JP2006103974A - Carbon dioxide separation/recovery device - Google Patents

Carbon dioxide separation/recovery device Download PDF

Info

Publication number
JP2006103974A
JP2006103974A JP2004288371A JP2004288371A JP2006103974A JP 2006103974 A JP2006103974 A JP 2006103974A JP 2004288371 A JP2004288371 A JP 2004288371A JP 2004288371 A JP2004288371 A JP 2004288371A JP 2006103974 A JP2006103974 A JP 2006103974A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
reaction vessel
absorbent
lioh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004288371A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健司 鈴木
Masaki Irie
正樹 入江
Hideo Uemoto
英雄 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2004288371A priority Critical patent/JP2006103974A/en
Publication of JP2006103974A publication Critical patent/JP2006103974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently separate and recover only carbon dioxide by using an absorbent mainly comprising lithium silicate. <P>SOLUTION: This carbon dioxide separation/recovery device is equipped with a reaction vessel housing a carbon dioxide absorbent comprising lithium silicate (Li<SB>4</SB>SiO<SB>4</SB>, Li<SB>2</SB>SiO<SB>3</SB>) as the principal component and containing LiOH or LiOH(H<SB>2</SB>O)<SB>n</SB>ä(H<SB>2</SB>O)<SB>n</SB>indicates crystallization water}, and a heating unit for heating the carbon dioxide absorbent. A mixed gas is introduced into the reaction vessel, the carbon dioxide in the mixed gas is absorbed by the carbon dioxide absorbent, and after discharging the mixed gas from the reaction vessel, heating the carbon dioxide absorbent to release carbon dioxide, and carbon dioxide is separated and recovered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭酸ガスが含まれた混合ガスから炭酸ガスを分離回収する装置に関する。
The present invention relates to an apparatus for separating and collecting carbon dioxide from a mixed gas containing carbon dioxide.

地球環境を保全するために炭酸ガスの排出量を規制する動きが活発になっている。炭酸ガスは、例えば、炭化水素を主成分とする燃料の燃焼、化石燃料を原料として利用するエネルギープラント、化学プラント、自動車などから発生する排出ガスに含まれており、これを大気中に放出せず効率よく分離除去することが求められている。   In order to preserve the global environment, there is an active movement to regulate carbon dioxide emissions. Carbon dioxide gas is contained in, for example, exhaust gas generated from combustion of fuels mainly composed of hydrocarbons, energy plants that use fossil fuels as raw materials, chemical plants, automobiles, etc., and these are released into the atmosphere. Therefore, efficient separation and removal is required.

従来、このような炭酸ガスを吸収する炭酸ガス吸収材として、リチウムシリケートが知られている。従来のリチウムシリケートの使用方法では、炭酸ガスを吸収する温度領域は、450℃〜700℃であった。   Conventionally, lithium silicate is known as a carbon dioxide absorbing material that absorbs such carbon dioxide. In the conventional method of using lithium silicate, the temperature range for absorbing carbon dioxide was 450 ° C. to 700 ° C.

また、室温用の炭酸ガス吸収材としては、ソーダライムが存在している。ソーダライムは、水酸化カルシウムが主成分であり、水酸化カルシウムが炭酸ガスと反応して炭酸カルシウムとなることで炭酸ガスを吸収している。炭酸カルシウムは安定な物質である。そのためにソーダライムは再生処理をして再利用することは困難である(特許文献1参照)。   Moreover, soda lime exists as a carbon dioxide gas absorbent for room temperature. Soda lime contains calcium hydroxide as a main component, and the calcium hydroxide reacts with the carbon dioxide gas to form calcium carbonate, thereby absorbing the carbon dioxide gas. Calcium carbonate is a stable substance. For this reason, it is difficult to reuse soda lime after recycling (see Patent Document 1).

特開平8−24571号公報JP-A-8-24571

本発明は、リチウムシリケートを主成分とする吸収材を用いて、炭酸ガスのみを効率よく分離回収する炭酸ガス分離回収装置を提供することにある。
又は、本発明は、リチウムシリケートを主成分とする炭酸ガス吸収材において、450℃以下でも、炭酸ガス吸収能を示す炭酸ガス吸収材を用いて、炭酸ガス分離回収装置を提供することにある。
An object of the present invention is to provide a carbon dioxide gas separation and recovery apparatus that efficiently separates and recovers only carbon dioxide gas using an absorbent material mainly composed of lithium silicate.
Alternatively, an object of the present invention is to provide a carbon dioxide gas separation material recovery apparatus using a carbon dioxide gas absorption material having carbon dioxide gas absorption ability even at 450 ° C. or lower in a carbon dioxide gas absorption material mainly composed of lithium silicate.

本発明は、リチウムシリケート(LiSiO、LiSiO)を主成分とし、LiOH又はLiOH(HO){(HO)は結晶水を示す}を含有している炭酸ガス吸収材を有する反応容器と、炭酸ガス吸収材を加熱する加熱装置と炭酸ガスを回収する回収容器とを備えていることを特徴とする炭酸ガス分離回収装置である。
The present invention is a carbonic acid containing lithium silicate (Li 4 SiO 4 , Li 2 SiO 3 ) as a main component and containing LiOH or LiOH (H 2 O) n {(H 2 O) n represents crystal water}. A carbon dioxide separation / recovery device comprising a reaction vessel having a gas absorption material, a heating device for heating the carbon dioxide absorption material, and a recovery vessel for recovering carbon dioxide.

本発明は、リチウムシリケートを主成分とし、LiOHもしくはLiOH(HO)が含まれている吸収材を用いて、混合ガスから炭酸ガスのみを効率よく分離回収することができる。
The present invention can efficiently separate and recover only carbon dioxide from a mixed gas by using an absorbent containing lithium silicate as a main component and containing LiOH or LiOH (H 2 O) n .

(炭酸ガス分離回収装置)
本発明の炭酸ガス分離回収装置は、炭酸ガスを含んだ混合ガスから炭酸ガス吸収材により、炭酸ガスを分離し、回収する装置である。例えば、炭化水素を主成分とする燃料、原料を利用するエネルギープラント、化学プラント、自動車、燃料改質器などから発生する排出ガス、燃料ガス、原料ガス中から炭酸ガス(二酸化炭素)を分離回収、又は、燃焼効率や反応効率を上げるため燃料や原料の供給部における炭酸ガスを分離回収する装置、或いは、生命維持や雰囲気制御のために密閉空間や循環ガス中の炭酸ガス濃度を下げるために、炭酸ガスを分離回収する装置である。
(CO2 separation and recovery device)
The carbon dioxide gas separation and recovery device of the present invention is a device that separates and recovers carbon dioxide from a mixed gas containing carbon dioxide by a carbon dioxide absorber. For example, carbon dioxide (carbon dioxide) is separated and recovered from exhaust gas, fuel gas, and raw gas generated from energy plants, chemical plants, automobiles, fuel reformers etc. Or to increase the combustion efficiency and reaction efficiency, to separate and recover the carbon dioxide in the fuel and raw material supply section, or to reduce the carbon dioxide concentration in the enclosed space and circulating gas for life support and atmosphere control An apparatus for separating and recovering carbon dioxide gas.

この炭酸ガス分離回収装置は、室温から700℃までの広い温度領域において炭酸ガスを吸収することができるものである。この吸収材を反応容器に収納し、炭酸ガスの混入した混合ガスを反応容器に通過させると、吸収材が炭酸ガス成分のみを吸収するために炭酸ガスを分離回収することができる。また、炭酸ガスを吸収した吸収材は、再生処理を施すことで、繰り返し使用することができる。また、炭酸ガス吸収材を収容した反応容器の前後に炭酸ガス濃度計やバルブと炭酸ガス供給装置を設置することで、密閉空間や閉鎖系などの炭酸ガス濃度を調整することができる。   This carbon dioxide gas separation / recovery device can absorb carbon dioxide gas in a wide temperature range from room temperature to 700 ° C. When this absorbent material is stored in a reaction vessel and a mixed gas mixed with carbon dioxide gas is passed through the reaction vessel, the absorbent material absorbs only the carbon dioxide component, so that the carbon dioxide gas can be separated and recovered. Moreover, the absorber which absorbed the carbon dioxide gas can be used repeatedly by performing a regeneration process. In addition, by installing a carbon dioxide concentration meter, a valve, and a carbon dioxide supply device before and after the reaction vessel containing the carbon dioxide absorbent, the carbon dioxide concentration in a closed space or a closed system can be adjusted.

炭酸ガス分離回収装置は、例えば図1に示すように、炭酸ガス吸収材2を収納する反応容器1と、反応容器1へ炭酸ガスを含む混合ガスを導入するガス導入管5と、反応容器1から混合ガスを排出するガス排出管6と、反応容器の前後に炭酸ガスの濃度を測定する炭酸ガス濃度計3と、反応容器1に導入されるガスの流量を測定する流量計4と、ガスの流量を調整するバルブ7と、加熱装置8などを備えている。また、炭酸ガス分離回収装置は、例えば図2に示すように、図1の構成に加えて、炭酸ガス供給源11を備える。炭酸ガス供給源11は、加熱装置8にバルブ7を介して接続され、更にバルブ7を介してガス排出管6に接続される。炭酸ガス供給源11は、COガスボンベを使用できる。また、炭酸ガス供給源は、COの回収容器を代用してもよい。 For example, as shown in FIG. 1, the carbon dioxide gas separation and recovery device includes a reaction vessel 1 that contains a carbon dioxide absorbent 2, a gas introduction pipe 5 that introduces a mixed gas containing carbon dioxide into the reaction vessel 1, and a reaction vessel 1. A gas discharge pipe 6 for discharging the mixed gas from, a carbon dioxide concentration meter 3 for measuring the concentration of carbon dioxide before and after the reaction vessel, a flow meter 4 for measuring the flow rate of the gas introduced into the reaction vessel 1, and a gas And a heating device 8 and the like. Moreover, the carbon dioxide gas separation and recovery apparatus includes a carbon dioxide gas supply source 11 in addition to the configuration of FIG. The carbon dioxide supply source 11 is connected to the heating device 8 via the valve 7 and further connected to the gas exhaust pipe 6 via the valve 7. The carbon dioxide gas supply source 11 can use a CO 2 gas cylinder. The carbon dioxide supply source may be replaced with a CO 2 recovery container.

回収容器10と加湿器9を備えた炭酸ガス分離回収装置は、図3に一例を示す。図3は図1と同様の機能を有する構成は、同一の符号を付してある。回収容器10は、ガス排出管6を介して反応容器1に接続してある。加湿器9は、図3(A)に示すように湿気ガス導入管51を介して反応容器1に接続してある。又は、図3(B)に示すようにガス導入管5を介して反応容器に接続してある。   An example of the carbon dioxide separation and recovery device including the recovery container 10 and the humidifier 9 is shown in FIG. 3 having the same functions as those in FIG. 1 are denoted by the same reference numerals. The recovery container 10 is connected to the reaction container 1 via the gas discharge pipe 6. The humidifier 9 is connected to the reaction vessel 1 through a moisture gas introduction pipe 51 as shown in FIG. Alternatively, it is connected to the reaction vessel via the gas introduction pipe 5 as shown in FIG.

複数の反応容器1を備えた炭酸ガス分離回収装置は、例えば図4に示す。複数の容器を備えることで、一方を炭酸ガスの吸収処理、他方で炭酸ガス吸収材の再生処理を行うことができるので、連続的に炭酸ガスを吸収させ分離回収することができる。図4(A)は、図3(A)の反応容器1を2個並列に接続したもので、それに伴い配管の本数も増えている。図4(B)は、同様に、図3(B)の反応容器1を2個備えたもので、配管の本数が増えている。図3〜図4の炭酸ガス分離回収装置では、図1の炭酸ガス濃度計3、3と流量計4が省略されているが、ガスの濃度や流量の測定を行う場合、必要に応じて取り付けられる。
A carbon dioxide separation / recovery device provided with a plurality of reaction vessels 1 is shown, for example, in FIG. By providing a plurality of containers, one can absorb carbon dioxide and the other can regenerate the carbon dioxide absorbent, so that carbon dioxide can be continuously absorbed and separated and recovered. FIG. 4A shows a configuration in which two reaction vessels 1 of FIG. 3A are connected in parallel, and the number of pipes is increased accordingly. FIG. 4B similarly includes two reaction vessels 1 of FIG. 3B, and the number of pipes is increased. 3 to 4, the carbon dioxide concentration meters 3 and 3 and the flow meter 4 in FIG. 1 are omitted. However, when measuring the gas concentration and flow rate, they are attached as necessary. It is done.

(炭酸ガス吸収材)
リチウムシリケート(LiSiO)が炭酸ガスを吸収する化学反応式は、以下の式(1)で表される。
(Carbon dioxide absorber)
The chemical reaction formula in which lithium silicate (Li 4 SiO 4 ) absorbs carbon dioxide is expressed by the following formula (1).

LiSiO+CO → LiSiO+LiCO ・・・・(1) Li 4 SiO 4 + CO 2 → Li 2 SiO 3 + Li 2 CO 3 (1)

式(1)は、可逆反応であり、高温下では反応式(2)に示すような逆の反応が起り、炭酸ガスは放出される。   Formula (1) is a reversible reaction, and at a high temperature, the reverse reaction shown in Reaction Formula (2) occurs, and carbon dioxide gas is released.

LiSiO+LiCO → LiSiO+CO ・・・・(2) Li 2 SiO 3 + Li 2 CO 3 → Li 4 SiO 4 + CO 2 (2)

このような可逆反応を繰り返すことにより、リチウムシリケートは繰り返し炭酸ガスを吸収させることができる。しかし、炭酸ガスを吸収する領域は、450〜700℃であった。そこで、リチウムシリケートに水を反応させることで、リチウムシリケートの一部をLiOHに変化させて、リチウムシリケート中に含有させることができる。その化学反応式は、以下の式(3)で表される。   By repeating such a reversible reaction, the lithium silicate can repeatedly absorb carbon dioxide. However, the area | region which absorbs a carbon dioxide gas was 450-700 degreeC. Therefore, by reacting water with lithium silicate, a part of the lithium silicate can be changed to LiOH and can be contained in the lithium silicate. The chemical reaction formula is represented by the following formula (3).

LiSiO+H0 → LiSiO+2LiOH ・・・・・(3) Li 4 SiO 4 + H 2 0 → Li 2 SiO 3 + 2LiOH (3)

リチウムシリケート中に存在するLiOHは、室温〜700℃で炭酸ガスを吸収する。その反応式は、以下の式(4)で表される。 LiOH present in the lithium silicate absorbs carbon dioxide at room temperature to 700 ° C. The reaction formula is represented by the following formula (4).

2LiOH+CO→LiCO+HO ・・・・・・・・・・(4) 2LiOH + CO 2 → Li 2 CO 3 + H 2 O (4)

炭酸ガスと反応して生成した炭酸リチウムは、熱処理をすることで、式(2)によりリチウムシリケートに再生される。また、未反応のLiOHは、次の式(5)によりリチウムシリケートに再生される。   Lithium carbonate produced by reacting with carbon dioxide gas is regenerated into lithium silicate according to formula (2) by heat treatment. Unreacted LiOH is regenerated into lithium silicate by the following formula (5).

LiSiO+2LiOH→ LiSiO+HO ・・・・・(5) Li 2 SiO 3 + 2LiOH → Li 4 SiO 4 + H 2 O (5)

再生された、リチウムシリケートは、水分と反応させることで、式(3)の反応がおこり、リチウムシリケートにLiOHが含有された、炭酸ガス吸収材に再生される。LiOHは、炭酸ガスとの反応性が非常に高いために、乾燥した室温でも、式(4)の反応がおこり、炭酸ガスを吸収することができる。以上のLiOHは、結晶水をもったLiOH・H{(HO)は結晶水を示す}でもよい。 The regenerated lithium silicate reacts with moisture to cause the reaction of the formula (3), and is regenerated into a carbon dioxide gas absorbent containing LiOH in the lithium silicate. Since LiOH has a very high reactivity with carbon dioxide gas, the reaction of formula (4) occurs even at a dry room temperature and can absorb carbon dioxide gas. The above LiOH may be LiOH.H 2 O n ((H 2 O) n represents crystal water) with crystal water.

また、この炭酸ガス吸収材は、室温〜700℃の温度領域で、炭酸ガスを分離回収することができる。また、炭酸ガスと反応した吸収材は、再生処理を施すことで、繰り返し使用できる。この吸収材を反応容器に収納し、炭酸ガスの混入した混合ガスを反応容器に通過させると、炭酸ガスを分離回収することができる。また、反応容器の前後に炭酸ガス濃度計、バルブ、炭酸ガス供給装置を設置することで、炭酸ガス濃度を調整する装置として使用することができる。   Moreover, this carbon dioxide absorbing material can separate and collect carbon dioxide in a temperature range of room temperature to 700 ° C. Further, the absorbent that has reacted with the carbon dioxide gas can be repeatedly used by performing a regeneration treatment. When this absorbent material is stored in a reaction vessel and a mixed gas mixed with carbon dioxide gas is passed through the reaction vessel, the carbon dioxide gas can be separated and recovered. Further, by installing a carbon dioxide concentration meter, a valve, and a carbon dioxide supply device before and after the reaction vessel, it can be used as a device for adjusting the carbon dioxide concentration.

リチウムシリケートの製造は、炭酸リチウムと酸化ケイ素に純水を加えて粉砕混合する。そのスラリーを乾燥後、混合粉を得る。次に、アルミナ乳鉢に純水、混合粉、バインダを入れて混練する。この混練物を成形する。この成形体を焼成し、リチウムシリケートを作製する。合成反応を促進するためにKCOやNaCOなどのアルカリ炭酸塩を微量添加してもよい。 In the production of lithium silicate, pure water is added to lithium carbonate and silicon oxide and pulverized and mixed. After drying the slurry, a mixed powder is obtained. Next, pure water, mixed powder, and binder are put into an alumina mortar and kneaded. This kneaded product is molded. This molded body is fired to produce lithium silicate. In order to accelerate the synthesis reaction, a trace amount of alkali carbonate such as K 2 CO 3 or Na 2 CO 3 may be added.

次に、LiOHを含有した炭酸ガス吸収材を次のように製造する。作製したリチウムシリケートを窒素ガスなどの不活性ガス雰囲気中に静置し、水分を導入して、リチウムシリケートの一部を反応させることで、LiOHあるいはLiOH・(HO)を含有した炭酸ガス吸収材を得る。 Next, a carbon dioxide absorbent containing LiOH is produced as follows. The prepared lithium silicate is allowed to stand in an inert gas atmosphere such as nitrogen gas, water is introduced, and a part of the lithium silicate is allowed to react, whereby carbon dioxide containing LiOH or LiOH. (H 2 O) n is contained. A gas absorber is obtained.

水分とリチウムシリケートの反応は、温度を制御できる加湿乾燥機や圧力を制御できるオートクレーブを用いても良い。また、特に室温中で炭酸ガスと反応させる場合、自由水を含んでいても良い。
For the reaction between moisture and lithium silicate, a humidifying dryer capable of controlling the temperature or an autoclave capable of controlling the pressure may be used. Moreover, when making it react with a carbon dioxide gas especially at room temperature, you may contain free water.

(炭酸ガス分離回収装置の動作)
図1の炭酸ガス分離装置において、ガス導入管5から反応容器1に混合ガスを導入する。その際、混合ガスの導入は、バルブ7により開閉制御され、その流量は、流量計4で測定される。反応容器1内では、炭酸ガス吸収材2が炭酸ガスと反応する温度領域、例えば、室温から700℃では、式(1)及び式(4)により、炭酸ガスが炭酸ガス吸収材と反応する。炭酸ガスが除去された或いは濃度が下がった混合ガスは、ガス排出管6を介して排出される。次に、炭酸ガス吸収材2と反応した炭酸ガスを解放する場合、炭酸ガス吸収材2の炭酸ガスの解放する温度領域、例えば800℃では、式(2)により反応容器1内に炭酸ガスが解放される。解放された炭酸ガスは、バルブ7の開閉によりガス排出管6を介して排出される。図1の炭酸ガス分離装置において、排出されるガスの炭酸ガス濃度が低くなりすぎる場合は、図2の炭酸ガス分離装置のように炭酸ガス供給源11により、好ましい炭酸ガス濃度に調整してもよい。炭酸ガス供給源11には、炭酸ガスボンベ、炭酸ガスを吸収した炭酸ガス吸収材、その他炭酸ガスを発生させるものを用いることができる。
(Operation of carbon dioxide separation and recovery device)
In the carbon dioxide separator of FIG. 1, the mixed gas is introduced into the reaction vessel 1 from the gas introduction pipe 5. At that time, the introduction of the mixed gas is controlled to open and close by the valve 7, and the flow rate is measured by the flow meter 4. In the reaction vessel 1, the carbon dioxide gas reacts with the carbon dioxide absorbent according to the equations (1) and (4) in a temperature range where the carbon dioxide absorbent 2 reacts with the carbon dioxide, for example, from room temperature to 700 ° C. The mixed gas from which the carbon dioxide gas has been removed or whose concentration has been reduced is discharged through the gas discharge pipe 6. Next, in the case where the carbon dioxide gas that has reacted with the carbon dioxide absorbent 2 is released, in the temperature range where the carbon dioxide of the carbon dioxide absorbent 2 is released, for example, 800 ° C., To be released. The released carbon dioxide gas is discharged through the gas discharge pipe 6 by opening and closing the valve 7. In the carbon dioxide separator of FIG. 1, when the carbon dioxide concentration of the discharged gas becomes too low, the carbon dioxide supply source 11 can adjust the carbon dioxide concentration to a preferable one as in the carbon dioxide separator of FIG. Good. The carbon dioxide supply source 11 may be a carbon dioxide cylinder, a carbon dioxide absorbent that has absorbed carbon dioxide, or another device that generates carbon dioxide.

図3の炭酸ガス分離回収装置では、炭酸ガス吸収材が炭酸ガスと反応した後、加熱装置8で炭酸ガス吸収材2を加熱して、式(2)により炭酸ガスを反応容器内に放出させる。放出した炭酸ガスは、炭酸ガス排出管61を通して回収容器10に移送され、回収される。   In the carbon dioxide gas separation and recovery device of FIG. 3, after the carbon dioxide gas absorbent reacts with the carbon dioxide gas, the carbon dioxide gas absorbent material 2 is heated by the heating device 8 to release the carbon dioxide gas into the reaction vessel according to the equation (2). . The released carbon dioxide is transferred to the collection container 10 through the carbon dioxide discharge pipe 61 and collected.

炭酸ガス分離回収装置を初期の状態に戻すために、炭酸ガス吸収材に水分を供給する。そのために、加湿器9を動作させ、水分を反応容器1に供給する。反応容器内では、式(3)の反応が進み、炭酸ガス吸収材2におけるLiOHの含有率が高まる。所望の含有率になるように水分を供給する。   In order to return the carbon dioxide gas separation and recovery device to the initial state, water is supplied to the carbon dioxide gas absorbent. For this purpose, the humidifier 9 is operated to supply moisture to the reaction vessel 1. In the reaction vessel, the reaction of formula (3) proceeds, and the LiOH content in the carbon dioxide absorbent 2 increases. Water is supplied so as to obtain a desired content.

図4の炭酸ガス分離回収装置では、炭酸ガスを回収する場合、一方の反応容器は混合ガス中の炭酸ガスを吸収させ、他方の反応容器は、炭酸ガスを吸収した吸収材を再生処理する。再生処理するときに反応容器1を加熱して、図3の装置と同様に、炭酸ガスを反応容器内に放出させ、ガス排出管6を通して回収容器10に移送し、回収する。反応容器が複数あると連続して炭酸ガスを分離回収することができる。
In the carbon dioxide gas separation and recovery apparatus of FIG. 4, when recovering carbon dioxide, one reaction vessel absorbs carbon dioxide in the mixed gas, and the other reaction vessel regenerates the absorbent that has absorbed carbon dioxide. When the regeneration process is performed, the reaction vessel 1 is heated to release carbon dioxide into the reaction vessel, and is transferred to the collection vessel 10 through the gas discharge pipe 6 and collected in the same manner as in the apparatus of FIG. When there are a plurality of reaction vessels, carbon dioxide can be separated and recovered continuously.

(実施例1)
炭酸ガス吸収材の製造は、以下のように行われる。ポリポットに原料となる炭酸リチウムと酸化ケイ素をモル比で2:1になるようにして、粉砕用アルミナボールと純水を加えてポットミルで20h(時間)、粉砕混合を行った。そのスラリーを乾燥後、#60のナイロンメッシュを通し、平均粒径240μm以下の混合粉を得た。次に、アルミナ乳鉢に純水、混合粉と多糖類のバインダと微量の炭酸カリウムを入れて混練した。バインダの添加量は、混合粉に対して2重量%となるように添加し、炭酸カリウムを合成後のリチウムシリケートに対して2mol%添加した。この混練物を乾燥させた後、平均粒径240〜420μmの顆粒状の成形体を作製した。得られた成形体を、窒素フロー雰囲気で、600℃で8h保持して焼成し、リチウムシリケートの顆粒を作製した。
Example 1
The production of the carbon dioxide absorber is performed as follows. In a polypot, lithium carbonate and silicon oxide as raw materials were in a molar ratio of 2: 1, pulverized alumina balls and pure water were added, and pulverized and mixed in a pot mill for 20 hours (hours). The slurry was dried and passed through a # 60 nylon mesh to obtain a mixed powder having an average particle size of 240 μm or less. Next, pure water, mixed powder, polysaccharide binder, and a small amount of potassium carbonate were put into an alumina mortar and kneaded. The amount of binder added was 2% by weight with respect to the mixed powder, and 2 mol% of potassium carbonate was added to the synthesized lithium silicate. After the kneaded product was dried, a granular shaped product having an average particle size of 240 to 420 μm was produced. The obtained molded body was calcined by holding at 600 ° C. for 8 hours in a nitrogen flow atmosphere to produce lithium silicate granules.

作製したリチウムシリケートは、窒素雰囲気中のデシケータ中に静置し、そこに水中をバブリングさせて加湿した窒素ガスを導入して、リチウムシリケートに水分を25重量%保持させた。このように、作製した炭酸ガス吸収材を反応容器に収納して、炭酸ガスの吸収性能を測定した。   The produced lithium silicate was allowed to stand in a desiccator in a nitrogen atmosphere, and nitrogen gas that had been moistened by bubbling water was introduced into the lithium silicate so that the lithium silicate was kept at 25% by weight of water. Thus, the produced carbon dioxide absorbing material was housed in a reaction vessel, and the carbon dioxide absorbing performance was measured.

次に、反応が終了した反応容器を600℃、4hに保持した後、室温まで冷却して加湿器を作動させて反応容器に水分を導入した。加湿器の作動時間を調整して炭酸ガス吸収材の含水率を初回と同等の25重量%にした。ガスの導入時間は2時間とし、炭酸ガス吸収率は、次式で求めた。   Next, the reaction vessel after the completion of the reaction was kept at 600 ° C. for 4 hours, and then cooled to room temperature and the humidifier was operated to introduce moisture into the reaction vessel. The operation time of the humidifier was adjusted so that the water content of the carbon dioxide absorbent was 25% by weight, the same as the first time. The gas introduction time was 2 hours, and the carbon dioxide absorption rate was determined by the following equation.

炭酸ガス吸収率(%)=吸収材が吸収した炭酸ガス量(g)/吸収材量(g)×100 ・・・・・・(6)   Carbon dioxide absorption rate (%) = Amount of carbon dioxide absorbed by the absorbent (g) / Amount of absorbent (g) × 100 (6)

今回測定を行った装置は、反応容器の前後に炭酸ガス濃度計を設置し、そこへ、炭酸ガス濃度を調整した混合ガスを1L(リットル)/minで導入し、反応容器の前後の炭酸ガス濃度を測定し、反応容器の吸収率の評価を行った。反応容器の容積は、7cmである。混合ガスの温度は25℃であり、混合ガス中の炭酸ガス濃度は、3000ppmでおこなった。
The apparatus that performed the measurement this time is to install a carbon dioxide concentration meter before and after the reaction vessel, introduce a mixed gas with adjusted carbon dioxide concentration at 1 L (liter) / min, and carbon dioxide gas before and after the reaction vessel. The concentration was measured, and the absorption rate of the reaction vessel was evaluated. The volume of the reaction vessel is 7 cm 3 . The temperature of the mixed gas was 25 ° C., and the carbon dioxide concentration in the mixed gas was 3000 ppm.

(比較例1)
比較例1は、炭酸ガス吸収材として、リチウムシリケートの代わりにソーダライムを使用した例である。炭酸ガス分離回収装置は、反応容器にソーダライムを収容する他は、実施例1と同様の装置を使用した。
(Comparative Example 1)
Comparative Example 1 is an example in which soda lime is used instead of lithium silicate as a carbon dioxide gas absorbent. As the carbon dioxide gas separation and recovery device, the same device as in Example 1 was used except that soda lime was accommodated in the reaction vessel.

Figure 2006103974
Figure 2006103974

(測定結果1)
表1より、リチウムシリケートを主成分としたLiOHを含んだ吸収材に用いた炭酸ガス分離回収装置は、再生処理を行うことで、繰り返し使用できることがわかる。実施例1では、リチウムシリケートの形状は顆粒を使用しているが、それに限定されず、球状、円盤状、円柱状、角状、角柱状など、さまざまな形状を選択することができる。
(Measurement result 1)
From Table 1, it can be seen that the carbon dioxide separation and recovery apparatus used for the absorbent containing LiOH containing lithium silicate as a main component can be repeatedly used by performing the regeneration treatment. In Example 1, although the shape of lithium silicate uses the granule, it is not limited to it, Various shapes, such as spherical shape, disk shape, cylindrical shape, square shape, prismatic shape, can be selected.

上記のように、リチウムシリケートは、再生処理を施すことで、初回とほぼ同等の炭酸ガス吸収性能を示すために、廃棄物がなく、長時間使用することが可能な炭酸ガス分離回収装置を得ることができる。又は、反応容器の前後に炭酸ガス濃度計やバルブを設置することで、炭酸ガス濃度を調整する装置として使用することができる。又は、室温〜700℃までの広い温度範囲で炭酸ガスを分離回収することができ、また、乾燥しても、吸収性能の低下することなく炭酸ガスを分離回収することができる。
As described above, the lithium silicate is subjected to regeneration treatment to obtain a carbon dioxide absorption performance almost equal to that of the first time, so that a carbon dioxide separation and recovery device that can be used for a long time without waste is obtained. be able to. Or it can use as an apparatus which adjusts a carbon dioxide gas concentration by installing a carbon dioxide gas concentration meter and a valve before and behind a reaction container. Alternatively, carbon dioxide gas can be separated and recovered in a wide temperature range from room temperature to 700 ° C., and even when dried, carbon dioxide gas can be separated and recovered without lowering the absorption performance.

以下に、高温でなくても効率よく炭酸ガスを吸収できる実施例を示す。   Examples that can efficiently absorb carbon dioxide gas even at high temperatures are shown below.

(実施例2)
実施例2のリチウムシリケートの製造は、以下のように行われる。ポリポットに原料となる炭酸リチウムと酸化ケイ素をモル比で2:1になるように入れ、粉砕用アルミナボール、純水を加えてポットミルで20時間(h)、粉砕混合した。そのスラリーを乾燥後、ナイロンメッシュ240μmを通し、混合粉を得た。次に、アルミナ乳鉢に純水、混合粉、バインダ(多糖類)を入れて混練した。バインダの添加量は、混合粉に対して2重量%となるように添加した。この混練物を成形して約2mmの球状にした。この成形体を、窒素フロー雰囲気で、650℃で8h保持して焼成し、約2mmの球状品のリチウムシリケートを作製した。
(Example 2)
The manufacture of the lithium silicate of Example 2 is performed as follows. Lithium carbonate and silicon oxide as raw materials were put in a polypot so as to have a molar ratio of 2: 1, pulverized alumina balls and pure water were added, and pulverized and mixed in a pot mill for 20 hours (h). The slurry was dried and passed through a nylon mesh 240 μm to obtain a mixed powder. Next, pure water, mixed powder, and binder (polysaccharide) were put into an alumina mortar and kneaded. The added amount of the binder was 2% by weight with respect to the mixed powder. This kneaded product was molded into a spherical shape of about 2 mm. This molded body was fired by holding at 650 ° C. for 8 hours in a nitrogen flow atmosphere to produce a spherical lithium silicate of about 2 mm.

次に、LiOHを含有した炭酸ガス吸収材を次のように製造する。作製したリチウムシリケートを窒素雰囲気中のデシケータ中に静置し、そこに水中をパブリングさせた窒素ガスを導入して、リチウムシリケートの一部を水と反応させた。その後、窒素雰囲気中、120℃で2h保持して過剰な水分を除去して、LiOHを含有した炭酸ガス吸収材を得た。   Next, a carbon dioxide absorbent containing LiOH is produced as follows. The produced lithium silicate was allowed to stand in a desiccator in a nitrogen atmosphere, and nitrogen gas in which water was published was introduced therein to react a part of the lithium silicate with water. Then, it hold | maintained at 120 degreeC in nitrogen atmosphere for 2 hours, the excess water | moisture content was removed, and the carbon dioxide gas absorber containing LiOH was obtained.

炭酸ガスの吸収性能の測定は、作製した炭酸ガス吸収材を反応容器に収納して行った。ガスの導入時間は、2時間とし、炭酸ガス吸収率は、前記式(6)で求めた。   The carbon dioxide absorption performance was measured by storing the produced carbon dioxide absorbent in a reaction vessel. The gas introduction time was 2 hours, and the carbon dioxide absorption rate was determined by the above formula (6).

室温(25℃)で測定を行った装置は、図1に示すように、反応容器の前後に炭酸ガス濃度計を設置し、そこへ、炭酸ガス濃度3000ppmに調整した標準ガスを1L/minで導入し、反応容器の前後の炭酸ガス濃度を測定し、炭酸ガス吸収材の吸収率を評価した。反応容器の容積は、7cmである。 As shown in FIG. 1, the apparatus which measured at room temperature (25 degreeC) installed the carbon dioxide gas concentration meter in front and behind the reaction container, and the standard gas adjusted to the carbon dioxide gas concentration of 3000 ppm to there is 1 L / min. The carbon dioxide concentration before and after the reaction vessel was measured, and the absorption rate of the carbon dioxide absorbent was evaluated. The volume of the reaction vessel is 7 cm 3 .

200℃と600℃で測定を行った装置は、反応容器に炭酸ガス吸収材を収納して、そこへ、炭酸ガス濃度20重量%の標準ガスを500ml/min導入して、炭酸ガスを吸収させて、吸収材の重量変化により炭酸ガス吸収率を評価した。   The apparatus which measured at 200 degreeC and 600 degreeC accommodates the carbon dioxide gas absorption material in the reaction container, introduces 500 ml / min of standard gas with a carbon dioxide concentration of 20% by weight, and absorbs the carbon dioxide gas. The carbon dioxide absorption rate was evaluated based on the change in the weight of the absorbent.

(比較例2)
実施例2と同様にリチウムシリケートを作製したが、水分と反応させずに、LiOH或いは、LiOH(H0)を含有させなかった。この吸収材を実施例1と同様に、炭酸ガスの吸収率を室温(25℃)、200℃、600℃で測定した。
(Comparative Example 2)
Lithium silicate was produced in the same manner as in Example 2, but it was not reacted with moisture and LiOH or LiOH (H 2 0) n was not contained. In the same manner as in Example 1, this absorbent material was measured for carbon dioxide absorption at room temperature (25 ° C.), 200 ° C., and 600 ° C.

Figure 2006103974
Figure 2006103974

(測定結果2)
表2により、室温における炭酸ガス吸収率は、実施例2では8.7%であったが、比較例2では0.1%であり、LiOHを含有する炭酸ガス吸収材は、室温でも炭酸ガスを吸収することができることを示している。200℃における炭酸ガス吸収率は、実施例2では4.3%であったが、比較例2では0%であり、LiOHを含有する炭酸ガス吸収材は、200℃の雰囲気でも炭酸ガスを吸収することができることを示している。600℃における炭酸ガス吸収率は、実施例2では22.5%であったが、比較例2では23.3%であった。
(Measurement result 2)
According to Table 2, the carbon dioxide absorption rate at room temperature was 8.7% in Example 2, but 0.1% in Comparative Example 2, and the carbon dioxide gas absorbent containing LiOH is carbon dioxide even at room temperature. It can be absorbed. The carbon dioxide absorption rate at 200 ° C. was 4.3% in Example 2, but 0% in Comparative Example 2. The carbon dioxide absorbent containing LiOH absorbs carbon dioxide even in an atmosphere at 200 ° C. Shows that you can. The carbon dioxide absorption rate at 600 ° C. was 22.5% in Example 2, but 23.3% in Comparative Example 2.

本発明の炭酸ガス分離回収装置の概略図Schematic diagram of carbon dioxide separation and recovery device of the present invention 本発明の他の炭酸ガス分離回収装置の概略図Schematic of another carbon dioxide gas separation and recovery device of the present invention 本発明の他の炭酸ガス分離回収装置の概略図Schematic of another carbon dioxide gas separation and recovery device of the present invention 本発明の他の炭酸ガス分離回収装置の概略図Schematic of another carbon dioxide gas separation and recovery device of the present invention

符号の説明Explanation of symbols

1・・・反応容器
2・・・炭酸ガス吸収材
3・・・炭酸ガス濃度計
4・・・流量計
5・・・ガス導入管
51・・湿気ガス導入管
6・・・ガス排出管
61・・炭酸ガス排出管
7・・・バルブ
8・・・加熱装置
9・・・加湿器
10・・回収容器
11・・炭酸ガス供給源
DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Carbon dioxide gas absorption material 3 ... Carbon dioxide gas concentration meter 4 ... Flow meter 5 ... Gas introduction pipe 51 ... Humid gas introduction pipe 6 ... Gas discharge pipe 61 ..CO2 discharge pipe 7 ... Valve 8 ... Heating device 9 ... Humidifier 10 ... Recovery container 11 ... CO2 supply source

Claims (4)

リチウムシリケート(LiSiO、LiSiO)を主成分とし、LiOH又はLiOH(HO){(HO)は結晶水を示す}を含有する炭酸ガス吸収材を有する反応容器と、
炭酸ガス吸収材を加熱する加熱装置と、
炭酸ガスを回収する回収容器とを備えていることを特徴とする炭酸ガス分離回収装置。
A reaction having a carbon dioxide absorbent containing lithium silicate (Li 4 SiO 4 , Li 2 SiO 3 ) as a main component and containing LiOH or LiOH (H 2 O) n {(H 2 O) n represents crystal water}. A container,
A heating device for heating the carbon dioxide absorber;
A carbon dioxide separation / recovery device comprising a recovery container for recovering carbon dioxide.
リチウムシリケート(LiSiO、LiSiO)を主成分とし、LiOH又はLiOH(HO){(HO)は結晶水を示す}を含有する炭酸ガス吸収材を有する反応容器と、
炭酸ガス吸収材を加熱する加熱装置と、
炭酸ガスを回収する回収容器とを備え、
混合ガスを反応容器に導入し、混合ガス中の炭酸ガスを炭酸ガス吸収材と反応させ、次に、反応容器内の混合ガスを排出した後、炭酸ガス吸収材を加熱して炭酸ガスを反応容器内に生成させて容器に回収することを特徴とする炭酸ガス分離回収装置。
A reaction having a carbon dioxide absorbent containing lithium silicate (Li 4 SiO 4 , Li 2 SiO 3 ) as a main component and containing LiOH or LiOH (H 2 O) n {(H 2 O) n represents crystal water}. A container,
A heating device for heating the carbon dioxide absorber;
A collection container for collecting carbon dioxide gas,
The mixed gas is introduced into the reaction vessel, and the carbon dioxide in the mixed gas is reacted with the carbon dioxide absorbent. Next, after the mixed gas in the reaction vessel is discharged, the carbon dioxide absorbent is heated to react the carbon dioxide. A carbon dioxide separation and recovery device, characterized in that it is generated in a container and recovered in a container.
炭酸ガス吸収材におけるリチウム化合物のモル比がLiSiO:LiSiO:LiOH=1−x:x:2x(0<x≦1)であることを特徴とする、請求項1又は2に記載の炭酸ガス分離回収装置。
The molar ratio of the lithium compound in the carbon dioxide absorbent is Li 4 SiO 4 : Li 2 SiO 3 : LiOH = 1-x: x: 2x (0 <x ≦ 1), The carbon dioxide gas separation and recovery device described in 1.
反応容器にガスを導入するガス導入管と、
反応容器からガスを排出するガス排出管と、
炭酸ガス吸収材を加湿する加湿器とを備え、
加湿器によりHOを反応容器に供給してリチウムシリケートと反応させて、反応容器にLiOHを生成することを特徴とする、請求項1又は2に記載の炭酸ガス分離回収装置。

A gas introduction pipe for introducing gas into the reaction vessel;
A gas discharge pipe for discharging gas from the reaction vessel;
A humidifier that humidifies the carbon dioxide absorbent,
The carbon dioxide gas separation and recovery device according to claim 1 or 2, wherein H 2 O is supplied to the reaction vessel by a humidifier and reacted with lithium silicate to produce LiOH in the reaction vessel.

JP2004288371A 2004-09-30 2004-09-30 Carbon dioxide separation/recovery device Pending JP2006103974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004288371A JP2006103974A (en) 2004-09-30 2004-09-30 Carbon dioxide separation/recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004288371A JP2006103974A (en) 2004-09-30 2004-09-30 Carbon dioxide separation/recovery device

Publications (1)

Publication Number Publication Date
JP2006103974A true JP2006103974A (en) 2006-04-20

Family

ID=36374123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004288371A Pending JP2006103974A (en) 2004-09-30 2004-09-30 Carbon dioxide separation/recovery device

Country Status (1)

Country Link
JP (1) JP2006103974A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022577A (en) * 2011-07-26 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for recovering carbon dioxide
JP2015120154A (en) * 2006-10-02 2015-07-02 キリマンジャロ エナジー, インコーポレイテッド Method and apparatus for extracting carbon dioxide from air
KR20150127939A (en) * 2014-05-07 2015-11-18 경북대학교 산학협력단 Lithium silicate dry sorbents for capturing carbon dioxide
JP2016002526A (en) * 2014-06-18 2016-01-12 学校法人 中央大学 Co2 absorbing member manufacturing method, co2 absorbing member, and co2 absorbing device
JPWO2015125355A1 (en) * 2014-02-21 2017-03-30 シャープ株式会社 Carbon dioxide concentration control device and electronic device
US10010829B2 (en) 2005-07-28 2018-07-03 Carbon Sink, Inc. Removal of carbon dioxide from air
WO2018168290A1 (en) * 2017-03-15 2018-09-20 シャープ株式会社 Carbon dioxide absorption device, carbon dioxide absorption method, and electronic device
US10150112B2 (en) 2006-03-08 2018-12-11 Carbon Sink, Inc. Air collector with functionalized ion exchange membrane for capturing ambient CO2
US10232304B2 (en) 2014-08-20 2019-03-19 Sharp Kabushiki Kaisha Carbon dioxide concentration control system and carbon dioxide concentration control device
JP2022190550A (en) * 2021-06-14 2022-12-26 龍祥 權 Carbon dioxide recovery device and carbon dioxide recovery system
US11737398B2 (en) 2018-02-16 2023-08-29 Carbon Sink, Inc. Fluidized bed extractors for capture of CO2 from ambient air

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010829B2 (en) 2005-07-28 2018-07-03 Carbon Sink, Inc. Removal of carbon dioxide from air
US10150112B2 (en) 2006-03-08 2018-12-11 Carbon Sink, Inc. Air collector with functionalized ion exchange membrane for capturing ambient CO2
JP2015120154A (en) * 2006-10-02 2015-07-02 キリマンジャロ エナジー, インコーポレイテッド Method and apparatus for extracting carbon dioxide from air
US9861933B2 (en) 2006-10-02 2018-01-09 Carbon Sink, Inc. Method and apparatus for extracting carbon dioxide from air
JP2013022577A (en) * 2011-07-26 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for recovering carbon dioxide
US10005019B2 (en) 2014-02-21 2018-06-26 Sharp Kabushiki Kaisha Carbon dioxide concentration-controlling device and electronic apparatus
JPWO2015125355A1 (en) * 2014-02-21 2017-03-30 シャープ株式会社 Carbon dioxide concentration control device and electronic device
KR101582408B1 (en) * 2014-05-07 2016-01-06 경북대학교 산학협력단 Lithium silicate dry sorbents for capturing carbon dioxide
KR20150127939A (en) * 2014-05-07 2015-11-18 경북대학교 산학협력단 Lithium silicate dry sorbents for capturing carbon dioxide
JP2016002526A (en) * 2014-06-18 2016-01-12 学校法人 中央大学 Co2 absorbing member manufacturing method, co2 absorbing member, and co2 absorbing device
US10232304B2 (en) 2014-08-20 2019-03-19 Sharp Kabushiki Kaisha Carbon dioxide concentration control system and carbon dioxide concentration control device
WO2018168290A1 (en) * 2017-03-15 2018-09-20 シャープ株式会社 Carbon dioxide absorption device, carbon dioxide absorption method, and electronic device
US11737398B2 (en) 2018-02-16 2023-08-29 Carbon Sink, Inc. Fluidized bed extractors for capture of CO2 from ambient air
JP2022190550A (en) * 2021-06-14 2022-12-26 龍祥 權 Carbon dioxide recovery device and carbon dioxide recovery system
JP7394469B2 (en) 2021-06-14 2023-12-08 龍祥 權 Carbon dioxide capture equipment and carbon dioxide recovery system

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advances in lithium containing ceramic based sorbents for high-temperature CO 2 capture
Hu et al. CO2 capture by Li4SiO4 sorbents and their applications: Current developments and new trends
Bhatta et al. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review
Seggiani et al. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects
JP6194356B2 (en) Renewable sorbent for removing carbon dioxide
US7067456B2 (en) Sorbent for separation of carbon dioxide (CO2) from gas mixtures
TW527211B (en) Process for adsorbing carbon dioxide from a gas stream containing carbon dioxide, adsorbent for carbon dioxide and process making the same
JP5177386B2 (en) Chemical heat pump
Wang et al. High-capacity Li4SiO4-based CO2 sorbents via a facile hydration–NaCl doping technique
Yang et al. Novel low cost Li4SiO4-based sorbent with naturally occurring wollastonite as Si-source for cyclic CO2 capture
Lee et al. Novel regenerable solid sorbents based on lithium orthosilicate for carbon dioxide capture at high temperatures
CA2767416A1 (en) Particulate, heterogeneous solid co2 absorbent composition, method for its preparation and use thereof
Kwon et al. Regenerable sodium-based lithium silicate sorbents with a new mechanism for CO2 capture at high temperature
JP2006103974A (en) Carbon dioxide separation/recovery device
Yu et al. Hydrothermal preparation of calcium–aluminum carbonate sorbent for high-temperature CO2 capture in fixed-bed reactor
CN102815926A (en) High-temperature calcium-based coal ash absorbent for CO2 and preparation method of high-temperature calcium-based coal ash absorbent
HARTMAN et al. Thermal dehydration of the sodium carbonate hydrates
Xu et al. Fabrication of CaO pellets via polyvinyl alcohol (PVA) method for efficient CO2 capture and solar energy storage
JP2006102561A (en) Carbon dioxide absorption material and carbon dioxide reaction device
JP2013081873A (en) Co2 recovery method for reactivatable solid absorbent
Yanase et al. CO2 capture and release of Na0. 7MnO2. 05 under water vapor at 25–150° C
CN113082957B (en) Industrial flue gas sulfur dioxide remover and preparation method thereof
JP2016003156A (en) METHOD FOR MANUFACTURING α-SODIUM FERRITE
US20180361316A1 (en) Powdered compostion comprising one or more double salt(s) for use in combustion gas purification
CN101780393B (en) Adsorbent, regenerating-recycling method and recycling equipment thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711