ was placed at 430 cm 3 and a mass of 782 g was used. The sodium hydrogencarbonate (60 g) and ethanol (200 g) were put therein and operated at 100 rpm for 24 hours to obtain a fine powder slurry of sodium hydrogencarbonate. The obtained sodium hydrogencarbonate slurry was thinly placed in a stainless steel vat and allowed to dry in a 40 ° C. explosion-proof dryer for 5 hours to obtain sodium hydrogencarbonate having an average particle size of 8 μm.

【0045】[例6]平均粒径92μmの炭酸水素ナト
リウム180gを、600gのC49OCH 3中に分散
した後、媒体撹拌ミルの1種であるビーズミルを使用し
て湿式粉砕することにより炭酸水素ナトリウムの微粉ス
ラリーを得た。使用したビーズミルは内容積1400c
3であり、材質はジルコニア製であった。ビーズは平
均径0.65mmφのジルコニア製のものを1120c
3入れて使用した。運転条件は、回転数を2500r
pmとし、20分間粉砕した。この炭酸水素ナトリウム
スラリーを、ステンレス鋼製のバットに薄く入れて、4
0℃の乾燥器で5時間静置乾燥して平均粒径1.5μm
の炭酸水素ナトリウムを得た。
Example 6 Nato hydrogen carbonate having an average particle size of 92 μm
180 g of lithium and 600 g of CFourF9OCH ThreeDispersed in
After that, using a bead mill, which is a kind of medium stirring mill,
Fine powder of sodium bicarbonate by wet grinding
Got a rally. The used bead mill has an internal volume of 1400c
mThreeAnd the material was zirconia. Beads are flat
Zirconia with an average diameter of 0.65 mmφ is 1120c
mThreeWe put and used. The operating conditions are as follows:
pm and ground for 20 minutes. This sodium bicarbonate
Put the slurry thinly in a stainless steel vat and add 4
Dry for 5 hours in a dryer at 0 ° C and average particle size of 1.5 μm
Of sodium bicarbonate was obtained.

【0046】[例7(比較例)]ビーズを平均径0.3
mmφのジルコニアビーズに変更し、粉砕時間を30分
とした以外は例6と同様にして炭酸水素ナトリウムスラ
リーを得て、例6と同様に乾燥して平均粒径0.5μm
の炭酸水素ナトリウムを得た。
Example 7 (Comparative Example) Beads having an average diameter of 0.3
A sodium hydrogen carbonate slurry was obtained in the same manner as in Example 6 except that the zirconia beads were changed to zirconia beads having a diameter of mm and the pulverization time was changed to 30 minutes.
Of sodium bicarbonate was obtained.

【0047】[細孔分布の測定]例1により得られた平
均粒径9μmの炭酸水素ナトリウムの粉体層としての細
孔分布を、水銀圧入式細孔径測定装置(株式会社島津製
作所製、商品名マイクロメリティックポアサイザ931
0)を使用して測定した。その結果を、細孔直径0.0
1μm未満、0.01〜0.1μm、0.1〜1μm、
1〜10μm、10μm超に対応する細孔容積として、
表1に示す。さらに、この炭酸水素ナトリウムについ
て、窒素吸着法によっても細孔分布を測定した。窒素吸
着法による測定は、窒素ガス吸着量測定式細孔分布測定
装置(日本ベル株式会社製、商品名ベルソープ28)を
使用して測定した。その結果を同様に表1に示す。
[Measurement of Pore Distribution] The pore distribution as a powder layer of sodium bicarbonate having an average particle diameter of 9 μm obtained in Example 1 was measured using a mercury intrusion-type pore diameter measuring device (manufactured by Shimadzu Corporation). Name Micromeritic Pore Sizer 931
0). The result is expressed as pore diameter 0.0
Less than 1 μm, 0.01-0.1 μm, 0.1-1 μm,
As a pore volume corresponding to 1 to 10 μm and more than 10 μm,
It is shown in Table 1. Further, the pore distribution of this sodium hydrogen carbonate was also measured by a nitrogen adsorption method. The measurement by the nitrogen adsorption method was performed using a nitrogen gas adsorption amount measurement type pore distribution measurement device (manufactured by Nippon Bell Co., Ltd., trade name: Bellsoap 28). Table 1 also shows the results.

【0048】表1において、水銀法細孔容積とは水銀圧
入法により測定した細孔容積であり、窒素法細孔容積と
は窒素吸着法により測定した細孔容積である。窒素法細
孔容積においては細孔直径1μm以上の部分は測定でき
ないので、表1では「−」で表した。この表記は以下の
表2においても同じである。
In Table 1, the mercury method pore volume is a pore volume measured by a mercury intrusion method, and the nitrogen method pore volume is a pore volume measured by a nitrogen adsorption method. In the nitrogen method pore volume, a portion having a pore diameter of 1 μm or more cannot be measured. This notation is the same in Table 2 below.

【0049】[0049]

【表1】 [Table 1]

【0050】表1からこの炭酸水素ナトリウムは、水銀
法細孔容積において細孔直径1〜10μmの部分に大部
分の細孔を有することがわかる。細孔直径が0.1μm
未満には実質的に細孔を有しない点は、水銀法細孔容積
及び窒素法細孔容積の両方から確認できる。
From Table 1, it can be seen that this sodium bicarbonate has most of the pores at the pore diameter of 1 to 10 μm in the mercury method pore volume. 0.1μm pore diameter
The point having less than substantially no pores can be confirmed from both the mercury method pore volume and the nitrogen method pore volume.

【0051】この炭酸水素ナトリウムを、200℃の恒
温乾燥器内に1時間静置し焼成したところ、平均粒径9
μmの炭酸ナトリウムが得られた。この炭酸ナトリウム
について、上述の炭酸水素ナトリウムと同様にして測定
した細孔分布を表2に示す。
When this sodium hydrogen carbonate was allowed to stand in a constant-temperature oven at 200 ° C. for 1 hour and calcined, the average particle size was 9%.
μm of sodium carbonate was obtained. Table 2 shows the pore distribution of this sodium carbonate measured in the same manner as the above-mentioned sodium hydrogen carbonate.

【0052】[0052]

【表2】 [Table 2]

【0053】表2から炭酸ナトリウムの細孔も、大部分
が細孔直径1〜10μmの範囲にあることがわかる。炭
酸ナトリウムでは細孔直径0.1〜1μmの細孔は若干
存在するが、細孔直径が0.1μm未満には実質的に細
孔を有しない点は、水銀法細孔容積及び窒素法細孔容積
の両方から確認できる。
From Table 2, it can be seen that most of the pores of sodium carbonate are in the range of pore diameter of 1 to 10 μm. In sodium carbonate, there are a few pores having a pore diameter of 0.1 to 1 μm, but when the pore diameter is less than 0.1 μm, there are substantially no pores. It can be confirmed from both pore volumes.

【0054】また、この炭酸水素ナトリウムと炭酸ナト
リウムについて、粒子形状を電子顕微鏡により観察した
ところ、炭酸水素ナトリウムは滑らかな粒子表面であっ
たが、炭酸ナトリウムの表面には内径が1μmから数μ
mまで程度の凹部が見られた。
When the particle shapes of the sodium hydrogen carbonate and sodium carbonate were observed with an electron microscope, the sodium bicarbonate had a smooth particle surface, but had an inner diameter of 1 μm to several μm on the surface of the sodium carbonate.
m.

【0055】次に、例2〜7で得られた炭酸水素ナトリ
ウムについて、例1と同様に細孔分布を測定した。その
うち、水銀圧入法による細孔直径が0.1〜1μmの細
孔容積を細孔容積Aとし、水銀圧入法による細孔直径が
1〜10μmの細孔容積を細孔容積Bとし、細孔容積A
及び細孔容積Bについてのみ表3に示す。表3において
は、例1のものを含め炭酸水素ナトリウムの平均粒径の
小さい順に並べ換えてある。また、例2〜7で得られた
炭酸水素ナトリウムは、細孔直径が0.1μm未満には
実質的に細孔を有しないことが、水銀法細孔容積及び窒
素法細孔容積の両方から確認できた。
Next, the pore distribution of the sodium hydrogen carbonate obtained in Examples 2 to 7 was measured in the same manner as in Example 1. Among them, a pore volume having a pore diameter of 0.1 to 1 μm by a mercury intrusion method is defined as a pore volume A, and a pore volume having a pore diameter of 1 to 10 μm by a mercury intrusion method is defined as a pore volume B. Volume A
And only the pore volume B is shown in Table 3. In Table 3, the results are rearranged in ascending order of the average particle size of sodium hydrogencarbonate including those of Example 1. Further, the sodium bicarbonate obtained in Examples 2 to 7 has substantially no pores with a pore diameter of less than 0.1 μm, from both the mercury method pore volume and the nitrogen method pore volume. It could be confirmed.

【0056】[0056]

【表3】 [Table 3]

【0057】次に、例2〜7で得られた炭酸水素ナトリ
ウムについて、例1と同様に200℃の恒温乾燥器内で
放置し、得られた炭酸ナトリウムについて例1と同様に
細孔分布を測定した。そのうち、細孔容積A及び細孔容
積Bについてのみ表4に示す。表4においては、例1の
炭酸水素ナトリウムから得られた炭酸ナトリウムの数値
を含め平均粒径の小さい順に並べ換えてある。また、こ
れらの炭酸水素ナトリウムは、細孔直径が0.1μm未
満には実質的に細孔を有しない点が、水銀法細孔容積及
び窒素法細孔容積の両方から確認できた。
Next, the sodium hydrogen carbonate obtained in Examples 2 to 7 was left in a thermostatic oven at 200 ° C. in the same manner as in Example 1, and the pore distribution of the obtained sodium carbonate was determined in the same manner as in Example 1. It was measured. Table 4 shows only the pore volume A and the pore volume B among them. In Table 4, the values are rearranged in ascending order of the average particle size, including the numerical values of sodium carbonate obtained from the sodium hydrogencarbonate of Example 1. In addition, it was confirmed from both the mercury method pore volume and the nitrogen method pore volume that these sodium bicarbonate had substantially no pores when the pore diameter was less than 0.1 μm.

【0058】[0058]

【表4】 [Table 4]

【0059】[酸性成分の除去試験]例1〜7で得られ
た、粉砕後の炭酸水素ナトリウムについて、酸性成分の
吸収性能を以下のように評価した。縦に保持したフッ素
樹脂製パイプ(内径50mm、長さ100mm)に炭酸
水素ナトリウム30gを充填し、両端をガラス濾布で封
じた。このパイプの下部から上部に向かって、ガラス濾
布を通して200℃に加熱された空気を流し、濾布に入
る手前で濃度600体積ppmとなるように気体状の塩
化水素を注入した。
[Removal Test of Acidic Component] With respect to the ground sodium bicarbonate obtained in Examples 1 to 7, the absorption performance of the acidic component was evaluated as follows. A vertically held fluororesin pipe (inner diameter 50 mm, length 100 mm) was filled with 30 g of sodium bicarbonate, and both ends were sealed with a glass filter cloth. Air heated to 200 ° C. was passed through the glass filter cloth from the lower part to the upper part of the pipe, and gaseous hydrogen chloride was injected so as to have a concentration of 600 vol ppm before entering the filter cloth.

【0060】流した塩化水素の総量は、試料の炭酸水素
ナトリウムが全量炭酸ナトリウムとなったときの、その
炭酸ナトリウムと塩化水素との理論反応量の2倍とし
た。空気の流速は炭酸水素ナトリウム充填層の断面積に
対して1m/sとした。パイプから取り出した炭酸ナト
リウムを、1モル/リットルの塩酸で中和滴定して未反
応量を求めることにより、塩化水素の吸収率を求めた。
その結果を表5に示す。なお、表5においては、炭酸水
素ナトリウムの平均粒径の小さい順に並べ換えてある。
The total amount of hydrogen chloride flowed was twice the theoretical reaction amount of sodium carbonate and hydrogen chloride when the total amount of sodium hydrogen carbonate in the sample was sodium carbonate. The air flow rate was 1 m / s with respect to the cross-sectional area of the sodium hydrogen carbonate packed bed. The sodium carbonate removed from the pipe was neutralized and titrated with 1 mol / l hydrochloric acid to determine the unreacted amount, thereby obtaining the absorption rate of hydrogen chloride.
Table 5 shows the results. In Table 5, the particles are rearranged in ascending order of the average particle size of sodium hydrogen carbonate.

【0061】[0061]

【表5】 [Table 5]

【0062】例1の酸性成分除去剤では、91%という
高い除去率が達成されたのに対し、例2及び例3では、
低い除去率しか得られなかった。例2及び例3において
は、例1に比べて、細孔直径0.1〜1.0μmの細孔
が残り、細孔直径1〜10μmの細孔容積の発達が不十
分なために塩化水素ガスの拡散律速となり、塩素ガスの
吸収率が低かったと推定される。実際、例2及び例3の
粒子では、電子顕微鏡による観察で、粒子表面がスポン
ジ状に0.1〜1.0μmの穴が空いていることが確認
できた。また、例7で塩化水素ガスの除去率が低い原因
は、酸性成分除去剤が微粉のために凝集しやすく、パイ
プに充填時に充填構造の不均一が発生し、炭酸水素ナト
リウムの充填層内で塩化水素ガスが偏流したためと推測
される。
With the acidic component remover of Example 1, a high removal rate of 91% was achieved, whereas in Examples 2 and 3,
Only low removal rates were obtained. In Examples 2 and 3, as compared with Example 1, pores having a pore diameter of 0.1 to 1.0 μm remained, and the development of pore volume having a pore diameter of 1 to 10 μm was insufficient. It is estimated that the diffusion of the gas became rate-limiting and the absorption rate of chlorine gas was low. In fact, for the particles of Examples 2 and 3, it was confirmed by observation with an electron microscope that the surfaces of the particles had sponge-like holes of 0.1 to 1.0 μm. In addition, the reason why the removal rate of hydrogen chloride gas is low in Example 7 is that the acidic component remover is easily aggregated due to the fine powder, and the filling structure becomes non-uniform when filling the pipe. It is estimated that the hydrogen chloride gas was drifted.

【0063】[例8]例1の微粉砕した炭酸水素ナトリ
ウムに、固結防止剤として平均粒径0.01μmの疎水
性のヒュームドシリカ(株式会社トクヤマ製、商品名レ
オロシールMT−10)を混合物の全量中に1.0質量
%になるよう添加して混合した。評価方法として、二分
割セルを使用する吊り下げ式粉体層付着力測定器(ホソ
カワミクロン株式会社製、商品名コヒテスタ)を使用し
て評価した。
[Example 8] Hydrophobic fumed silica having an average particle diameter of 0.01 µm (trade name: Leolosil MT-10, manufactured by Tokuyama Corporation) was added to the finely ground sodium hydrogen carbonate of Example 1 as an anti-caking agent. The mixture was added and mixed so as to be 1.0% by mass in the whole amount of the mixture. As an evaluation method, evaluation was carried out using a suspended powder layer adhesion measuring instrument (manufactured by Hosokawa Micron Co., Ltd., trade name: Kohitester) using a two-piece cell.

【0064】すなわち、試料を、2つの円筒(内径50
mm、高さ20mm)を底面で重ねてなる二分割セルに
充填し、予圧密荷重8.8×103Paで加圧し、粉体
層を圧縮した。このセルの片方を毎分2mmで円筒の軸
に垂直な方向に引張り、円筒の底面部で粉体層に剪断応
力を与え、粉体層の破断時の引張り力を測定した。固結
防止剤を添加したものは0.9×102Paであり、一
方、固結防止剤を添加しない炭酸水素ナトリウムは4.
3×102Paであった。同様にして固結防止剤の添加
量を変更して測定した破断時の引張り力を単位Paで表
6に示す。
That is, the sample was placed in two cylinders (inner diameter 50
(height: 20 mm, height: 20 mm) was packed in a two-segment cell formed by stacking on the bottom surface, and pressurized with a preconsolidation load of 8.8 × 10 3 Pa to compress the powder layer. One of the cells was pulled at a rate of 2 mm per minute in a direction perpendicular to the axis of the cylinder, a shear stress was applied to the powder layer at the bottom of the cylinder, and the tensile force at break of the powder layer was measured. 0.9 × 10 2 Pa with the anti-caking agent added, whereas sodium bicarbonate without the anti-caking agent added 4.
It was 3 × 10 2 Pa. Table 6 shows the tensile force at break measured in the same manner by changing the addition amount of the anti-caking agent in units of Pa.

【0065】また、これらの炭酸水素ナトリウム500
kgをフレキシブルコンテナに充填し、60日後の状況
を確認したところ、ヒュームドシリカを1%添加した炭
酸水素ナトリウムには固結が見られなかった。一方、ヒ
ュームドシリカを添加しなかった炭酸水素ナトリウムに
はこぶし大に固結した部分が散見された。
In addition, these sodium hydrogen carbonate 500
kg was filled in a flexible container, and the state after 60 days was confirmed. As a result, no solidification was observed in sodium hydrogen carbonate to which 1% of fumed silica was added. On the other hand, in the sodium bicarbonate to which fumed silica was not added, a portion solidified in a fist-sized manner was observed.

【0066】固結防止剤として平均粒径11.8μmの
ホワイトカーボン(株式会社トクヤマ製、商品名トクシ
ールGU−N)及び平均粒径9.6μmの塩基性炭酸マ
グネシウム(旭硝子株式会社製)を用い、同様に粉体層
の破断時の引張り力を測定した結果も表6に示す。ヒュ
ームドシリカの添加が最も効果的であることがわかる。
As anti-caking agent, white carbon having an average particle size of 11.8 μm (manufactured by Tokuyama Co., Ltd., trade name: Tokusil GU-N) and basic magnesium carbonate having an average particle size of 9.6 μm (manufactured by Asahi Glass Co., Ltd.) were used. Table 6 also shows the results of similarly measuring the tensile force at the time of breaking of the powder layer. It can be seen that the addition of fumed silica is most effective.

【0067】[0067]

【表6】 [Table 6]

【0068】[例9(実施例)]例5の平均粒径8μm
の炭酸水素ナトリウムと平均粒径92μmの炭酸水素ナ
トリウムとを表7に示す割合で混合した。この混合物
は、レーザー回折散乱法により測定した体積基準の平均
粒径分布において、8μmのあたりと92μmのあたり
にピークを有していた。例8と同様にして粉体層破断時
の引張り力を測定した。結果を表7に示す。なお、炭酸
水素ナトリウム粒子全質量中の、目開き45μmのふる
いを通過しない粒子の含有率は、以下のように測定し
た。
Example 9 (Example) The average particle size of Example 5 was 8 μm.
Of sodium bicarbonate and sodium bicarbonate having an average particle size of 92 μm were mixed at the ratio shown in Table 7. This mixture had peaks at around 8 μm and around 92 μm in a volume-based average particle size distribution measured by a laser diffraction scattering method. The tensile force at the time of breaking the powder layer was measured in the same manner as in Example 8. Table 7 shows the results. The content of particles not passing through a sieve having an opening of 45 μm in the total mass of the sodium hydrogencarbonate particles was measured as follows.

【0069】すなわち、内直径200mmのふるいであ
って、目開きがそれぞれ250μm、150μm、10
5μm、75μm及び45μmである5種類のふるいを
この順に上から積み重ね、ロータップ振とう機で15分
振とうし、粒径分布(質量基準)を測定した。そして、
目開き45μmのふるいを通過しなかった粒子の含有率
を算出し、表7に示した。
That is, the sieve has an inner diameter of 200 mm and the openings are 250 μm, 150 μm and 10 μm, respectively.
Five sieves of 5 μm, 75 μm and 45 μm were stacked in this order from above and shaken for 15 minutes with a low tap shaker to measure the particle size distribution (mass basis). And
The content of particles that did not pass through a sieve having an opening of 45 μm was calculated, and is shown in Table 7.

【0070】[0070]

【表7】 [Table 7]

【0071】[0071]

【発明の効果】本発明の酸性成分除去剤は、排ガス中の
酸性成分、特に塩化水素成分の除去において工業的に有
効に使用できる。本発明では、酸性成分除去剤と塩化水
素ガスとの反応性が良好であるので、少量の酸性成分除
去剤で充分に塩化水素ガスを吸着除去できる。また、反
応生成物である食塩や未反応の炭酸ナトリウムは水溶性
であるので、排ガス中の酸性成分除去後のダストは水に
溶解する。そして、重金属類は、水酸化物や硫化物や炭
酸化物として選択的に沈殿としたり、イオン交換するこ
とにより、食塩と炭酸ナトリウムの水溶液から分離除去
できる。また、水溶液中に不溶の酸化物はそのまま分離
できる。したがって、本発明によれば廃棄物量を大幅に
削減できるという優れた効果がある。
The acidic component remover of the present invention can be used industrially effectively in removing acidic components, particularly hydrogen chloride components, in exhaust gas. In the present invention, since the reactivity between the acidic component remover and the hydrogen chloride gas is good, a small amount of the acidic component remover can sufficiently adsorb and remove the hydrogen chloride gas. In addition, since salt and unreacted sodium carbonate, which are reaction products, are water-soluble, dust after removal of acidic components in exhaust gas is dissolved in water. The heavy metals can be separated and removed from the aqueous solution of sodium chloride and sodium carbonate by selectively precipitating them as hydroxides, sulfides or carbonates, or by performing ion exchange. Further, oxides insoluble in the aqueous solution can be separated as they are. Therefore, according to the present invention, there is an excellent effect that the amount of waste can be greatly reduced.

【0072】すなわち、本発明の酸性成分除去剤は、ゴ
ミ焼却場等から排出される排ガス中の酸性成分、特に塩
化水素を効率良く除去し、また発生する焼却残さを減少
でき、最終処分場でカルシウムスケールの発生を防止で
きるなどの効果を有し、環境への影響を大幅に低減でき
る。
That is, the acidic component remover of the present invention can efficiently remove acidic components, particularly hydrogen chloride, in exhaust gas discharged from a garbage incineration plant and the like, and can reduce incineration residues generated. It has the effect of preventing the generation of calcium scale and can greatly reduce the effect on the environment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B02C 19/06 C01D 7/38 23/30 B01D 53/34 134A C01D 7/38 (72)発明者 田中 正治 千葉県市原市五井海岸10番地 旭硝子株式 会社内 (72)発明者 日下 良 千葉県市原市五井海岸10番地 旭硝子株式 会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B02C 19/06 C01D 7/38 23/30 B01D 53/34 134A C01D 7/38 (72) Inventor Masaharu Tanaka (72) Inventor Ryo Kusaka 10 Goi Kaigan, Ichihara-shi, Chiba Prefecture Asahi Glass Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】レーザー回折散乱法により測定した体積基
準の平均粒径が1〜9μmの炭酸水素ナトリウムを含む
酸性成分除去剤。
An acidic component-removing agent containing sodium hydrogencarbonate having a volume-based average particle size of 1 to 9 μm as measured by a laser diffraction scattering method.
【請求項2】炭酸水素ナトリウムは、粉体層の水銀圧入
法による細孔分布において、細孔直径1〜10μmの範
囲の細孔容積が0.4cm3/g以上である請求項1に
記載の酸性成分除去剤。
2. The sodium bicarbonate according to claim 1, wherein a pore volume in a pore diameter range of 1 to 10 μm is 0.4 cm 3 / g or more in a pore distribution of the powder layer by a mercury intrusion method. Acid component remover.
【請求項3】炭酸水素ナトリウムは、炭酸水素ナトリウ
ムを200℃で1時間焼成したときに得られる炭酸ナト
リウムの粉体層の水銀圧入法による細孔分布において、
細孔直径1〜10μmの範囲の細孔容積が0.4cm3
/g以上である請求項1又は2に記載の酸性成分除去
剤。
3. The sodium bicarbonate is obtained by calcination of sodium bicarbonate at 200 ° C. for 1 hour, in a pore distribution of a powder layer of sodium carbonate obtained by a mercury intrusion method.
The pore volume in the range of pore diameter of 1 to 10 μm is 0.4 cm 3
/ G or more.
【請求項4】レーザー回折散乱法により測定した体積基
準の平均粒径分布において、1〜9μmの範囲及び50
〜200μmの範囲の2箇所にピークを有し、かつふる
い分けによる分析において目開き45μmのふるいを通
過しない粒子の質量が全体の10〜30%である炭酸水
素ナトリウムを含む酸性成分除去剤。
4. An average particle size distribution on a volume basis measured by a laser diffraction scattering method in a range of 1 to 9 μm and 50
An acidic component-removing agent containing sodium hydrogencarbonate, which has two peaks in the range of 200200 μm and the mass of particles that do not pass through a sieve having an opening of 45 μm in the analysis by sieving is 10 to 30% of the whole.
【請求項5】固結防止剤を含有する請求項1、2、3又
は4に記載の酸性成分除去剤。
5. The acidic component-removing agent according to claim 1, further comprising an anti-caking agent.
【請求項6】固結防止剤がシリカである請求項5に記載
の酸性成分除去剤。
6. The acidic component-removing agent according to claim 5, wherein the anti-caking agent is silica.
【請求項7】除去される酸性成分が、塩化水素である請
求項1、2、3、4、5又は6に記載の酸性成分除去
剤。
7. The acidic component remover according to claim 1, wherein the acidic component to be removed is hydrogen chloride.
【請求項8】請求項1、2又は3に記載の酸性成分除去
剤の製造方法であって、風力式分級機を備えた衝撃式粉
砕機を用い、粉砕機から排出される粒子を分級して粗粒
子は再度粉砕機に戻しながら、炭酸水素ナトリウムを粉
砕することを特徴とする酸性成分除去剤の製造方法。
8. The method for producing an acidic component-removing agent according to claim 1, wherein the particles discharged from the pulverizer are classified using an impact pulverizer equipped with an air classifier. A process for pulverizing sodium bicarbonate while returning the coarse particles to the pulverizer again.
【請求項9】請求項1、2又は3に記載の酸性成分除去
剤の製造方法であって、ジェットミルを用いて炭酸水素
ナトリウムを粉砕することを特徴とする酸性成分除去剤
の製造方法。
9. The method for producing an acidic component-removing agent according to claim 1, wherein the sodium bicarbonate is pulverized using a jet mill.
【請求項10】請求項1、2又は3に記載の酸性成分除
去剤の製造方法であって、炭酸水素ナトリウムを実質的
に溶解しない液体中に炭酸水素ナトリウムを分散させて
スラリーとなし、該スラリーを媒体撹拌ミル又はボール
ミルで湿式粉砕し、得られた炭酸水素ナトリウムを分離
して乾燥することを特徴とする酸性成分除去剤の製造方
法。
10. The method for producing an acidic component-removing agent according to claim 1, wherein sodium bicarbonate is dispersed in a liquid that does not substantially dissolve sodium bicarbonate to form a slurry. A method for producing an acidic component-removing agent, comprising wet-grinding a slurry with a medium stirring mill or a ball mill, separating and drying the obtained sodium hydrogen carbonate.
【請求項11】請求項1、2、3、4、5、6又は7に
記載の酸性成分除去剤を、処理すべき気体中に分散し、
バグフィルターで捕集することを特徴とする気体中の酸
性成分除去方法。
11. An acidic component-removing agent according to claim 1, dispersed in a gas to be treated,
A method for removing acidic components in a gas, wherein the acidic components are collected by a bag filter.
【請求項12】レーザー回折散乱法により測定した体積
基準の平均粒径が1〜9μmの炭酸水素ナトリウムと固
結防止剤として疎水性シリカとを含む酸性成分除去剤を
添加することを特徴とするゴミ焼却場の排ガスの酸性成
分除去方法。
12. An acidic component-removing agent containing sodium bicarbonate having an average particle diameter of 1 to 9 μm on a volume basis measured by a laser diffraction scattering method and hydrophobic silica as an anti-caking agent is added. A method for removing acidic components from exhaust gas from garbage incineration plants.
JP33581499A 1998-11-26 1999-11-26 Acid component removal agent and acid component removal method Expired - Lifetime JP3840858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33581499A JP3840858B2 (en) 1998-11-26 1999-11-26 Acid component removal agent and acid component removal method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-335839 1998-11-26
JP33583998 1998-11-26
JP33581499A JP3840858B2 (en) 1998-11-26 1999-11-26 Acid component removal agent and acid component removal method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006112258A Division JP4259539B2 (en) 1998-11-26 2006-04-14 Acid component removal agent and acid component removal method

Publications (3)

Publication Number Publication Date
JP2000218128A true JP2000218128A (en) 2000-08-08
JP2000218128A5 JP2000218128A5 (en) 2006-03-02
JP3840858B2 JP3840858B2 (en) 2006-11-01

Family

ID=26575276

Family Applications (2)

Application Number Title Priority Date Filing Date
JP33581499A Expired - Lifetime JP3840858B2 (en) 1998-11-26 1999-11-26 Acid component removal agent and acid component removal method
JP2006112258A Expired - Lifetime JP4259539B2 (en) 1998-11-26 2006-04-14 Acid component removal agent and acid component removal method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006112258A Expired - Lifetime JP4259539B2 (en) 1998-11-26 2006-04-14 Acid component removal agent and acid component removal method

Country Status (1)

Country Link
JP (2) JP3840858B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104439A (en) * 1997-10-01 1999-04-20 Asahi Glass Co Ltd Removing agent for acidic ingredient in gas and removal of acidic ingredient
JP2001314757A (en) * 2000-05-08 2001-11-13 Mitsui Eng & Shipbuild Co Ltd Sodium type dechlorinating agent and waste treating apparatus
JP2002263441A (en) * 2001-03-12 2002-09-17 Mitsubishi Heavy Ind Ltd Blue smoke generation preventive equipment
JP2002282650A (en) * 2001-03-26 2002-10-02 Mitsui Eng & Shipbuild Co Ltd Waste combustion exhaust gas treatment apparatus and waste treatment system
JP2003001054A (en) * 2001-06-21 2003-01-07 Mitsubishi Heavy Ind Ltd Apparatus for removing so3 component in exhaust gas
JP2003010633A (en) * 2001-07-04 2003-01-14 Asahi Glass Co Ltd Gas treatment method
JP2004082103A (en) * 2002-08-27 2004-03-18 Asahi Glass Co Ltd Method of treating gas containing so2
JP2006289365A (en) * 2006-05-08 2006-10-26 Mitsui Eng & Shipbuild Co Ltd Sodium type desalting agent and waste treatment apparatus
JP2007525317A (en) * 2003-12-24 2007-09-06 ソシエテ アノニム ロワ ルシェルシュ エ ディベロプマン Powder composition based on calcium / magnesium compounds
JP2008012498A (en) * 2006-07-10 2008-01-24 Takuma Co Ltd Exhaust gas treatment method and exhaust gas treatment apparatus
JP2008142694A (en) * 2006-08-18 2008-06-26 Asahi Glass Co Ltd Acid component-removing agent and its manufacturing method
JP2009507632A (en) * 2005-09-15 2009-02-26 ソルベイ・ケミカルズ・インコーポレーテッド Removal of sulfur trioxide from exhaust gas stream
JP2011200777A (en) * 2010-03-25 2011-10-13 Kurita Water Ind Ltd Treating method and treating agent of combustion exhaust gas
WO2012036012A1 (en) * 2010-09-16 2012-03-22 旭硝子株式会社 Production method for acidic component remover, and method for removing acidic component in gas
CN102728602A (en) * 2011-03-29 2012-10-17 栗田工业株式会社 Processing method of solid objects having heavy metal
JP2013010643A (en) * 2011-06-28 2013-01-17 Idemitsu Kosan Co Ltd Method for producing inorganic metal salt
KR20140126261A (en) 2013-04-22 2014-10-30 쿠리타 고교 가부시키가이샤 Method for stabilizing acid gas and combustion effluent gas treating apparatus
KR20170117032A (en) 2015-02-16 2017-10-20 고리츠다이가쿠호징 오사카후리츠다이가쿠 Exhaust gas treatment method and exhaust gas treatment device
WO2018117247A1 (en) * 2016-12-22 2018-06-28 三井化学株式会社 METHOD FOR PRODUCING POROUS MOLDED BODY, METHOD FOR PRODUCING CATALYST FOR α-OLEFIN DIMERIZATION, METHOD FOR PRODUCING α-OLEFIN DIMER, POROUS MOLDED BODY, AND CATALYST FOR α-OLEFIN DIMERIZATION
WO2018142651A1 (en) * 2017-02-01 2018-08-09 栗田工業株式会社 Acid gas treatment agent

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045226B2 (en) * 2006-08-18 2012-10-10 旭硝子株式会社 Acid component removing agent and method for producing the same
JP2009018262A (en) * 2007-07-12 2009-01-29 Asahi Glass Co Ltd Acidic component removing agent and method of manufacturing the same
JP6183441B2 (en) * 2015-11-24 2017-08-23 栗田工業株式会社 Acid gas treating agent and acid gas treating method
JP6927215B2 (en) * 2016-07-12 2021-08-25 Agc株式会社 Acid component remover, its manufacturing method and acid component removal method
CN111530207A (en) * 2020-05-08 2020-08-14 黄龙标 Viscous gas-liquid opposite-flushing type high-temperature flue gas discharge device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104439A (en) * 1997-10-01 1999-04-20 Asahi Glass Co Ltd Removing agent for acidic ingredient in gas and removal of acidic ingredient
JP2001314757A (en) * 2000-05-08 2001-11-13 Mitsui Eng & Shipbuild Co Ltd Sodium type dechlorinating agent and waste treating apparatus
JP2002263441A (en) * 2001-03-12 2002-09-17 Mitsubishi Heavy Ind Ltd Blue smoke generation preventive equipment
JP2002282650A (en) * 2001-03-26 2002-10-02 Mitsui Eng & Shipbuild Co Ltd Waste combustion exhaust gas treatment apparatus and waste treatment system
JP2003001054A (en) * 2001-06-21 2003-01-07 Mitsubishi Heavy Ind Ltd Apparatus for removing so3 component in exhaust gas
JP2003010633A (en) * 2001-07-04 2003-01-14 Asahi Glass Co Ltd Gas treatment method
JP2004082103A (en) * 2002-08-27 2004-03-18 Asahi Glass Co Ltd Method of treating gas containing so2
JP2007525317A (en) * 2003-12-24 2007-09-06 ソシエテ アノニム ロワ ルシェルシュ エ ディベロプマン Powder composition based on calcium / magnesium compounds
JP4653116B2 (en) * 2003-12-24 2011-03-16 ソシエテ アノニム ロワ ルシェルシュ エ ディベロプマン Powder composition based on calcium / magnesium compounds
JP2009507632A (en) * 2005-09-15 2009-02-26 ソルベイ・ケミカルズ・インコーポレーテッド Removal of sulfur trioxide from exhaust gas stream
JP2006289365A (en) * 2006-05-08 2006-10-26 Mitsui Eng & Shipbuild Co Ltd Sodium type desalting agent and waste treatment apparatus
JP2008012498A (en) * 2006-07-10 2008-01-24 Takuma Co Ltd Exhaust gas treatment method and exhaust gas treatment apparatus
JP2008142694A (en) * 2006-08-18 2008-06-26 Asahi Glass Co Ltd Acid component-removing agent and its manufacturing method
JP2011200777A (en) * 2010-03-25 2011-10-13 Kurita Water Ind Ltd Treating method and treating agent of combustion exhaust gas
WO2012036012A1 (en) * 2010-09-16 2012-03-22 旭硝子株式会社 Production method for acidic component remover, and method for removing acidic component in gas
JPWO2012036012A1 (en) * 2010-09-16 2014-02-03 旭硝子株式会社 Method for producing acidic component remover and method for removing acidic component in gas
JP5799955B2 (en) * 2010-09-16 2015-10-28 旭硝子株式会社 Method for producing acidic component remover and method for removing acidic component in gas
CN102728602A (en) * 2011-03-29 2012-10-17 栗田工业株式会社 Processing method of solid objects having heavy metal
JP2013010643A (en) * 2011-06-28 2013-01-17 Idemitsu Kosan Co Ltd Method for producing inorganic metal salt
KR20140126261A (en) 2013-04-22 2014-10-30 쿠리타 고교 가부시키가이샤 Method for stabilizing acid gas and combustion effluent gas treating apparatus
JP2014213213A (en) * 2013-04-22 2014-11-17 栗田工業株式会社 Method for stabilizing acid gas and combustion exhaust gas treatment facility
KR20170117032A (en) 2015-02-16 2017-10-20 고리츠다이가쿠호징 오사카후리츠다이가쿠 Exhaust gas treatment method and exhaust gas treatment device
WO2018117247A1 (en) * 2016-12-22 2018-06-28 三井化学株式会社 METHOD FOR PRODUCING POROUS MOLDED BODY, METHOD FOR PRODUCING CATALYST FOR α-OLEFIN DIMERIZATION, METHOD FOR PRODUCING α-OLEFIN DIMER, POROUS MOLDED BODY, AND CATALYST FOR α-OLEFIN DIMERIZATION
CN110114143A (en) * 2016-12-22 2019-08-09 三井化学株式会社 The manufacturing method of Porous formed body, the manufacturing method of alpha-olefin dimerization catalyst, the manufacturing method of alpha-olefin dimer, Porous formed body and alpha-olefin dimerization catalyst
JPWO2018117247A1 (en) * 2016-12-22 2019-10-31 三井化学株式会社 Method for producing porous molded body, method for producing α-olefin dimerization catalyst, method for producing α-olefin dimer, porous molded body, and catalyst for α-olefin dimerization
CN110114143B (en) * 2016-12-22 2023-02-17 三井化学株式会社 Porous molded article and catalyst for dimerization of alpha-olefin
WO2018142651A1 (en) * 2017-02-01 2018-08-09 栗田工業株式会社 Acid gas treatment agent
KR20190057151A (en) 2017-02-01 2019-05-27 쿠리타 고교 가부시키가이샤 Acid gas treatment agent

Also Published As

Publication number Publication date
JP3840858B2 (en) 2006-11-01
JP2006239689A (en) 2006-09-14
JP4259539B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4259539B2 (en) Acid component removal agent and acid component removal method
JP3948075B2 (en) Acid component removal agent and acid component removal method
US6352653B1 (en) Acid component-removing agent, method for producing it and method for removing acid components
JP3840632B2 (en) Sodium-based desalting agent and waste treatment equipment
JP2000218128A5 (en)
JP5799955B2 (en) Method for producing acidic component remover and method for removing acidic component in gas
JPH05309255A (en) Production of salt granule
JP2011177711A (en) Method of treating gas
JP5045226B2 (en) Acid component removing agent and method for producing the same
JP2019502551A (en) Composition for purification of flue gas
JP2021020218A (en) Composition for purification of flue gas
JP5045225B2 (en) Acid component removing agent and method for producing the same
JP2006289365A (en) Sodium type desalting agent and waste treatment apparatus
JP2001017831A (en) Treating agent for halogen gas
JP2006103974A (en) Carbon dioxide separation/recovery device
JP4051734B2 (en) Treatment agent for exhaust gas containing dioxins and acidic substances
JP5045224B2 (en) Acid component removing agent and method for producing the same
JP3692443B2 (en) Production method of hydro-glossular using coal gasification slag
JP4918741B2 (en) Gas processing method
JPH08206443A (en) Acidic gas absorbent and production thereof
KR102627703B1 (en) Carbon dioxide scavenger for dry type and manufacturing method thereof
JP4735600B2 (en) Acid component removing agent and method for producing the same
JP2009018262A (en) Acidic component removing agent and method of manufacturing the same
JP4393757B2 (en) Zeolite material
JP2002282650A (en) Waste combustion exhaust gas treatment apparatus and waste treatment system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Ref document number: 3840858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term