JP4735600B2 - Acid component removing agent and method for producing the same - Google Patents

Acid component removing agent and method for producing the same Download PDF

Info

Publication number
JP4735600B2
JP4735600B2 JP2007126650A JP2007126650A JP4735600B2 JP 4735600 B2 JP4735600 B2 JP 4735600B2 JP 2007126650 A JP2007126650 A JP 2007126650A JP 2007126650 A JP2007126650 A JP 2007126650A JP 4735600 B2 JP4735600 B2 JP 4735600B2
Authority
JP
Japan
Prior art keywords
acidic component
powder
fumed silica
filter cloth
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007126650A
Other languages
Japanese (ja)
Other versions
JP2008068252A (en
Inventor
寿一 有馬
知子 松本
茂 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007126650A priority Critical patent/JP4735600B2/en
Publication of JP2008068252A publication Critical patent/JP2008068252A/en
Application granted granted Critical
Publication of JP4735600B2 publication Critical patent/JP4735600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、気体中の酸性成分を除去する酸性成分除去剤およびその製造方法に関する。   The present invention relates to an acidic component remover that removes acidic components in a gas and a method for producing the same.

一般廃棄物や産業廃棄物などの焼却処理に伴って発生する排気ガス中には、塩化水素や硫黄酸化物などの酸性成分が含まれている。これら酸性成分を吸収して除去するために、従来から、酸性成分除去剤を利用した除去装置が知られている。   The exhaust gas generated by the incineration treatment of general waste and industrial waste contains acidic components such as hydrogen chloride and sulfur oxides. In order to absorb and remove these acidic components, a removal device using an acidic component remover is conventionally known.

図1は、排ガス中の酸性成分の除去装置の一例を示す模式図である。図1に示す除去装置は、粉末状の酸性成分除去剤Mを貯留するサイロ1と、酸性成分を含んだ排ガスが流通する排ガス流路(煙道)2と、酸性成分除去剤をサイロ1から排ガス中に供給する供給管3と、排ガス流路2の下流側に配置されたバグフィルター4とから概略構成されている。   FIG. 1 is a schematic diagram showing an example of an apparatus for removing acidic components in exhaust gas. The removal device shown in FIG. 1 includes a silo 1 for storing a powdery acidic component removing agent M, an exhaust gas passage (flue) 2 through which an exhaust gas containing an acidic component flows, and an acidic component removing agent from the silo 1. A supply pipe 3 for supplying the exhaust gas into the exhaust gas and a bag filter 4 arranged on the downstream side of the exhaust gas flow path 2 are schematically configured.

サイロ1の排出部1aにはロータリーバルブやテーブルフィーダーなどの粉体定量供給装置5が備えられ、これら粉体定量供給装置5を作動させることで酸性成分除去剤Mを供給管3の開口部3aに落下させるように構成されている。
また、排ガス流路2の上流側には、例えば一般廃棄物や産業廃棄物などの図示しない焼却炉が設置されており、塩化水素、窒素酸化物、硫黄酸化物等の酸性成分を含んだ排ガスが排出ガス流路2を流通している。
また、供給管3には、上流側から空気流が流通されており、開口部3aを介して供給された酸性成分除去剤Mを空気流に乗せて下流側に送出できるようになっている。また、供給管3の下流側末端は排ガス流路2内に配置されており、更にこの下流側末端には酸性成分除去剤Mを排ガス中に噴出させる噴出器3bが取り付けられている。
The discharge unit 1 a of the silo 1 is provided with a powder fixed amount supply device 5 such as a rotary valve or a table feeder. The acidic component removing agent M is supplied to the opening 3 a of the supply pipe 3 by operating these powder fixed amount supply devices 5. It is configured to be dropped.
Further, an incinerator (not shown) such as a general waste or an industrial waste is installed on the upstream side of the exhaust gas flow path 2, and the exhaust gas containing acidic components such as hydrogen chloride, nitrogen oxide, and sulfur oxide is installed. Circulates in the exhaust gas passage 2.
In addition, an air flow is circulated from the upstream side to the supply pipe 3, and the acidic component removing agent M supplied through the opening 3a can be put on the air flow and sent to the downstream side. Further, the downstream end of the supply pipe 3 is disposed in the exhaust gas flow path 2, and an ejector 3 b for ejecting the acidic component removing agent M into the exhaust gas is further attached to the downstream end.

次に、バグフィルター4は、ハウジング41と、ハウジング41の下部41aに設けられた排ガス用の導入口42と、ハウジング41の中央部41bに配置された複数の筒状の濾布43と、ハウジング41の上部41cに設けられた排気口44とから概略構成される。筒状の濾布43は下端が閉じられて内部が中空部43aとされている。また、ハウジング41の上部41cと中央部41bとが仕切り板45によって仕切られており、ハウジング41の中央部41bから上部41cに排ガスが移動する際に排ガスが濾布43を必ず通過するように構成されている。また、仕切り板45には貫通部45aが設けられ、この貫通部45aには濾布の中空部43aとハウジング41の上部41cとを連通させる連通管46が取り付けられている。   Next, the bag filter 4 includes a housing 41, an exhaust gas inlet 42 provided in a lower portion 41 a of the housing 41, a plurality of tubular filter cloths 43 disposed in a central portion 41 b of the housing 41, a housing 41 and an exhaust port 44 provided in an upper portion 41c of 41. The cylindrical filter cloth 43 is closed at the lower end and has a hollow portion 43a inside. Further, the upper part 41c and the central part 41b of the housing 41 are partitioned by a partition plate 45, and the exhaust gas always passes through the filter cloth 43 when the exhaust gas moves from the central part 41b of the housing 41 to the upper part 41c. Has been. Further, the partition plate 45 is provided with a through portion 45a, and a communication tube 46 for connecting the hollow portion 43a of the filter cloth and the upper portion 41c of the housing 41 is attached to the through portion 45a.

次に、上記の除去装置の動作を説明すると、粉体定量供給装置5を作動させて、サイロ1中の酸性成分除去剤Mを供給管3に供給する。供給管3に供給された酸性成分除去剤Mは、空気流に乗って下流末端に送られ、噴出器3bによって排ガス中に噴出される。噴出された酸性成分除去剤Mは、一部が排ガス中の酸性成分と反応して反応生成物となる。そして、反応生成物と未反応の酸性成分除去剤Mとが、排ガスとともにバグフィルター4に送られる。バグフィルター4においては、反応生成物と未反応の酸性成分除去剤Mとが濾布43の表面に堆積して濾過層を形成し、この濾過層によって排ガス中の酸性成分が更に除去される。酸性成分が除去された排ガスは、濾布43を通過し、連通管46を介して排出口44から排出される。   Next, the operation of the above removal device will be described. The powder quantitative supply device 5 is operated to supply the acidic component removing agent M in the silo 1 to the supply pipe 3. The acidic component removing agent M supplied to the supply pipe 3 rides on the air flow and is sent to the downstream end, and is ejected into the exhaust gas by the ejector 3b. A part of the ejected acidic component removing agent M reacts with the acidic component in the exhaust gas to become a reaction product. Then, the reaction product and the unreacted acidic component removing agent M are sent to the bag filter 4 together with the exhaust gas. In the bag filter 4, the reaction product and the unreacted acidic component removing agent M are deposited on the surface of the filter cloth 43 to form a filtration layer, and the acidic component in the exhaust gas is further removed by the filtration layer. The exhaust gas from which the acidic component has been removed passes through the filter cloth 43 and is discharged from the discharge port 44 through the communication pipe 46.

上記のような除去装置においては、例えば150℃〜300℃程度の排ガスを処理する酸性成分除去剤Mとして、消石灰(水酸化カルシウム:Ca(OH))が用いられていた。しかし消石灰は、反応率が悪いため過剰に使用する必要があり、それにともなって回収される反応済みの濾過層の量が増加、即ち廃棄されるべき濾過層の量が増加して、埋立て最終処分場の用地を圧迫していること、塩化水素と消石灰の反応生成物は塩化カルシウムであり水溶性のため、水に溶解させて除去することもできるが、難溶性の複塩を形成し、処理が困難になる場合がある。また、吸湿および潮解性をもつため濾布への付着など取扱い上難点がある。また過剰に投入された消石灰は水に難溶かつ強アルカリ性を示すため、発生するダストの量は多量となりかつ水に溶解させることによるダストの減少効果は少なく、中和処理が必要であること、などの欠点がある。 In the removal device as described above, slaked lime (calcium hydroxide: Ca (OH) 2 ) has been used as the acidic component removal agent M for treating exhaust gas at about 150 ° C. to 300 ° C., for example. However, slaked lime needs to be used in excess due to its poor reaction rate, and as a result, the amount of the filtered layer to be recovered increases, that is, the amount of the filtered layer to be discarded increases, and the final landfill The site of the disposal site is under pressure, and the reaction product of hydrogen chloride and slaked lime is calcium chloride, which is water-soluble, so it can be dissolved in water and removed, but forms a hardly soluble double salt, Processing may be difficult. In addition, since it has moisture absorption and deliquescence properties, there are difficulties in handling such as adhesion to filter cloth. In addition, slaked lime that has been added excessively is slightly soluble in water and has strong alkalinity, so the amount of dust generated is large and the effect of reducing dust by dissolving in water is small, and neutralization is necessary. There are disadvantages such as.

そのため、消石灰に替えて、炭酸水素ナトリウムを用いる方法が提案されている。例えば、特許文献1には、炭酸水素ナトリウムを主成分とし、平均粒径が50μm以下、好ましくは10〜30μmの酸性成分除去剤が記載されている。より高い効率の除去を実現するには、より小さい粒径の炭酸水素ナトリウムを使用する必要があるが、30μm以下に調製された粉体は流動性が悪かったり、粒子同士の付着性が大きくなって固結しやすくなるなど安定した取り扱いに困難を伴うおそれがあり、ひいては酸性成分の除去効率が悪化するおそれがある。   Therefore, a method using sodium hydrogen carbonate instead of slaked lime has been proposed. For example, Patent Document 1 describes an acidic component remover having sodium bicarbonate as a main component and having an average particle size of 50 μm or less, preferably 10 to 30 μm. To achieve higher efficiency of removal, it is necessary to use sodium hydrogen carbonate with a smaller particle size. However, powders prepared to 30 μm or less have poor flowability or increased adhesion between particles. This may cause difficulty in stable handling such as being easy to consolidate, and there is a possibility that the removal efficiency of acidic components may deteriorate.

すなわち、粉体の流動性が悪化するとともに粒子同士の付着性が大きくなると、酸性成分除去剤自体が凝集しやすくなり、例えば図2(a)に示すように、サイロ中において所謂ラットホール現象が発生したり、図2(b)に示すように、ブリッジ現象が発生し、これにより酸性成分除去剤の供給が滞り、除去装置における除去効率が大幅に低下するおそれがある。   That is, when the fluidity of the powder deteriorates and the adhesion between the particles increases, the acidic component remover itself easily aggregates. For example, as shown in FIG. 2A, a so-called rathole phenomenon occurs in the silo. As shown in FIG. 2 (b), a bridging phenomenon occurs, which may cause the supply of the acidic component removing agent to stagnate, and the removal efficiency in the removal device may be greatly reduced.

そこで特許文献2には、微粒子化した炭酸水素ナトリウムの、粒子同士の付着性による粉体の流動性の悪化に対して、固結防止剤としてヒュームドシリカを使用することによって得られる流動性に優れた粉体が提案されている。
特表平9−50765号公報 特開2000−218128号公報
Therefore, in Patent Document 2, the fluidity obtained by using fumed silica as an anti-caking agent against the deterioration of the fluidity of the powder of finely divided sodium bicarbonate due to the adhesion between particles. Excellent powders have been proposed.
Japanese National Patent Publication No. 9-50765 JP 2000-218128 A

しかし、炭酸水素ナトリウムの流動性が極端に向上すると、バグフィルターの濾布を構成する繊維の隙間に炭酸水素ナトリウムの粒子が侵入しやすくなり、これにより濾布における圧力損失が上昇、バグフィルターの入口と出口のガスの圧力差(以下、差圧)が増大して、排ガスの流通量が大幅に低下するおそれがある。さらに、炭酸水素ナトリウムの粒子が濾布を通過し、排ガス中の煤塵として観測されるおそれがある。また、濾布表面に堆積した濾過層が、濾布から剥がれ落ちるおそれもある。いずれの場合にも、除去装置全体における酸性成分の除去能力の低下につながるおそれがあった。よって、炭酸水素ナトリウムの流動性を適度な範囲に制御することが可能になれば、除去装置における酸性成分の除去能力の更なる改善を期待できる。酸性成分除去剤は、ごみ焼却炉からの燃焼排ガス中の塩化水素(HCl)や二酸化硫黄(SO)、ボイラ排ガス中の二酸化硫黄(SO)や三酸化硫黄(SO)、硫酸(HSO)ほかガス中の酸性成分の除去目的に使用されており、酸性成分の除去能力の低下は、排ガス中の有害物質の除去効率の低下に結びつくので、環境保全上回避されなければならない。
よって本発明は、濾布における圧力損失の上昇を抑制するとともに濾布表面からの濾過層の脱落を防止し、かつサイロなどからの排出トラブルが発生しにくく、取扱い性に優れた酸性成分除去剤およびその製造方法を提供することを目的とする。
However, when the flowability of sodium hydrogen carbonate is extremely improved, sodium hydrogen carbonate particles easily enter the gaps between the fibers that make up the filter cloth of the bag filter, which increases the pressure loss in the filter cloth, There is a risk that the pressure difference between the gas at the inlet and the outlet (hereinafter referred to as differential pressure) increases and the flow rate of the exhaust gas is greatly reduced. Further, sodium hydrogen carbonate particles may pass through the filter cloth and be observed as dust in the exhaust gas. In addition, the filtration layer deposited on the surface of the filter cloth may be peeled off from the filter cloth. In either case, there is a possibility that the removal capability of the acidic component in the entire removal apparatus may be reduced. Therefore, if it becomes possible to control the fluidity of sodium hydrogen carbonate within an appropriate range, further improvement in the ability to remove acidic components in the removal device can be expected. Acidic component removal agent, hydrogen chloride in the combustion exhaust gas from the refuse incinerator (HCl) and sulfur dioxide (SO 2), sulfur dioxide (SO 2) and sulfur trioxide (SO 3) of the boiler flue gas, sulfuric acid (H 2 SO 4 ) In addition to this, it is used for the purpose of removing acidic components in gases, and a reduction in the ability to remove acidic components leads to a reduction in the removal efficiency of harmful substances in exhaust gas, so it must be avoided for environmental conservation. .
Therefore, the present invention suppresses an increase in pressure loss in the filter cloth, prevents the filtration layer from falling off from the surface of the filter cloth, and is less likely to cause a discharge trouble from a silo, etc., and has an excellent handling property. And it aims at providing the manufacturing method.

前述の課題を解決するために鋭意検討した結果、適度な比率で炭酸水素ナトリウムと多孔質粒子とヒュームドシリカとを含有し、かつ平均粒径が3〜20μmの範囲の粉末が、適度な流動性を示すとともに固結しにくい性質を有し、これにより濾布における圧力損失の上昇を抑制するとともに濾布からの脱落を防止し、またサイロにおけるラットホールやブリッジの発生を防止でき、更には排ガス中の酸性成分の除去効率を改善できることを見出した。   As a result of intensive studies to solve the above-mentioned problems, a powder containing sodium hydrogen carbonate, porous particles, and fumed silica in an appropriate ratio and having an average particle size in the range of 3 to 20 μm has an appropriate flow rate. It has the property of being difficult to consolidate and exhibiting properties, thereby suppressing an increase in pressure loss in the filter cloth and preventing the filter cloth from falling off, and also preventing the occurrence of rat holes and bridges in the silo. It has been found that the removal efficiency of acidic components in exhaust gas can be improved.

すなわち本発明は、上記の目的を達成するために以下の構成を採用した。
本発明の酸性成分除去剤は、炭酸水素ナトリウムと、珪藻土、シリカ、アパタイト、パーライト及びアルミナからなる群より選ばれる1種以上の多孔質粒子と、ヒュームドシリカとが含有され、多孔質粒子の含有率が1〜5質量%であり、ヒュームドシリカの含有率が0.5〜2.0質量%であり、かつ平均粒径が3〜20μmの範囲のものである。
更に、ヒュームドシリカは、親水性を示すものでも疎水性を示すものでもよい。
That is, the present invention employs the following configuration in order to achieve the above object.
The acidic component remover of the present invention contains sodium hydrogen carbonate, one or more porous particles selected from the group consisting of diatomaceous earth, silica, apatite, pearlite, and alumina, and fumed silica. The content is 1 to 5% by mass, the content of fumed silica is 0.5 to 2.0% by mass, and the average particle size is in the range of 3 to 20 μm.
Further, the fumed silica may be hydrophilic or hydrophobic.

また、本発明の酸性成分除去剤の製造方法は、炭酸水素ナトリウムと、珪藻土、シリカ、アパタイト、パーライト及びアルミナからなる群より選ばれる1種以上の多孔質粒子と、ヒュームドシリカとを混合して、多孔質粒子の含有率が1〜5質量%であり、ヒュームドシリカの含有率が0.5〜2.0質量%である混合物とし、この混合物を平均粒径が3〜20μmの範囲になるまで粉砕する方法である。   The method for producing an acidic component remover of the present invention comprises mixing sodium hydrogen carbonate, one or more porous particles selected from the group consisting of diatomaceous earth, silica, apatite, pearlite, and alumina, and fumed silica. The porous particle content is 1 to 5% by mass, and the fumed silica content is 0.5 to 2.0% by mass. The mixture has an average particle size of 3 to 20 μm. It is the method of grind | pulverizing until it becomes.

本発明によれば、濾布における圧力損失を抑制するとともに濾布からの脱落を防止し、かつサイロなどからの排出トラブルが発生しにくく、取扱い性に優れた酸性成分除去剤およびその製造方法を提供できる。   According to the present invention, there is provided an acidic component removing agent that suppresses pressure loss in a filter cloth and prevents dropping from the filter cloth, is less likely to cause a discharge trouble from a silo, and has excellent handling properties and a method for producing the same. Can be provided.

以下、本発明の酸性成分除去剤およびその製造方法を詳細に説明する。
本発明の酸性成分除去剤は、炭酸水素ナトリウムと、珪藻土、シリカ、アパタイト、パーライト及びアルミナからなる群より選ばれる1種以上の多孔質粒子と、ヒュームドシリカとが含有されてなり、かつこれら混合物の平均粒径が3〜20μmの範囲のものである。この酸性成分除去剤においては、炭酸水素ナトリウムからなる粒子の表面に、ヒュームドシリカの多くが一次粒子の状態で均一に分散されていることが好ましい。ヒュームドシリカの多くが一次粒子の状態で分散していることで、ヒュームドシリカが二次粒子の状態で存在する場合に比べて、酸性成分除去剤の流動性を、さらに適度なものとすることができ、凝集による塊状化を防止することができる。また、多孔質粒子を含有することで、酸性成分除去剤を構成する粒子同士の固結を防止することができる。このように本発明の酸性成分除去剤は、適度な流動性と固結防止能を兼ね備えているので、濾布における圧力損失の上昇を抑制するとともに濾布表面からの濾過層の脱落を防止し、かつサイロなどからの排出トラブルを未然に防止することができる。
Hereinafter, the acidic component removing agent of the present invention and the production method thereof will be described in detail.
The acidic component removing agent of the present invention contains sodium hydrogen carbonate, one or more porous particles selected from the group consisting of diatomaceous earth, silica, apatite, pearlite, and alumina, and fumed silica, and these The average particle size of the mixture is in the range of 3 to 20 μm. In this acidic component remover, it is preferable that most of the fumed silica is uniformly dispersed in the form of primary particles on the surface of the particles made of sodium hydrogen carbonate. Since most of the fumed silica is dispersed in the state of primary particles, the fluidity of the acidic component remover is made more appropriate than when fumed silica is present in the state of secondary particles. And agglomeration due to aggregation can be prevented. Further, by containing porous particles, solidification of particles constituting the acidic component remover can be prevented. As described above, since the acidic component remover of the present invention has appropriate fluidity and anti-caking ability, it suppresses the increase in pressure loss in the filter cloth and prevents the filtration layer from falling off the filter cloth surface. Moreover, it is possible to prevent discharge troubles from silos.

本発明の酸性成分除去剤は、特に製造方法は限定されず、適宜公知の方法により混合、粉砕するなどして得ることができるが、後述するように、炭酸水素ナトリウムと、珪藻土、シリカ、アパタイト、パーライト及びアルミナからなる群より選ばれる1種以上の多孔質粒子と、ヒュームドシリカとを混合してから粉砕して得ることが好ましい。混合物とした後に粉砕することで、炭酸水素ナトリウムと多孔質粒子が良好に粉砕されるだけでなく、二次凝集しがちなヒュームドシリカを効率的に解砕し、炭酸水素ナトリウム表面にヒュームドシリカを一次粒子の状態で均一にまぶすことができるので好ましい。これは粉砕の際に、粉体に強いせん断応力を加えることで効果的に混合させることが可能なためである。   The production method of the acidic component removing agent of the present invention is not particularly limited, and can be obtained by appropriately mixing and pulverizing by a known method. As will be described later, sodium hydrogen carbonate, diatomaceous earth, silica, apatite It is preferable to obtain by pulverizing after mixing one or more kinds of porous particles selected from the group consisting of pearlite and alumina and fumed silica. By crushing after making into a mixture, not only sodium bicarbonate and porous particles are pulverized well, but fumed silica that tends to agglomerate effectively is crushed and fumed on the surface of sodium bicarbonate. Since silica can be uniformly coated in the state of primary particles, it is preferable. This is because the powder can be effectively mixed by applying a strong shear stress to the powder during pulverization.

酸性成分除去剤の平均粒径は3〜20μmの範囲が好ましく、5〜10μmの範囲がより好ましい。平均粒径が3μm以上になれば、少量の多孔質粒子およびヒュームドシリカを併用する場合でも、十分な流動性が得られるので好ましい。また、粒径が小さすぎて濾布を通過してしまう問題も回避できる。更に平均粒径が20μm以下であれば、排ガス中の酸性成分を効率よく除去することができるので好ましい。更に平均粒径が5〜10μmの範囲であれば、酸性成分除去性能に優れることや、取り扱い易いこと等の面からより好ましい。   The average particle size of the acidic component remover is preferably in the range of 3 to 20 μm, and more preferably in the range of 5 to 10 μm. An average particle size of 3 μm or more is preferable because sufficient fluidity can be obtained even when a small amount of porous particles and fumed silica are used in combination. Moreover, the problem that the particle diameter is too small to pass through the filter cloth can be avoided. Furthermore, it is preferable if the average particle size is 20 μm or less because acidic components in the exhaust gas can be efficiently removed. Furthermore, if it is a range with an average particle diameter of 5-10 micrometers, it is more preferable from surfaces, such as being excellent in an acidic component removal performance, and being easy to handle.

尚、本発明において、酸性成分除去剤の平均粒径とは、レーザー回折散乱式粒度分布測定装置を使用して測定した体積基準での平均粒径の数値をいうものとする。本発明において、単に平均粒径という場合、エタノールを媒体としてこの方法で測定した値をいうものとする。なお、本明細書では、平均粒径は日機装株式会社製、商品名:マイクロトラックFRA9220を用いて測定している。   In the present invention, the average particle size of the acidic component remover refers to the numerical value of the average particle size on a volume basis measured using a laser diffraction / scattering particle size distribution analyzer. In the present invention, when the average particle diameter is simply referred to, it means a value measured by this method using ethanol as a medium. In the present specification, the average particle diameter is measured by using Nikkiso Co., Ltd., trade name: Microtrac FRA9220.

多孔質粒子は、珪藻土、シリカ、アパタイト、パーライト及びアルミナからなる群より選ばれる1種以上が好ましく、珪藻土または湿式シリカ(含水ケイ酸)の一方または両方を用いることがより好ましい。これら多孔質粒子は、天然、合成を問わず安価に安定的に入手可能なものを利用できる。多孔質粒子を混合すると良い理由は詳細には不明だが、おそらく多孔質に由来する吸湿性により水分を吸着しやすく、このため炭酸水素ナトリウムの流動性が改善されると推測される。またこれに加えて多孔に酸性成分を吸着保持する事によって、炭酸水素ナトリウム近傍に酸性ガスが濃縮し、本来反応が進みにくい固−ガス反応である炭酸水素ナトリウム−酸性ガス中和反応を加速する働きをするものと考えられる。   The porous particles are preferably at least one selected from the group consisting of diatomaceous earth, silica, apatite, pearlite and alumina, and more preferably one or both of diatomaceous earth and wet silica (hydrous silicic acid). As these porous particles, those which can be stably obtained at low cost can be used regardless of natural or synthetic. The reason why it is preferable to mix the porous particles is unknown in detail, but it is presumed that moisture is likely to be adsorbed due to the hygroscopic property derived from the porous material, and this improves the fluidity of sodium hydrogen carbonate. In addition, by adsorbing and holding acidic components in a porous manner, the acidic gas is concentrated in the vicinity of sodium hydrogen carbonate, accelerating the sodium hydrogen carbonate-acid gas neutralization reaction, which is a solid-gas reaction that is difficult to proceed by itself. It is thought to work.

尚、多孔質に由来する吸湿性とは、先ずその多孔質形状による表面積の増大による。一般に物体表面には水分子が1層以下吸着すると言われており、従って表面積が大きければ大きいほど吸湿力も大きくなる。次に細孔内への水分の吸着である。物体表面には1層以下の水分子が吸着するが、細孔内には毛管現象により水分子を多層で吸着する事が可能となる。これら二つの理由により、多孔質に由来する吸湿性が発生する。   In addition, the hygroscopicity derived from a porous is first due to an increase in surface area due to the porous shape. In general, it is said that one or less layers of water molecules are adsorbed on the surface of an object. Therefore, the greater the surface area, the greater the hygroscopic power. Next, moisture adsorption into the pores. Although one or less layers of water molecules are adsorbed on the surface of the object, water molecules can be adsorbed in multiple layers by capillary action in the pores. For these two reasons, the hygroscopicity derived from the porous material occurs.

ヒュームドシリカは、けい肺の原因とならないと言われている合成非晶質シリカのうち、乾式法により製造されるものを指す。具体的には燃焼法、自己燃焼法、加熱法により製造されるものが例示し得る。   Fumed silica refers to synthetic amorphous silica that is said not to cause necrosis and is produced by a dry process. Specifically, those produced by a combustion method, a self-combustion method, or a heating method can be exemplified.

ヒュームドシリカには、シラン処理、シランカップリング処理などの疎水化処理が表面に施されてなる疎水性ヒュームドシリカと、疎水化処理の施されていない親水性ヒュームドシリカが存在するが、炭酸水素ナトリウムと多孔質粒子とヒュームドシリカとを含有し、流動性に優れるとともに取扱い易い粉体を得たい場合、要求される流動性によって親水性、疎水性各々より選択することが出来る。親水性ヒュームドシリカは粒子同士の付着性を高めるため、特に、酸性成分除去剤によって濾布における圧力損失を増大させることなく、また濾布表面から堆積層を脱落させることなく良好に保持される。一方で疎水性ヒュームドシリカを選択した場合、これを用いた酸性成分除去剤の粉体流動性が向上するため、特に、サイロにおけるラットホールやブリッジを形成し難くなり、サイロやフィーダーからの良好な排出性が得られる。
もちろん親水性、疎水性のヒュームドシリカを混合して用いることで、濾布における圧力損失の上昇の改善とサイロからの良好な排出性とをバランスよく両立させた酸性成分除去剤を得ることもできる。
In the fumed silica, there are hydrophobic fumed silica whose surface is subjected to hydrophobic treatment such as silane treatment and silane coupling treatment, and hydrophilic fumed silica that is not subjected to hydrophobic treatment. When it is desired to obtain a powder containing sodium hydrogen carbonate, porous particles and fumed silica and having excellent fluidity and easy handling, it can be selected from hydrophilic and hydrophobic depending on the required fluidity. Hydrophilic fumed silica enhances the adhesion between particles, and in particular, the acid component remover keeps it well without increasing the pressure loss in the filter cloth and without removing the deposited layer from the filter cloth surface. . On the other hand, when hydrophobic fumed silica is selected, the powder fluidity of the acidic component remover using this improves, so it becomes difficult to form ratholes and bridges in silos, especially from silos and feeders. Emissions can be obtained.
Of course, by mixing and using hydrophilic and hydrophobic fumed silica, it is also possible to obtain an acidic component remover that balances the improvement in pressure loss in the filter cloth and the good discharge from the silo in a balanced manner. it can.

疎水性ヒュームドシリカを得るための疎水化処理としては、ジメチルジクロロシラン、ヘキサメチルジシラザン、オクチルシラン等のシラン処理、ビニルトリメトキシシラン等によるシランカップリング剤処理、ジメチルポリシロキサン処理、メチルハイドロジェンポリシロキサン処理、脂肪酸処理等の任意の処理が例示しうるが、これに限定されるものではない。
ヒュームドシリカに対する疎水化度は、ヒュームドシリカの表面に付着しているジメチルシラン等の付着量から測定することができる。ジメチルシラン等の付着量は、例えば、ヒュームドシリカにおける炭素含有率から求めることができる。疎水性ヒュームドシリカの疎水化度は、0%超、好ましくは0.8〜1%程度の範囲になる。また、親水性ヒュームドシリカの疎水化度は、ほぼ0%となる。また、炭素含有率の測定方法は、燃焼式の炭素量測定装置(例えばCNアナライザー(SUMIGRAPH NC−80))により測定できる。
尚、本発明における親水性ヒュームドシリカおよび疎水性ヒュームドシリカはいずれも、上述の条件を満たす市販品を使用することができる。
Hydrophobic treatment for obtaining hydrophobic fumed silica includes silane treatment such as dimethyldichlorosilane, hexamethyldisilazane, octylsilane, silane coupling agent treatment with vinyltrimethoxysilane, dimethylpolysiloxane treatment, methylhydro Although arbitrary processes, such as a gene polysiloxane process and a fatty acid process, can be illustrated, it is not limited to this.
The degree of hydrophobicity with respect to fumed silica can be measured from the amount of dimethylsilane or the like adhering to the surface of fumed silica. The adhesion amount of dimethylsilane or the like can be determined from, for example, the carbon content in fumed silica. The degree of hydrophobicity of the hydrophobic fumed silica is over 0%, preferably in the range of about 0.8 to 1%. Moreover, the hydrophobization degree of hydrophilic fumed silica is almost 0%. Moreover, the measuring method of a carbon content rate can be measured with a combustion type carbon amount measuring apparatus (for example, CN analyzer (SUMIGRAPH NC-80)).
In addition, both the hydrophilic fumed silica and hydrophobic fumed silica in this invention can use the commercial item which satisfy | fills the above-mentioned conditions.

炭酸水素ナトリウムに添加する、多孔質粒子とヒュームドシリカの割合は、多孔質粒子を1〜5質量%、かつヒュームドシリカを0.5〜2.0質量%の範囲で含有することが必要である。多孔質粒子が1質量%以上であるとことにより、適度な吸湿性を有し、炭酸水素ナトリムに水分が吸着することを防ぐことができ、得られる酸性成分除去剤が固結するのを防止する効果があるので好ましい。多孔質粒子が5質量%以下であることにより、得られる酸性成分除去剤の流動性が充分となるので好ましい。また、ヒュームドシリカが0.5質量%以上であることにより、得られる酸性成分除去剤が充分な流動性を示すことができるので好ましく、2質量%以下であることにより、得られる酸性成分除去剤が適度な流動性となり、濾布における圧力損失が減少し、サイロからの排出性も向上するので好ましい。   The ratio of porous particles to fumed silica to be added to sodium hydrogen carbonate is required to contain 1 to 5% by mass of porous particles and 0.5 to 2.0% by mass of fumed silica. It is. When the porous particles are 1% by mass or more, they have moderate hygroscopicity, can prevent moisture from adsorbing to sodium bicarbonate, and prevent the resulting acidic component remover from consolidating. It is preferable because of the effect of It is preferable that the porous particles be 5% by mass or less because the resulting acidic component remover has sufficient fluidity. Moreover, since the acidic component removal agent obtained can show sufficient fluidity because fumed silica is 0.5 mass% or more, the acidic component removal obtained is preferable when it is 2 mass% or less. It is preferable because the agent becomes suitable fluidity, the pressure loss in the filter cloth is reduced, and the discharge from the silo is also improved.

また、本発明の酸性成分除去剤は、安息角が40〜60°であり、分散度が50以下であり、噴流性指数が90未満であることが好ましく、安息角が40〜55°であり、分散度が15〜50であり、噴流性指数が90未満であることがより好ましい。
安息角が40〜60°の範囲であれば、サイロにおけるラットホールやブリッジングの現象の発生を抑制し、これにより除去装置における酸性成分除去剤の供給を円滑にして酸性成分の除去効率を高めることができる。
分散度は、数値が大きいほど粉体の飛散性や噴流性が高くなる。分散度が50以下であると噴流性が適度となり、バグフィルターの圧力損失の増大やバグフィルターの濾布からの粒子の漏れを抑制することができる。
また、噴流性指数は粉体の噴流性を評価する指標であり、この数値が高いほど飛散性や噴流性が高くなる。噴流性指数が90未満であればバグフィルターの圧力損失の増大やバグフィルターの濾布からの粒子の漏れを抑制することができる。
Moreover, the acidic component removing agent of the present invention has an angle of repose of 40 to 60 °, a dispersity of 50 or less, a jetability index of preferably less than 90, and an angle of repose of 40 to 55 °. More preferably, the dispersity is 15 to 50 and the jetability index is less than 90.
If the angle of repose is in the range of 40 to 60 °, the occurrence of ratholes and bridging phenomena in the silo is suppressed, thereby smoothly supplying the acidic component removing agent in the removal device and increasing the removal efficiency of the acidic component. be able to.
As the degree of dispersion increases, the powder scattering and jetting properties increase. When the degree of dispersion is 50 or less, the jet property becomes moderate, and the increase in pressure loss of the bag filter and the leakage of particles from the filter cloth of the bag filter can be suppressed.
Further, the jet property index is an index for evaluating the jet property of the powder, and the higher this value, the higher the scattering property and the jet property. If the jetability index is less than 90, an increase in the pressure loss of the bag filter and leakage of particles from the filter cloth of the bag filter can be suppressed.

安息角は、粉体試料を直径80mm、目開き710μmの篩を振動させながら通過させた後、水平面に160mmの高さの漏斗から直径80mmのテーブルに静かに落下させた時に、粉体によって形成された円錐体の母線と水平面のなす角を測定することで規定され、流動性の良い粉体ほど小さい値となる。ここで、粉体の落下量は安息角が実質的に安定するまで落下させるものとする。   An angle of repose is formed by powder when a powder sample is passed through a sieve having a diameter of 80 mm and an aperture of 710 μm while being vigorously dropped from a 160 mm-high funnel onto a table having a diameter of 80 mm. It is defined by measuring the angle formed between the generatrix of the cone and the horizontal plane, and the smaller the powder, the better the fluidity. Here, the amount of powder falling is assumed to drop until the angle of repose is substantially stabilized.

また、噴流性指数は、噴流性を数的に評価する一基準で、流動性、崩壊角、差角、分散度の各測定値から表1及び表2より指数を求め、各指数を合算した数値と規定され、この数値が大きいほど噴流性が強いと評価される。以下、各物性の規定について説明する。   The jetability index is a standard for numerically evaluating the jetability, and the index was obtained from Table 1 and Table 2 from the measured values of fluidity, collapse angle, difference angle, and dispersity, and each index was added up. It is defined as a numerical value, and it is evaluated that the larger the numerical value, the stronger the jet property. Hereinafter, the definition of each physical property will be described.

流動性は、安息角、圧縮度、スパチュラ角、均一度の各測定値から、同様に指数を求め、各指数を合算した数値で規定される。安息角は、前述の方法で求める。
圧縮度は、{(かため比重)−(ゆるみ比重)}/(かため比重)×100で規定される。ここでゆるみ比重は、粉体試料を直径80mm、目開き710μmの篩を振動させながら通過させた後、落下させた粉体を、容積100cmの容器に摺り切り一杯ためた時の粉体の質量を測定することで規定され、かため比重は、粉体を入れた容器を、180秒間に180回のペースでタッピングさせた時の、100cmの容積分の質量を測定することで規定される。スパチュラ角は、120mm×22mmの金属製のへらを水平にして、その上に粉体を堆積させた時の側面の傾斜角を測定することで規定される。
均一度は、粒度分布の測定より得られた、累積質量分布(篩)における60%粒径を10%粒径で割った値で規定される。粒度分布は篩分け法、レーザー回折散乱方式など、対象粉体の粒度等に応じて、種々の方法が使用されるが、今回はレーザー回折散乱方式での測定値を採用した。測定には日機装株式会社製「マイクロトラックFRA9220」を使用した。
崩壊角は、安息角を測定する目的で形成させた粉体による円錐体に、測定器に付属するショッカーにて所定の振動を3回与えて崩壊により形成した円錐体の傾斜角度を測定することで規定される。
差角は、安息角から崩壊角の数値を差し引いて得られる数値で規定される。
The fluidity is defined by a numerical value obtained by similarly obtaining an index from the measured values of the angle of repose, the degree of compression, the spatula angle, and the uniformity, and adding the indices. The angle of repose is obtained by the method described above.
The degree of compression is defined as {(cursor specific gravity) − (slack specific gravity)} / (cursor specific gravity) × 100. Here, the loose specific gravity is defined as the powder when the powder sample is passed through a sieve having a diameter of 80 mm and an opening of 710 μm while vibrating, and then the dropped powder is sliced into a 100 cm 3 container. The specific gravity is defined by measuring the mass of a volume of 100 cm 3 when a container containing powder is tapped at a pace of 180 times for 180 seconds. The The spatula angle is defined by measuring a tilt angle of a side surface when a metal spatula of 120 mm × 22 mm is leveled and powder is deposited thereon.
The uniformity is defined by a value obtained by measuring the particle size distribution and dividing the 60% particle size in the cumulative mass distribution (sieve) by the 10% particle size. Various methods are used for the particle size distribution depending on the particle size of the target powder, such as a sieving method, a laser diffraction scattering method, etc., but this time, measured values by the laser diffraction scattering method were adopted. Nikkiso Co., Ltd. “Microtrac FRA9220” was used for the measurement.
Decay angle is to measure the tilt angle of the cone formed by collapse by giving predetermined vibration three times to the cone made of powder formed for the purpose of measuring the angle of repose with a shocker attached to the measuring instrument. It is prescribed by.
The difference angle is defined by a value obtained by subtracting the value of the collapse angle from the angle of repose.

分散度は、粉体試料10gを、凹面が上になる様に設置した直径10cmの時計皿の上に、61cmの高さから一気に落下させ、落下させた粉体試料の全質量に対する時計皿の外に飛散した粉体試料の質量の100分率として規定され、この値が大きい粉体ほど、一般に飛散性、噴流性も大きい粉体といえる。   The degree of dispersion was determined by dropping 10 g of a powder sample from a height of 61 cm onto a 10 cm diameter watch glass set so that the concave surface is on top, and the watch glass relative to the total mass of the dropped powder sample. It is defined as a 100-percentage of the mass of the powder sample scattered outside, and a powder having a larger value can generally be regarded as a powder having greater scattering properties and jet properties.

Figure 0004735600
Figure 0004735600

Figure 0004735600
Figure 0004735600

また、本発明の酸性成分除去剤は、粉体層の引っ張り破断力が100mN/cm以下の範囲であり、濾布に対する圧力損失が500Pa以下であり、濾布からの粉体の漏れ濃度が40mg/Nm以下であることが好ましい。粉体層の引っ張り破断力のより好ましい範囲は80mN/cm以下であり、圧力損失のより好ましい範囲は400Pa以下であり、粉体の漏れ濃度のより好ましい範囲は20mg/Nm以下、特には10mg/Nm以下である。 Further, the acidic component removing agent of the present invention has a tensile breaking force of the powder layer of 100 mN / cm 2 or less, a pressure loss with respect to the filter cloth is 500 Pa or less, and a leakage concentration of the powder from the filter cloth is It is preferably 40 mg / Nm 3 or less. The more preferable range of the tensile breaking force of the powder layer is 80 mN / cm 2 or less, the more preferable range of the pressure loss is 400 Pa or less, and the more preferable range of the leakage concentration of the powder is 20 mg / Nm 3 or less, especially It is 10 mg / Nm 3 or less.

粉体層の引っ張り破断力は、粉体層の固結強度、崩れ易さの指標となり、破断力が小さければその粉体層は固結強度が小さく崩れ易く、破断力が大きければその粉体層は固結強度が大きく崩れにくい、と考えることができる。従って、粉体層の引っ張り破断力が上記の範囲であれば、濾布の表面に堆積した濾過層の脱落が生じにくく、また濾布に対して逆流洗浄(逆洗)を施す際に、濾過層を濾布から容易に取り除くことができる。
また、濾布における圧力損失が上記の範囲であれば、処理装置における酸性成分の除去効率が大幅に低下するおそれがない。
更に、粉体の漏れ濃度が上記の範囲であれば、排出されるばいじんの量における生活環境への負荷を低い水準に抑制することができる。
The tensile breaking force of the powder layer is an indicator of the consolidation strength of the powder layer and the tendency to collapse. If the breaking force is small, the powder layer has a small consolidation strength and tends to collapse, and if the breaking force is large, the powder It can be considered that the layer has a large consolidation strength and is difficult to collapse. Therefore, if the tensile breaking force of the powder layer is within the above range, the filtration layer deposited on the surface of the filter cloth is unlikely to fall off, and filtration is performed when the filter cloth is backwashed (backwashed). The layer can be easily removed from the filter cloth.
Moreover, if the pressure loss in the filter cloth is within the above range, the removal efficiency of the acidic component in the processing apparatus does not significantly decrease.
Furthermore, if the leakage density of the powder is in the above range, the burden on the living environment in the amount of discharged dust can be suppressed to a low level.

尚、粉体の引っ張り破断力は、例えば、ホソカワミクロン株式会社製の吊り下げ式粉体層付着力測定装置(コヒテスタCT−2型)を用い、二分割セル法での計測により求めることができる。また、濾布からの漏れ性や差圧の状況は、例えば、DIN(ドイツ規格協会の制定したドイツ連邦規格)に準拠した集塵性能試験装置(Filter Media
Tester)による計測によって求めることができる。
In addition, the tensile breaking force of powder can be calculated | required by the measurement by a 2 division | segmentation cell method, for example using the suspension type powder layer adhesive force measuring apparatus (Koh Tester CT-2 type | mold) by Hosokawa Micron Corporation. In addition, the state of leakage from the filter cloth and the differential pressure are, for example, a dust collection performance testing device (Filter Media) compliant with DIN (German Federal Standard established by the German Standards Association).
It can obtain | require by measurement by Tester.

次に、本発明の酸性成分除去剤の製造方法は、通常一般に取り扱われている炭酸水素ナトリウムと、多孔質粒子と、ヒュームドシリカとを混合させた後、混合物の平均粒径が3〜20μmの範囲になるまで粉砕することによって製造することが好ましい。
炭酸水素ナトリウムは、粒径が小さいと粒子同士の付着力が大きくなるので、固結したり、粉体の流動性が悪くなり取扱い性が悪くなる。またヒュームドシリカは凝集性が強く、炭酸水素ナトリウムを3〜20μmに粉砕後にヒュームドシリカを混合させようとすると均一に混合させるには困難が伴うため、粉砕操作の前に混合することが、取扱い性の良好な酸性成分除去剤を得ることができ、好ましい。本発明の酸性成分除去剤には炭酸水素ナトリウムの他に複数の成分を含有させるが、各成分を各々単独で計量し各々を炭酸水素ナトリウムに混合させる手法、計量した各成分同士を混合させたものを計量して炭酸水素ナトリウムに混合させる手法のいずれを採用しても差し障りは無い。
Next, in the method for producing the acidic component removing agent of the present invention, sodium hydrogen carbonate, porous particles, and fumed silica that are generally handled are mixed, and the average particle size of the mixture is 3 to 20 μm. It is preferable to produce by pulverizing until it becomes the range.
When sodium hydrogen carbonate has a small particle size, the adhesion between the particles increases, so that it solidifies, and the fluidity of the powder deteriorates, resulting in poor handling. Further, fumed silica has strong cohesiveness, and it is difficult to uniformly mix fumed silica after pulverizing sodium bicarbonate to 3 to 20 μm. An acidic component remover with good handleability can be obtained, which is preferable. The acidic component removing agent of the present invention contains a plurality of components in addition to sodium hydrogen carbonate, but each component is weighed individually and mixed with sodium hydrogen carbonate, and each weighed component is mixed. Any method of measuring and mixing with sodium bicarbonate can be used without any problem.

炭酸水素ナトリウムの原料粉末は、平均粒径が50〜350μmの範囲のものを用いることが好ましい。
多孔質粒子の原料粉末は、平均粒径が1〜200μmの範囲のものを用いることが好ましく、2〜50μmの範囲のものを用いることがより好ましい。
また、多孔質粒子として珪藻土を用いた場合は、その原料粉末の平均粒径が10〜100μmの範囲のものを用いることが好ましく、10〜50μmの範囲のものを用いることがより好ましい。
また、湿式シリカには、沈降法シリカとゲル法シリカの2種類があるが、いずれの場合も湿式シリカを用いる場合は原料粉末として、平均粒径が1〜40μmの範囲のものを用いることが好ましく、2〜15μmの範囲のものを用いることがより好ましい。
更に、ヒュームドシリカの原料粉末は、平均粒径が5〜500nmの範囲のものを用いることが好ましく、5〜100nmの範囲のものが更に好ましく、5〜20nmの範囲のものが特に好ましい。ここでヒュームドシリカの平均粒径は、一次粒子の平均粒径をいう。
上記の範囲の平均粒径を有する各原料粉末の混合物を粉砕することによって、平均粒径が3〜20μmの酸性成分除去剤が得られるので好ましい。
It is preferable to use the sodium hydrogen carbonate raw material powder having an average particle size in the range of 50 to 350 μm.
The raw material powder for the porous particles preferably has an average particle size in the range of 1 to 200 μm, and more preferably in the range of 2 to 50 μm.
Moreover, when diatomaceous earth is used as the porous particles, those having an average particle diameter of the raw material powder in the range of 10 to 100 μm are preferable, and those in the range of 10 to 50 μm are more preferable.
In addition, there are two types of wet silica, precipitated silica and gel silica. In either case, when wet silica is used, a raw material powder having an average particle diameter of 1 to 40 μm should be used. It is preferable to use one having a range of 2 to 15 μm.
Further, the fumed silica raw material powder preferably has an average particle size in the range of 5 to 500 nm, more preferably in the range of 5 to 100 nm, and particularly preferably in the range of 5 to 20 nm. Here, the average particle diameter of fumed silica refers to the average particle diameter of primary particles.
By crushing the mixture of each raw material powder having an average particle size in the above range, an acidic component remover having an average particle size of 3 to 20 μm can be obtained, which is preferable.

粉砕は衝撃式粉砕機(高速回転する羽根等による粉砕機)、ジェットミル(衝突気流による粉砕機)、ボールミル等を用いるのが好ましい。風力式分級機を備えた衝撃式粉砕機を用い、粉砕機から排出される粒子を分級して粗粒子は再度粉砕機に戻しながら、原料粉末の混合物を粉砕する場合は、高い収率で目的の粒径の酸性成分除去剤を得ることができるのでより好ましい。また、より細かい粉砕粒子を得たい場合はジェットミルを用いるのがよい。ジェットミルは動力に要する費用が高くなるが、粉砕方法として微粒子化に適しており、篩い分けによる粗粒子除去なしに、高い収率で目的の粒径の酸性成分除去剤を得ることができるので好ましい。   For the pulverization, it is preferable to use an impact pulverizer (a pulverizer using a blade rotating at high speed), a jet mill (a pulverizer using a collision airflow), a ball mill or the like. Use an impact pulverizer equipped with a wind classifier to classify the particles discharged from the pulverizer and return the coarse particles to the pulverizer again, while pulverizing the mixture of raw material powders with a high yield. It is more preferable because an acidic component remover having a particle size of 5 nm can be obtained. Further, when it is desired to obtain finer pulverized particles, it is preferable to use a jet mill. Jet mills require high power costs, but are suitable for pulverization as a pulverization method, and can remove an acidic component remover with a desired particle size in a high yield without removing coarse particles by sieving. preferable.

粉砕後の好ましい酸性成分除去剤の平均粒径の下限は、酸性成分との反応の点では特に限定されないが、平均粒径が1μmに近づくと、互いに粉体粒子が付着する傾向が強くなり、多孔質粒子を併用した場合でも十分な流動性を保持できず、又は多量の多孔質粒子の添加が必要となるなどの問題が生じる。さらに、工業的に生産するには、粉砕に要する設備と動力の費用とが過大になる。また、除去対象の酸性成分との反応性を良好に維持する目的とあわせて、粉砕後の平均粒径は3〜20μmとすることが好ましい。   The lower limit of the average particle size of the preferred acidic component remover after pulverization is not particularly limited in terms of the reaction with the acidic component, but when the average particle size approaches 1 μm, the tendency of the powder particles to adhere to each other increases. Even when porous particles are used in combination, sufficient fluidity cannot be maintained, or problems such as the need to add a large amount of porous particles arise. Furthermore, for industrial production, the equipment and power costs required for grinding are excessive. Moreover, it is preferable to set the average particle diameter after pulverization to 3 to 20 μm together with the purpose of maintaining good reactivity with the acidic component to be removed.

本発明の酸性成分除去剤によれば、多孔質粒子およびヒュームドシリカの添加により高い流動性と低い付着性が良好に維持され、サイロからの排出の悪化や、煙道内での分散不良による酸性成分との反応性低下、バグフィルターの濾布における圧力損失上昇の発生等、の可能性を大幅に低減できるため、酸性成分除去剤として良好に使用できる。   According to the acidic component removing agent of the present invention, high fluidity and low adhesion are maintained well by the addition of porous particles and fumed silica, and acidity due to deterioration of silo discharge and poor dispersion in the flue. Since it is possible to greatly reduce the possibility of a decrease in reactivity with the components and an increase in pressure loss in the filter cloth of the bag filter, it can be used favorably as an acidic component remover.

本発明の酸性成分除去剤により処理しうる酸性成分を含む気体としては、ポリ塩化ビニル等の産業廃棄物、都市ゴミ、医療廃棄物等の焼却炉等からの塩化水素やフッ化水素を含む排気ガス、硫黄酸化物や窒素酸化物を含有する燃焼ガス、各種製品の製造工程において不純物として酸性を示す物質が成分として混入しているガス等が例示される。
本発明の酸性成分除去剤を用いて気体中の酸性成分を除去する方法としては、酸性成分を含む気体中に本発明の酸性成分除去剤を分散させて反応させた後、バグフィルターなどで捕集する方法が好ましい。気体中への分散にかかる設備としては、例えば、図1に示すような、消石灰などによる排ガス処理設備で通常一般に使用されている方式を使用できる。この方法ではバグフィルターの濾布表面に酸性成分除去剤の濾過層が形成されるので、効率的に酸性成分を除去できる。酸性成分を含む気体の温度は、酸露点より高いことが好ましい。ごみ焼却炉の排ガス処理に使用する場合は、ダイオキシンの生成抑制の観点からは低い温度が好ましく、具体的には100〜200℃が好ましいが、酸性成分除去の観点からは150〜250℃が好ましい。
The gas containing an acidic component that can be treated by the acidic component removing agent of the present invention includes exhaust gas containing hydrogen chloride or hydrogen fluoride from incinerators such as industrial waste such as polyvinyl chloride, municipal waste, and medical waste. Examples thereof include gases, combustion gases containing sulfur oxides and nitrogen oxides, and gases in which substances that show acidity as impurities in the production processes of various products are mixed.
As a method of removing the acidic component in the gas using the acidic component remover of the present invention, the acidic component remover of the present invention is dispersed and reacted in a gas containing the acidic component, and then captured by a bag filter or the like. The method of collecting is preferred. As equipment relating to dispersion in gas, for example, a method generally used in exhaust gas treatment equipment such as slaked lime as shown in FIG. 1 can be used. In this method, since the filtration layer of the acidic component removing agent is formed on the filter cloth surface of the bag filter, the acidic component can be efficiently removed. The temperature of the gas containing the acidic component is preferably higher than the acid dew point. When used for exhaust gas treatment of a garbage incinerator, a low temperature is preferable from the viewpoint of suppression of dioxin production, specifically 100 to 200 ° C is preferable, but 150 to 250 ° C is preferable from the viewpoint of removing acidic components. .

炭酸水素ナトリウム、多孔質粒子およびヒュームドシリカからなる酸性成分除去剤を製造し、各種の評価を行った。
なお各実施例の原料は、平均粒径95μmの炭酸水素ナトリウムと、平均粒子径30μmの珪藻土、平均粒子径11μmの湿式シリカ(ホワイトカーボン)、平均粒子径3μmのアパタイト、平均粒子径6μmのパーライト、及び平均粒子径1μmの活性アルミナを用いた。更に、親水性ヒュームドシリカは、平均粒径0.02μmのものを用いた。
An acidic component remover composed of sodium hydrogen carbonate, porous particles and fumed silica was produced, and various evaluations were performed.
The raw materials of each example are sodium hydrogen carbonate having an average particle size of 95 μm, diatomaceous earth having an average particle size of 30 μm, wet silica (white carbon) having an average particle size of 11 μm, apatite having an average particle size of 3 μm, and pearlite having an average particle size of 6 μm. And activated alumina having an average particle diameter of 1 μm. Further, hydrophilic fumed silica having an average particle size of 0.02 μm was used.

親水性ヒュームドシリカの疎水度は、燃焼式の炭素量測定装置(例えばCNアナライザー(SUMIGRAPH NC−80))により測定した。測定手順は、ヘリウム、酸素の順にガスを燃焼炉内に通流させ、燃焼炉内を800℃に昇温し、昇温後、石英セルに測定試料を20〜30mg秤量して燃焼炉内へ入れ、炉内で1分間燃焼後、発生したガスをCNアナライザーにより測定し試料中の炭素率を求めた。そして、この炭素量から疎水度を算出した。
本実施例において使用した親水性ヒュームドシリカの疎水度は0%であった。
The hydrophobicity of the hydrophilic fumed silica was measured by a combustion type carbon amount measuring device (for example, CN analyzer (SUMIGRAP NC-80)). In the measurement procedure, helium and oxygen are flowed in the order of helium and oxygen, the temperature in the combustion furnace is raised to 800 ° C., and after the temperature rises, 20 to 30 mg of a measurement sample is weighed in a quartz cell and then put into the combustion furnace. Then, after burning for 1 minute in the furnace, the generated gas was measured with a CN analyzer, and the carbon ratio in the sample was determined. And the hydrophobicity was computed from this carbon content.
The hydrophobicity of the hydrophilic fumed silica used in this example was 0%.

これら原料粉末を所定の比率で混合した後、風力式分級機を備えた衝撃式粉砕機(ホソカワミクロン株式会社製、商品名:ACMパルベライザーACM―10A型)を用い、粉砕機から排出される粉末を分級し、粗粒子は再度粉砕機に戻しながら粉砕することにより、平均粒径9〜18μmの酸性成分除去剤(実施例1〜17および比較例1〜8)を得た。   After mixing these raw material powders at a predetermined ratio, the powder discharged from the pulverizer is obtained by using an impact pulverizer (made by Hosokawa Micron Co., Ltd., trade name: ACM Pulverizer ACM-10A type) equipped with a wind classifier. Classification was performed, and the coarse particles were pulverized while returning to the pulverizer again to obtain acidic component removers (Examples 1 to 17 and Comparative Examples 1 to 8) having an average particle size of 9 to 18 μm.

得られた酸性成分除去剤について、粉体層の引っ張り破断力(mN/cm)、濾布における圧力損失(Pa)、濾布からの薬剤の漏れ濃度(mg/Nm)、安息角、分散度、および噴流性指数を測定した。結果を表3および表4に示す。 About the obtained acidic component removing agent, the tensile breaking force (mN / cm 2 ) of the powder layer, the pressure loss (Pa) in the filter cloth, the leakage concentration of the drug from the filter cloth (mg / Nm 3 ), the angle of repose, The dispersity and the jetability index were measured. The results are shown in Table 3 and Table 4.

Figure 0004735600
Figure 0004735600

Figure 0004735600
Figure 0004735600

粉体物性の改善および実用性に関する評価は、1)流動性等に関する物性値、2)粉体層の引っ張り破断力、3)ろ布からの洩れ濃度、4)濾布における圧力損失の発生、について計測したデータを用いて実施した。
流動性に関する物性値(安息角、分散度および噴流性指数)は、ホソカワミクロン株式会社製のパウダーテスタPT−D型を用いて、上述の方法により測定した。
また、粉体層の引っ張り破断力は、前述のごとく二分割セルを使用する吊り下げ式粉体層付着力測定装置(ホソカワミクロン株式会社製のコヒテスタCT−2型)を使用して評価した。すなわち、試料約20(g)を、2つの円筒(内径50(mm)、高さ20(mm))を底面で重ねてなる二分割セルに充填し、予圧密荷重480(Pa)で、温度20(℃)、相対湿度50(%)下の環境で2時間加圧し、粉体層を圧縮した。このセルの片方を1mm/分の速度で円筒の軸に垂直な方向に引張り、円筒の底面部で粉体層にせん断応力を与え、粉体層の破断時の引張り力を測定した。ここで、粉体層破断力(mN/cm)(引っ張り力を粉体層の断面積で除した結果の値)の基準を100以下とした。
Evaluation of improvement and practicality of powder physical properties are as follows: 1) physical properties related to fluidity, etc. 2) tensile breaking force of powder layer, 3) leakage density from filter cloth, 4) generation of pressure loss in filter cloth, It was carried out using the data measured for.
Physical properties (repose angle, dispersity, and jet properties index) related to fluidity were measured by the above-described method using a powder tester PT-D type manufactured by Hosokawa Micron Corporation.
In addition, the tensile breaking force of the powder layer was evaluated by using a suspended powder layer adhesion measuring apparatus (Kochi Tester CT-2 type manufactured by Hosokawa Micron Corporation) using a two-divided cell as described above. That is, about 20 (g) of the sample is filled in a two-divided cell in which two cylinders (inner diameter 50 (mm), height 20 (mm)) are stacked on the bottom, and the temperature is set at a pre-consolidation load 480 (Pa). The powder layer was compressed by applying pressure for 2 hours in an environment of 20 (° C.) and a relative humidity of 50 (%). One of the cells was pulled at a speed of 1 mm / min in a direction perpendicular to the axis of the cylinder, a shear stress was applied to the powder layer at the bottom of the cylinder, and the tensile force at the time of breaking the powder layer was measured. Here, the standard of the powder layer breaking force (mN / cm 2 ) (value obtained by dividing the tensile force by the cross-sectional area of the powder layer) was set to 100 or less.

また、濾布に発生する圧力損失および濾布からの粉体の漏れ濃度は、DINに準拠した集塵性能試験装置(Filter Media Tester)を用いて測定した。試験条件は、テストフィルターとして、ガラス繊維二重織ろ布(ユニチカ株式会社製、WB992)を用い、ろ過面積0.0154(m)、ろ過速度(2.0m/分)、ダスト濃度(5.0g/m)、パルス圧力0.5(MPa)、パルスジェットは1(kPa)でかかるよう設定して6時間試験装置の運転を継続し、運転停止して、ダストの供給を停止した後、10回のパルスジェットを実施し、その後に測定した圧力損失(残存圧力損失)を採用した。
更に、濾布からの漏れ濃度は、テストフィルターの後段に設置したアブソリュートフィルターで捕捉した薬剤量と、通過ガス量とから算出した。濾布において発生する圧力損失の実用上の基準として、500(Pa)以下、漏れ濃度の基準を40(mg/Nm)以下とした。
Moreover, the pressure loss which generate | occur | produces in a filter cloth and the leakage density | concentration of the powder from a filter cloth were measured using the dust collection performance test apparatus (Filter Media Tester) based on DIN. As test conditions, a glass fiber double woven filter cloth (manufactured by Unitika Ltd., WB992) was used as a test filter, a filtration area of 0.0154 (m 2 ), a filtration rate (2.0 m / min), and a dust concentration (5 0.0 g / m 3 ), a pulse pressure of 0.5 (MPa), and a pulse jet of 1 (kPa) are set to be applied, and the operation of the test apparatus is continued for 6 hours, the operation is stopped, and the dust supply is stopped. Thereafter, 10 pulse jets were performed, and the pressure loss (residual pressure loss) measured thereafter was adopted.
Further, the leakage concentration from the filter cloth was calculated from the amount of drug captured by an absolute filter installed at the subsequent stage of the test filter and the amount of gas passing through. As a practical standard for the pressure loss generated in the filter cloth, the standard for leakage concentration was set to 500 (Pa) or less, and the standard for leakage concentration was set to 40 (mg / Nm 3 ) or less.

表3および表4に示すように、多孔質粒子が添加された実施例1〜17については、各種の物性値が良好な値を示していることがわかる。   As shown in Tables 3 and 4, it can be seen that in Examples 1 to 17 to which the porous particles were added, various physical property values showed good values.

一方、多孔質粒子を含まない比較例5および比較例7では、粒子が濾布の内部にまで侵入しやすくなって圧力損失が増大するとともに微細な粒子が濾布を通過して漏れ濃度が増大したと考えられる。
また、多孔質粒子を過剰に含む比較例1では、粉体の流動性が低下し、これにより安息角が増大して、サイロ内でラットホールやブリッジが発生する可能性が高くなると考えられる。
On the other hand, in Comparative Example 5 and Comparative Example 7 that do not include porous particles, the particles easily penetrate into the filter cloth, and the pressure loss increases and the fine particles pass through the filter cloth to increase the leakage concentration. It is thought that.
Further, in Comparative Example 1 containing excessive porous particles, it is considered that the fluidity of the powder is lowered, thereby increasing the angle of repose and increasing the possibility of generating rat holes and bridges in the silo.

ヒュームドシリカを過剰に含む比較例2では、粉体の分散度が大きく、噴流性が高くなり、粒子が濾布の内部にまで侵入しやすくなって圧力損失が増大したと考えられる。
また、ヒュームドシリカの含有量が下限値より少ない比較例3とヒュームドシリカを含まない比較例4では、炭酸水素ナトリウムの粒子同士が固結し易くなり、これにより粉体層の引っ張り破断力が増大したものと考えられる。
In Comparative Example 2 containing an excessive amount of fumed silica, it is considered that the degree of pressure loss was increased because the degree of dispersion of the powder was large, the jetting property was increased, and the particles easily penetrated into the filter cloth.
Further, in Comparative Example 3 in which the fumed silica content is less than the lower limit and Comparative Example 4 in which the fumed silica is not included, the sodium hydrogen carbonate particles are easily consolidated, and thereby the tensile breaking force of the powder layer Is thought to have increased.

多孔質粒子を含まない比較例6と、多孔質粒子およびヒュームドシリカを含まない比較例8では、炭酸水素ナトリウムの粒子同士が固結し易くなり、これにより粉体層の引っ張り破断力が増大したものと考えられる。また、比較例8では多孔質粒子およびヒュームドシリカを含まないため、粉体の流動性が低下し、これにより安息角が増大し、サイロ内でラットホールやブリッジが発生する可能性が高くなると考えられる。   In Comparative Example 6 that does not include porous particles and Comparative Example 8 that does not include porous particles and fumed silica, the sodium hydrogen carbonate particles are easily consolidated together, thereby increasing the tensile breaking force of the powder layer. It is thought that. Further, in Comparative Example 8, since the porous particles and fumed silica are not included, the fluidity of the powder is lowered, thereby increasing the angle of repose and increasing the possibility of generating rat holes and bridges in the silo. Conceivable.

本発明の酸性成分除去剤を使用することにより、従来よりも高い固結防止の効果が得られると同時に、濾布における圧力損失および洩れを抑制可能であることが分かる。   By using the acidic component removing agent of the present invention, it can be seen that a higher anti-caking effect than before can be obtained, and at the same time, pressure loss and leakage in the filter cloth can be suppressed.

図1は酸性成分除去剤を利用した排ガス中の酸性成分を除去する除去装置の模式図である。FIG. 1 is a schematic view of a removal device that removes acidic components in exhaust gas using an acidic component remover. 図2は、図1の除去装置のサイロにおけるラットホール現象およびブリッジ現象を説明する模式図である。FIG. 2 is a schematic diagram for explaining a rathole phenomenon and a bridge phenomenon in the silo of the removing apparatus of FIG.

符号の説明Explanation of symbols

1…サイロ、2…排ガス流路(煙道)、3…供給管、4…バグフィルター、43…濾布 DESCRIPTION OF SYMBOLS 1 ... Silo, 2 ... Exhaust gas flow path (flue), 3 ... Supply pipe, 4 ... Bag filter, 43 ... Filter cloth

Claims (2)

炭酸水素ナトリウムと、珪藻土、シリカ、アパタイト、パーライト及びアルミナからなる群より選ばれる1種以上の多孔質粒子と、ヒュームドシリカとが含有され、多孔質粒子の含有率が1〜5質量%であり、ヒュームドシリカの含有率が0.5〜2.0質量%であり、かつ平均粒径が3〜20μmの範囲である酸性成分除去剤。   Sodium hydrogen carbonate, one or more porous particles selected from the group consisting of diatomaceous earth, silica, apatite, pearlite, and alumina, and fumed silica are contained, and the content of the porous particles is 1 to 5% by mass. Yes, an acidic component removing agent having a fumed silica content of 0.5 to 2.0% by mass and an average particle size of 3 to 20 μm. 炭酸水素ナトリウムと、珪藻土、シリカ、アパタイト、パーライト及びアルミナからなる群より選ばれる1種以上の多孔質粒子と、ヒュームドシリカとを混合して、多孔質粒子の含有率が1〜5質量%であり、ヒュームドシリカの含有率が0.5〜2.0質量%である混合物とし、この混合物を平均粒径が3〜20μmの範囲になるまで粉砕する酸性成分除去剤の製造方法。   Sodium hydrogen carbonate, one or more porous particles selected from the group consisting of diatomaceous earth, silica, apatite, pearlite, and alumina, and fumed silica are mixed, and the content of the porous particles is 1 to 5% by mass. A method for producing an acidic component removing agent, in which the fumed silica content is 0.5 to 2.0% by mass and the mixture is pulverized until the average particle size is in the range of 3 to 20 μm.
JP2007126650A 2006-08-18 2007-05-11 Acid component removing agent and method for producing the same Active JP4735600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126650A JP4735600B2 (en) 2006-08-18 2007-05-11 Acid component removing agent and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006223166 2006-08-18
JP2006223166 2006-08-18
JP2007126650A JP4735600B2 (en) 2006-08-18 2007-05-11 Acid component removing agent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008068252A JP2008068252A (en) 2008-03-27
JP4735600B2 true JP4735600B2 (en) 2011-07-27

Family

ID=39290314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126650A Active JP4735600B2 (en) 2006-08-18 2007-05-11 Acid component removing agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP4735600B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033420B2 (en) * 1998-04-23 2008-01-16 三井造船株式会社 Method and apparatus for dry removal of hydrogen chloride in exhaust gas
JP2003010633A (en) * 2001-07-04 2003-01-14 Asahi Glass Co Ltd Gas treatment method

Also Published As

Publication number Publication date
JP2008068252A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP5799955B2 (en) Method for producing acidic component remover and method for removing acidic component in gas
JP4259539B2 (en) Acid component removal agent and acid component removal method
JP3840632B2 (en) Sodium-based desalting agent and waste treatment equipment
JP5045226B2 (en) Acid component removing agent and method for producing the same
JP2000218128A5 (en)
JP2011177711A (en) Method of treating gas
JP5045225B2 (en) Acid component removing agent and method for producing the same
TWI726189B (en) Acid gas treatment agent and acid gas treatment method
JP2006021204A (en) Exhaust gas treating agent and method and apparatus for treating exhaust gas by using the same
JP5045224B2 (en) Acid component removing agent and method for producing the same
JP2006289365A (en) Sodium type desalting agent and waste treatment apparatus
JP4735600B2 (en) Acid component removing agent and method for producing the same
JP3745765B2 (en) Exhaust gas treatment agent and exhaust gas treatment apparatus using the same
JP2009018262A (en) Acidic component removing agent and method of manufacturing the same
JP4918741B2 (en) Gas processing method
JP6927215B2 (en) Acid component remover, its manufacturing method and acid component removal method
JP4401639B2 (en) Exhaust gas treatment agent, method for producing the same, and exhaust gas treatment apparatus
JP2002282650A (en) Waste combustion exhaust gas treatment apparatus and waste treatment system
JP4617934B2 (en) Reduction method of dioxins in fly ash of garbage incineration equipment
JP2006082083A (en) Agent and method for removing acid component in gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R151 Written notification of patent or utility model registration

Ref document number: 4735600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250